
Matthias Huber

Master Thesis

Signing, validation and
comparison of experimental

data within iLAP

Institute for Genomics and Bioinformatics,
Graz University of Technology

Petersgasse 14, 8010 Graz, Austria
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Zlatko Trajanoski

Supervisor:
Dipl.-Ing. Dr.techn. Gernot Stocker

Evaluator:
Univ.-Prof. Dipl.-Ing. Dr.techn. Zlatko Trajanoski

Graz, April 2010

Acknowledgments

First i would like to express my gratitude to my family, especially to my
mom. Without your support and love my studies and this thesis would have
never been possible to realize.

Many thanks to my girlfriend Karin for giving me motivation and words
of encouragement to finish the work.
Also to my friends for the great time during my studies.

During the entire work Dipl.-Ing. Dr.techn. Gernot Stocker gave me con-
tinuous and professional support. I want to thank you for your patience and
motivation.

Last but not least special thanks to Univ.-Prof. Dipl.-Ing. Dr.techn.
Zlatko Trajanoski for giving me the opportunity to write this thesis on the
Institute of Genomics and Bioinformatics.

Thanks a lot!

1

Statutory Declaration

;
I declare that I have authored this thesis independently, that I have not
used other than the declared sources / resources, and that I have explicitly
marked all material which has been quoted either literally or by content
from the used sources.

Graz,
(date) (signature)

2

Abstract

English

iLAP (Laboratory data management, Analysis and Protocol development) is
a web-based application which covers the data management of microscopy
experiments. Hereby iLAP takes care of experiment protocols and offers ba-
sic functionality of a digital labbook.
Without using a system like iLAP protocols of experiments are written by
hand and have to be signed by the experimenter to guarantee its authen-
ticity. In analogy to conventional manual signatures the concept of digital
signatures was adopted for iLAP. Therefore adequate cryptographic meth-
ods for signing and validating binary data were used. With the help of these
methods signed experimental data can be checked for unauthorized manip-
ulation and consistency. Additionally a keystore concept was implemented,
that enables the secure persistence of asymmetric key pairs and provides the
unambiguously determination of the signers identity.
In order to detect differences between protocols and to optimize results of
experiments it is essential to compare them. Therefore iLAP was extended to
visualize protocol comparison based on an already existing algorithm. This
comparison allows the experimenter on the one hand to detect illegal changes
of protocols, on the other hand the optimization of experimental results.
Further on the usability of iLAP was improved and essential extensions were
integrated in the area of file preview and experimental rating of data.

Keywords: Microscopy, iLAP, Digital signature, Cryptographic meth-
ods

3

German

iLAP (Laboratory data management, Analysis and Protocol development) ist
eine webbasierte Applikation zur Verwaltung von Mikroskopie Daten. Dabei
kümmert sich die Applikation um die digitale Erfassung von Protokollen und
bietet die Funktionalität eines digitalen Laborjournals.
Bei Experimenten, die nicht auf digitale Laborjournale zurückgreifen, wer-
den diese Protokolle manuell verfasst. Um die Echtheit der Dokumente zu
garantieren, müssen abgeschlossene Protokolle zusätzlich vom Experimenta-
tor unterzeichnet werden. Analog zur herkömmlichen Unterschrift wird dieses
Konzept in iLAP in Form einer digitalen Unterschrift übernommen. Um dies
zu erreichen, wurden geeignete kryptografische Methoden zum Signieren von
Dateien verwendet. Dadurch können nun alle aus Experimenten gewonnenen
Daten signiert und im Nachhinein deren Integrität und Konsistenz überprüft
werden. Zusätzlich wurde eine geeignete Datenbankstruktur implementiert,
die es erlaubt asymmetrische Schlüsselpaare für die Erzeugung der Signatur
sicher abzulegen und dabei auch noch die eindeutige Identität des Unterze-
ichners zu garantieren.
Um Unterschiede in ähnlichen Protokollen ermitteln zu können ist das Vergle-
ichen von Protokollen unabdingbar. Daher wurde iLAP um diese Funktion-
alität erweitert. Sie erlaubt dem Experimentator zum einen das Optimieren
von Protokollen und zum anderen die Visualisierung von unerlaubten Manip-
ulationen bei signierten Protokollen. Die daraus resultierenden Unterschiede
werden über das Webinterface interaktiv und anschaulich dargestellt.
Zuletzt wurde auch noch die Benutzerfreundlichkeit des bestehenden Userin-
terfaces verbessert und dafür notwendige Erweiterungen durchgeführt. Diese
betreffen sowohl unterschiedliche Varianten der Bildvorschau von Dateien,
als auch die visuelle Bewertung von Dateien und Experimenten.

Stichwörter: Mikroskopie, iLAP, Digitale Unterschrift, Kryptografische
Methoden

4

Contents

1 Introduction 7
1.1 iLAP . 7
1.2 Objectives . 9

1.2.1 Usability improvements 9
1.2.2 Protocol comparison 10
1.2.3 Cryptographic infrastructure 10

2 Methods 11
2.1 JEE - Java Enterprise Edition 11
2.2 Technologies . 13

2.2.1 Spring framework . 13
2.2.2 Hibernate . 14
2.2.3 Cryptography . 15

JCA/JCE framework 17
2.2.4 Tapestry . 19
2.2.5 UML . 20

2.3 Tools . 21
2.3.1 Maven . 21
2.3.2 Eclipse . 22
2.3.3 MagicDraw . 22
2.3.4 AndroMDA . 22

Model Driven Architecture 22
Cartridges . 23

Hibernate cartridge 23
Spring cartridge 24

2.3.5 pgAdmin . 25
2.4 Design and implementation 25

2.4.1 Usability improvements 25
Image preview . 25
Edit box for description 28
Deletion . 29

5

RatingBox . 30
2.4.2 Protocol comparison 32
2.4.3 Cryptographic infrastructure 34

