
Masterarbeit

Model-based support of Virtual
Organizations in an RFID middleware

Andreas Leitner

————————————–

Institut für Technische Informatik
Technische Universität Graz

Vorstand: O. Univ.-Prof. Dipl.-Ing. Dr. techn. Reinhold Weiß

Begutachter: Dipl.-Ing. Dr.techn. Christian Kreiner
Betreuer: Dipl.-Ing. Michael Thonhauser

Graz, im Mai 2010

Abstract

Modern distributed computer systems, with mobile and embedded devices as first class cit-
izens, are formed from heterogeneous platforms. Due to their distributed nature dynamic
reconfiguration and adaptation seems to be a strong requirement as well as the support
of organizational structures enabling shared usage of resources. Model-based techniques
have been recognized to provide a level of abstraction for software development and to
support dynamically (re-)configuration of the software at runtime.

A portable runtime architecture is presented that explicitly honors ownership and realm
of control of hardware devices, resources and application components specified by multiple
models. This thesis is based on a previously realized Model-based Component Container
(MCC), which defines and implements a concrete model paradigm covering one domain-
specific aspect. Several MCCs are used for the execution of the specific models of an
application component (a.k.a Model-Based Software Component (MBSC)) and are man-
aged by specific runtime nodes contained in the portable runtime node architecture.

The architecture has been prototypically implemented and has been evaluated in a
scenario, demonstrating the feasibility of the proposed architecture to support the dynamic
formation of virtual organizations out of several independent organizations to realize a
dynamic reconfigurable building access system.

Kurzfassung

Moderne verteilte Systeme, bestehend aus mobilen und eingebetteten Geräten, kennzeich-
nen sich durch ihre lose Kopplung, und der Heterogenität der zugrunde liegenden Platt-
form. Aufgrund der Verteiltheit dieser Systeme spielen dynamische Anpassung und Re-
konfiguration sowie auch die gemeinsame Nutzung von Ressourcen durch Virtuelle Or-
ganisationen eine zentrale Rolle. Modellgetriebene Softwareentwicklung bewährte sich als
eine Technik, die durch Abstraktion dynamische Konfiguration und Rekonfiguration zur
Laufzeit ermöglicht.

Diese Masterarbeit präsentiert einen auf Modellen basierenden Ansatz für eine Midd-
leware, die es ermöglicht mehrere unabhängige Softwarekomponenten, welche potentiell
in den Verantwortungsbereich von verschiedenen Organisationen fallen, zu verwalten und
Ressourcen dynamisch zuzuteilen.

Die vorgestellte Architektur wurde in einem Prototyp realisiert, und anhand eines dy-
namisch konfigurierbaren Gebäudezutritts-Szenarios evaluiert. Diese Evaluierung zeigt die
Möglichkeiten dises Ansatzes zur Unterstützung der dynamischen Aspekte von virtuellen
Organisationen, welche sich aus mehreren unabhängigen Organisationen formen, auf.

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere
als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz,am
(Unterschrift)

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

.............................. ...
date (signature)

Contents

1. Introduction 1

2. Related work 3

2.1. Distributed systems . 3

2.2. Grid Computing . 4

2.2.1. Architecture . 5

2.2.2. Classification . 8

2.2.3. Virtual Organization . 18

2.3. Cloud Computing . 20

2.3.1. Architecture . 21

2.3.2. Resource Management . 22

2.4. You-R R⃝ Open . 24

2.4.1. EPC Global . 24

2.4.2. Tube . 25

2.5. Model Driven Software Development . 26

2.5.1. Metamodeling . 28

2.5.2. Entity Container . 30

2.5.3. Model-based Component Container 33

2.5.4. Model-Based Software Component 38

3. Design of a model-based middleware for virtual organizations 41

3.1. Requirements . 42

3.2. Architecture . 44

3.3. Virtual Organization Node Architecture . 46

3.3.1. MCCs in the controlling unit . 47

3.3.2. Event queues . 49

3.3.3. Node identification . 50

3.4. Virtual Organization Node Design . 50

3.4.1. Class diagram . 50

3.4.2. Startup . 51

3.4.3. Event handling . 53

3.4.4. Component location . 56

3.5. Resource Node . 57

3.5.1. Resource management . 59

3.5.2. Lookup service component . 60

3.5.3. Value Added Reseller principle . 62

I

Contents

4. Implementation of a model-based middleware for virtual organizations 65
4.1. .Net Framework . 65

4.1.1. .Net Compact Framework . 66
4.1.2. .Net Micro Framework . 67
4.1.3. Comparison . 69

4.2. Hardware . 70
4.3. Scenario . 70

4.3.1. RN RFID reader . 72
4.3.2. RN PDA . 75

4.4. Results . 78

5. Conclusion 81

A. Event Mechanism 83

B. Development tools 87

Literaturverzeichnis 88

II

List of Figures

1.1. Spanning multiple Virtual Organizations . 1

2.1. The evolution of Grid technologies . 5
2.2. The layered Grid Architecture . 6
2.3. Combination of Collective and Resource layer protocols 8
2.4. A classification of traditional and emerging Grids 8
2.5. Ad hoc grid architecture . 11
2.6. Wireless access grid architecture . 13
2.7. Classification of Wireless Grids . 13
2.8. Mobile Grid Architecture . 15
2.9. Composition of virtual organizations . 20
2.10. Grids and Clouds overview . 21
2.11. Cloud- and Grid- Architecture compared . 22
2.12. Triangle model . 24
2.13. Structure of the You-R R⃝ Open middleware 24
2.14. Layers of a You-R R⃝ Open Tube . 26
2.15. Model Driven Architecture by OMG . 27
2.16. The principle of MDA . 28
2.17. PIM, PSM and transformation . 28
2.18. The four metalevels . 29
2.19. Metamodel and inheritance . 31
2.20. Architecture of an Entity Container . 32
2.21. Enitity Container desing . 32
2.22. Statemachine MCC . 34
2.23. Visual description of the M2 layer of the data-MCC 34
2.24. Visual description of a sample M1 layer of a data-MCC 35
2.25. Visual description of a sample M0 layer of a data-MCC 35
2.26. Visual description of the M2 layer of the statemachine-MCC 36
2.27. Sample statemachine of a door opener . 36
2.28. Visual description of the M1 layer of a door opener statemachine-MCC . . . 37
2.29. Visual description of the M0 layer of a door opener statemachine-MCC . . . 37
2.30. Model-Based Runtime Node . 39

3.1. High-level Architecture . 42
3.2. Architecture with one operator and two tenants 45
3.3. Component Diagram . 45
3.4. Structure of a standard VON . 46
3.5. State diagram of the VON controller’s statemachine-MCC 48
3.6. M1 model of a data-MCC used to specify MCCs in the application area . . 48

III

List of Figures

3.7. M1 model of the data-MCC to realize the publisher subscriber mechanism . 49
3.8. M1 model of a data-MCC used to specify the VON structure 49
3.9. VON component . 52
3.10. Detailed startup sequence . 54
3.11. Half-Sync/Half-Async pattern . 55
3.12. Overview of the event mechanism . 56
3.13. Broker pattern . 57
3.14. Layered Broker architecture . 58
3.15. RN class diagram . 59
3.16. Resource management component . 61
3.17. Lookup service component . 61
3.18. Performing internal and external lookup . 62
3.19. Value added reseller principle . 63
3.20. Sample setup of the VAR principle . 64

4.1. Common Language Runtime diagram . 65
4.2. Microsoft Embedded Products . 67
4.3. Micro Framework Architecture . 68
4.4. Overall configuration and VON deployment 71
4.5. VON1 of the facility management organization 72
4.6. VON2 of the facility management organization 73
4.7. VON of departmentA . 74
4.8. VON of departmentB . 74
4.9. VON1 of the security service organization 75
4.10. VON2 of the security service organization 76
4.11. VON3 of the security service organization 76
4.12. Code size of the different implementation components 78
4.13. Memory fragmentation at runtime . 80

A.1. Events forwarded to specific MCCs . 83
A.2. Handling events with specified destination address 84
A.3. Handling events with no destination address specified 85

IV

List of Tables

2.1. Ad hoc Grid projects . 12
2.2. Wireless Grid Usage Pattern . 14
2.3. Mobile Grid projects . 16
2.4. Grid projects which address interactivity . 17
2.5. Grid project which address personalization 17
2.6. Grid project which address manageability 18

4.1. Key features of the .Net MF boards . 70
4.2. VONs and their associated URNs . 72
4.3. VONs and their assigned native functions 77
4.4. Event sources and their subscribers . 77
4.5. JSON models of the MCCs in the controlling unit 79
4.6. JSON models of all VONs involved in the scenario 79
4.7. Allocated memory without models . 79
4.8. Period of time for transferring models to a VON 80

V

1. Introduction

Today we are confronted with an increasing number of distributed systems made up of
mobile and embedded devices, which are integrated as part of their surroundings. The
performance and storage capacities of these mobile and embedded devices are increasing,
thus enabling the usage of these devices as first class members in distributed systems. For
using these enhanced device features, applications for distributed pervasive systems have
to deal with platform heterogeneity and still existing resource constraints of these devices.

Being a first class member in a distributed system, devices resources (e.g. CPU, disk
space, connectors) should be available for usage by other members of these distributed sys-
tems. To enable this shared usage, support for authentication, authorization and billing
is required, which is provided by the concept of Virtual Organizations (VO). The idea of
a VO has been developed in the context of Grid Computing systems [FK04], which have
evolved out of the requirements for managed distributed systems consisting of servers and
special resources (e.g. telescopes) provided by different administrative authorities.

This master’s thesis presents a model-based approach for a middleware enabling mobile
and embedded devices within an actual organization (AO) to form VOs whereas it is pos-
sible for an AO to belong to multiple VOs (Figure 1.1). While usage of models primarily
allows to deal with problems of platform heterogeneity, this approach,through a modu-
lar runtime architecture, also enables the management of shared resources on these devices.

AOB AOD

AOC

AOA AOE

VO1

VO2

VO3

Figure 1.1.: Spanning multiple Virtual Organizations (based on [ANG04])

Based on the Entity Container (EC) which was presented by Schmölzer et al. in

1

1. Introduction

[SMK+05] a Model-based Component Container (MCC) was designed and implemented
on the Institute of Technical Informatics before this thesis started. The MCC can be seen
as a part of a model-based software component which implements functionality by a set
of models that will be executed at runtime.

On the basis of this MCC a infrastructure component called virtual organization run-
time node (VON) is designed, satisfying the requirements for model-based configuration
and reconfiguration of resources, application components and VO memberships. Due to
the fact that a VON is a self-contained application component with a uniform resource
name (URN) associated to it, it is furthermore possible to migrate a VON from one device
to another as long as it does either not use local resources, or resources can be accessed
in the same way. Another important feature of the presented approach is that all relevant
runtime data are stored in MCCs which makes the reconfiguration or migration of whole
application components possible at each point in system runtime.

Chapter 2 is dedicated to the theoretical work and literature research done for this
master’s thesis. An introduction to distributed systems is given in Section 2.1. Section 2.2
addresses the Grid computing concept, giving an overview about the architectural aspect
and trying to find a classification of the various types of Grid systems. Additional the
approach of VOs is covered in this section. Section 2.3 treats the term Cloud computing.
The differences in the architecture compared to Grid computing are discussed and a de-
scription about resource management in Cloud computing is given. Section 2.5 introduces
the basic concepts of Model Driven Software Development (MDSD). A special emphasis
is put upon the MCC which is an integral component of this thesis.

Chapter 3 deals with the architecture and actual design of the model-based middle-
ware supporting VOs. Based on the requirements given in Section 3.1 the architecture and
the design of a VON is given in Section 3.2 to 3.4. Further the communication strategies
between VONs are described and resource management issues are covered in Section 3.5.

Chapter 4 analyses the issues connected with the implementation of the middleware
and the proposed use case of a building access system. The different .Net runtime plat-
forms are discussed and a short overview of two .Net Micro Framework evaluation boards
used for this work is given. Furthermore the outcomes of this thesis are evaluated in a
sample scenario, with respect to memory consumption and runtime behavior.

2

2. Related work

2.1. Distributed systems

Tannenbaum and Van Steen give the following quite loose definition of a distributed sys-
tem:

A distributed system is a collection of independent computers that appears
to its users as a single coherent system. [TS07, p.2]

The advantages of using distributed systems are that it is easier to integrate different
applications, running on different devices into a single coherent system. Another important
advantage can be an increased scalability with respect to the underlying network when the
system is probably designed. Tannenbaum and Van Steen distinguish between distributed
information systems, distributed embedded systems and distributed computing systems.

Distributed Information Systems

Distributed information systems deal with the integration of applications into an enterprise-
wide information system. One can distinguish two levels of integration. The first level of
integration deals with the field of distributed transactions where it is possible for clients to
wrap a number of requests into one larger request and send it to the server. The second
level deals with enterprise application integration. At this level applications are commu-
nicating directly with each other. This interapplication communication led to different
communication models such as remote procedure calls (RPC), remote method invocation
(RMI) and to message-oriented middlewares (MOM), also known as the publisher/sub-
scriber paradigm. [TS07]

Distributed Embedded Systems

Distributed information systems are mainly characterized by their stability. Nodes have
permanent network connection and they are mostly fixed regarding their location. In
contrast, mobile and embedded computing devices are often characterized by being small,
battery powered, not fixed regarding their location and communicating only via a wire-
less connection. Pervasive applications are part of our surrounding, can be configured
by their owners, but self-configuration is also feasible by automatically discovering their
environments. Do meet all this various conditions, Grimm et al. [GDL+04] defined three
requirements for distributed pervasive systems:

The first requirement, embracing contextual changes, means that a device must be
always aware of a possible change in the environment. If a change happens the device
should be able to react appropriate. Encouraging ad hoc composition is the second
one and means that it should be possible to compose applications, services and devices at

3

2. Related work

runtime. Furthermore interposition must be simple to dynamically changing behavior of
the application. The last requirement, recognize sharing as the default, refer to the
fact that systems need to make it easy to access information and to share this information
between different applications.

Distributed Computing Systems

This class of computing systems describes systems which are used for high-performance
computing tasks. A distinction between two subgroups can be made. Cluster computing,
which is characterized by homogeneous hardware and closely connected workstations or
PCs on one side, and grid computing where the hardware is mostly heterogeneous and
workstations are widely distributed on the other side.

Cluster computing system are characterized by a collection of similar workstations with
homogeneous hardware, on which the same operating system is running and all nodes are
closely connected with a high speed local-area network. Primary computer clusters are
used for computational purpose, where a single program is run in parallel on multiple
machines. A typical compute job which run on a cluster my require frequent communica-
tions among nodes, which implies that the workstations are densely located and share a
dedicated network.

Grid computing systems on the other hand are characterized by a high degree of het-
erogeneity. They can differ concerning hardware, operating systems, networks, security
policy, etc. No assumptions are made regarding these properties. In Grid computing dif-
ferent resources of different organizations are brought together to form a Grid. The people
belonging to this Grid have access rights to all the resources available within the Grid.
Typical resources are compute servers, data storage facilities and databases but in some
cases it could be also special devices like networked telescopes, sensors, etc. Foster et al.
defines following key elements for a Grid system [FK04]:

1. Coordinates distributed resources: Coordination between resources that are
generally not under the control of some centralized device is provided.

2. Using standard, open, general-purpose protocols and interfaces: To be able
to address issues like authentication, authorization and resource discovery the Grid
is built from multipurpose protocols and interfaces.

3. Deliver nontrivial qualities of service: In a Grid it is possible to combine
different units of resources to deliver various qualities of service. The utility of the
combined system is higher than that of the sum of its parts.

2.2. Grid Computing

This section provides an overview of Grid systems. In the first part the evolution of
Grid systems is described and in the second one the architecture of Grids is discussed.
The term ”’Grid”’ is known since the mid 1990 and is by Foster and Kesselman in the
following definition:

4

2.2. Grid Computing

Grid technologies provide mechanisms for sharing and coordinating the use
of diverse resources ad thus enable the creation, from geographically and or-
ganizationally distributed components, of virtual computing systems that are
sufficiently integrated to deliver desired qualities of service.[FK04, p.44]

Foster et al. distinguish four different phases in this evolution of Grids as illustrated in
Figure 2.1:

Figure 2.1.: The evolution of Grid technologies (from [FK04], p.44)

∙ Custom solution. This phase started in the early 1990 and the focus was to explore
what was possible and how things are working. There were limited functionality in
security and scalability and the application were mostly built directly on the Internet
protocols.

∙ Globus Toolkit. The Globus Toolkit version 2(GT2)[FK96] emerged and was from
then on de facto standard for Grid computing. The Globus Toolkit is a software
toolkit used for building grids. GT2 provided solutions for common problems like
authentication, resource discovery and resource access. With the help of GT2 it was
from now on possible to construct Grid application with defined APIs and protocols.

∙ Open Grid Services Architecture. In 2002 the Open Grid Service Architecture
(OGSA), a community standard with multiple implementations, emerged [FKNT02].
In addition to standard interfaces and behaviors which were already defined in GT2,
OGSA provides a framework were one can define interoperable and portable services.

∙ Managed, Shared Virtual Systems. The initial technical specification from
OGSA was an important step, but much more has to be done to realize the full Grid
vision. [FK04] predicts an expanding set of services which address a higher number
of entities and smaller device footprints. Furthermore they predict an increasing
degree of virtualization, increased quality of service and a richer form of sharing.

2.2.1. Architecture

The Grid architecture proposed by Foster and Kesselman in [FK04] is based on the princi-
ples of the hourglass model which is depicted in Figure 2.2. The narrow part of the model

5

2. Related work

defines a small set of abstractions and protocols. In the proposed architecture the narrow
neck consists of Resource and Connectivity protocols. They are designed in such a way
that they can be implemented on top of various resource types which are defined at the
Fabric layer. In turn they can be used as a base to construct a wide range of services at
the Collective layer.

Figure 2.2.: The layered Grid architecture (from [FK04], p.47)

2.2.1.1. Fabric Layer

The Fabric layer provide access to low level resources such as compute resources, storage
resources, network resources and sensors. But a resource could also be a logical entity like
a file system or a distributed computer pool. It has to be considered that the implemented
functionality on the Fabric layer has an influence on the sharing possibilities. Richer func-
tionality on the Fabric enables more sharing operations, whereas deployment is simplified
when there are only a few demands for the Fabric layer. Foster et al. suggest in [FKT01]
that resources should implement a minimum of both: Enquiry mechanisms that allows
discovery of the resource structure and resource management mechanisms that provide
control of delivered quality of services.
As an example a computational resource should implement following mechanisms:

∙ Mechanisms for starting, monitoring and controlling programs and mechanisms for
executing processes.