Data structures and services 35
Experiment signature 35
Signer key . 35
SignKey management service 36
Experiment signature management service . . . 37
Crypto management service 37

Graphical user interface 43

3 Results 45
3.1 Cryptographic infrastructure 45
3.2 Protocol comparison . 47
3.3 Usability improvements . 48

4 Discussion and Outlook 52
4.1 Discussion . 52
4.2 Outlook . 53

4.2.1 Usability improvements 53
4.2.2 Protocol comparison 53
4.2.3 Cryptographic infrastructure 53

Glossary 55

List Of Figures 57

6

Chapter 1

Introduction

Microscopy experiments are usually conducted by following well established
protocols and are manually documented in paper-based notebooks. Some-
times these experiments follow so called SOPs (Standard Operating Proce-
dure) which describe frequently performed experiments as sequences of pro-
tocol steps.
Starting from these observations the need for a digital labbook was recognized
to manage and organize the accumulated data in a workflow driven manner
conserving its experimental context. iLAP [36] (Laboratory data manage-
ment, Analysis and Protocol development) attempts to combine experimen-
tal protocol development, wizard-based data-acquisition and its analysis into
one web-based software system. The intention behind the development of
iLAP is to replace the handwritten notebook with its digital counterpart.

1.1 iLAP

iLAP is a data management system formed by a three tier architecture fea-
turing a web frontend and a backend constructed by JEE (Java Enterprise
Edition) components. The webinterface offers users platform independent
access to their data. To perform a workflow driven microscopy experiment
with iLAP the following data structures are introduced:

• Projects: The user begins with the creation and definition of a project.
This project is defined by a textual description, including notes and files
from literature research, microscopes, etc.

• Subprojects: Since subprojects represent child instances of the type
Project, a complete data hierarchy can be established.

7

• Experiments: An experiment consists of a textual description of file
attachments and of an underlying protocol. The protocol itself rep-
resents a sorted collection of so called CWP steps (Current Working
Protocol Steps). Each step describes a single procedure of the experi-
mental workflow and can hold notes and attached files.

• Analysis: All accumulated data from a project can be subject of fur-
ther analysis. Such an analysis has the aim to extract meaningful in-
formation out of the accumulated raw data. To store such analytical
processes in a data structure the Analysis was introduced. iLAP offers
several server-side analysis modules, but also supports external modules
by exporting data sets and importing already processed ones.

Figure 1.1 demonstrates the hierarchical relations of a well defined project
in iLAP.

Figure 1.1: Overview of the intended data hierarchy in iLAP.

As mentioned before the iLAP application was implemented in a fashion
to cover the complete laboratory workflow. This workflow is composed of
several phases and is described in more detail under [36]:

8

Project definition phase: A laboratory project is based upon specific bi-
ological questions. In this phase of the workflow this question and a
hypothesis that addresses it has to be defined. During the scientific
research several documents are read to find methods for solving the
problem. iLAP encapsulates this phase in its Project structure as de-
scribed before.

Experimental design and data acquisition: Based upon the hypothesis
of the project definition and several SOPs from previously performed
experiments a specific experimental proceeding is declared. This pro-
ceeding consists of smaller steps represented by iLAPs CWP steps. By
executing the established workflow several observations are accumu-
lated to enhance the better understanding of the results.

Data analysis and processing: To retrieve meaningful information from
the accumulated raw data analysis and post-processing steps are re-
quired. In order to conclude this phase it is important to relate gen-
erated files to the according raw data. Therefore iLAP offers several
methods to analyze the accumulated raw data and to store it in a
project oriented way.

Data retrieval: This experimental workflow leads to a chronological orga-
nized data accumulation consisting of e.g. protocols, notes and file
attachments. By reflecting on the recorded experiment data scientists
can obtain different viewpoints which lead to new interesting findings.
This is supported by a search module which abbreviates the data re-
trieval for the researchers.

1.2 Objectives

This thesis can be divided into three tasks. The aim of the first task was
to get a better understanding about the application structure and the used
technologies. In a second phase of this work a method to compare experiment
protocols was implemented. Finally the main focus of this thesis was to
introduce a new service that offers the functionality of signing and validating
of experimental data.

1.2.1 Usability improvements

Preview Overview Because users in a microscopy lab have to handle a
big amount of raw files, the need for a preview overview of attached

9

files arises. For this purpose a tabular representation of all attached
data should be implemented and for further inspection a bigger pre-
view should be introduced. All file attachments in iLAP are stored as
so called dataobjects. From here on such attachments are defined as
dataobjects. The color design of the overview has to consider the type
of parental container to which the objects are attached to.

Deletion of dataobjects Because of special user requirements at the be-
ginning it was not possible to delete dataobjects and their parental
containers like projects, experiments, etc. The intention behind this
design decision was to avoid unwanted deletion of precious data. But
the praxis shows that it is absolutely necessary to have this function-
ality in iLAP.

Rating Also a rating for dataobjects should be provided, which supports the
user to highlight relevant data. This feature was additionally extended
for experiments.

1.2.2 Protocol comparison

The second goal of the work was to introduce a method that allows the com-
parison of protocols and the visualization of the resulting differences in an
intuitive manner. Hereby a protocol comparison algorithm described in [32]
should be used to detect differences between two protocols.

1.2.3 Cryptographic infrastructure

Sometimes microscopy experiments lead to new discoveries and experimenters
have to guarantee that their protocols and data was generated at a certain
time point and not altered afterwards. For such a case it should be possible
to digitally sign an experiment in order to conserve the status of an exper-
iment. This must be realized in a manner that later on third parties can
verify the signed status of the researchers experiment.
Additionally it should be possible that a user with higher responsibilities can
countersign the signed experiment. Hereby this privileged user confirms the
consistency of the underlying experimental data. The signing and counter-
signing process must be realized using asymmetric encryption methods, so
that the signer and countersigner can be uniquely identified.

10

Chapter 2

Methods

2.1 JEE - Java Enterprise Edition

Stark describes in his book [35] JEE as a set of specifications and technolo-
gies, which enhances the development of secure, stable and portable busi-
ness applications. These specifications can be realized by implementations
of different providers. Besides a multitude of commercial projects also open
source projects implement these specifications. The main goal of this col-
lection of specifications is the separation of the application in different com-
ponents. Each layer fulfills different needs, has different and responsibilities
and communicates with other layers. This architecture brings several benefits
like better maintainability, testability, stability or security. By extending or
changing functionality of components, layers or tiers, only few changes have
to be applied to the other parts because of the separation. This implies also
that these tiers can be executed on different machines or JVMs.
Johnson introduces in his book [28] the separation of web applications in a
three layer architecture. This architecture is illustrated in the figure 2.1.

• User Interface (UI) Tier: This tier is also called the Presentation
Layer and can be divided into a client and a web tier. In such cases
the client tier consists of the users browser and the web tier of the
user interface. In iLAP the presentation layer is created by Tapestry,
discussed later in this work. The main access point to the services is a
servlet, which allows the user interacting with the application. For this
purpose it handles user requests and returns results as HTML pages.

• Middle tier: The Middle Tier or business layer in case of the iLAP
application is based on the Spring framework. It contains some business
logic which is responsible for the processing of requests initiated by the
client. This is achieved by so called Spring Beans.

11

• Persistence Tier: This tier was introduced to hide the persisted data
from the business logic. It considers transaction management and data
access security. Behind this layer a relational database management
system takes care of the permanent storage of data. In iLAP it is a
PostgreSQL [16] database.

User Interface (UI) Tier

or

Presentation Layer

Middle Tier

or

Business Layer

Persistence Layer

Database

Figure 2.1: Representation of three tier architecture.

12

2.2 Technologies

2.2.1 Spring framework

The Spring framework is an open source application framework, that ad-
dresses major aspects of Java EE application development. Its architecture
is predominantly defined by interfaces similar as the Java EE, but unlike the
Java EE it has a POJO (Plain Old Java Object) based programming model.
One of the main features of this framework is the application of the Inversion
of Control (IoC) pattern. The integration of the Spring framework in high
level applications brings the following benefits [17]:

• sparse dependencies to the container API (non-invasive)

• easy testability by using simple POJO-Beans for JUnit testing

• high scalability

• enables distributed applications

• distributed transaction management

• can be combined with different technologies as for example EJB and
Hibernate

• can be used in combination with different application servers (Tomcat,
Jetty, JBoss, ...)

Spring consists of different components and modules. Each of these offers
a scope of specific functionality. The architectural design of Spring and its
modules is illustrated in figure 2.2. These modules are working independently
from each other. The developer can select the module that can be considered
as best choice for a problem. In the case a developer wants to integrate just
the Spring DAO module in its application there is no need to deploy the entire
Spring framework. The only requirement for this scenario is the inclusion of
the DAO module along with the Spring IoC Container, which represents the
heart of the application framework.
The Spring modules have the following responsibilities and functionality:

Spring Core represents the core of the entire Spring framework. All other
components of the framework are dependent on the core module. The
core provides the support for dependency injection (DI). The central
class of the core module is the BeanFactory a basic implementation of
the IoC container. It consists of a central XML configuration file for

13

instantiating, configuring and managing beans. By using the BeanFac-
tory it is possible to separate the configuration of dependencies emerged
by beans from the application code.

Spring AOP In general the main goal of AOP (Aspect Oriented Program-
ming) systems is to separate components and concerns. In AOP a
component represents a system property encapsulated in a procedure
and an aspect or concern represents a system property that can not be
encapsulated in a single procedure. Examples for aspects are transac-
tion safety of persistence, security or logging procedures. The Spring
AOP brings Aspect Oriented Programming into the application frame-
work with featured transaction management, logging, etc.

Spring DAO brings its own Data Access Object layer. This layer offers the
developer a standardized communication to different access technolo-
gies and databases. Typically for connecting and performing operations
on relational databases, the programmer has to write repeatedly glue
code for retrieving a connection, binding SQL parameters, releasing the
database resources and exception handling. The Spring DAO handles
all these tasks and hides them from the developer.

Spring ORM builds the object/relational mapping layer. This module has
not its own implementation of the object/relational mapping but in-
stead offers support for multiple existing persistence solutions like Hi-
bernate, iBatis, etc.

JEE offers a basis for simplifying the interaction between different JEE tech-
nologies like EJB.

Web MVC contains the scope of functionality to build flexible web appli-
cations. This module is based upon the Model View Control (MVC)
pattern and supports the integration of many known frameworks like
Velocity, JSP, Adobe Flex, etc.

The Spring framework can be downloaded at www.springsource.org. In
this work only a short introduction to the Spring framework is given. For
further reading the books [26] [31] [22] are a good choice.

2.2.2 Hibernate

Hibernate is an open source framework for Object Relational Mapping (ORM).
The Hibernate framework takes over the responsibility to persist objects into
database tables. In the persisting procedure also inheritance of objects or

14

Spring ORM Spring DAO

Spring AOP

JEE Spring MVC

Spring Core (IoC Container)

Figure 2.2: Representation of the modular architecture within Spring frame-
work.

relations between objects are taken into account.
Hibernate provides a mechanism to transparently persist Java objects also
called Plain Old Java Objects (POJOs) in an automatic fashion. To access a
database with Hibernate there is no need to specify explicitly the SQL state-
ments. This does the framework. To provide a broad usage of the framework
Hibernate supports many common database implementations by generat-
ing the statements depending on the used SQL-dialect of the corresponding
database. This makes it also easy to exchange the database if necessary.
The mapping of the POJOs to the database tables is defined in a XML file.
Hibernate supports references as one to one, one to many and many to many,
but also inheritance and reflective relations. By accessing objects it is possi-
ble to load related objects immediately or to load them at the time they were
needed. The former procedure is referred as eager loading and the ladder as
lazy loading. Another advantage of the framework is that it can be configured
in such a way that operations like saving and deletion can be cascaded to
preserve the integrity.