∙ Management mechanisms which control the resources allocated to processes.

∙ Enquiry functions for specifying hardware and software characteristics and functions
for gathering informations concerning current load and queue state.

2.2.1.2. Connectivity Layer

Foster et al. summarizes the features of the Connectivity layer as follows:

The Connectivity layer defines core communication and authentication proto-
cols required for Grid-specific network transactions. Communication protocols
enable the exchange of data between Fabric layer resources.[FKT01, p.9]

6

2.2. Grid Computing

Other responsibilities of this layer are authentication mechanisms and security aspects.
Because of the complexity of security problems it is important for any solution to use
existing standards. Regarding to authentication, Butler et al. defines in [BEF+00] the
following characteristics:

∙ Single sign on. Grid resources defined in the Fabric layer have to be usable after
the first authentification.

∙ Delegation. A program should be able to delegate rights to another program.

∙ Integration with security solutions. Interoperations of Grid security solutions
with various local security solutions, like Kerberos and Unix must be guaranteed.

∙ User-based trust relationships. If a user has the right to use resources A and
B, the user should be able to use resource A together with resource B without
interaction of the security administrators of A an B.

2.2.1.3. Resource Layer

The focus of the Resource layer is the interaction with a single resource. Typical re-
sponsibilities of this layer are secure negotiation, initiation, monitoring and accounting of
individual resources. It is using the communication functions of the Connectivity layer
to call directly the functions provided by the Fabric layer to access and control resources
[TS07].

The Resource layer is made up of two main protocols. The first one is the information
protocol which gathers formation about state and structure of a resource. The second
one is the management protocol having the task to negotiate access to shared resources
and perform operations like data access or process creation. The protocols specified in
the Connectivity layer and Resource layer form the neck in the hourglass model and thus
should be limited to a small set.

2.2.1.4. Collective Layer

Rather than focusing on a single resource like the Resource layer, the Collective layer
handles access to a collection of resources. This layer contains protocols and services
for resource discovery, resource allocation and scheduling of tasks. The Collective layer
is built on the top of the narrow neck in the hourglass model and can consist of many
different protocols implementing a variety of behaviors, which in turn may be offered in
form of a service to a virtual organization [TS07]. According to Foster and Kesselman
[FK04] are directory services, co-allocation, scheduling and brokering services, monitoring
and diagnostic services, data replication services, software discovery services and commu-
nity accounting and payment services, typical services implemented at the Collection layer.

In contrast to Resource layer protocols which have to be general in purpose and are
widely deployed, the protocols of the Collective layer have a wide spectrum from gen-
eral purpose to highly application or domain specific. Figure 2.3 shows one possibility
how APIs and SDKs of the Collective and Resource layer can be combined to deliver

7

2. Related work

functionality to the application. In the given example the co-allocation API and SDK
uses the resource management API and SDK to manipulate underlaying resources. On
top of the co-allocation API and SDK, a co-reservation service protocol is defined and
implemented. This co-reservation service again uses the underlaying co-allocation API to
provide co-allocation operation and additional functionality. The application than can use
the co-reservation protocol to request for example a end-to-end network reservation.

Figure 2.3.: Combination of Collective and Resource layer protocols (from [FKT01])

2.2.2. Classification

Figure 2.4.: A classification of traditional and emerging Grids (from [KLAR08])

This section give an overview about traditional and emerging Grid systems. It describes
the evolution of Grids and categorize upcoming Grids.

8

2.2. Grid Computing

The evolution of Grid systems, illustrated in Figure 2.1 and already described took
place in three phases. The first generation started in the early 1990s and was marked by
supercomputers which sharing resources. The objective of this model of metacomputing
was to provide resources to a range of high performance applications. The main issues in
the second generation were heterogeneity, scalability and adaptability. To achieve large
scale computation it was essential to provide interoperability. This vision of combining
different Grid technologies with the help of a Grid middleware was presented in [FK99].
The third generation Grids have evolved out of the necessity for a more service oriented
approach. With this new approach it is possible to reuse existing components and infor-
mation resources to built grid application in a flexible manner.

However, Kurdi et al. claim in [KLAR08] that the architecture of third generation
Grids doesn’t meet the requirements of next generation Grids (NGG) which is referred
to as Managed, Shard Virtual Systems by Foster and Kesselman in Figure 2.1. There
is a fundamental gab between current technologies and the NGG vision. To fulfill this
vision, pervasiveness and the ability to self-manage are the top two research priorities of
the NGG2 Group [Gro04]. Furthermore pervasiveness have been sub-categorized into the
four primitive features accessibility, user-centricity, interactivity and manageability. Grids
which explicitly address this four design features are referred as emergency Grids whereas
traditional Grid systems lack these features.

The next sections describe classification categories for traditional Grid systems as well
as for emerging Grid systems as depicted in Figure 2.4.

2.2.2.1. Classification by Solution

Grids classified by solution can be split down in following subgroups:

∙ Computational Grids. Computational grids mainly offers CPU cycles. Foster
and Kesselman defined a computational Grid as follows:

A computational grid is a hardware and software infrastructure that pro-
vides dependable, consistent, pervasive and inexpensive access to high-end
computational capabilities.[FK99, p.18]

∙ Data Grids. Data Grids provide an infrastructure to access and manage large
amounts of data which are geographically distributed over many repositories. These
type of grid systems are often combined with computational grid computing systems.

∙ Service Grids. Service Grids provide services like disk storage or CPU cycles which
are purchased on demand by interested parties in the area of scientific computing or
enterprise computing.

∙ Access Grids. The technology of Access Grids was developed at Argonne National
Laboratory in Chicago and is defined as follows:

The Access Grid is an ensemble of resources and technology which provides
a virtual collaboration tool.[Acc10]

9

2. Related work

An Access Grid can be seen as an advanced videoconferencing system which allows
people from different locations to interact in real time over the Internet. Further-
more it enables participants to collaborate by using a variety of shared application.
Additionally to sharing presentation material, large-format displays can be used for
multiple video sources to allow room to room conferencing.[Acc10]

2.2.2.2. Classification by Size

According to [KLAR08], Grids classified by size can be split down in following subgroups:

∙ Global Grids. Global Grids provide grid power to organizations or individuals and
are established over the Internet. These type of Grids offer an efficient solution for
distributed computing by letting users contribute their unused computer power for
complex scientific tasks.

∙ National Grids. National Grids are usually government funded and restricted to
computer resources within a country.

∙ Project Grids. Project Grids are similar to National Grids but can be geograph-
ically distributed over multiple administrative domains. They are only available to
cooperating organizations.

∙ Campus Grids. Also called Intra-Grids are restricted to a single organization.

∙ Departmental Grids. Are more restricted than Project Grids and are only avail-
able to people within one department.

∙ Personal Grids. Personal Grids are at a very early stage. They have the most
limited scope and are only available at a personal level.

2.2.2.3. Classification by Accessibility

Accessible Grids have a highly dynamic nature. The structure of the underlaying or-
ganization and VOs change frequently, due to nodes entering and living the network or
nodes switching on and off. Accessible Grids make resources available to devices regardless
of the physical capabilities and geographical location. The traditional, restricted access
Grids don’t provide such accessibility because nodes are mostly stationary within a pre-
defined infrastructure. Kurdi et al. define in [KLAR08] three Grid types which support
accessibility:

Ad hoc Grids

Amin et al. give following definition of an ad hoc Grid:

An ad hoc Grid is a computing architecture offering structure-, technology-,
and control-independent Grid solutions that support sporadic and adhoc use
modalities.[ALM04, p.16]

Unlike traditional Grids which have well known Grid entry points like a Web page to get a
Grid account, an ad hoc Grid doesn’t have any formal entry point. Instead every member
of a Grid represents an entry point and nodes can join a Grid as long as they can discover
a member in that Grid. Another definition is given by Smith et al.:

10

2.2. Grid Computing

An ad hoc grid is a spontaneous formation of cooperating heterogeneous com-
puting nodes into a logical community without a preconfigured fixed infrastruc-
ture and with only minimal administrative requirements.[SFF04, p.202]

Figure 2.5.: Ad hoc Grid Architecture (from [SFF04])

Figure 2.5 shows two different possibilities to compose an ad hoc Grid. While Grid
A includes high performance computers as well as transient nodes, Grid B is composed
solely of transient nodes. Ad hoc Grid A bear resemblance to traditional Grids while ad
hoc Grid B shows the shift to a more personal Grid system without resources of large
organizations. Smith et al. highlight four main challenges when building ad hoc Grids in
a heterogeneous environment:

∙ Node Discovery
Due to the fact that the network topology is of dynamic nature in ad hoc Grids,
the appearance and leaving of a new node should be detected as fast as possible.
However, a balance between keeping the network structure up to date and flooding
the ad hoc network with discovery messages has to be found.

∙ Node Property Assessment
To be able to deploy services to nodes in a heterogeneous environment meta infor-
mation of node wanting to participate in the Grid must be available. These are
information like operating system type, hardware resources and required libraries.

∙ Service Deployment
Because of the fluctuating availability of the nodes in an ad hoc Grid, manual deploy-
ment of services is time-consuming, difficult to manage and therefore not feasible.
Service deployment has to take place on demand and has to become part of the Grid
application itself. The application has to have the ability to perform the deploy-
ment of a service to a new discovered node and to use the node afterwards for its
application flow.

11

2. Related work

Project name Website

The Marburg Ad-hoc Grid Environment http://mage.uni-marburg.de/

OurGrid http://www.ourgrid.org/

MyGrid http://www.mygrid.org.uk/

Java CoG Kit Ad hoc Grid framework http://www.globus.org/cog/java/

ASG Ad hoc Service Grid http://www.kbs.tu-
berlin.de/menue/forschung/projekte/asg -
ad hoc service grid/

Table 2.1.: Ad hoc Grid projects

∙ Service Security
In traditional systems only a few people are able to install services on nodes, whereas
in ad hoc Grid systems potential lot of users, everyone unknown to each other, can
operate on the same node. Therefore in ad hoc Grids several new security aspects
must be considered.

Wireless Grids

Wireless grids, a new type of resource-sharing network, connect sensors, mobile
phones, and other edge devices with each other and with wired grids. Ad hoc
distributed resource sharing allows these devices to offer new resources and
locations of use for grid computing.[MHB04, p.24]

Usually in a wireless Grid devices are acting as real nodes in the Grid system and provide
computing power and data storage to the Grid. A special type of a wireless Grid, a so
called Wireless access Grid is a Grid system where all wireless devices are pure access
points to the Grid, that means they don’t contribute any computing power or storage
capacities (Figure 2.6). If resources are required by these nodes, they acquire them from
the backbone grid.

Agarwal et al. proposes in [ANG04] to classify wireless Grids according to the architec-
ture or according to the function of the Grid. The two main characteristics to classify the
architecture are the degree of heterogeneity of the devices and the level of control. When
doing so the following three classes of wireless Grids arise as depicted in Figure 2.7.

∙ Local Cluster or Homogeneous Wireless Grid
Represents the simplest form of a wireless Grid. All devices are homogeneous, have
the same hardware architecture, and the same operating system installed. Due to
the homogeneity of all nodes the integration of the devices into the Grid and the
administration of the resources will be an easier task. This systems are likely to
be found in organizations with a single administrative domain. An example could
be a Grid system in a hospital, where many mobile devices (handhelds) are used to
coordinate medical personnel.

12

2.2. Grid Computing

Figure 2.6.: Wireless Access Grid Architecture (from [KLAR08])

Figure 2.7.: Classification of Wireless Grids (from [ANG04])

13

2. Related work

Grid Type Possible Architecture Mainly Provides

Computitional Cluster, Intra, Inter computational power

Data Cluster, Intra, Inter data access and storage

Utility Intra, Inter On-demand access to all
kinds of resources

Table 2.2.: Wireless Grid Usage Pattern [ANG04]

∙ Wireless Intra-Grids
An Intra-Grid includes wireless devices which belong to different local clusters. This
local clusters or divisions may be located in different geographical areas and in
different administrative domains. An example could be a wireless Grid in a company
that supports two different divisions. One could be the sales devision and the second
one the manufacturing division where wireless sensors, controlled by the Grid, are
used for tracking inventory.

∙ Inter-Grid
An Inter-Grid includes multiple actual organizations (AO) and span a larger geo-
graphical or organizational area. When multiple AOs come together a Virtual Or-
ganization (VO) is formed and different AOs can collaborate to share resources and
knowledge. Inter-Grids gain a higher complexity due to the scalability requirement.
New security arrangements and policies have to be introduced because the system
operates across multiple organizations. An example could be a scenario where an
Austrian tourist visits China and tries to use a local e-commerce service with his
PDA. A possible transaction would involve multiple organizations like the service
provider, traveler’s credit card company, the Chinese wireless service provider and
the e-commerce provider.

As shown in Table 2.2, wireless Grids can also be classified by usage patterns. Com-
putational wireless Grids are used when the power constraints limit the computational
resources of a device and more devices are needed to fulfill a given purpose. An example
would be a wireless sensor network to monitor conditions for a earthquake prediction sys-
tem. Data wireless Grids are needed to provide secure and shared access to distributed
data. An example would be an urgent search of a donor with a rare blood type. The
hospital would make an request to the medical database in the vicinity to find a poten-
tial donor. Potential donors then will get an alert message by the local service provider.
Utility wireless Grids can be used to provide special pieces of software or hardware in an
on-demand manner. Consumer can request resources when needed and get charged on a
consumption basis. An example would be Grid system where users can request information
about traffic conditions and routing or for using e-commerce products and services.

Mobile Grids

In the past mobile devices where just marginal relevant to Grid computing because of
their limitations in computing power, persistent storage, battery lifetime, screen size and

14

2.2. Grid Computing

Figure 2.8.: Mobile Grid Architecture (from [KLAR08])

connectivity [LSV04]. But of the huge amount of devices sold each year, mobile devices
became attractive for Grid systems. As shown in Figure 2.8 these devices are participants
of the Grid and provide computational or data services to the Grid. Another aspect under-
lining the importance of wireless devices is their usage as communication and computation
devices in natural disaster and on battlefield scenarios, where no other devices might be
feasible.

The general Grid concept will change and new functionalities of the Grid will be needed
to meet the capabilities of the mobile Grid. Solutions are needed for interoperability
issues between diverse technologies as well as for new Quality of Service (QoS) concepts
and security concepts. Litke et al. define a mobile Grid as follows:

Mobile Grid is a platform that should address mobility issues by means of
enabling both fixed and mobile users to have access to both fixed and mobile
Grid resources utilizing transparently and efficiently the underlying technolo-
gies.[LSV04, p.1]

Furthermore Litke et al. present in [LSV04] four challenges to meet the requirements
of the new computing paradigm.

∙ Resource Discovery and Selection
Due to the dynamic environment of mobile Grids new mechanisms for resource dis-
covery and selection are needed. Metadata such as time constraints and resource
constraints (resource accessibility, system workload, network performance) have to
be taken in account. Also the financial criterion has to be considered for a proper
resource selection to enable customers to use the Grid to solve everyday life problems.

∙ Job Scheduling
Job scheduling in a mobile Grid environment is much more complicated due to the
higher number of constraints (QoS, fault tolerance, security etc). To optimize the

15

2. Related work

job scheduling mechanism not only the performance of a resource is crucial, but also
the availability of the resource and the reliability of the resource to provide the QoS
constraints over the full job execution time.

∙ Resource Discovery and Selection
Due to the dynamic environment of mobile Grids unpredictable changes like net-
work failures or system performance degradation can occur. In case of such an
unpredictable behavior it is still important to meet the requirements of the user.
Job monitoring, job migration, job rescheduling and job replication are measures
which help to fulfill this requirements.

∙ Replica Management for large Data Sets
Large data sets may be distributed over many physical locations with different QoS
constraints. Replica management is important because there is a need to keep track
of the different portions of data. Information about data replication and the replicas
storage location are of significant importance because storage devices can change
their connection status constantly and even their physical location can change.

Project name Website

akogrimo http://www.mobilegrids.org/

MGS Project http://appsrv.cse.cuhk.edu.hk/
kwng/mgs/mgs.htm

InviNet [MMCA02]

Table 2.3.: Mobile Grid projects

2.2.2.4. Classification by Interactivity

Video gaming and real-time embedded control systems are new application areas in NGGs.
The traditional communication model is not meant for online activity and fast response
times. Interactivity in Grids can be realized at two layers [KLAR08].

In the web portal layer approach jobs are submitted to a secure shell process [HHX+05],
whereas in the middleware layer approach jobs are submitted directly to the middleware
which has an extension to support interactivity. But this is not the only possible sort of
interactivity in Grids. Another possible form of a Grid would be a context-aware Grid
where the Grid is interacting with the surrounding by sensors and actuators. Table 2.4
shows some projects dealing explicitly with the interactivity in Grid systems.

2.2.2.5. Classification by User-centricity

The majority of traditional Grid systems has been designed for people involved in research
or for specific goals in large industry domains. For individuals outside this domain it is
not possible to construct or even use Grid system for their own problems. Hence most

16

2.2. Grid Computing

Project name Website

CrossGrid http://www.eu-crossgrid.org/

eduatain@grid http://www.edutaingrid.eu/

RUNES http://www.ist-runes.org/

SENSE http://www.sense-ist.org/

MORE http://www.ist-more.org/

Table 2.4.: Grid projects which address interactivity

traditional Grids are nopersonal Grids. Personalized Grids on the other hand are emerging
Grid systems which focus on the needs of a systems’s user. Kurdi et al. [KLAR08] uses
the term user-centric grids to refer to personalized Grids and personal Grids.

Personalized Grid systems offer their users a highly customizable Web portal. The users,
belonging to different domains, can adapt the whole system to their needs. A personal
Grid is a system where individuals not only make their own resources available to the
Grid, but also take advantage of the resources in the Grid for their personal purpose. Han
and Park specify in [HP03] four design requirements for personal Grids:

1. A personal Grid must be self-organized without complicated configuration and in-
frastructural support.

2. A personal Grid must be lightweight to admit even low-powered computers.

3. A personal Grid must provide convenient interface that enables users to easily access
the system.

4. A personal Grid must provide a reusable service framework for promoting the par-
ticipation of users who are not familiar with computer programming.