2.2.3 Cryptography

During the signing process of experiments iLAP uses different cryptographic
approaches to encrypt, decrypt and sign sensitive data. In this section main
topics of cryptography are discussed.
A symmetric algorithm describes a method to encrypt and decrypt data.

15

Hereby two parties share one common secret to perform both, encryption
and decryption. The shortcoming of this algorithm is that the key has to be
shared for both parties.
The principle behind an asymmetric algorithm is totally different from the
latter one. This algorithm specifies a user specific key pair. One is the private
key and the other is the public key. The private key is secret and therefore
only known by the holder. The public key can be distributed to other users.
The combination of public and private key allows to perform cryptographic
operations.
In most cases the message or data that has to be encrypted or signed is too
long. Several functions exist that represents the data in a shorter and unique
manner. These functions computed on the data are called hash functions.
The hash value has two important aspects. On the one hand it represents
the message uniquely, which means for a certain message there exists only
one deterministic hash. On the other hand the hash generation is a one way
function, because by knowing the hash value the corresponding message can
not be reconstructed.
An additional essential therm in this context is the digital or electronical
signature. A user decrypts the hash value of some data with the private
key and sends the unchanged data together with the decrypted hash value
to another user. The receiver now can check the integrity of this data by
recalculating the hash value of the original input data and comparing it with
the public-key-encrypted hash value. It is important that each signature can
be assigned reliably to its signer. In public services the identification of the
signer is made by a trustcenter. The trustcenter issues a certificate for this
user and ensures its identity. If it is an accredited trustcenter the signature
is legally binding and substitutes the physical signature.
In the case of iLAP the new cryptography module fulfills the needs of the
following scenario. A user signs the current status of an experiment. This
means the service must sign each attachment, the protocol, experiment notes,
etc. For the signing procedure the hash value of each part of the experiment is
acquired, then the hash value is decrypted with the private key of the signer
and stored in a file. In a second step a user wants to check the integrity
of the signature and must therefore have the possibility to verify it and to
detect possible manipulations. In a third usecase a countersigner user, which
possesses a higher authority role, can confirm respectively countersign the
signature of the experiment signer.
Therefore each user who wants to perform an action as signing or counter-
signing needs an asymmetric key pair. Another constraint must be that the
private key for each user have to be secured, so that only the owner can
access it during the signature process.

16

To realize the cryptographic functionality within iLAP the JCA/JCE frame-
work is used. It offers the necessary algorithms to perform the signing pro-
cess.

JCA/JCE framework

In Java two class libraries are provided which offer cryptographic opera-
tions and methods. The two libraries are the Java Cryptography Architecture
(JCA) and the Java Cryptography Extension (JCE). The separation is based
upon political restrictions.
The JCA can be found in the java.security.* package and a reference guide
can be found here [8]. The JCA contains the following scope of operations
as proposed in this document [7]:

• MessageDigest: is used to calculate hash values from binary data.

• KeyPair generators: generates a key pair.

• SecureRandomGenerator: originates random numbers.

• Signature algorithms: these algorithms create signatures.

• CertificateFactory: offers methods to read in and process certificates.

• KeyStore: for the secure storage of keys in different formats and cer-
tificates.

• KeyFactory: for decomposing a key pair in private and public key.

• CertStore: to manage certificates.

The JCE is resident in the javax.crypto.* package, the reference guide
can be found on this web page [9]. The JCE framework provides the following
functions:

• Cipher: offers cryptographic algorithms for encryption.

• KeyGenerator: for generation of keys for the aim of encryption.

• SecretKeyFactory: is similar to the KeyFactory in the JCA and is
used to decompose a key pair.

• KeyAgreement: for the secure exchange of keys.

17

To enable a simple exchange of the standard JCA/JCE with other im-
plementations a Service Provider Interface (SPI) is provided. By integrating
such a service provider the functionality of this provider can be immediately
used as can be seen in figure 2.3. A new provider can be installed in two
ways. One can include a new provider in the source code by simply adding
the line illustrated in the listing 2.1 or by defining it in the java.security file
statically.

Security.addProvider(new CryptoProvider ());

Listing 2.1: Registering a new cryptography provider.

Application

Provider

Framework

ProviderA

S
ig

n
a

tu
re

„M
D

5
w

it
h

R
S
A
“

S
ig

n
a

tu
re

„M
D

5
w

it
h

R
S
A
“

S
ig

n
a

tu
re

„M
D

5
w

it
h

R
S
A
“

ProviderB ProviderC

Signature.getInstance

(„MD5withRSA“, „ProviderC“)

Signature Object

from ProviderC

Figure 2.3: Representation of the provider framework of the JCA.

From the components discussed above in the cryptography service im-
plemented in iLAP the KeyFactory of the JCA is used to generate a pri-
vate/public key pair for each signer. Also a Cipher and the SecretKeyFactory

18

is used for the encryption and decryption of private keys. The last infras-
tructure object furnished by the JCA package is the Signature to sign each
part of an experiment and in a further step to verify such a signature. The
details of this implementation are discussed later on, also the provider imple-
mentations used for the realization of the cryptography service are specified.
Further details about cryptography can be found in the book of Rosen [33].
It gives an overview of mathematically and theoretically background, besides
the book of Hook [27] provides good practice for developing cryptographic
functionality based on the JCA/JCE architecture.