Project name Website

akogrimo http://www.mobilegrids.org/

myGrid http://www.mygrid.org.uk/

Table 2.5.: Grid project which address personalization

2.2.2.6. Classification by Manageability

Because todays Grids are very complex, managing and organizing this system became
a real challenge. A manageable Grid is a new type of Grid focusing on a simplified
configuration and administration of the whole system. A simplified management of the
Grid enhances the scalability and management costs get reduced. Kurdi et al. [KLAR08]
subcategorize manageable Grids into autonomic Grids, knowledge Grids and organic Grids.

17

2. Related work

Autonomic Grids came from the term Autonomic Computing which is defined by
IBM as:

computing systems that can manage themselves given high-level objectives from
administrators.[KC03, p.41]

Furthermore there are four aspects of self-management within autonomic computing [KC03]:

1. Self-configuration. On the basis of high-level policies the configuration of the system
happens automatically.

2. Self-optimization. The system strive continually for opportunities to improve their
own performance and efficiency.

3. Self-healing. The system automatically detects and repairs local software and hard-
ware problems.

4. Self-protection. The detection of and recovery from attacks is automatic. The system
uses early warning to foresee and prevent system wide failures.

The aim of a knowledge Grid is to move a Grid away from the traditional computa-
tion and data management services towards an infrastructure where resources and services
have well-defined meanings to both, machines and humans. Examples of knowledge Grids
can be found in Table 2.6.

Organic Grids refer to a new concept for desktop Grids where a decentralized P2P
approache, mobile agents and a distributed scheduling scheme plays an important role.
Research on organic Grids is still in the initial stage.

Project name Website

OptimalGrid http://www.almaden.ibm.com/cs/
projects/optimalgrid/

OntoGrid http://www.ontogrid.net/ontogrid/
index.html

InteliGrid http://inteligrid.eu-project.info/

K-Wf Grid http://www.kwfgrid.eu/

Semantic Grid Research Group http://www.semanticgrid.org/OGF/

Table 2.6.: Grid project which address manageability

2.2.3. Virtual Organization

Because Foster and Kesselman define a Grid

as a system that coordinates distributed resources using standard, open, general-
purpose protocols and interfaces to deliver nontrivial quality of service, [FK04,
p.46]

18

2.2. Grid Computing

one key aspect of Grid Computing is to couple heterogeneous computing systems across
different administrative domains to increase the efficiency of computing tasks. To achieve
this increased efficiency it is important to enable the usage of shared resources which in
turn lead to the approach of Virtual Organizations (VO). Bird et al. define the original
idea of a VO as:

a dynamic group of users with a common goal coming together for a specific,
short-lived collaborative venture and then dissolving.[BJK09, p.41]

They note that this idea has never been realized because due to the complexity of de-
ployment and authorization of such a dynamic structure. A typical VO tends to be a
comparatively long-lived organization that brings together a group of researchers with a
common purpose. Because of the complexity associated with the management and or-
ganization of Grid infrastructures through VOs a lot of problems might arise and whole
projects can fail. There are other definition to help to understand why it is difficult to
manage VOs. Desanctis and Mong gave the following definition for a VO:

A virtual organization is a collection of geographically distributed, functionally
and/or culturally diverse entities that are linked by electronic forms of commu-
nication and relay on lateral, dynamic relationships for coordination.[DM99,
p.674]

A few years later Foster et al. defined a VO as

flexible, secure, coordinated resource sharing among dynamic collections of
individuals institutions and resources.[FKT01, p.1]

In June 2008 the US National Science Foundation’s office of Cyberinfrastructure made a
study on VOs as sociotechnical systems and defined a VO as follows:

A virtual organization is a group of individuals whose members and resources
may be dispersed geographically, but who function as a coherent unit through
the use of cyberinfrastructure.[Fou08]

Virtual organizations may be known by a range of different names but all have common
characteristics, e.g. distributed across space, distributed across time, dynamic structures
and processes, computationally enabled and computationally enhanced. [Fou08]

Virtual organizations have a high potential to change the way how computers are used
to solve problems. Foster et al. highlights in [FKT01] four different scenarios where vir-
tual organizations are formed to obtain a common goal, by the cooperation of multiple
organizations. Figure 2.9 depicts a sample scenario with three actual organizations and
two VOs. The first VO, P, links participants in an aerospace design consortium and the
second VO, Q, links people together who have agreed to sharing computing power. The
organization on the left side is part of P, the one on the right side is part of Q and the
third is a member of both virtual organizations. Furthermore there are policies controlling
the access to resources within an organization.

Resource sharing is conditional. Each organization owning resources makes them avail-
able depending on their location, the required functionality and the expected timeframe.

19

2. Related work

Figure 2.9.: Composition of virtual organizations (from [FKT01])

In Figure 2.9 for example the organization in the middle can restrict its resource computer
cycle for participants in P, to resolve only simple problems. But also resource consumers
can place constraints on resources they a supposed to work with. A participant in Q might
for example only accept resources which are certified as secure.

2.3. Cloud Computing

Cloud computing describes a concept where applications are running in the Cloud rather
than running on the local computer. The applications are provided and maintained on
centralized facilities. Foster et al. gives the following definition for Cloud computing:

A large-scale distributed computing paradigm that is driven by economies of
scale, in which a pool of abstracted, virtualized, dynamically-scalable, managed
computing power, storage, platforms, and services are deliver on demand to
external customers over the Internet.[FZRL08, p.1]

According to this definition the main differences between Cloud Computing and tradi-
tional distributed systems are the massive scalability, different levels of services deliverable
to customers outside the Cloud, the stimulus by economies of scale and dynamic reconfig-
urability of services.

Foster et. al further wrote that Cloud computing educed out of Grid computing and
overlaps with many already existing technologies like utility computing, service computing
and of course distributed computing in general. There has been a shift in focus. While
Grids mainly provide a infrastructure that delivers computing power and storage resources,
the focus of Clouds is economy based and delivers more abstract resources and services.
Figure 2.10 shows the relationship between Clouds, Grids, Supercomputers, Clusters and
distributed systems in general. While Supercomputers and Clusters focus on traditional

20

2.3. Cloud Computing

non-service oriented applications and lie on the left side of the scale, Clouds focusing clear
on service oriented applications. Grids lie in the middle between non-service applications
and service oriented applications.

Figure 2.10.: Grids and Clouds Overview (from [FZRL08])

2002 Ian Foster wrote in [Fos02] a checklist to indicate what a Grid is an what not:

∙ A Grid coordinates resources that are not subject to centralized controls

∙ A Grid uses standard, open, general-purpose protocols and interfaces

∙ A Grid delivers nontrivial qualities of service.

Point three holds for Cloud computing because also clouds delivers qualities of service
which satisfy complex user demands. But either point one nor point two holds true for
Cloud computing.

The business model for traditionally software has been a one-time payment for un-
limited use. In the business model for cloud computing the customer will pay on a con-
sumption basis. He will pay the provider for his service. If the provided service is for
instance a Compute Cloud the customer will get charged per instance-hour consumed for
each instance type. And if the provided service is a Data Cloud the customer will pay
for the data transfer. With this business model it is possible to get on demand access to
100.000 processors and data centers which are distributed throughout the world with just
a credit card [FZRL08].

2.3.1. Architecture

The large pool of different resources provide by a Cloud can be accessed via standard
protocols and standard interfaces. Web Services and some web 2.0 technologies like RSS
and AJAX can be used as underlying protocol layer for a Cloud architecture. It is also

21

2. Related work

Figure 2.11.: Cloud- and Grid- Architecture compared (based on [FZRL08] and [FK04])

possible to built a Cloud on top of existing Grid technologies.

A four layer architecture for Cloud Computing is defined by [FZRL08], which is com-
pared with the five layer Grid architecture in Figure 2.11. The fabric layer is the bottom-
most layer in this architecture and contains hardware level resources like compute resource
and storage resource. The resource layer contains encapsulated resources. The encap-
sulation/abstraction takes place usually by virtualization. This resources can be provided
to upper layers as integrated resources. The platform layer adds special middleware,
tools and services on top of the resources. This layer provides a development/deployment
environment for the overlaying application layer. This platform could be a hosting envi-
ronment or a scheduling service. Finally the application layer contains the application
which run in the Cloud.

Three different categories of services are delivered by Clouds according to [Wha10]. In
the Infrastructure-as-a-Service (IaaS) category, an enterprise provides hardware at a
resource usage-based pricing model. Customers use a application programming interface
(API) which is provided by the enterprise to access and configure their hardware resources
like virtual servers and storage. A company pays only as much capacity is needed and
it is possible to dynamically scale up and down the resources. Because of his dynam-
ically nature the pricing model is also called the ”’pay-for-what-you-use-model”’. The
Platform-as-a-Service (PaaS) category defines development tools and software which
is hosted by the provider. Customers create applications over the Internet directly on
the provider’s platform. Google’s App Engine is an example of PaaS. The Google App
Engine lets customers run their own web applications on Google’s infrastructure. In the
Software-as-a-Service (SaaS) category the company provides the hardware infrastruc-
ture as well as software which is remotely accessible by the customers through the Internet.
The end user can use the service from anywhere because both the application and the data
are hosted by the provider. In this category the pricing model is also a usage-based model.

2.3.2. Resource Management

Resource management is an important topic in order to understand the challenges which
Clouds face today. Following topics are mentioned in [FZRL08]:

22

2.3. Cloud Computing

Compute Model

The compute model of a Cloud looks very different than that of a Grid. In most Grids
a local resource manager (LRM) is responsible of the compute resources in a Grid. For
instance, if a job needs 60 minutes do be done on 100 processors, the job will stay in the
queue of the LRM until the 100 processors are available for 60 minutes. Because of this
potentially long queuing times, Grid are usually not supporting interactive applications.
The computing model of a Cloud in contrast has to support interactivity. Hence it is
possibly for latency sensitive applications to operate on the Cloud. But ensuring a high
level of QoS to the end user is not trivial and is one of the major challenges for Cloud
computing.

Data Model

While other people predicate that Cloud computing is the future of Internet computing
and all kinds of resources like storage, compute, etc. will be provisioned by the cloud,
Foster et al. predict in [FZRL08] a triangle model which is depicted in figure 2.12.
They are convinced that both Client computing and Grid computing coexist and develop
hand in hand. It is mentioned that client computing can not be overlooked. People might
have security concerns and therefore they don’t want to run mission critical applications
on the Cloud. Another reason might be that users want get their things done even when
the Internet is down.

Data Location

The location of data is a major challenge regarding the scalability of an application.
It is becoming a bottleneck if data is moved further away from the computing CPUs.
Data provision on a local disk compared to data provision over a wide area network is
indicated by a large speed difference. In order do not drastically affect the application
performance it is of immense importance that data is distributed over many computers
and the application fetches the data from the best place. In this way it is possible to
minimize the communication costs.

Virtualization

Due to the fact that thousands or even millions of user applications can run on the Cloud
and each applications appear to the user as if they were running concurrent, virtualization
is absolutely essential for almost every Cloud. Virtualization provides abstraction to the
underlaying hardware layer (fabric) and also provides encapsulation to applications so that
they can be configured and controlled independently. Additional indications for virtual-
ization within Clouds are server and application consolidation, configurability which can
be not archived at the hardware level, increasing application availability and improving
responsiveness.

In the past, virtualization had significant performance drawbacks for some applications.
But processor manufacturers worked hard the past few years to minimize the performance
gap between traditional compute resources and virtualized ones.

23

2. Related work

Figure 2.12.: Triangle model (from [FZRL08])

2.4. You-R R⃝ Open

You-R R⃝ Open is an RFID middleware developed by RF-iT Solutions GmbH. With the
You-R R⃝ Open middleware it is possible to handle data, device and configuration tasks
within the RFID operation environment. Furthermore it considers integration aspects into
an exiting ERP and IT landscape. Because of the high number of different low level de-
vices such as RFID readers (UHF, HF, LF), barcode scanners, label printers etc. and the
fact that all interfaces are unstandardized it is useful to implement a middleware. These
aspects are addressed by You-R R⃝ Open which furthermore provides tools to develop, de-
ploy, operate and maintain the whole RFID infrastructure.

Figure 2.13.: Structure of the You-R R⃝ Open middleware [Ri09]

2.4.1. EPC Global

EPCglobal is leading the development for the standardized Electronic Product Code
(EPC) network. The EPC network supports the Radio Frequency Identification (RFID)
in today’s trading networks. This global standards based technology combines radiofre-
quency tags, existing communication networks and the EPC to provide cost efficient,
real-time based information about the current location of products. EPCglobal coop-

24

2.4. You-R R⃝ Open

erates with customers and numerous technology providers to standardize all components
within the EPCglobal network [EPC04]. The EPCglobal network is comprised of following
components.

∙ Electronic Product Code (EPC). The Electronic Product Code is a unique
number that identifies a specific object in the supply chain.

∙ ID System. There are two parts which form the ID System, namely EPC tags and
EPC readers. An EPC tag is a microchip with an antenna. The EPC is stored on
the tag and the tag is applied to items, cases and/or pallets. The EPC reader is an
communication device which reads the information from the EPC tag with the help
of radio waves. The information from the tag are delivered to a business information
system using EPC middleware.

∙ EPC Middleware. The EPC Middleware enables data exchange between the EPC
readers and a business information system. Furthermore it manages real-time read
events, provides alerts and manages the communication to the EPC Information
Service.

∙ Discovery Services. Is a service which supports the users of the system to gather
information on a specific EPC. The access to this information is managed by the
EPC IS and only authorized users are able to access these information. The Object
Naming Service (ONS) is one component of the Discovery Service.

∙ EPC Information Services(EPC IS). The EPCglobal network is a cooperation
of numerous servers which maintain information of products labeled with an EPC
tag . These servers are combined to a network which provide the EPC IS. Each
member of the network stores information to a certain EPC on his server and other
members can access this information at a later point in time.

2.4.2. Tube

Tubes are the integral component of the You-R R⃝ Open RFID middleware and can be seen
as devices which communicate on one side with the RFID reader and on the other side with
enterprise IT-systems. The Tube component supports LF, HF, UHF RFID devices, bar-
code devices, simulation devices, built-in connectors to databases and it can be executed
on servers, local workstations and hand-held devices. Figure 2.14 shows the architecture
of a Tube with the different layers of abstraction. Functionalities like filtermechanisms
for data, EPC pattern and health status services are implemented on these layers. The
configuration of the different services of the layers and the implementation of the control
logic can be done by using the You-R R⃝ Open Tube Builder.[Gmb07]

Beside the Tube the You-R R⃝ Open RFID middleware is made up of the following
components:

∙ You-R R⃝ Open Administration Suite. The Administration Suite is an applica-
tion to monitor and configure the software and hardware in a You-R R⃝ Open project.

25

2. Related work

Figure 2.14.: Layers of a You-R R⃝ Open Tube [Gmb07]

∙ You-R R⃝ Verification Client. The Verification Client is an application which
checks the functionality of Tubes. The Verification Client is connected to Tubes
via standard web services and has the possibility to switch between different data
models and to manipulate data on the tags.

∙ You-R R⃝ Open Tube Manager. In combination with the Administration Suite,
the Tube Manager is responsible to manage the Tubes. The Tube Manager hosts all
Tube specific programs and configuration, is responsible for starting and stopping
Tubes on the host and is in charge for data transfers between a mobile device and
the Administration Suite

∙ You-R R⃝ Open Tube Builder. The Tube Builder is an graphical Application to
built and configure Tubes. Either it is possible to use one of the numerous predefined
Tubes which can be customized for a particular task or it can be built a Tube from
scratch.

2.5. Model Driven Software Development

The concept of models is not new in software development and became even more pop-
ular with the existence of the Unified Modeling Language (UML). At the beginning the
relationship between models and the resulting code was never formal. As a consequence
models were just used for documentation purposes. This formal inexistent relationship
has the disadvantage that the documentation with the models has always be kept up to
date with the current implementation of the software. Many programmers consider there-
fore models as an overhead. Model driven software development (MDSD) has a different
approach. Models are not only used for documentation purpose, but are considered equal
to code. The implementation of the code is automated and happens out of the formally
defined model.
Some important goals of MDSD are:

∙ With MDSD the development speed can be increased through automation. Code

26

2.5. Model Driven Software Development

can be generated when transforming formal models.

∙ Software quality can be increased by automated transformations of formally-defined
modeling languages.

∙ A higher level of reusabilty can be achieved.

∙ Through abstraction the complexity of software get reduced and manageability get
improved.

A more comprehensive list can be found in [SV06].

The Object Management Group (OMG) introduced 2000 in [Gro00] the first time the
Model Driven Architecture (MDA) as an MDSD approach. Figure 2.15 shows the concept
of MDA. The center of the figure depicts the core of the architecture which is based on
different modeling standards by OMG. These standards are UML, MOF (MetaObject Fa-
cility) and CWM (Common Warehouse Metamodel). When constructing an MDA-based
application the first step will be the creation of a platform independent application model.
This application model will be expressed with an appropriate core model. After an gen-
eral application model is defined, platform specialists will convert the general model into
a platform specific one. Figure 2.15 shows the target platforms in the thin ring around
the core.

Figure 2.15.: Model Driven Architecture by OMG (from [Gro00], p.4)

Figure 2.16 shows the basic principle of MDA. At the top of the picture there are
domain-related specifications which are defined with the help of Platform-Independent
Models (PIMs). To model such a domain, a modeling language is needed, which is in most
of the cases UML (adapted via profiles). A domain specific description has the advantage
that it is completely independent of the following implementation on the target platform.
Platform-Specific Models (PSMs) are created through a model-to-model transformation
out of the platform independent model, which usually takes place automated and tool-
supported. Code for a specific platform can be created, first, through model-to-model

27

2. Related work

transformation based on different PSMs, and then through a model-to-code transforma-
tion which is depicted in Figure 2.17.

Figure 2.16.: The principle of MDA (from [SV06], p.16)

Figure 2.17.: PIM, PSM and transformation (from [SV06], p.17)

2.5.1. Metamodeling

Metamodels are an important aspect in MDSD. They describe in an abstract way the
structure of models. A model on the one hand is an abstraction of a concrete thing in the
real world, a metamodel on the other hand is a model which can be used for modeling a
model. A metamodel defines the syntax for the modeling language as well as modeling
rules and constraints. To define a model language formally, a metamodel is required which
in turn needs a metamodeling language. Again to be able to define a metamodeling lan-
guage formally, a meta meta model would be necessary. In order not to have to continue
this abstraction steps to infinitum, OMG defined a hierarchy of four levels as depicted in
Figure 2.18.

Stahl and Völter describe the four challenges for metamodeling [SV06]. Domain-
specific modeling languages (DSL) are needed to operate within the context of a
specific domain. The syntax of a DSL is described via a metamodel. Model validation
has to be done against the constraints which are defined in the metamodel. With the

28

2.5. Model Driven Software Development

help of mapping rules transformations are possible between two metamodels (model-to-
model transformation). And finally integrated modeling tools are needed to support
the process of transformation and code generation.

Figure 2.18.: The four metalevels (from [SV06], p.86)

Although models can be described in any modeling language, UML plays an important
role because it is used for modeling purposes in many cases today. Hence it is important
to consider UML when talking about metamodeling.

The Object Management Group (OMG) defines four metalevels in context with MDA
(Figure 2.18). The first two levels, M0 and M1 are well known within object oriented
software development. M1 could define for example a class diagram. In the class diagram
there might be a particular class with the name Person and attributes like forename and
surname. Then at runtime a concrete instance of a class could be created. In the example
shown in Figure 2.18, the instance is of the type Person and has the forename John and
the surname Doe.

When we consider the levels above the dashed line the things become more abstract.
Because the model (class diagram) at M1 is defined via the UML language, M2 must be
the UML metamodel. In the metamodel, the elements and constructs which are used at
M1 must be defined. Hence all elements in the M1 model are instances of the M2 meta-
model. When we consider the example, the type Class which is used at the metalevel M1
must get defined at the metalevel M2, which is in that case the UML metamodel. The
construct Class which is defined in the UML metamodel is of the type Classifier. The

29

2. Related work

type Classifier again is defined a level above in the meta-metamodel.

The meta-metamodel is defined by the OMG’s MetaObject Facility (MOF). The pur-
pose of MOF is to have the power to define different modeling languages at the M2 level.
UML is an example of an modeling language at the metamodel level. With the help of
MOF it is possible to define additional, standardized modeling languages which address
for example only a specific domain. Furthermore it is also feasible to define non object
oriented modeling languages. Above the MOF, no further levels exists. The MOF defines
basically itself. The full MOF standard can be found under [Gro06].

As mentioned before, UML is an instance of the MOF, but actually UML existed before
the MOF was defined. UML was primary only defined verbally. MOF was then later con-
structed for the purpose to define UML formally. As noted, based on MOF it is possible
to define new modeling languages on M2. But rather do define a completely new language
on M2 it is much more easier to take the UML model and extend it to specific needs.

Stahl and Völter define three possibilities to extend the UML metamodel [SV06]:

∙ Extension based on the UML’s formal metamodel.

∙ Extension using stereotypes/profiles (UML 1.x)

∙ Extension using stereotypes/profiles (UML 2)

Figure 2.19 depicts the case where a new metamodel is defined through inheritance
of the UML-metamodel. The extension of metamodels through inheritance is not only
limited to UML, it is also possible with other modeling languages which are based on the
MOF. The extension based on stereotypes and profiles in contrast is only possible with
the UML metamodel because these are mechanisms which are specific to UML. Another
important point which is shown in Figure 2.19 is that there is no difference in the metalevel
when the metamodel is extended via inheritance.

2.5.2. Entity Container

Data persistency plays a fundamental role in a modern software development process. To
improve the quality of systems and to reduce development costs some kind of support of
data persistency should be provided to the object oriented programming paradigm and
respectively to component based development.

Because today many enterprise applications are using Relational Database Management
Systems (RDBMSs) to handle persistent data and programming languages like C++, Java,
C# etc. relay on the object-oriented programming paradigm, the automatic management
of the persistent data leads to the problem field of object-relational mapping. The object-
relational mapping is a programming technique for transforming data between the object-
oriented programming languages and relational databases.

30

2.5. Model Driven Software Development

Figure 2.19.: Metamodel and inheritance (from [SV06], p.91)

Due to the fact that the mapping in practice is done by application developers and there
are tight time and cost constraints in software projects the business logic is often mixed
with persistency code. This mixture and the tight coupling to RDBM systems makes the
reuse of code problematic.

To overcome these problems, Schmölzer et al. presented a new approach of an object-
oriented persistency cache in [SMK+05] named the Entity Container (EC). With the help
of the EC it is possible to keep transient data, and to access persistent data storage during
application runtime.

The EC presented by Schmölzer et al. (depicted in Figure 2.20) acts as an access layer to
different data storage systems like file systems, ODBMS and RDBMS. The picture shows
that the EC is based on a persistency model and the application is only interacting with
the EC to get access to persistent data. One key concept of the EC is that the persistency
model is modeled with well known modeling tools like UML and that the description of
the model is stored in an interchangeable format (XML Metadata Interchange). Due to
the higher abstraction level of UML the model is independent of any specific program-
ming language or persistency technique. Another feature of the EC is that the data in the
EC is always checked against the data model, which ensures that the data structure and
constraints are consistent with the high level design.

31

2. Related work

Figure 2.20.: Architecture of an Entity Container (from [SMK+05])

Figure 2.21.: Entity Container design (from [SMK+05])

32

2.5. Model Driven Software Development

The design of the EC itself is shown in Figure 2.21 and is based on two principles
[SMK+05]:

∙ Data entities (objects) in M0 are always based on model entities in M1.

∙ The same interface is used to create a model entity on M1 as well as to create an
instance of a model entity (object) on M0.

The main artifact in the EC concept is the data model which is the basis for concrete
objects on M0 which are instances of data model entities in M1. The EC provides a
dynamic interface Idyn in order to be able to create model entities as well as data entities
from outside the EC. This can be done, as depicted in Figure 2.21 by the application itself
or by an XMI reader.

2.5.3. Model-based Component Container

A Model-based Component Container (MCC) is constructed of several ECs as shown in
Figure 2.22. One EC is used for each metalevel as defined by the OMG. Based on this
approach it is possible to store data as objects in one layer and connect them in several
ways as described in the layer above. The presented structure is divided in four layers:

∙ Layer M0 (data layer). This layer holds the runtime data which correspond to the
model in M1.

∙ Layer M1 (model layer). This layer describes a data model and hence holds model
information of the concrete objects in M0.

∙ Layer M2 (metamodel). This layer provides basic components to create the model
in M1.

∙ Layer M3 (meta-metamodel layer). Consists of elements defined in the MOF.

For the reason that M2 specifies the capabilities of M1 a controller is needed which
realizes the behavior defined in M1. This controlling unit interprets the platform inde-
pendent data defined in M1 and respectively in M0 in a platform specific way. Several
types of MCCs have been defined which are distinguished by different metamodels(M2)
and different controlling units.

2.5.3.1. Data-MCC

The data MCC is used as a pure data cache. Hence it needs no controlling unit to interpret
data. It has a fixed M2 layer and a variable M1 and M0 layers. The following section
describes the layers M2 to M0 of the data MCC.

M2 description

This layer represents the metamodel layer and specifies the basic elements which can be
used to describe a model in M1. This layer is fixed for all instances of a data MCC.

33

2. Related work

EC3

EC2

EC1

MOF Library

<<
in

st
an

ce
O

f>
>

<<instance O
f>>

<<
in

st
an

ce
O

f>
>

<<
in

st
an

ce
O

f>
>

<<instance O
f>>Metamodel

Data Model

Data Entities

I
dyn

Idyn

Idyn

Data
Entity
Access

Data
Model
Access

Metamodel
access

M2

M1

M0

M3

Statemachine
Controller

Figure 2.22.: Statemachine MCC (based on [SMK+05])

Association:
MetaAssociation

+startingPoint: class
+startCardinality: string
+startOwnedAttriute: class
+endCardinality: string
+endOwnedAttribute: class

Generalisation:
MetaAssociation

+startingPoint: class
+endingPoint: class

Class:
MetaClass

Figure 2.23.: Visual description of the M2 layer of the data-MCC

34

2.5. Model Driven Software Development

M1 description

This layer describes the datamodel itself. Figure 2.24 shows a sample class model which
uses the defined elements of M2. The depicted classes are instances of M2 elements as
well as the associations. This layer can be dynamically configured and changed during
runtime.

Car

+seats: uint

Truck PassengerCar Person
+ownedVehicles

10..*

Figure 2.24.: Visual description of a sample M1 layer of the data-MCC

M0 description

On this layer the real data objects are stored based on the model described in M1. Again
all elements which are shown in Figure 2.25 are instances of M1 elements including the
associations between the objects. This layer can be dynamically configured and changed
during runtime.

Fiat :
PassengerCar

Steven :
Person

Opel :
PassengerCar

owns

owns

Larry :
Person

Opel :
PassengerCar

owns

Figure 2.25.: Visual description of a sample M0 layer of the data-MCC

2.5.3.2. Statemachine-MCC

The statemachine-MCC is also based on ECs but unlike the data-MCC it has a controlling
unit which realizes the behavior defined in the M1 layer. The following section describes
the layers M2 to M0 using the example of a simple door opener.

35

2. Related work

M2 description

This layer represents the metamodel layer and specifies the basic elements which can be
used to describe a model on M1. This layer is fixed for all instances of a statemachine-
MCC.

Transition:
MetaAssociation

+startState: State
+endState: State
+action: Action
+event: Event

StateMachine:
MetaClass

+transitions: Transition

State: MetaClass

+actionOnEnter: Action
+actionOnExit: Action
+isInitial: bool
+isFinal: bool

Event:
MetaClass

Action:
MetaClass

Condition:
MetaClass

Figure 2.26.: Visual description of the M2 layer of the statemachine-MCC

M1 description

This layer describes the statemachine model itself. It uses the basic elements of M2
to construct a whole statemachine with transitions, conditions, events and actions. All
elements presented in the statechart 2.27 are instances of M2 elements. Conditions and
actions can be formulated with the help of the Entity Container Query Language (ECQL)
[KTK10]. The controller unit which is an integral component of the MCC executes the
model at runtime.

closed open

entry/wait 3 s

openDoorEvent / openTheDoor

/ closeTheDoor

Figure 2.27.: Sample statemachine of a door opener

M0 description

This layer contains an instance of a statemachine defined on M1. Additionally event
objects can be inserted at runtime, which in turn are used by the controlling unit as input
parameters in order to keep the statemachine running.

36

2.5. Model Driven Software Development

open : State

+actionOnEnter: Action = "wait3s"
+actionOnExit: Action = ""
+isInitial: bool = false

OpenDoorEvent
: Event

closed : State

+actionOnEnter: Action = ""
+actionOnExit: Action = ""
+isInitial: bool = true

openTheDoor :
Action

closeTheDoor :
Action

transition1 : Transition

+startState: State = "closed"
+endState: State = "open"
+event: Event = "openDoorEvent"
+action: Action = "openTheDoor"

transition2 : Transition

+startState: State = "open"
+endState: State = "closed"
+event: Event = ""
+action: Action = "closeTheDoor"

wait3s : Action
sampleStateMachine : StateMachine

+transitions: Transition = ["transition1", "transition2"]
+currentState: string = ""
+currentEvent: streint = ""

Figure 2.28.: Visual description of the M1 layer of a door opener statemachine-MCC

myStateMachine: sampleStateMachine

+transitions: Transition = ["transition1", "transition2"]
+currentState: State = "open"
+currentEvent: Event = "openDoorEvent"

event1 :
openDoorEvent

Figure 2.29.: Visual description of the M0 layer of a door opener statemachine-MCC

37

2. Related work

2.5.3.3. Proxy-MCC

This MCC type provides a local interface to the data-MCC and the statemachine-MCC
which are executed in another VON. A proxy-MCC gets connected to the target MCC
by configuring it with the target’s URN. A proxy can either target the M0 or the M1
container of the source MCC. Hence two proxys for M1 respectively M0 give access to all
variable runtime model-layers in a MCC.

2.5.4. Model-Based Software Component

To support the reuse of software components different approaches like Component Based
Software Engineering and Model-Driven Software Development have been proposed. Due
of the highly heterogeneous platforms in todays mobile devices, MDSD offers a more
flexible approach and hence a reduction of platform dependencies. There are two different
techniques in MDSD according to Stahl and Völter [SV06]:

∙ Generate code out of the models at development or built time.

∙ Interpretation of models at runtime.

The problem with the first approach is that the code has to be regenerated after each
change to the models. The second approach by contrast allows a late binding and a dy-
namic reconfiguration of the modeled application component

Based on the second approach and on the proposed Entity Container [SMK+05], Thon-
hauser et al. introduce in [TKS09] a framework which supports the execution of model-
based software components (MBSC). MBSCs are made up of a functional part and a
technical part. The functional part consist of models for behavior, data and user inter-
face, whereas the technical part makes use of already existing component models such as
EJB, .NET or CCM. An example for a behavioral model would be a statemachine and
user interface models could define the different GUI elements on various platforms. Figure
2.30 shows the different components within an exemplary runtime node.

∙ Component metamodel. The component metamodel corresponds to the M2 level
in the four level metamodel hierarchy. Using the elements of MOF (M3), the meta-
model defines all elements which are available in the application models (statema-
chine, data, user interface).

∙ Application model. The application model corresponds to the M1 level in the
four level metamodel hierarchy. All elements in the application model are instances
of elements in the metamodel.

∙ Runtime node. The runtime node consist of different MCCs managing data objects
which are created through the interaction of the single controllers. The controllers
are responsible to interpret the platform independent data in the ECs, in a platform
specific way. An example could be a user interface which is provided in a platform
independent representation inside an MCC and must be rendered by a controller
using a Java Swing library.

38

2.5. Model Driven Software Development

Figure 2.30.: Model-Based Runtime Node (from [TKS09])

39

3. Design of a model-based middleware for
virtual organizations

This chapter describes the architecture and annotates the design consideration which had
to be taken. Based on the Entity Container (EC), a model-based approach is presented
for supporting virtual organizations (VOs). The usage of models allows to deal with the
problem of platform heterogeneity, enables a dynamic configuration of resources and map-
ping to different application components, and supports a modular runtime architecture.

The following high-level requirements were defined at the beginning:

∙ The resources of a device must be assignable to different independent application
components, in a model based way.

∙ Different organizations must be able to run and maintain application components
on the same device.

∙ The behavior of the application must be changeable during runtime. In order to
meet this requirement, a model-based approach is mandatory.

Based on these requirements a high level model which is depicted in Figure 3.1 was
designed. The following components are presented in the picture:

Model based component container(MCC): Is based on the ideas of the EC in
[SMK+05] and represents the smallest model based component in the architecture.
A MCC is constructed of several ECs, with each EC being responsible for one layer
of the MOF hierarchy. A detailed description of the different MCC types and their
structure is given in Sec. 2.5.3.

Model based software component (MBSC): The MBSC has been proposed by
Thonhauser et al. in [TKS09] and is used as a theoretical basis for this thesis. Here
the MBSC has been reduced to a component which provide a frame to host several
MCCs. A MBSC is a full functional application component which handles a specific
task. The behavior and the data needed for a proper execution are provided in a
model based way by different MCCs. The behavior of a MBSC can be modified
by changing the content of the MCCs or by adding additional MCCs. The MBSC
presented in this thesis has limited functionality and therefore it is only possible to
create one MBSC per Virtual Organization Node.

Virtual organization node (VON): A VON is a container with a controlling unit and
can hold several MCCs. The controlling unit is responsible to startup and intialize
the MCCs and their components. Furthermore the controller gets access rights to

41

3. Design of a model-based middleware for virtual organizations

resources from the resource node in order to enable MCCs to use these resources
during application execution.

Resource node (RN): On each device one resource node is running. The RN has a
device controller which attaches all local resources to the architecture. Resources can
be either natively implemented driver functions to control the hardware, or events
which are offered by the hardware. Furthermore the device controller has the ability
to dynamically grant access rights to VONs running within the RN.

RN0
Owner 1 (operator)

Owner 2 (customer 1)

model based component
container (MCC)

device controller
local resources

application component

Owner 3 (customer 2)

application owner

model based software
component (MBSC)

resource node (RN)

VO runtime node (VON)

application area

resource node owner

Figure 3.1.: High-level Architecture

3.1. Requirements

Based on the high level requirements and on the first architectural design a next iteration
had been made to elaborate detailed requirements for the project.

R1. A VON should be able to hold several MBSCs.
In general it should be possible to maintain several MBSCs in one VON. Due to
complexity reasons it is sufficient for the initial implementation to host only one
MBSC per VON.

R2. The numbers and types of MCCs within a MBSC must be configurable.
A controlling unit which itself holds an MCC is needed to accomplish this configura-
tion. The MCC within the controlling unit holds all the necessary data to determine
which MCCs are needed for a MBSC in the application area of a VON. The number
and also the type of MCCs must be dynamically reconfigurable during runtime.

42

3.1. Requirements

R3. The local resources within a RN must be configurable.
Local resources (in our case natively implemented functions which access HW ele-
ments) must be assignable to different VONs in a dynamic way.

R4. The model and the data of an MCC must be remotely modifiable.
In order to change the model (M1 layer) and also the data (M0 layer) in the MCC,
a mechanism is needed to access the MCCs remotely. This should be realized with
the help of a proxy-MCC.

R5. Proxy-MCCs for data exchange between VONs
There should be only one way to exchange data to preserve flexibility. This should
take place via proxy-MCCs and JSON.

R6. Location independency of proxy-MCCs
There is a difference in data exchange depending of the location of the proxy-MCC
and the remote-MCC. For a proper solution the Broker pattern should be imple-
mented.

R7. A RN must be able to hold several VONs.
In order to form virtual organizations it must be possible to run several VONs in
one RN. Again, changing the numbers of VONs and owner of a VON at runtime
must be possible.

R8. The VAR principle must be feasible.
It must be possible to form a hierarchy of VONs. It must be feasible for a VON
to get data from a VON below in the hierarchy and make data available to VONs
higher in the hierarchy.

R9. Separation between VON owner and the application owner.
The provider of a VON do not need to be the owner of the application in the VON.
That means that one party only provides the empty skeleton of a VON and another
party could transfer the application (MCCs) into the VON.

R10. There must be an event mechanism within a VON.
In order to realize event notification between VONs it should be possible for a VON
to subscribe to events which are published by other VONs. A model based Observer
pattern should be implemented to achieve this notification mechanism.

R11. A VON must be able to migrate to another RN.
If an adaption of the system is required at runtime, the owner of a VON can decide
to move his VON to another RN. Therefore it must be possible to serialize the whole

43

3. Design of a model-based middleware for virtual organizations

content of a VON to JSON and reconstruct the VON on another RN.