2.2.4 Tapestry

Tapestry is an open source framework of the Apache Software Foundation.
The framework offers the developer a tool to create dynamic and scalable
web applications in Java. Tapestry is build upon the Java Servlet API and
therefore applications developed with it are runnable in a multiple applica-
tion servers or servlet containers. In the case of iLAP it runs on an Apache
Tomcat server.
Tapestry is a component based framework, each page represents a collec-
tion of such components. Contrary to request based frameworks Tapestry
focuses on placing components on pages and to react on events, which are
triggered by components. For this purpose Tapestry includes several stan-
dard components for development. For a detailed list consult this web page
[19]. Additionally Tapestry offers the possibility to create new components
and to reuse them in different scenarios. This feature prevents the accumu-
lation of duplicated code by reusing such generated components.
Unlike other web application developing frameworks Tapestry introduces its
own perception of a web page. This page consists of three different parts a
template, a Java class and a page specification file. This enables the separa-
tion of the view and the code needed for accessing, managing and modifying
objects. It also offers the possibility that designers and programmers can
work concurrently on the same pages by separating the view and the func-
tionality. The page’s template represents a HTML file with common HTML
tags augmented by additional tags that are representing Tapestry compo-
nents. These tags are marked with the keyword jwcid (Java Web Compo-
nent ID) and are placeholders for the corresponding Tapestry component.
The page specification file is a XML file which defines the depending Java
class and containing component specifications. In the according Java class
the developer can implement the functionality of the page.
Third party frameworks widen the possible field of Tapestry components.
Such a framework called Tacos is also used in iLAP. It provides additional

19

components and applies AJAX behavior to Tapestry components. To get
details on the functional range see here [18].
The inventor Howard M. Lewis Ship addresses in his book [34] the four main
goals for the implementation and design of the Tapestry framework:

Simplicity Applications developed with Tapestry contain a small amount
of code compared to other frameworks. This is because the developer
has to write only code which is application specific. Glue code like
extracting and interpreting parameters from the request is covered by
the framework. Tapestry components are offering listener methods like
in rich client applications.

Consistency Different Tapestry pages are working in the same fashion due
to the fact that they are built up by the same reusable components.
This consistent behavior avoids duplication of code.

Efficiency An important aim is the scalability of an application for high
traffic use cases. For this reason Tapestry reads each HTML template
and XML specification file once and stores it in component pools and
caches. This minimizes the amount of processing and speeds up the
application performance.

Feedback Many web application frameworks are reporting errors and excep-
tions by displaying the whole stack trace. This confronts the developer
with the problem of error searching and debugging. Tapestry’s archi-
tecture provides multiple layers for exception catching and reporting
and ensures in that manner that as much information as possible is
extracted. The error reporting in Tapestry will be shown either in the
console of the server or in the web browser.

In the course of this thesis new Tapestry components have been developed.
They are designed to be reusable. For the development of iLAP Tapestry
version 4.1 is used. A great introduction and practical examples provides
this book [37].

2.2.5 UML

The UML (Unified Modeling Language) [21] is a modeling language that
provides the creation of visual representations of software systems. It is a
specification of the OMG group [14]. Models assist the developer in un-
derstanding complex software applications by introducing different levels of
abstraction. By using UML tools the developer can design the structure and

20

the behavior of a system. Also relations between introduced components can
be modelled. A big advantage is that the design is decoupled from the un-
derlying software platform.
The OMG group defines thirteen types of diagrams for the UML 2.0 specifi-
cation, divided into three categories [6]:

• Structure Diagrams specifies static application structure by includ-
ing the Class Diagram, Object Diagram, Component Diagram, Com-
posite Structure Diagram, Package Diagram and Deployment Diagram.

• Behavior Diagrams include the Use Case Diagram, Activity Diagram
and State Machine Diagram. These three types of diagrams describe
general types of behavior.

• Interaction Diagrams include the Sequence Diagram, Communica-
tion Diagram, Timing Diagram and Interaction Overview Diagram.
These diagrams include different aspects of interaction.

The book [25] gives a good overview and usage scenarios of UML.

2.3 Tools

2.3.1 Maven

Maven is a tool for managing the build process, reporting and documenta-
tion of a Java software project. By defining a local repository of dependent
libraries needed by a software project, Maven tries to download missing de-
pendencies from such remote repositories to enable a successful build pro-
cess. It also gives the opportunity for different developers working on the
same project to have the correct versions of libraries resident on the local
repository.
The main goal of Maven is to support the developers comprehension of the
complete state of development effort in a short period of time, as proposed
here [11]. Therefore it tries to fulfill the following requirements for software
projects:

• Making the build process easy

• Providing a uniform build system

• Providing quality project information

• Providing guidelines for best development practices

• Allowing transparent migration to new features

21

2.3.2 Eclipse

Eclipse is an open source Integrated Development Environment (IDE) for
software development and it can be downloaded from [4]. It is conceived
for Java software development. Due to its plugin based architecture it can
be extended for additional software languages such as C, C++, etc. Beside
syntax highlighting it provides the developer with code completion and source
code analysis.
Additionally the commercial plugin MyEclipse Enterprise Workbench [13]
expansion was used, which offers many useful functions for the development
of JEE applications like deployment of the web applications, database access
and UML/XML handling.

2.3.3 MagicDraw

MagicDraw [10] is a visual modeling tool for designing project specific data
structures and relations between them. The tool is programmed in Java and
therefore platform independent. MagicDraw generates code from existing
UML diagrams for different programming languages as Java, C#, C++, etc.
but also does the reverse process of generating visual diagrams from existing
code.
Throughout this thesis it was used to extend existing data models and create
new models for the iLAP application. Together with AndroMDA it forms a
strong instrument for Model Driven Development.

2.3.4 AndroMDA

AndroMDA represents a tool for code generation based on the Model Driven
Architecture (MDA) paradigm. AndroMDA transforms annotated UML model
diagrams into platform specific code. Such UML models can be designed with
modeling tools like MagicDraw. The models are specified in XML Metadata
Interchange (XMI) format. In spite of the separation of application models
and generated source code consistency is achieved. The AndroMDA frame-
work consists of Cartridges and is extensible in the way that the code can
be generated for several platforms. The models designed are not bound to a
specific programming language.