R12. The VON must be runnable on several .NET runtime environments.
The application must be implemented in C# and must be able to run on following
.NET runtime environments: Microsoft .NET Framework, Microsoft .NET Compact
Framework, Microsoft .NET Microframework and Mono.

3.2. Architecture

Due to the fact that the here presented approach only supports one MBSC per VON, the
VON takes over the functionality of a MBSC and provides therefore a runtime environ-
ment for several MCCs. The ownership of a VON is divided into two different parts. The
first is the creator of the VON and the second one is the content owner of the VON. They
can be the same but do not have to be. An example for separated ownership would be
when companyX creates a Node on the device and provide this runtime environment to
companyY. CompanyY in turn transfers its application into the node provided by compa-
nyX and thus has the ability to dynamically change runtime parameters.

After precisely elaborating the requirements from Sec. 3.1 a detailed design of the ap-
plication framework which is depicted in Figure 3.2 was made. The picture shows a RN
which is running on a device owned by the operator. The RN creates three VONs, one
for the operator and two further ones for tenants. Hence the VONs are just runtime en-
vironments for MCCs each VON owner has to transmit his application models into the
VON. This transmission is done in two steps. The first model is transmitted to the VON
controller and specifies the number and the type of the MCCs which have to be created in
the application area. Having created the empty MCCs in the application area the owner
of the VON can transmit the models for each MCC. Furthermore the picture shows that
data is exchanged between VONs with the help of proxy-MCCs. Proxy-MCCs are acting
as local representatives of MCCs which reside on another VON.

Figure 3.3 provides a component oriented overview about the system. The whole sys-
tem is divided into four packages. The MCC package on the top left was already fully
implemented at the beginning and could be used for this project. It realizes a model based
component container(MCC) based on the EC approach. The MCC package realizes the
data-MCC as well as the statemachine-MCC. The Remoting package was partly imple-
mented at the beginning of this project and had to be adopted to fulfill all requirements
concerning the remoting aspect.

The main focus of this project however, lies on the Virtual Organization package and its
components. The package is divided into the Resource Mgmt. component, Lookup Service
component and the VON component. The Resource Mgmt. component is responsible to
manage all local resources on the device. The VON component realizes the VO runtime
node and the controlling unit. The last component, the Lookup Service component man-
ages the container identification both local and remoting. In the case a MCC is accessed

44

3.2. Architecture

RN

proxy-MCCP

VO runtime node (VON)

resource node (RN)

local resources

VON controller

VON controller VON controller

SMD P

Operator

Tenant 2

model based software
Component (MBSC)

M1
M0

M1
M0

M1
M0

Tenant 1

device controller D D D

D DD D

data-MCCD

statemachine-MCCSM

DSM

SMD P

operator

JSON JSON

tenant1

JSON JSON

tenant2

JSONJSON

JSON

D D

Figure 3.2.: Architecture with one operator and two tenants

Virtual Organization

<<component>>
Int. Lookup Service

<<use>>

<<component>>
VON

<<component>>
Resource Mgmt.

<<use>>

Remoting

<<component>>
ProtoclHandler

<<use>>

<<component>>
JSON Processor

<<use>>

MCC

Ext. Lookup Service

<<component>>
Ext. Lookup Service

<<use>>

<<component>>
Resource Mgmt.

<<component>>
JSON Processor

<<component>>
Ext. Lookup Service

<<use>>

<<component>>
ProtocolHandler

<<use>>

<<use>>

<<component>>
VON

<<use>>

<<use>>

<<component>>
Int. Lookup Service

<<use>>

Figure 3.3.: Component Diagram

45

3. Design of a model-based middleware for virtual organizations

through a proxy-MCC and both resides on different devices, a global lookup service is
needed, which is represented as the Ext. Lookup Service package at the bottom left in
Figure 3.3.

3.3. Virtual Organization Node Architecture

This section describe the principle structure of the VON component. It explains the vari-
ous elements in the controlling unit and outline how node identification takes place.

A VON features a controller unit which itself has several MCCs. This controlling unit
as depicted in Figure 3.4 hosts one statemachine-MCC and two further data-MCCs. The
statemachine-MCC is responsible for the lifecycle management of the VON and the two
data-MCCs are responsible for the MCC structure in the application area and the pub-
lisher subscriber mechanism. Through these MCCs it is possible to control and manage the
application components within the VON in a model based way. Additional to the MCCs,
two separated event queues form an integral feature of the controller. One is responsible
do deliver events into the application area and one is responsible for events addressing the
VONs statemachine-MCC. If a statemachine can not handle an event which was sent by
the queue, because it is in a state where it can not response to that event, the statemachine
discards it and waits for the next event.

By default the controlling unit of a VON has:

∙ a statemachine-MCC for lifecycle management

∙ a data-MCC to specify the number and the type of MCCs in the application area

∙ a data-MCC to realize the publisher-subscriber mechanism

DSM

SM SM

D

D application area

controlling unit
application event
queue

VON event
queue

Events from outside the VON. Can be
generated from other VONs on the same
device, or from VONs of another device.

Figure 3.4.: Structure of a standard VON

46

3.3. Virtual Organization Node Architecture

All standard configuration aspects are covered with this three MCCs. However, in the
case a VON should be able to create new VONs one additional data-MCC is needed. By
this MCC the owner of the VON has the capability to create new VONs and to pass access
rights of local resources to particular VONs.

By closer consideration a VON with this additional MCC fulfill all requirements con-
cerning the RN. So in fact a RN could be seen as a VON enhanced by the capability to
manage other VONs. Through this enhanced capabilities there is a separation between
VON owner and application owner feasible and hence, also the VAR principle can be
realized.

3.3.1. MCCs in the controlling unit

This section is going to describe the three respectively four MCCs in the controlling unit
in more detail.

3.3.1.1. Statemachine MCC of the VON

This statemachine-MCC resides in the controlling unit and manages the lifecycle of the
VON. Figure 3.5 shows the state diagram of this MCC with six possible events to control
the VON:

∙ startNode. This event activates the VON. When the VON is in the Run state, the
event queue of the VON is processed and all statemachines in the application area
getting events from that queue.

∙ stopNode. This event deactivates the VON. In the Stopped state the statemachines
in the application area don’t receive any events. The events however don’t get lost
because they are buffered in an event queue. As soon as the VON is in the Run
state the event queue is processed again.

∙ updateNode. After the data-MCCs within the controlling unit VON getting new
M1 or M0 data, the update command has to be called in order to process the newly
transferred configuration data.

∙ resetNode. Destroys all MCCs in the application area and deletes the M0 layers
of the VON configuration containers.

∙ cloneNode. Copies the whole application area of a VON to another VON.

∙ migrateNode. The whole VON content migrates to another VON. With this com-
mand it is possible to move a VON away from one device towards another.

47

3. Design of a model-based middleware for virtual organizations

RunStopped startNode / start the VO node

cloneNode / clone the VO node

migrateNode / migrate the VO node

resetNode / reset the VO node

stopNode / stop the VO node

updateNode / update the VO node

Figure 3.5.: State diagram of the VON controller’s statemachine-MCC

3.3.1.2. MCC to specify MCCs in the application area

This data-MCC which also resides in the controlling unit is used to define the type and the
numbers of MCCs in the application area. Only the VON owner can configure this MCC.
Due to the fact that the M1 layer is fixed , only the M0 layer is modifiable. Regarding
to the M1 model which is depicted in Figure 3.6 it is possible to define instances of three
different MCC types on the M0 level. After a modification of M0 of this MCC a updateNode
event must be send to the statemachine-MCC of the VON controller unit to apply the
changes.

MCC

+urn

DataMCC StateMachineMCC ProxyMCC

Figure 3.6.: M1 model of a data-MCC used to specify MCCs in the application area

3.3.1.3. MCC to realize the publisher subscriber mechanism

The presented approach allows two possible flows of events. The first possibility is to
address the target of an event directly. That would be the case when statemachine1 of a
VON generates an event and sends it directly to statemachine2 in the same VON, because
the address is hardcoded in statemachine1. The second option is the publisher subscriber
mechanism. This would be the case when statemachine1 is generating an event but sends
it not directly to statemachine2. The controller get noticed every time an event occurs and
checks if any other statemachine is interested in that event. If so, it notifies all interested
statemachines, by forwarding this event.

The MCC presented in Figure 3.7 has two tasks. On the one hand it contains elements
with event-names to which other VONs can subscribe (PublishedEvent), on the other hand

48

3.3. Virtual Organization Node Architecture

it contains elements with an event-name and an URN to which the VON itself want to
subscribe to (EventToSubscribe). In the latter case it is necessary to send a updateNode
event to the statemachine of the controlling unit in order to apply the changes.

PublishedEvent

+name

ExternalSubscriber

+urnOfMCCsubscribes1..* *

EventToSubscribe

+eventName
+urnOfMCC

Figure 3.7.: M1 model of the data-MCC to realize the publisher subscriber mechanism

3.3.1.4. MCC to specify the VON structure in a RN

As mentioned above the RN can be seen as a VON with additional capabilities to create
VONs and manage resources of that VONs. These abilities are obtained through an
additional MCC in the controlling unit. Figure 3.8 shows the M1 layer of this data-
MCC. The M1 layer is again fixed and only the M0 layer can be changed by the VON
owner. After a modification of M0 of this MCC a updateNode event must be send to the
statemachine-MCC of the VON controller unit to apply the changes. As shown in the
picture the model can specify how many VONs have to be created, what resources they
are allowed to use and to which VOs they are belonging to.

Resource

+name

HWEvent NativeFunction

VONode

+urn
+uses*

VO

+member

*

*

owner

+name
+owns*

Figure 3.8.: M1 model of a data-MCC used to specify the VON structure

3.3.2. Event queues

The controlling unit of a VON includes two queues which contrive that events are delivered
in a causal way and that events don’t get lost. One queue manages the events which are
intended for statemachine-MCCs in the application area, the other one delivers events to
the statemachine-MCC of the controller unit.

49

3. Design of a model-based middleware for virtual organizations

Events can be generated from the underlaying hardware, from the statemachines their-
selves or from a proxy instance. Events from the underlaying hardware are passed to the
first RN which is automatically created at startup. The RN can use the event itself or can
forward it to another VON according to the configuration in its data-MCC. Events from
a proxy instance are always addressed directly to a statemachine-MCC. Events which are
generated by statemachines can be either addressed directly to another statemachine or
can be handled through the publisher subscriber mechanism as described above. Usually
each event is addressed to a special statemachine instance, if not events are forwarded to
all statemachine instances in a VON.

Whenever all statemachine-MCCs in the application area are in the idle state, the con-
trolling unit takes the first element out of the queue and evaluates the target address.
If there is a address specified, the controller unit forwards the event to the specified
statemachine-MCC, if not, the event is forwarded to all statemachine-MCCs in the appli-
cation area of the same VON. As soon as a statemachine-MCC gets an event from the
controlling unit it evaluates all transitions which lead away from the current state. If there
is any transition which can handle this event, the transition gets executed. If there is no
transition which can handle the event the event gets discarded. After all statemachines
treat the event, the next event from the queue gets forwarded. If the queue is empty, all
statemachines stay idle as long as the next event occurs.

3.3.3. Node identification

To accomplishes node identification a uniform resource name (URN) is used. Both uniform
resource names (URNs) and uniform resource locators (URLs) belong to uniform resource
identifiers (URI). Whereas the former is used for identification and the latter for location
or finding resources. The major difference between both can be described as ”’what”’ vs.
”’where”’. [Moa97] defines the following syntax for URNs:

<URN>::=”’urn:”’<NID>”’:”’<NSS>

<NID> is called the namespace identifier and <NSS> is the namespace specific string.
Note that all phrases in quotes are mandatory. In the here presented approach it is just
possible for a VON to hold one MBSC. In that case we need three hierarchies for the
NIS to identify and address each component uniquely. For example to address a special
MCC named statemachine1 in the VON named voNode1 which belong to the organization
named organization1 the URN would be urn:vo:organization1:voNode1:statemachine1.

3.4. Virtual Organization Node Design

3.4.1. Class diagram

The class diagram presented in Figure 3.9 realizes the VO runtime node and the corre-
sponding controlling unit. Following classes are shown:

50

3.4. Virtual Organization Node Design

∙ VONode. Each VONode runs in its own execution thread and can host serveral
MCCs (data-MCC, statemachine-MCC, proxy-MCC). Because the VONode repre-
sents a synchronous process the Half-Sync/Half-Async pattern is used to enable
asynchronous event notification (see section 3.4.3.1).

∙ MCC. The VONode class as well as the StandardController class are using instances
of the MCC component. The MCC component implements both the data-MCC and
the statemachine-MCC.

∙ Queue. The Queue class is needed to create a separation between the asynchronous
event occurrence and the synchronous event execution in the VONode class.

∙ StandardController. Realizes the controlling unit of a VON and is responsible
for a proper configuration of the VON. The StandardController hosts two data-
MCCs for configuration purposes and one statemachine-MCC. The statemachine-
MCC manages the lifecycle of the VON. The first data-MCCs defines the number
and the type of MCCs which are hosted by the VONode class. The second data-
MCC enables statemachine-MCCs to subscribe to events which are generated by
other statemachine-MCCs. See section 3.3.1 to get a better understanding about
the purpose of the particular MCCs.

∙ ProxyMCC. Is used to access MCCs which reside on another VON. Implements
the same interface as the data-MCC and the statemachine-MCC to read and write
data on the M0 and M1 layer. The proxy-MCC forwards all requests to the Broker
class.

∙ Broker. The Broker class gets request from the proxy-MCCs and forwards it de-
pending on the location of the wanted MCC. It forwards the request either to a
ServerProxy if the MCC resides on the same device or to the Remoting package
which marshals and serializes the request and sends it over the Net to the appro-
priate device, if the MCC can not be located on the current device. The Broker
uses the LookupService component in order to be able to decide whereto forward the
incoming request.

3.4.2. Startup

This section is going to describe how the startup procedure is working in detail.

When starting a device, one RN is instantiated. All hardware resources are assigned to
this RN at startup automatically. As mentioned in Sec. 3.3 a RN is an enhanced VON
which hosts three data-MCCs for configuration purposes in the controlling unit:

∙ Configuration MCC1. MCC to specify the VON structure in a RN

51

3. Design of a model-based middleware for virtual organizations

ServerProxy

VONode

StandardController

MCC
<<Interface>>

1

1

1..*

1

Queue

2

ProxyMCC

0..*

Broker

3

ResourceController
<<interface>>

<<uses>>

Remoting

<<uses>>

InternalLookupService
<<interface>>

ExternalLookupService
<<interface>>

<<uses>>

<<uses>>

Figure 3.9.: VON component

52

3.4. Virtual Organization Node Design

∙ Configuration MCC2. MCC to specify MCCs in the application area

∙ Configuration MCC3. MCC to realize the publisher subscriber mechanism

After the initialization phase the owner of the RN has the possibility to transmit the M0
data to the configuration MCCs. The M0 data of Configuration MCC1 defines further
VONs in the RN and assigns them access rights to hardware resources. The M0 data of
Configuration MCC2 specifies the type and number of MCCs in the application area and
with the help of Configuration MCC3 statemachine-MCCs can subscribe to events which
are published by other VONs.

After a successful transfer of the M0 data the RN-owner has to send an update event to
the statemachine-MCC of the VON. The VON controller subsequently processes the M0
data of the configuration MCCs, generates further VONs in the RN and generates MCC
instances in the application area. Once the MCCs in the application area are created the
owner of the application area has the possibility to transfer his application to the previ-
ously created MCCs (M1 and M0 data). After transferring the model respectively data
the application owner has to send a start event to the statemachine-MCC of the VON in
order to enable event processing of the application component.

Figure 3.10 represents the startup sequence in detail. As mentioned before the configu-
ration MCCs exists already after the startup of the VON. The owner of the VON, in this
case called operator transfers M0 data to configuration MCC1 and configuration MCC2.
After sending the update event to the statemachine-MCC of the VON controlling unit,
the controller evaluates the M0 data, generates new VONs if specified and generates two
MCCs in the application area. One MCC instance is of the type statemachine-MCC and
the other of the type data-MCC. In the next step the operator transfers the application
which is composed of M1 and M0 data to both application MCCs. When sending the start
event to the statemachine-MCC of the VON controlling unit, the VONode gets enabled.
As soon as the VONode is enabled the statemachine-MCCs can receive and process events
coming from outside the VON.

3.4.3. Event handling

Events are an integral part of the whole architecture and are used for communication and
notification. It has to be distinguished between three different sources of events:

∙ events which occur in the underlying hardware

∙ events which are send via proxys directly to statemachine-MCCs

∙ events which are generated by statemachine-MCCs themselves

Events which occur in the underlying hardware are device specific resources and have
to be managed via the data-MCC described in Sec. 3.3.1.3. By means of this data-MCC
it is possible to define VONs which get notified when the specific event occurs. If a VON
is registered for this specific event and it arises, the event automatically get inserted to
the queue and the controller forwards it afterwards to the VONode.

53

3. Design of a model-based middleware for virtual organizations

Figure 3.10.: Detailed startup sequence

54

3.4. Virtual Organization Node Design

The next possibility to create events is via proxy-MCCs. A proxy-MCC can be a lo-
cal representative for a remote data-MCC as well as for a remote statemachine-MCC.
Whereas the term remote-MCC refers to a MCC which resides on another VON. When
an event gets send via a proxy-MCC to a statemachine-MCC the event gets also inserted
into the queue to ensure causality. The controller again reads the event from the queue
forwards it to the VONode which evaluates the destination address and sends the event
to the appropriate statemachine-MCC.

The third possibility to create events is when a statemachine-MCC itself generates an
event during an action execution. In this case the event gets send to the controller which
checks if a destination address for the event is specified. The resulting actions by the
controller are explained in Sec. A.

3.4.3.1. Half-Sync/Half-Async pattern

This pattern is used when software needs to perform synchronous as well as asynchronous
service processing. The asynchronous part is mostly needed in conjunction with low-level
system services whereas synchronicity is used to simplify application service processing.
Buschmann et al. gives the following solution to this problem in [BHS07]:

Decompose the services of concurrent software into two separated layers, syn-
chronous and asynchronous, and add a queueing layer to mediate communica-
tion between them.