Model Driven Architecture

As described in [12] the Model Driven Architecture introduced by the OMG
[14] group is a progressive transformation of abstract software models to its
implementation. It aims the separation of the application and the business

22

logic from the underlying platform. This is realized by splitting a software
project in different abstraction levels. The behavior of an application is inte-
grated in higher abstraction levels and details for the technical implementa-
tion are hidden in lower levels. For this reason the Model Driven Architecture
introduces the following levels of abstraction described in [24]:

Computation Independent Model (CIM) This level of abstraction fo-
cuses on the perception of the user. It consists of the business model
representing the application and fulfills the needs of concrete usage
scenarios.

Platform Independent Model (PIM) represents the functionality and
business logic by avoiding the platform specific focus. This separation
aims for a design that can later be applied to different platforms.

Platform Specific Model (PSM) In contrast to the PIM layer it addresses
the requirements for the platform specific code generation.

Code Model represents the platform specific code generated by some code
generator as AndroMDA.

Cartridges

In AndroMDA cartridges [24] are rules also called templates for the code
generation. Due to the fact that AndroMDA offers the possibility to remodel
and regenerate code the cartridges are generating structures by separating
manually editable code files from pure generated. The former files are stored
in so called target folders and the ladder ones in a source location. After the
remodeling the target folder will be overwritten.
The AndroMDA framework offers different cartridges, which can produce
code for JEE platforms like EJB or Spring. For further reading about An-
droMDA and its cartridges the following web resources [1] [2] can be con-
sulted.

Hibernate cartridge As described in [24] this cartridge handles the persis-
tence specific code. The persistence layer of the application uses Hibernate
as its Object Relational Mapping framework. The cartridge processes the
mapping schema and creates required Java classes and is also responsible to
introduce the SQL statements for the creation and deletion of the database
schema. Due to the fact that the Hibernate cartridge comes with the support
of different SQL dialects the exchange of the used vendor specific database
can be realized with minimal effort.

23

The generated persistence tier of the application can be hidden behind a ser-
vice layer. This service is realized with EJBs or Spring POJOs.
The AndroMDA team [3] proposes the following stereotypes:

Entity represents a Hibernate POJO. The UML class must be annotated
with this stereotype and the cartridge generates the according Java
class and the mapping of the relations to dependent objects. For this
purpose the multiplicities must be set on the begin and the end of
the relation. This procedure ensures the consistent mapping of the
generated database tables and the corresponding Java classes.

Enumeration by applying this stereotype a normal class is generated with
the difference that each attribute specifies a default value. This enu-
meration stereotypes can be referenced also within a entity definition
in its attributes.

Service can be seen as a service facade responsible for a set of entities. This
stereotype represents a stateless Spring bean.

Not only the above described stereotypes can be used, but also some
tagged values for primary key, foreign key, sequence or SQL query statements
definition are offered. The ladder ones should be avoided to conserve an
Platform Independent Model (PIM).

Spring cartridge Kainz [29] describes the Spring Cartridge as the genera-
tor for the business and persistence layer. As described above the persistence
tier is dependent on the Hibernate cartridge so the Spring cartridge implies
the usage of it. AndroMDA generates the persistence layer without any ad-
ditional developer assistance and according Data Access Objects so called
DAOs. This DAOs are based on the Spring framework and provide the ac-
cess to the corresponding entities. The Spring cartridge offers the following
stereotypes for definition:

Service works as the according stereotype in the Hibernate Cartridge and
implements some specific business logic for depending entities.

Value Object To avoid the exposition of the plain persistence data to the
presentation layer valueobjects were introduced. They represent an
inherited object of the corresponding entity which gives the opportunity
to hide some attributes or relations.

24

2.3.5 pgAdmin

pgAdmin [15] is an open source tool for administration and development for
PostgreSQL databases. This application was ported to many platforms as
Linux, Mac OSX or Windows. pgAdmin addresses many developer require-
ments from writing single SQL queries to create complex database schemas.
The graphical interface makes administration easy. The application con-
tains a SQL editor with syntax highlighting, a server side code editor, a job
scheduling agent, etc.

2.4 Design and implementation

2.4.1 Usability improvements

During the experimental workflow iLAP users have to handle multiple of
raw files like microscopy images, literature documents, etc., in iLAP such file
attachments are called dataobjects. To improve the handling functionalities
of iLAP some new features were introduced. The main aim of the design was
the reusability of these features.

Image preview

All units that can hold and are bound to dataobjects like projects, exper-
iments, analyses in iLAP are implementing the interface DataObjectRe-

ceiver. Since there was no preview modality to display all dataobjects
attached to a dataobject receiver on one page, the first feature implemented
takes over this functionality. Throughout the work of Kainz [29] a preview
generator for dataobjects with known formats like ”PDF”, ”PNG”, ”TXT”was
implemented. This preview generator creates thumbnails for such known for-
mats in an asynchronous way.
Each instance of a dataobject receiver can hold a collection of several dataob-
jects and so the choice for a tabular representation view was taken. Since a
dataobject receiver can be a project, experiment, analysis or CWP step the
user must recognize the type of receiver visually. Each view should represent
the dataobjects of the corresponding receiver in a tabular view and different
color and it should be given the possibility to inspect each dataobject sepa-
rately by offering the user a big preview.
To realize these specifications Tapestry offers the class AbstractComponent,
which generates dynamic HTML content without a defined component tem-
plate and so it can render itself in any desired way. So the implemented class

25

in iLAP which renders the tabular view is derived from Tapestry’s Abstract-
Component and was called DataObjectImageGrid. The AbstractComponent
offers also the method renderComponent and the IMarkupWriter and with
these two tools it is possible to write out directly HTML tags at the time the
component renders itself. There were added the following input arguments
for the new component, which some of them are required and one is optional:

• dataObjectReceiver (required)): defines the given receiver, which
can be a project, subproject, experiment, CWP step or analysis.