As shown in Figure 3.11 the Half-Sync/Half-Async pattern forces a strict separation be-
tween these layers. The upper layer processes higher-level services such as data queries
or file transfers in separated threads synchronously. The bottom layer conversely pro-
cess low-level services like protocol handlers asynchronously. Communication between
asynchronous and synchronous services takes place via message exchange over a queueing
layer.

Figure 3.11.: Half-Sync/Half-Async pattern (from [BHS07], p.359)

In this work the Half-Sync/Half-Async pattern is used to obtain a separation between
the asynchronous events which are generated by the hardware or by statemachine-MCCs,
and the synchronous processes in the VONs, which handle the events and carry out ap-
propriate actions. Figure 3.12 shows how the separation takes place when an actor inserts
an event into the Queue of the desired VON. If there are already pending events in the
queue nothing more happens but if not the Queue generates a notify message in order to

55

3. Design of a model-based middleware for virtual organizations

Figure 3.12.: Overview of the event mechanism

wake up the Controller. When ready the Controller gets an event from the Queue and
evaluates the address coming with the event. Once determined the Controller forwards
the event to the appropriate VONode which handles the given event.

3.4.4. Component location

Because a potential application using the presented approach is usually distributed over
several devices a mechanism has to be found, which shields the application from the
complexity of component location an inter-process communication (IPC). To face this
challenge the Broker pattern is applied. Buschmann et al. explain the usage of the Broker
pattern as follows [BHS07]:

Use a federation of brokers to separate and encapsulate the details of th com-
munication infrastructure in a distributed system from its application function-
ality. Define a component based programming model so that clients can invoke
methods on remote services as if they were local.

One Broker instance is defined per network component. To invoke methods on a compo-
nent, a client calls a method on the local proxy to initiate a request. The proxy works
together with the local and server-side broker to invoke a method on the component and
to receive any results (Figure 3.13).

In this work the Broker pattern is needed to redirect the method calls from the proxy-
MCCs to the data-MCCs respectively statemachine-MCCs residing on different VONs. As

56

3.5. Resource Node

Figure 3.13.: Broker pattern (from [BHS07], p.237)

explained previously accessing a data-MCC or statemachine-MCC on another VON can
only be achieved through a proxy-MCC. Therefore, if an application wants to invoke a
method of a data-MCC from another VON it has to use a proxy. The proxy-MCC for-
wards the request to the Broker instance, which in turn evaluates if the VON, wherein
the needed MCC resides, is accessible on the same device. If so the Broker forwards the
request directly to the server-side proxy of the appropriate VON. Subsequently the server-
side proxy invokes the method of the data-MCC.

If the Broker can not locate the appropriate VON on the same device it performs a
lookup to the external lookup service which is in charge of managing the locations and
access parameters of VONs within a domain. All VONs have to register theirselves at
startup within the lookup service to give other components the ability to access them.
After retrieving the location of the seeked VON from the lookup service, the Broker
forwards the request to the Bridge instance in the Remoting package. In the Remoting
package the Bridge marshals the request and serializes it to a JSON string. The message
then gets transmitted over the net to the appropriate device. On the other side another
Bridge instance deserializes the message and forwards it to the Broker. The Broker figures
out the wanted VON and forwards the request to the server-side proxy of this VON.
The server-side proxy finally invokes the method of the data-MCC. The return value of
the method takes the same procedure, just in the different direction. Figure 3.14 shows
the whole sequence diagram for the case where a client accesses a data-MCC on another
device.

3.5. Resource Node

RNs are executed on existing devices and feature a controller having all local resources
attached to the architecture. Additional to manage local resources a RN also passes access
rights of resources to other VONs created by it. In the presented approach local resources
can be either native implemented functions provided by the underlying layers or events
which are provided by the underlying hardware. One RN is always created automatically
at startup and belongs to the operator of the device. This RN gets initially all access
rights to local resources. Furthermore this RN is capable to create further VONs and
RNs, and assign to them again access rights to resources.

Figure 3.2 shows a sample RN with three VONs. The RN belonging to the operator has

57

3. Design of a model-based middleware for virtual organizations

Figure 3.14.: Layered Broker architecture

58

3.5. Resource Node

an additional data-MCC in the controlling unit by which it is possible to define further
VONs in the RN. In this case the data-MCC in the RN controller was configured in a way
to create three VONs, one for the operator himself and two for potential tenants.

Figure 3.15 depicts the class diagramm of the RN which is part of the VON component
shown in the component diagram in Figure 3.3. As mentioned above the RN is a VON
with enhanced functionality. This behavior is realized with the additional class Extended-
Controller which inherits from the StandardController. The ExtendedController hosts one
additional data-MCC in contrast to the StandardController, thus qualifies the Extended-
Controller to create new VONs and RNs. Furthermore the ExtendedController uses the
InternalLookupService and the ExternalLookupService to register the created VONs and
RNs.

StandardController

ExtendedController
MCC

<<Interface>>

4

InternalLookupService
<<interface>>

<<uses>>

ExternalLookupService
<<interface>>

<<uses>>

Figure 3.15.: RN class diagram

3.5.1. Resource management

Considering the component diagram in Figure 3.3, the Resource Mgmt. component is re-
sponsible to manage all local resources. In the presented approach two different resource
types, namely CustomActions and CustomEvents are distinguished:

CustomActions are hard coded methods providing additional functionality which
can be used within ECQL when defining the behavior of a statemachine-MCC. Cus-
tomEvents are events which occur in the underlying hardware and can be used as a
trigger for transitions in the statemachine-MCC.

CustomActions can define either hardware dependent functionality like controlling an
RFID reader or hardware independent functionality such as executing a special algorithm

59

3. Design of a model-based middleware for virtual organizations

which would be to costly when realizing it with a statemachine-MCC and ECQL. Listening
3.1 shows a signal buzzer with variable frequency and signal duration as an example of a
CustomAction. When defining the behavior of a statemachine-MCC, the custom action
can simple be used by writing beep(1000 , 2000) within ECQL, to define a signal tone with
the frequency of 1000Hz and the duration of 2000ms.

Listing 3.1: Signal buzzer

public class Beep : CustomAction
{

private SjjEdkBoard board ;
public Beep ()
{

returnType = ”Bool” ;
arguments = new St r ing [] { ”Number” , ”Number” } ;
m u l t i p l i c i t y = ”1” ;
functionName = ”beep” ;

board = new SjjEdkBoard () ;
}

public override Object execute (Object [] parameters)
{

double f r e q = (double) parameters [0] ;
double durat ion = (double) parameters [1] ;

board . beep ((int) f req , (int) durat ion) ;
return true ;

}
}

The resource management component is so designed to stay independent of the un-
derlying hardware. Hardware independent CustomActions can be added to the runtime
architecture by simply adding a dll with the compiled method implementation in it. The
ResourceController then adds the additional CustomAction automatically at runtime.
Hardware dependent CustomActions have to be defined before compiling and deploying
the runtime architecture to the device. The implementation of the hardware dependent
CustomAction however, can change during runtime.

3.5.2. Lookup service component

The lookup service component is responsible for managing the location of all VONs. When
creating a new VON the ExtendedController registers the VON at the internal lookup ser-
vice as well as the external lookup service. The internal lookup service manages the VON
within the actual device, whereas the external lookup service is usually running on a differ-
ent device or is distributed over several devices like the Domain Name Service (DNS). The
external service knows each VON in the domain and hosts information how to access it.
Through the usage of a URN scheme as described in 3.3, a location-independent resource
identification can be achieved. The lookup services are used by the Broker class and the

60

3.5. Resource Node

Resource

CustomAction

+returnType: String
+arguments: String
+functionName: String

+execute()

CustomEvent

+eventHandler

ResourceController

+addCustomActionToVON(actionName, VONUrn)
+addCustomEventToVON(eventName, VONUrn)
+getCustomActions(VONUrn)

RfidAvailable GetRfidCode RfidCodeExists Buzzer

0..*

Figure 3.16.: Resource management component

ExtendedController class. The ExtendedConroller uses the lookup services to register the
VONs at startup and deregister the VONs when shutting down. The Broker uses the
lookup services to decide whereto forward incoming requests from the Proxy-MCCs.

ExternalLookupService
<<interface>>

+registerVONode(urn, ipAdress, port)
+deregisertVONode(urn)
+lookupVONode(urn)

LookupServiceExt LookupServiceInt

InternalLookupService
<<interface>>

+registerVONode(VONode)
+deregiserVONode(urn)
+lookupVONode(urn)

Figure 3.17.: Lookup service component

Figure 3.18 shows how the internal and external lookup services are used in the Broker.
Each request leaving the current VON is transfered over the Broker. First the Broker
performs a lookup to the internal lookup service to figure out if the seeked destination VON
is accessible within the current device. If so it forwards the request to the ServerProxy of
the appropriate VON. If the VON is not accessible within the device the Broker performs
a lookup to the external lookup service to figure out on which device the seeked VON

61

3. Design of a model-based middleware for virtual organizations

resides. Once the location of the VON has been determined, the Broker forwards the
request inclusively the destination information to the Bridge. The Bridge marshals the
request and subsequently transmits the message to the appropriate device.

Figure 3.18.: Performing internal and external lookup

3.5.3. Value Added Reseller principle

Through the distinction between RN and VON the Value Added Reseller(VAR) principle
can be realized. In contrast to a VON, a RN has the capability to create new RNs and
VONs and manage access rights to local resources.

Figure 3.19 shows the startup procedure of a VAR setup. The operator downloads the
configuration data which specify one RN within the current RN. When sending the update
event, the RN controller creates a further RN for owner1 which in turn has the capability
to create VONs. Owner1 transmits again configuration data to his VON in order to create
a VON to which owner2 can download his application.

In Figure 3.20 the architectural setup of the VAR principle is shown. RN0 which already
exists at startup belongs to the operator. The operator configures his configuration-MCCs
in such a way to create a VON for himself and an additional resource node, RN1, for
tenant1. The operator also needs to assign access rights to resources to RN1, which
in turn can assign this resources to VONs in his area of responsibility. Although the
operator is the owner of RN1 (because he is the one who created the RN), tenant1 has
the capability to create additional VONs within the RN. In the presented setup tenant1
creates two VONs, one for himself and one for tenant2.

62

3.5. Resource Node

Figure 3.19.: Value added reseller principle

63

3. Design of a model-based middleware for virtual organizations

RN0

RN controller
local resources

VON controller D

VON controller VON controller

SM D

DSM DDSM D

DSM

DSM DSM

RN owner

VON owner

content owner

DSM D D

RN controller

RN1

DSM D D

operator
(device owner)

tenant1
(VAR)

tenant2
(simple customer)

Figure 3.20.: Sample setup of the VAR principle

64

4. Implementation of a model-based
middleware for virtual organizations

Due the fact the project targets not only standard systems but also embedded and mobile
devices one requirement was to have an implementation which can be executed on differ-
ent .Net runtime environments. The following section gives a short overview about the
different .Net Frameworks which are currently available.

4.1. .Net Framework

The .NET Framework is the most powerful .Net Framework from Microsoft and can be in-
stalled on computers running Microsoft Windows operating system. The .NET Framework
consists of two main parts.

Figure 4.1.: CLR diagram

The Common Language Runtime (CLR) is Microsoft’s implementation of the Com-
mon Language Infrastructure (CLI) standard, specified and published under ECMA-335
and ISO/IEC 23271. The CLR is the foundation of the .Net Framework and manages
thread execution, code execution and other system services. Developers using the CLR
write code in an high-level language like C# or VB.NET. At compile time the compiler
converts the code into a Common Intermediate Language (CIL) and at runtime the CLR’s
just-in-time compiler generates native code targeting the operating system. The process
from source code to native code is illustrated in figure 4.1.

CLR makes object interaction across language boarders possible. Therefore objects
written in different languages can communicate with each other and their behavior can

65

4. Implementation of a model-based middleware for virtual organizations

tightly integrated. A good example would be that you are able to define a class in one
language an can derive from that class in a class written in another language. Through
the common language runtime you gain benefits like strong type safety, garbage collection
and a good blend of visual Basic simplicity an C++ power, when writing code using the
C# language. [Mic09a]

The .NET base class library is a collection of reusable classes which are tightly
integrated in the common language runtime. These classes provide a number of common
functions like file reading and writing, graphic rendering and database interaction. In
addition to this common functions the library supports a variety of specialized development
scenarios such as Windows GUI application, Windows Presentation Foundation (WPF)
applications and Web services.

4.1.1. .Net Compact Framework

The .NET Compact Framework from Microsoft is a scaled down version of the full .NET
Framework specially targeting mobile/embedded devices such as PDAs, mobile phones,
set-top boxes, etc. The Compact Framework is designed to run on the Windows CE
operating system and provides native functions through interoperability with the OS to an
application. It is a subset of the full .Net Framework and implements about 30 percent of
the class library but also contains specific classes and features for embedded development.
Some main differences between the two frameworks are:

∙ Common Language Runtime. The CLR of the .Net Compact Framework is
about 12 percent the size of the full .Net Framework CLR. But the CLR in both
Frameworks benefit from just-in-time compilation, managed code execution and
garbage collection.

∙ Delegates. Asynchronous delegates are not fully supported.

∙ Languages. Application development using Visual Basic and Visual C# are sup-
ported but not C++.

∙ Math. Not all math methods are supported on all device platforms.

∙ Memory. Due the optimization for battery-powered systems the .Net Compact
Framework avoids heavy use of RAM and CPU cycles.

∙ Reflection. The .Net Compact Framework does not support the System.Reflection.Emit
namespace.

∙ Sockets. Not all socket options are supported.

An exhaustive list containing all differences between the two frameworks can be found on
the Microsoft homepage [Mic09b].

66

4.1. .Net Framework

Figure 4.2.: Microsoft Embedded Products [TM07]

4.1.2. .Net Micro Framework

The .NET Micro Framework from Microsoft is a small and efficient .NET runtime en-
vironment used to run managed code on small and resource constrained devices. These
devices are mostly too small regarding processor power and memory to be capable for
Windows CE and the .NET Compact Framework. The .Net Micro Framework enables
one to write within C# and Visual Studio application for small embedded devices and use
the same tools as if developing for desktop applications. The .NET Micro Framework is
not a full-featured operating system but a bootable runtime environment for embedded
development. A scaled down version of .NET Common Language Runtime, called Tiny-
CLR resides directly on the hardware. This, and the fact that the runtime only needs a
few hundred kilobytes of RAM, makes it possible for the Micro Framework to run directly
on small and inexpensive 32-bit processors [K0̈8].

Microsoft offers a variety of embedded platforms differing in size, ranging from Windows
XP Embedded to Windows Embedded CE to the .NET Micro Framework. In comparison
to Windows XP Embedded and Windows CE which have a deep support for operating
system extension, the .NET Micro Framework was developed of being as power-efficient as
possible and resource-light while preserving the benefits of a managed code environment.
The strengths of the .NET Micro Framework include [TM07]:

∙ Lower hardware cost than other managed platforms

∙ Lower development costs than other embedded platforms

∙ Lower power consumption

The .Net Micro Framework is made up of different layers as shown in Figure 4.3. The
bootable runtime consists of the Hardware Abstraction Layer (HAL) and the Plat-
form Abstraction Layer (PAL). The HAL is the only layer which is tightly coupled
to the underlaying hardware. It is typically 20-30 KB and provides generic access to all
the device’s peripherals as well as infrastructure for booting applications. Because the
.NET Micro Framework enables services and functionality that are usually provided by an

67

4. Implementation of a model-based middleware for virtual organizations

operating system it is not necessary to have an underlying operating system, although an
operating system may still be used if desired. When running the .NET Micro Framework
on an OS the HAL provides functionality by calling through to OS functionality.

The layer above the HAL, the PAL, exposes abstractions such as timers, memory blocks
and asynchronous communication. The PAL is responsible to provide software services
required by the CLR such as bootstrapping, timers, memory management, debugging and
events. If an operating system is available OS facilities may be used for some of these
functionality. [TM07]

Figure 4.3.: Micro Framework Architecture [TM07]

The .NET Common Language Runtime is a highly optimized managed-code runtime
that provides the main benefits of managed code such as safety, security, resource pro-
tection, validation, recovery and isolation. The Micro Framework CLR also known
as tinyCLR supports the C# programming language and includes a class library adapted
for the special needs of embedded applications. Furthermore the CLR contains a garbage
collector for automatically freeing unused memory blocks. In [TM07] following primary
design goals for the CLR are mentioned:

∙ Minimal footprint

∙ Able to run from ROM or flash memory

∙ Optimized for energy-efficiency in battery-powered devices

∙ Relatively easy portability by running on the HAL

68

4.1. .Net Framework

To provide a minimal footprint the CLR is implemented from scratch can run without a
traditional OS and provides runtime and library functionalities appropriate to embedded
development.

The top of the .NET Micro Framework Architecture is made up off the Class Library
Layer and the Application Layer. The Class Library Layer is composed of a subset of
the .NET class library tailored to embedded devices. Additionally the Microsoft.SPOT
namespace exists, including classes specific to the .NET Micro Framework such as hard-
ware, I/O and cryptography. The uppermost layer, the Application Layer consists of C#
managed applications and managed drivers that run on the embedded device.

4.1.3. Comparison

The CLR of the .Net Micro Framework implements the major features of the full .Net CLR
such as the execution engine and memory management. Of course some of the features
were omitted because they are inappropriate for that sort of devices while other features
were added which are specific to embedded applications.
Following features are commonly found in .Net CLRs but have been omitted in the .Net
Micro Framework CLR. [TM07]

∙ Machine-dependent types and unsafe instructions

∙ Symmetric multiprocessing

∙ MSCORLIB functionality has been reduced

∙ Multi-dimensional arrays

∙ Exception handling in native code

∙ MMU support

The .Net Micro Framework CLR supports a subset of the Base Class Library of the full
.Net Framework. In the System namespace 70 classes are defined which are representing
about 420 methods. The full .Net Framework in comparison implements approximately
1450 classes and 22500 methods. Another big difference between the .Net Micro Frame-
work and the full .Net Framework is that the execution engine from the Micro Framework
CLR only offers the interpreter mode. A just-in-time (JIT) compilation as it is offered
by the full .Net CLR is not supported. The interpretive approach in the .Net Micro
Framework CLR offers following benefits: [TM07]

∙ Smaller code footprint: Managed code is represented in less space than native code
and results in a more compact engine code.

∙ Increased safety by fine-grained control at the instruction level and less complex
engine code.