• treeType (required): defines what type of receiver the current is. It
is an integer which specifies the type. It has to be a type of DataOb-

jectReceiverInterface.

• numCols (required): defines how many number of columns should be
used to represent the dataobjects in the tabular view. The data type
is INT.

• value (required): defines the current dataobject examined in the
iteration. It is an instance of DataObjectDetailedVO.

• numRows (optional): defines how many rows are used for the presen-
tation in the table. The data type is INT.

To get the collection of dataobjects of the specified receiver the compo-
nent needs a dependent method of the DataObjectManagement which resides
in the business layer. The Tapestry framework has the ability to explicitly
inject the Spring Service DataObjectManagement in the DataObjectImage-
Grid component with all its dependencies. After the component has fetched
the collection of dataobjects it constructs the image grid depending on the
number of columns specified. To differentiate in which hierarchical level -
project, experiment or analysis - the user resides a color scheme was selected.
The different color styles for each receiver type and the representation of one
dataobject in the image grid should look like in the figure 2.4. The new intro-
duced component DataObjectImageGrid can be instantiated in any Tapestry
HTML template by typing a single tag, this is shown in the listing 2.2. What
can be seen is that the body of the tag can be filled with other HTML tags
that are rendered within the body of the component. This gives the pos-
sibility to define the look of the component in any desired way. Through
the value argument the current examined dataobject in the rendering loop
can be accessed. The jwcid expression in the component instantiation de-
fines the Java Web Component id. It means that the enclosed specification
defines a Tapestry component named DataObjectImageGrid. The naming

26

ognl stands for Object Graph Navigation Language and is a special encap-
sulation of code and template variables. To resolve the specified method call
after the ognl expression, Tapestry looks in the object derived from the page
class specification. This mechanism of resolving a method call is known as
reflection.

<span jwcid=" @DataObjectImageGrid"

dataObjectReceiver ="ognl:getCurrentReceiver ()"

treeType ="ognl:getTreeType ()"

numCols ="ognl:getNumCols ()"

value ="ognl:getCurrentDataObject ()">

// within the body other functionality can be

// inserted for the current dataobject

Listing 2.2: Shows the tag to instantiate the DataObjectImageGrid in the
HTML template of a Tapestry page.

DataObjectName

Download:

Image thumbnail and

link to „big preview“

Project

Analysis

Experiment

CWP step

Download link

Figure 2.4: Dataobject representation.

Another requirement the image grid component should fulfill was a link to
a bigger preview for further inspection. This link will only generated if for the
current dataobject a preview exists, otherwise a placeholder picture should be
displayed with the information that there is no preview. This preview link is
encapsulated in an additional component which provides the bigger preview
in a new browser window. Also the content of the opened window is styled

27

in a manner to differentiate the dataobject receiver which the dataobject
is attached to. The big preview reveals the picture of the dataobject in a
higher resolution. Also included in the new view are a download link and
a close button. The component is named StartPreviewLink and like the
DataObjectImageGrid it has the following input arguments to define its
behavior:

• dataObject (required): specifies the dataobject for the preview and
is an instance of DataObjectDetailedVO.

• treeType (required): specifies the type of receiver the dataobject

is attached to. It is an integer which specifies the type.

• spanImage (optional): the argument is boolean and has default value
TRUE. If set to false the preview link is inactive.

By inserting the following tag 2.3, the preview link component can be
inserted in any desired Tapestry HTML template . The only difference is
that here it is not possible to define the body of the tag.

<span jwcid=" @StartPreviewLink"

dataObject ="ognl:getCurrentdataObject ()"

treeType ="ognl:getTreeType ()"/>

Listing 2.3: Shows the tag to import the StartPreviewLink component in
the HTML template of a Tapestry page.

Edit box for description

The DataObjectDetailView is an almost existing Tapestry component for
iLAP. It shows some general information about the dataobject, that the
user is inspecting at the moment. This component should be extended by a
component that enables the changing of the dataobject description, which is
a member variable of the DataObject entity. The new Tapestry component
with the name DataObjectEditBox was conceived, that in a further stage
other member variables of the entity DataObject could be changed too, for
this purpose the following input arguments were defined:

• dataObjectId (required): specifies the id of the dataObject which
is unique. The input must be type of Long.

• type (required): represents a String that defines which property of
the entity would be changed.

28

The specified component is constructed via a AjaxDirectLink provided
by the Tacos framework. This ensures that after submitting the form only
the region of the edit box will be refreshed, not the complete page. By click-
ing on the edit link the state of the component gets into editing mode. The
component changes its behavior and an input text field appears, in which
the user can type the desired description for the current dataobject. In the
DataObjectManagement a new method was implemented which changes the
description of the dataobject. After the user submits the edit form, this up-
date method will be called with the new description.
The DataObjectEditBox could be placed on any desired location of a Tapestry
page by inserting the code tag listed in here 2.4.

<span jwcid=" @DataObjectEditBox"

dataObjectId ="ognl:getDataObjectId ()"

type=" literal:description "/>

Listing 2.4: Tag for importing the DataObjectEditBox.