Because the .Net Micro Framework is the smallest framework supporting the C# lan-
guage and also low-cost hardware for the framework is available it has been decided to
implement the middleware based on the Micro Framework. The benefit of implementing
the project within the .Net Micro Framework is that the solution will also run with slight
modification on the .Net Compact Framework and the full .Net Framework.

69

4. Implementation of a model-based middleware for virtual organizations

Feature SJJ Micro GHI

Processor 200MHz 200MHz
RAM 8MB 64MB
Flash 8MB 256MB
MF Version 4.0 4.0
Network TCP/IP TCP/IP
Serial Port 2 RS-232 1 RS-232
USB not supported dual USB host ports
SPI/I2C supported supported
A/D not supported 5 channels of 16bit A/D
PWM 2 PWM not supported
GPIO 16 lines 80 lines
Memory Card not supported SD/MCC
Touch Screen not supported 4.3” TFT

Table 4.1.: Key features of the .Net MF boards

4.2. Hardware

To test the application in real environment two .Net Micro Framework boards have been
bought. The first one is a low-cost board from the company SJJEmbedded Micro Solutions
with an ARM9 processor and the second one is a development system from GHI Electronics
also with an ARM9 processor. A comparison of the key features of these devices is given
in Table 4.1.

SJJ EDKplus for .Net Micro Framework

The EDKplus by SJJ is an iPac-9302 from EMAC with a .Net Micro Framework port
directly on hardware. The iPac-9302 is a low-cost, embedded Single Board Computer
(SBC) based on the Cirrus EP9302 processor. The Cirrus processor is an ARM9 based
processor running with 200MHz and a System Bus of 100MHz.

GHI ChipworkX Development System

The GHI ChipworkX Development System is a development kit for the ChipworkX Mod-
ule. This system exposes all peripherals and includes a 4.3”’ touch screen. The ChipworkX
Module features an ARM9 processor that hosts the .Net Micro Framework. Beside of the
standard .Net Micro Framework features like FAT and USB it supports GHI specific fea-
tures such as USB host, PPP, GPRS and 3G. Furthermore it supports a SQLite database
enabling logging and retrieving of queries.

4.3. Scenario

This section describes a scenario realizing a door access control system that is composed
by several organizations. Each organization has the ability to configure and reconfigure
application parts, falling within their scope of responsibility, dynamically at runtime. The

70

4.3. Scenario

following organizations are involved in the szenario.

∙ Facility management

∙ Security service

∙ DepartmentA

∙ DepartmentB

The facility management organization is in the first place the hardware provider equip-
ping the building with an RFID auto-identification, but it also provides basic services to
departmentA and departmentB. DepartmentA and DepartmentB are two organizations
whose offices are located inside the building. Each organization pursue its own authenti-
cation strategy and due to data privacy reasons, only the particular department has access
to the employee’s personal data and can therefore decide if a person is allowed to enter
the building or not. The security service is hired by the facility management organization
and is responsible for security affairs.

RN RFID reader

RN controller
local resources

DSM D DSM DDSM D

DSM

DSM D D RN controller

RN PDA

DSM D D

Facility management
(RFID device owner) DepartmentA Security service

(PDA owner)

DSM D D

DSM D

DSM D

SM

DSM DFacilityMgmt N1

DSM D

D SMDP DSM P

SM

local resources

SM

FacilityMgmt N2 SecService N1 SecService N2 SecService N3

DepartmentA N1 DepartmentB N1

DepartmentB

Figure 4.4.: Overall configuration and VON deployment

In this scenario furthermore two devices are involved. The main device is an RFID
reader running the .Net Micro Framework, which is mounted at the building’s door.
Through locally attached resources the RFID reader is qualified to read RFID tags and
also to control the door’s locking mechanism. Furthermore it features a built-in buzzer, an
LC display and LEDs to communicate with the user and to indicate the door’s status. The
second device is a mobile PDA running the .Net Compact Framework, which is owned
by the security service enabling the guard duty to remotely trigger the door events open,
lock and unlock. Furthermore a second application component on the PDA, the logging
component, enables the guard duty to get notified whenever a person enters the building.

The next sections explain in more detail the two hardware nodes and the application
components which are running on them. All involved VONs and their associated URNs

71

4. Implementation of a model-based middleware for virtual organizations

Label Organization URN

FacilityM N1 Facility management VON1 urn:vo:facilityMgmt:node1
FacilityM N2 Facility management VON2 urn:vo:facilityMgmt:node2
DepA N1 DepartmentA VON1 urn:vo:departmentA:node1
DepB N1 DepartmentB VON1 urn:vo:departmentB:node1
SecService N1 Security service VON1 urn:vo:securityService:node1
SecService N2 Security service VON2 urn:vo:securityService:node2
SecService N3 Security service VON3 urn:vo:securityService:node3

Table 4.2.: VONs and their associated URNs

are shown in Table 4.2. Table 4.3 shows all VONs and the access rights to the particular
native functions. The involved events in this scenario can be seen in Table 4.4, highlighting
VONs generating such events and VONs subscribing to these, in order to get notified upon
the occurrence of the event.

4.3.1. RN RFID reader

The facility management organization owns an RFID reader, running the .Net Micro
Framework. On this device five VONs are created which belong to different organizations
participating in this scenario.

4.3.1.1. Facility Management VON1

data1MCC

SplitInfo

+startPosForType
+endPosForType
+startPosID
+endPosID

TempVariable

+value

dataDepAMCC dataDepBMCC statemachineMCC

urn:vo:facilityMgmt:node1

wait processTag

entry/splitTag

writeToContainer2

entry/writeDataToContainer
exit/generate tagRead event

writeToContainer1

entry/writeDataToContainer
exit/generate tagRead event

rfidTagAvailable / readRfidTag

[tagType = department1]
[tagType = department2]

[tagType = unknown]

Data

+tagID
+timestamp

Data

+tagID
+timestamp

Figure 4.5.: VON1 of the facility management organization

This VON hosts an application reading RFID tags and analyzing the type field of the
tag. Depending on the type, the application writes the id of the tag and a corresponding

72

4.3. Scenario

timestamp to different data-MCCs (DataDepAMCC and DataDepBMCC). These contain-
ers are used by the application components of departmentA respectively departmentB to
retrieve the information of the person who wants to enter.

After inserting the data to the appropriate MCC the statemachine generates a tagRead-
DepA respectively tagReadDepB event to notify the corresponding VON that a person
wants to access. After tag processing is finished the statemachine goes back into Wait
state and stays idle until the next rfidTagAvailable events occurs. All involved MCCs and
their entities in the M1 layer are shown in Figure 4.5.

4.3.1.2. Facility Management VON2

The task of this VON is to forward the open event getting send by departmentA or de-
partmentB to VON1 of the security service organization. In this way a separation between
the departments and the security service organization is achieved. To forward events only
one statemachine-MCC is needed which is shown in Figure 4.6.

statemachineMCC

urn:vo:facilityMgmt:node2

wait

open / send open event to
 urn:vo:securityService:node1:statemachineMCC

Figure 4.6.: VON2 of the facility management organization

4.3.1.3. DepartmentA VON1

This VON is run and managed by departmentA. The purpose of the application component
is to read the id-data provided by the facility management VON1 (urn:vo:facilityMgmt:node1)
and to verify if the id is valid. If so the statemachineMCC sends an open event to the
statemachineMCC of the facility management organization VON2.

The statemachine-MCC of departmentA gets notified every time a tag is read by the
facility managements VON1. After reading and validating the id the statemachine inserts
or updates the attributes of the EmployeeData entities in dataMCC2 according to the
entering or leaving time. Additional, VON1 of departmentA has the possibility to use
the resource writeTextToDisplay(). Thus departmentA can specify a personal welcome
message for its employees.

73

4. Implementation of a model-based middleware for virtual organizations

Furthermore the VON hosts two data-MCC. Data1MCC contains all valid employee ids
and their appropriate names. DataMCC2 contains entities which are inserted and updated
by the statemachine according to the time employees are entering or leaving the building.
Figure 4.7 presents the M1 layer of the two data-MCC and the statemachine-MCC.

data1MCC data2MCC statemachineMCC

urn:vo:departmentA:node1

Employee

+name
+tagID

EmployeeData

+name
+tagID
+enterTime
+leaveTime
+workTime
+date

wait processData

entry/processData

writeToContainer

entry/writeDataToContainer
entry/writeTextToDisplay

[!tagApproved]

[tagApproved] / send open event to
 urn:vo:facilityMgmt:node2:statemachineMCC

tagRead / read data from
 urn:vo:faciltyMgmt:node1:dataDepBMCC

Figure 4.7.: VON of departmentA

4.3.1.4. DepartmentB VON1

This VON is run and managed by departmentB. A data-MCC within the VON hosts
all employees which are allowed to enter the building. The statemachine-MCC within the
VON executes the authorization steps and if a employee is granted access, it sends an open
event to the statemachine-MCC of the facility management VON2 (urn:vo:facilityManagement:node2:statemachine).

data1MCC statemachineMCC

urn:vo:departmentB:node1

Employee

+name
+tagID

wait processData

entry/processData
[!tagApproved]

[tagApproved] / send open event to
 urn:vo:securityService:node1:statemachineMCC

tagRead / read data from
 urn:vo:faciltyMgmt:node1:dataDepBMCC

Figure 4.8.: VON of departmentB

74

4.3. Scenario

4.3.1.5. Security Service VON1

The VON1 of the security service contains only one statemachine-MCC reacting to the
incoming events open, lock and unlock. Depending on the incoming event and on the cur-
rent state of the statemachine different actions are carried out. The M1 model interpreted
by this statemachine-MCC is shown in Figure 4.9.

statemachineMCC

urn:vo:securityService:node1

locked

entry/generate lockDoor event
exit/generate unlockDoor event

closed

entry/setOpenLight(red)

buzzer

entry/wait(3s)
exit/buzzer(off)

open

entry/setOpenLight(green)

unlock / setLockedLight(green) open / generate openDoor event

/ buzzer(on)

lock / setLockedLight(red)

Figure 4.9.: VON1 of the security service organization

Additional the statemachine-MCC provides the following events to which other VONs
can subscribe to.

∙ lockDoor: This event is generated when the door gets locked.

∙ unlockDoor: This event is generated when the door gets unlocked.

∙ openDoor: This event is generated when somebody enters the building.

4.3.2. RN PDA

The security service organization owns a PDA running the .Net Compact Framework. On
this device two VONs are created, one to control the door and a second VON for logging
all door activities.

4.3.2.1. Security Service VON2

This VON host only one statemachine-MCC receiving user inputs and forwarding events
to the VON (urn:vo:securityService:node1), which resides on the RN RFID reader. The
user of this PDA has three buttons to control the door remotely (open, lock, unlock).
The statemachine running in the VON sends the events to urn:vo:securityService:node1:
statemachine which in turn carries out the action. The M1 model interpreted by this
statemachine-MCC is shown in Figure 4.10.

75

4. Implementation of a model-based middleware for virtual organizations

statemachineMCC

urn:vo:securityService:node2

wait

lockDoorPDA/ send lock event to
 unr:vo:facilityMgmt:node2:statemachineMCC

openDoorPDA/ send open event to
 unr:vo:facilityMgmt:node2:statemachineMCC

unlockDoorPDA/ send unlock event to
 unr:vo:facilityMgmt:node2:statemachineMCC

Figure 4.10.: VON2 of the security service organization

4.3.2.2. Security Service VON3

This VON hosts an application for logging. In order to be able to log all events concerning
the door the VON must be subscribed to the events lockDoor, unlockDoor and openDoor
which are provided by urn:vo:securityService:node1:statemachine. Figure 4.11 depicts the
statechart executed by the statemachine-MCC of this VON.

statemachineMCC

urn:vo:securityService:node3

wait logging

entry/log data

openDoor

unlockDoor

lockDoor

data1MCC

DoorAction

+time
+typeOfAction

Figure 4.11.: VON3 of the security service organization

76

4.3.
S
cen

ario

Native functions
RN RFID reader RN PDA

FacilityM N1 FacilityM N2 DepA N1 DepB N1 SecService N1 SecService N2 SecService N3

readRfidTag X - - - - - -
buzzer X - - - X - -
writeToDisplay X - X - - - -
openDoor - - - - X - -
closeDoor - - - - X - -
lockDoor - - - - X - -
unlockDoor - - - - X - -
setLockedLight - - - - X - -
setOpenLight - - - - X - -
getTimestamp X X X X X X X

Table 4.3.: VONs and their assigned native functions

Native functions Source
RN RFID reader RN PDA

FacilityM N1 FacilityM N2 DepA N1 DepB N1 SecService N1 SecService N2 SecService N3

rfidAvailable RFID reader X - - - - - -
tagRead FacilityM N1 - - X X - - -
lockDoor SecService N1 - - - - - - X
unlockDoor SecService N2 - - - - - - X
openDoor SecService N3 - - - - - - X

Table 4.4.: Event sources and their subscribers

77

4. Implementation of a model-based middleware for virtual organizations

4.4. Results

This section discusses the outcomes of the work regarding to the code size, the size of the
JSON models and the memory consumption at runtime.

Figure 4.12 shows the code size of the different libraries developed in the project. The
three main components are the MCC which was already fully implemented at the begin-
ning of the work, the Remoting component which was adapted to fulfill the requirements
regarding the remoting aspect and the VO component which was the main part of this
work and realizes the whole VO support. The Device Driver component is implement-
ing low level functionality to communicate with the Feig LRU2000 RFID reader and the
Custom Function component is implementing the native functions as shown in Table 4.3.

Code Size [kByte]

15,5
6%

56,0
21%

63,5
24%

25,0
9%

18,0
7%

86,5
33%

MCC
Remoting
VO
Custom Fuctions
Device Driver
Utils

Figure 4.12.: Code size of the different implementation components

The code sizes depicted in Figure 4.12 however are not containing the JSON models
which are necessary to realize a specific behavior of an application component. The JSON
models listed in Table 4.5 are the M0-layer models for the data-MCCs in the controlling
unit and the M0/M1-layer model for the statemachine-MCC in the controlling unit. This
models are transferred to the RNs controlling unit as soon as an RN gets created. All
these models are treaded as static an can not be modified at runtime.

In the case a new VON gets created only the models 2, 3 and 4 are transfered because
a VON is not allowed to create further VONs. After the creation of the RN respectively
VON the models (M1 and M0) of the application components are transferred to the VONs.
For the above described scenario the sizes of the JSON files containing the models and data
for each VON are given in Table 4.6. The size of the JSON models depends mainly on how
many MCC are specified in the application area of a VON, how large the class-models at
the M1 layer are and how many transition, conditions and actions the statemachine-MCCs
have.

78

4.4. Results

MCC Size

1 data-MCC to specify the VON structure M1 917 byte
2 data-MCC to specify the MCC structure M1 675 byte
3 data-MCC publisher/subscriber mechanism M1 495 byte
4 statemachine-MCC M1 and M0 1647 byte

Table 4.5.: JSON model-sizes of the MCCs in the controlling unit

VON Size

Facility management VON1 8,1 kbyte
Facility management VON2 1,3 kbyte
DepartmentA VON1 5,5 kbyte
DepartmentB VON1 3,4 kbyte
Security service VON1 2,6 kbyte
Security service VON2 2,5 kbyte
Security service VON3 2,0 kbyte

Table 4.6.: JSON models of all VONs involved in the scenario

So far only the size of the static libraries and static JSON models are determined, but
due to the fact that the middleware has also to be runnable on resource limited devices an
important aspect is how much memory is used by a VON and its appropriate models at
runtime. Table 4.7 shows the allocated runtime memory for a data-MCC, a statemachine-
MCC, a VON and a RN. It has to be mentioned that these values are just reflecting
the frame of a MCC or VON, they are neither containing models (M1-layer) nor data
(M0-layer).

VON Size

data-MCC 1,5 kbyte
statemachine-MCC 3,4 kbyte
VON 5,5 kbyte
RN 11,3 kbyte

Table 4.7.: Allocated memory without models

Figure 4.13 shows the allocated runtime memory per VON after all models are trans-
fered in the case of the scenario described above. The VONs of the RFID reader occupies
264 kbyte after transmission of all models. The major part is needed by VON1 of the
facility management organization. Because this VON has also the largest JSON model, it
is not surprising that it occupies also the most runtime memory. The JSON models for
the VONs of the PDA are not that complicated and as a result the allocated memory of
these is far less than the allocated memory of the VONs on the RFID reader.

When comparing the values in Table 4.7 and those given in Figure 4.13 it can be clearly

79

4. Implementation of a model-based middleware for virtual organizations

Allocated memory RFID device [kByte]

32,7
 12%

88,67
 34%

52,82
 20%

44,35
 17%

45,21
 17%

FacilityMgmt VON1 FacilityMgmt VON2
DepartmentA VON1 DepartmentB VON1
SecurityService VON1

Allocated memory PDA device [kByte]

51,28
59%

35,43
41%

SecurityService VON2 SecurityService VON3

Figure 4.13.: Memory fragmentation at runtime

seen that the most memory is needed by the models which are transfered to the VONs.
The larger the JSON files are the more memory is needed at runtime. Because of the
overhead in the data representation in the MCC a model needs ten to twenty times more
memory at runtime as it is requiring in the JSON representation.

Because dynamic configuration and reconfiguration was a strong requirement the down-
time of an application during transferring models to the device is an big issue. Table 4.8
is showing the downtime of a VON during reconfiguration with two data-MCCs and one
statemachine-MCC and their appropriate M0/M1 data. This time includes stopping the
VON, transferring all models and restarting the VON. Reconfiguring VONs on a Desktop
PC or on a PDA is quite fast and the downtime of the application component in the VON
is just about one to two seconds. Updating models of a VON on the GHI ChipworkX
device takes up to 10 times longer. This can be explained on the one hand through the
slower processor and on the other hand through the missing just-in-time compiler (JIT)
in the .Net Micro Framework.

Device Platform Time

GHI ChipworkX (200Mhz) .Net Micro Framework 10s
PDA (600MHz) .Net Compact Framework 2s
Desktop (1400MHz) .Net Framework 1s

Table 4.8.: Period of time for transferring models to a VON

80

5. Conclusion

The presented master’s thesis is part of the You-R R⃝ Open Next Generation (YRO-NG)
project at the Institute for Technical Informatics. The Goal of this work is to provide a
middleware supporting the concept of Virtual Organizations (VO) to realize distributed
architectures across different administrative domains. A strong requirement was the de-
centralized configuration of different VOs in a model-based way.

An overview about Grid computing systems, wherefrom the concept of VOs arose, has
been given. Furthermore the basic ideas behind Model-Driven Software Development
(MDSD) have been presented, which are essential for the understanding of the Model-based
Component Container (MCC). Different types of MCCs have been introduced, where each
of them defines and implements a concrete model paradigm covering a domain-specific
aspect which in turn can be executed at runtime. These MCCs, which were already fully
implemented at the beginning of this work, form an integral element in this thesis.

The design and implementation of a model-based runtime architecture for distributed
pervasive systems has been presented, supporting the dynamics of virtual organizations
(VO) by the separation of resource nodes (RN) and VO runtime nodes (VON). Local
resources are controlled by the RNs, and made available to their VONs. VONs are used
as execution platforms for MCCs containing a set of models for platform independent
specification of domain specific functionality. The models are loaded into several MCCs
dynamically which enables a configuration and reconfiguration of application components
at runtime. Further communication strategies have been designed to allow data exchange
between MCCs residing in different VONs and also different event mechanism have been
covered to enable direct event notification as well as a model-based event notification over
the publisher/subscriber mechanism.

An important aspect was the design of the VON in a self-contained way to allow the
migration between different devices. This has been achieved on the one side by using a
location-independent resource identifier, which was realized with Uniform Resource Names
(URNs), and on the other side by realizing VON configuration in a model-based way us-
ing MCCs. Through this highly dynamic reconfigurable approach also the Value Added
Reseller (VAR) principle can be achieved.

Different .Net runtime environments and two different embedded developments board
featuring the .Net Micro Framework have been evaluated in this project. The proto-
typical implementation has been realized with the .Net Micro Framework. This imple-
mentation has been evaluated in a building access scenario involving personnel RFID
auto-identification, owned by facility management, two departments with independent
authentication strategies, and a security service company. This four independent orga-

81

5. Conclusion

nizations are running application components within VONs on the same RFID reader
mounted at the building’s door. Although all VONs are running on the same device each
organization can configure the application components within its VONs independently.

The presented results illustrate the code size division of all involved components in the
middleware, the associated Java Script Object Notation (JSON) files in the case of the
presented scenario and also the allocated memory at runtime. The fact that the most
memory at runtime is needed by the transmitted JSON files is attributable to the internal
data representation in the MCCs.

Future work

Due to the fact that the whole application data as well as the application behavior is
defined with models encoded in JSON, writing this models is a tough and error-prone
undertaking. To simplify creating these models a broad tool-support is necessary. These
tools should provide the possibility to formulate the data- and statemachine models in a
graphical way as well as offer the opportunity to integrate the Entity Container Query
Language (ECQL) [KTK10] and having a syntax validation before models getting trans-
mitted to their MCCs. Not only tools supporting writing models, also some sort of version
control could be a nice feature which simplifies model management and maintenance.

An interesting task for the future would be to include support for additional runtime
platforms like JavaME and to construct new MCC model types to extend support for
different domain specific aspects. Beside the existing data-MCC and statemachine-MCC,
MCC-types could be implemented which are able to process for instance decision tables
or a Petri net.

The security aspect have not been taken into account by this work, which is not a
neglectable issue in modern distributed computing systems. Investigations in the area of
authentication and authorization have to be made to prevent organizations to connect to
MCCs outside their domain and to modify their content. This investigations should take
into account the models of the VON an RN specified in this thesis.

82

A. Event Mechanism

Events are an integral part of the whole architecture and are used for communication and
notification. Three different sources of events are distinguished:

∙ events which occur in the underlying hardware

∙ events which are send via proxys directly to statemachine-MCCs

∙ events which are generated by statemachine-MCCs themselves

Events which occur in the underlying hardware are handled as special resources as de-
scribed in Sec. 3.5.1. A VON which wants to get notified when a hardware event arises
must have the permission to get notified. This permission is assigned by the RN with
the data-MCC described in 3.3.1.4. If an hardware event occurs and the VON has the
permission to get notified the event gets inserted into the Queue of the appropriate VON.
The Controller when ready reads the event from the Queue and forwards the event to
all statemachine-MCCs in the application area because no specific destination address is
associated with the event. Figure A.1 shows the sequence diagram for that case.

Figure A.1.: Events forwarded to specific MCCs

83

A. Event Mechanism

Events which are send via proxy-MCCs directly to statemachine-MCCs are also written
to the Queue but there is a specific destination address associated with the event. Through
this destination address the controller can decide to which statemachine-MCC the event
has to be forwarded. The upper half of the sequence diagram in Figure A.1 shows this case.

When an event is generated by a statemachine-MCC itself two different scenarios have
to be distinguished.

∙ a destination address is associated with the event

∙ no destination address is associated with the event.

If a statemachine-MCC generates an event during action execution a new event instance
is generated and sent to the Controller. If a destination address is specified within the
event the controller sends the event directly to the appropriate VON where the event gets
inserted in the Queue. Figure A.2 depicts the sequence diagram for that case.

If the event has no destination address specified two different actions are carried out.
The first is that the event gets inserted into the local event queue in order to give the other
statemachine-MCCs in the same VONode the possibility to handle the event. The second
action is the evaluation of the publisher-subscriber mechanism. The controller evaluates
the M0 layer content of the data-MCC, which holds the URNs of all statemachine-MCCs
that wants to get notified when the specific event occurs. Afterwards it sends the event
to all VONs where the registered statemachine-MCCs reside. Again, before the event
is processed by the dedicated statemachine-MCC the event is inserted into the queue to
ensure causality. Figure A.3 shows the according sequence diagram.

Figure A.2.: Handling events with specified destination address

84

Figure A.3.: Handling events with no destination address specified

85

B. Development tools

This chapter gives an overview over the tools used during the design, implementation, and
writing of this work.

UML

Class diagrams were produced with the StarUML tool which can be found at http:

//staruml.sourceforge.net

Sequence diagrams were produced with the Quick Sequence Diagram Editor which can
be found at http://sourceforge.net/projects/sdedit

Microsoft Visual Studio

For code development Microsoft Visual Studio 2008 was used. In addition to the standard
.Net Framework 3.5 also the .Net Compact Framework 3.5 and the .Net Micro Framework
4.0 had been installed in order to be able to develop and distribute programs to the GHI
ChipworkX evaluation board and to the PocketPC.

Profiler

Memory and performance profiling was done with the tool JetBrains dotTrace 3.1 which
is available under http://www.jetbrains.com/profiler/

Open Office Draw 3.1

Used for drawing various architectural pictures and to post process exported diagrams
from StarUML. Available under http://www.openoffice.org/.

87

http://staruml.sourceforge.net
http://staruml.sourceforge.net
http://sourceforge.net/projects/sdedit
http://www.jetbrains.com/profiler/
http://www.openoffice.org/

Bibliography

[Acc10] AccessGrid.org. What is the Access Grid? Website, 2010. Available online
at http://www.accessgrid.org/faq; visited on February 23th 2010.

[ALM04] Kaizar Amin, Gregor Laszewski, and Armin R. Mikler. Toward an architecture
for ad hoc grids. In 12th International Conference on Advanced Computing
and Communications (ADCOM 2004), Ahmedabad, pages 15–18, 2004.

[ANG04] Ashish Agarwal, Douglas O. Norman, and Amar Gupta. Wireless Grids:
Approaches, Architectures and Technical Challenges. SSRN eLibrary, 2004.

[BEF+00] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, and
V. Welch. Design and Deployment of a National-Scale Authentication Infras-
tructure. IEEE Computer, 33(12):60-66. 2000., 2000.

[BHS07] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-Oriented
Software Architecture; A Pattern Language for Distributed Computing. John
Wiley & Sons, West Sussex, England, 2007.

[BJK09] Ian Bird, Bob Jones, and Kerk F. Kee. The organization and management of
grid infrastructures. IEEE Computer Society Press, 42(1):36–46, 2009.

[DM99] Gerardine Desanctis and Peter Monge. Introduction to the special issue:
Communication processes for virtual organizations. Organization Science,
10(6):693–703, 1999.

[EPC04] EPCglobal. The EPCglobal Network. Technical report, EPCglobal, 2004.
Available online at http://www.epcglobalinc.org/about/media_centre/

Network_Security_Final.pdf; visited on February 25th 2010.

[FK96] Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure
toolkit. International Journal of Supercomputer Applications, 11:115–128,
1996.

[FK99] Ian Foster and Carl Kesselman. The Grid, Blueprint for a Future Computing
Infrastructure. Elsevier, 1999.

[FK04] Ian Foster and Carl Kesselman. Grid2, Blueprint for a New Computing In-
frastructure. Morgan Kaufmann, 2004.

[FKNT02] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. Grid services
for distributed system integration. Computer, 35(6):37–46, 2002.

89

http://www.accessgrid.org/faq
http://www.epcglobalinc.org/about/media_centre/Network_Security_Final.pdf
http://www.epcglobalinc.org/about/media_centre/Network_Security_Final.pdf

Bibliography

[FKT01] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: En-
abling scalable virtual organizations. International Journal of Supercomputer
Applications, 15(3), 2001.

[Fos02] Ian Foster. What is the Grid? A Three Point Checklist. Website, 2002. Avail-
able online at http://www.mcs.anl.gov/˜itf/Articles/WhatIsTheGrid.

pdf; visited on February 25th 2010.

[Fou08] National Science Foundation. Virtual Organizations as Sociotechnical Systems
(VOSS). Website, 2008. Available online at http://www.nsf.gov/pubs/

2009/nsf09540/nsf09540.htm; visited on February 23th 2010.

[FZRL08] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud Computing
and Grid Computing 360-Degree Compared. Grid Computing Environments
Workshop, 2008. GCE ’08, 2008.

[GDL+04] Robert Grimm, Janet Davis, Eric Lemar, Adam Macbeth, Steven Swanson,
Thomas Anderson, Brian Bershad, Gaetano Borriello, Steen Gribble, and
David Wetherall. System support for pervasive applications. In ACM trans-
actions on Computer Systems, Vol.22, No.4, pages 421–486, 2004.

[Gmb07] RF-IT Solutions GmbH. You-R R⃝ OPEN - The Integration for RFID Projects
Version 3.3. Technical report, RF-IT Solutions GmbH, 2007.

[Gro00] OMG Group. Model Driven Architecture, a white paper by Richard Soley
and the OMG Staff Strategy Group. Technical report, Object Management
Group, 2000. Available online at http://www.omg.org/cgi-bin/doc?omg/

00-11-05.pdf; visited on February 25th 2010.

[Gro04] NGG2 Group. Next Generation Grids 2: Requirements and Options for Euro-
pean Grids Research 2005-2010 and Beyond. Technical report, Expert Group
Report, 2004. Available online at ftp://ftp.cordis.europa.eu/pub/ist/

docs/ngg2_eg_final.pdf; visited on April 10th 2010.

[Gro06] OMG Group. Meta Object Facility (MOF) Core Specification; Version 2.0.
http://www.omg.org/mof/, 2006. Available online at http://www.omg.org/

spec/MOF/2.0/PDF/; visited on February 25th 2010.

[HHX+05] Xiao Haili, Wu Hong, Chi Xuebin, Deng Sungen, and Zhang Honghai. An
implementation of interactive jobs submission for grid computing portals. In
ACSW Frontiers ’05: Proceedings of the 2005 Australasian workshop on Grid
computing and e-research, pages 67–70. Australian Computer Society, Inc.,
2005.

[HP03] Jaesun Han and Daeyeon Park. A lightweight personal grid using a supernode
network. In P2P ’03: Proceedings of the 3rd International Conference on Peer-
to-Peer Computing, page 168, Washington, DC, USA, 2003. IEEE Computer
Society.

90

http://www.mcs.anl.gov/~itf/Articles/WhatIsTheGrid.pdf
http://www.mcs.anl.gov/~itf/Articles/WhatIsTheGrid.pdf
http://www.nsf.gov/pubs/2009/nsf09540/nsf09540.htm
http://www.nsf.gov/pubs/2009/nsf09540/nsf09540.htm
http://www.omg.org/cgi-bin/doc?omg/00-11-05.pdf
http://www.omg.org/cgi-bin/doc?omg/00-11-05.pdf
ftp://ftp.cordis.europa.eu/pub/ist/docs/ngg2_eg_final.pdf
ftp://ftp.cordis.europa.eu/pub/ist/docs/ngg2_eg_final.pdf
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/spec/MOF/2.0/PDF/

Bibliography

[K0̈8] Jens Kühner. Expert .NET Micro Framework. Springer-Verlag, New York,
2008.

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[KLAR08] Heba Kurdi, Maozhen Li, and Hamed Al-Raweshidy. A classification of emerg-
ing and traditional grid systems. IEEE Distributed Systems Online, 9(3):1,
2008.

[KTK10] Ulrich Krenn, Michael Thonhauser, and Christian Kreiner. Ecql: A query and
action language for model-based applications. In Engineering of Computer
Based Systems, 2010. ECBS 2010. 17th Annual IEEE International Confer-
ence and Workshop, volume 0, pages 286–290. IEEE Computer Society, March
2010.

[LSV04] Antonios Litke, Dimitrios Skoutas, and Theodora A. Varvarigou. Mobile Grid
Computing: Changes and Challenges of Resource Management in a Mobile
Grid Environment. Access to Knowledge through Grid in a Mobile World
Workshop, PAKM 2004 Conference, Vienna., 2004.

[MHB04] Lee W. McKnight, James Howison, and Scott Bradner. Guest editors’ intro-
duction: Wireless grids–distributed resource sharing by mobile, nomadic, and
fixed devices. IEEE Internet Computing, 8(4):24–31, 2004.

[Mic09a] Microsoft. Common Language Runtime Overview. http://msdn.microsoft.
com, 2009. Available online at http://msdn.microsoft.com/en-us/

library/ddk909ch.aspx; visited on March 18th 2010.

[Mic09b] Microsoft. Differences Between the .Net Comapct Framework and the .Net
Framework. http://msdn.microsoft.com, 2009. Available online at http:

//msdn.microsoft.com/en-gb/library/2weec7k5.aspx; visited on March
20th 2010.

[MMCA02] Muthucumaru Maheswaran, Balasubramaneyam Maniymaran, Paul Card,
and Farag Azzedin. Invisible network: Concepts and architecture. Inter-
national Workshop on Invisible Computing, 2002.

[Moa97] Ryan Moats. URN Syntax. IETF, May 1997. Available online at http:

//www.ietf.org/rfc/rfc2141.txt; visited on Mach 8th 2010.

[Ri09] RF-iT. You-R R⃝ Open Folder. Website, 2009. Available online at http://

www.rf-it-solutions.com/uploads/tx_easydownloadlist/yro-A4.pdf;
visited on February 23th 2010.

[SFF04] Matthew Smith, Thomas Friese, and Bernd Freisleben. Towards a service-
oriented ad hoc grid. In ISPDC ’04: Proceedings of the Third Interna-
tional Symposium on Parallel and Distributed Computing/Third International
Workshop on Algorithms, Models and Tools for Parallel Computing on Hetero-
geneous Networks, pages 201–208, Washington, DC, USA, 2004. IEEE Com-
puter Society.

91

http://msdn.microsoft.com
http://msdn.microsoft.com
http://msdn.microsoft.com/en-us/library/ddk909ch.aspx
http://msdn.microsoft.com/en-us/library/ddk909ch.aspx
http://msdn.microsoft.com
http://msdn.microsoft.com/en-gb/library/2weec7k5.aspx
http://msdn.microsoft.com/en-gb/library/2weec7k5.aspx
http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc2141.txt
http://www.rf-it-solutions.com/uploads/tx_easydownloadlist/yro-A4.pdf
http://www.rf-it-solutions.com/uploads/tx_easydownloadlist/yro-A4.pdf

Bibliography

[SMK+05] Gernot Schmoelzer, Stefan Mitterdorfer, Christian Kreiner, Joerg Fasching-
bauer, Zsolt Kovacs, Egon Teiniker, and Reinhold Weiss. The entity container
- an object-oriented and model-driven persistency cache. In HICSS ’05: Pro-
ceedings of the Proceedings of the 38th Annual Hawaii International Con-
ference on System Sciences, Washington, DC, USA, 2005. IEEE Computer
Society.

[SV06] Thomas Stahl and Markus Völter. Model-Driven Software Development; Tech-
nology, Engineering, Management. John Wiley & Sons, Ltd, 2006.

[TKS09] Michael Thonhauser, Christian Kreiner, and Martin Schmid. Interpreting
model-based components for information systems. In ECBS, pages 254–261.
IEEE Computer Society, 2009.

[TM07] Donald Thompson and Colin Miller. Introducing the .NET Micro Framework,
Technology White Paper. http://msdn.microsoft.com, September 2007.
Available online at http://msdn.microsoft.com/en-us/windowsembedded/
bb267253.aspx; visited on March 20th 2010.

[TS07] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems, Princi-
ples and Paradigms. Pearson, 2007.

[Wha10] Whatis.com. What is Cloud Computing? Website, 2010. Available on-
line at http://searchcloudcomputing.techtarget.com/sDefinition/0,

,sid201_gci1287881,00.html visited on February 25th 2010.

92

http://msdn.microsoft.com
http://msdn.microsoft.com/en-us/windowsembedded/bb267253.aspx
http://msdn.microsoft.com/en-us/windowsembedded/bb267253.aspx
http://searchcloudcomputing.techtarget.com/sDefinition/0,,sid201_gci1287881,00.html
http://searchcloudcomputing.techtarget.com/sDefinition/0,,sid201_gci1287881,00.html

	Introduction
	Related work
	Distributed systems
	Grid Computing
	Architecture
	Classification
	Virtual Organization

	Cloud Computing
	Architecture
	Resource Management

	You-R® Open
	EPC Global
	Tube

	Model Driven Software Development
	Metamodeling
	Entity Container
	Model-based Component Container
	Model-Based Software Component

	Design of a model-based middleware for virtual organizations
	Requirements
	Architecture
	Virtual Organization Node Architecture
	MCCs in the controlling unit
	Event queues
	Node identification

	Virtual Organization Node Design
	Class diagram
	Startup
	Event handling
	Component location

	Resource Node
	Resource management
	Lookup service component
	Value Added Reseller principle

	Implementation of a model-based middleware for virtual organizations
	.Net Framework
	.Net Compact Framework
	.Net Micro Framework
	Comparison

	Hardware
	Scenario
	RN RFID reader
	RN PDA

	Results

	Conclusion
	Event Mechanism
	Development tools
	Literaturverzeichnis