Deletion

As described in the introduction initially it was not possible to delete dataob-
jects. But the praxis proved that such a feature is essential, but should be
only accessible by privileged users.
Each project, subproject, experiment, CWP step or analysis is marked as
not deletable if a dataobject is attached. This implies also that - if a dataob-
ject is attached - for example to an experiment, also the parent projects are
marked as ”not deletable”. This means after every deletion of a dataobject all
parents and all first level children of the current DataObjectReceiver must
be checked recursively for possible attachments. If there is no dataobject
attached any more the dataobject receiver must be set as deletable. Addi-
tionally after a dataobject is attached to a receiver, it can be linked by other
receivers in the hierarchy. So each dataobject has to be checked for relations
to other receivers before it can be removed physically from the server storage.
These considerations are taken into account during the implementation.
For the implementation in a first stage a new user role ROLE_FILE_MANAGER is
defined. This role is stored in the user management and prevents that unau-
thorized users delete data. In iLAP for each type of receiver (like project,
experiment, ...) a type-specific implementation of dataobject management
methods exists. The methods to detach the relation from the underlying
DataObjectReceiver is individual for each type, but the task to delete the

29

dataobject from storage is critical for all possible DataObjectReceiverIn-

terface implementing classes. The DataObjectManagement service class is
a superclass of all classes implementing the DataObjectReceiverInterface.
Therefore all methods that are non-specific are implemented in the superclass
and the type specific code goes in the corresponding service routines. This
separation prevents the accumulation of glue code. The inspection for the
deletion status of each receiver, which is computed recursively throughout
the hierarchy and updated after every deletion action was added in all ser-
vice classes of the receivers. The physical deletion depending on the state is
realized in the superclass.
Another aim was to check for generated preview thumbnails and existing
postprocessor states. These are generated from the postprocessing services
implemented by Kainz and described in [29]. In the case of physical cleanup
of the dataobject the thumbnails and postprocessor states must be deleted as
well. This method is identical for all possible receivers and therefore added
in the superclass.
The deletion process of the dataobject of a DataObjectReceiver - for ex-
ample an experiment - follows the current workflow. The user clicks on the
delete button and after the confirmation field is checked the deletion pro-
cess is started centrally in the DataObjectManagement. There the process
is assigned to the corresponding dataobject management service depending
on the receiver type, for example in the case of an experiment the delete
method in the ExperimentDataObjectManagement is called. Afterwards the
relation from the receiver entity to the underlying dataobject is removed and
the check for beeing deletable is performed. This is done by checking if all
the underlying childs as CWP steps and analyses are also deletable. If it
is so the experiment is marked as deletable and also recursively all parents
are set to this state. Further on it will be checked if the dataobject has
relations to other entities. If there are none left, all post processor states at-
tached to this dataobjects are removed and in a last step all files are removed
on the storage. These two methods are implemented in the superclass, the
DataObjectManagement.

RatingBox

Since it was not possible to evaluate dataobjects by rating them, the need
for such a modality arised. To give the iLAP user a possibility to mark
dataobjects as relevant or not a rating box is introduced. During the imple-
mentation the rating functionality has proven useful and so it was applied
also to experiments.
Therefore the dataobject entity had to be extended by adding an integer

30

value named objectRating. This variable holds values between ”1” and ”5”.
A vote of one means that the rated dataobject is poor, where the highest vote
of five marks it as excellent. A modular Tapestry component was created
named obviously RatingBox which contains five star images. By moving the
mouse over such a star the corresponding item is highlighted to give the user
a special grade of interactivity. By clicking on one of them the corresponding
dataobject is rated and also here only the area where the rating box resides
is updated. The idea was to inject the JavaScript code on render time of
the component, but it seems that the Tapestry 4 framework had a problem
with this operation. For this reason the JavaScripts are now included in the
layout template. After one has rated a dataobject one can revert the action
by cancel the current rating vote and start the process again.
This Tapestry component has the following set of input arguments:

• dataObjectId (required): specifies the id of the dataobject. It has
to be type of Long.

• updateComponents (optional): holds a list of strings, which specifies
the page parts which are refreshed after the rating action.

• starSize (optional): if the star size is specified ”small” the stars are
represented in a smaller resolution (15x15 pixels), otherwise they are
(30x30 pixels).

The same rating functionality was introduced for the experiments. There
it was necessary to construct a rating component for experiments called Ex-

perimentRatingBox and to give the experiment entity a new member vari-
able named experimentRating of type integer. Also the ExperimentMan-

agement is extended with the corresponding method to rate the current ex-
periment. The input arguments of the experiment rating box are the same
as for the dataobject, except the dataObjectId which was substituted with
the argument experimentId.
The following listing shows how to add the described rating box on a Tapestry
HTML template. By not specifying the size of stars a resolution of 15 per 15
pixels will be taken as default.

Listing 2.5: Tag for importing the RatingBox.

31

2.4.2 Protocol comparison

During an experiment scientists follow protocols which can be digitally stored
in iLAP. In order to gain better results these protocols must be frequently
adapted and optimized. If results are improving differences between proto-
cols must be discovered and therefore protocols must be compared.
The first method to compare different iLAP protocols was developed by Ober-
stolz [32] as a standalone application. This method had to be ported to
the web layer in order to offer the iLAP user the comparison functionality.
Oberstolz implemented a function that takes two XML protocol files as input
arguments and returns a list of so called AlignmentObjects. This item holds
the left object which is a protocol step out of the first protocol, a right object
which is the corresponding step from protocol two and an additional object
called EditOperations. The design of the protocol comparison is illustrated
in figure 2.5.

Experiment 1 Experiment 2

Protocol Comparison

Management

Comparison algorithm

(Oberstolz)

· XML export protocols

· Storing temporary file

· Delete files

Alignment object

Left object Right object Edit Operation

View

Figure 2.5: Process of protocol comparison.

The edit operation item is represented by an enumeration element, which

32

can have the following values:

• UPDATE

• DELETE

• INSERT

• NONE

An update operation means that the corresponding step exists in the two
protocols, but was changed slightly in one of them. A delete specifies that
this specific step exists only in the left protocol, but not in the right one.
An insert operation is the counterpart of the delete. The marked step exists
only in the right protocol but not in the left. And last the none enumeration
points out, that the step in the left and right protocol are equivalent.
During the implementation of the resulting comparison view it must be con-
sidered that any protocol step could contain an infinite hierarchy of child
steps. This hierarchy must be pointed out in the visualization.
The first step of implementation was to create a new service class in the
business layer which includes the comparison calculation. The new service is
called ProtocolComparisonManagement and is injected in the corresponding
Tapestry pages. This service exports the protocols as XML files, performs
the comparison and returns the above mentioned list of AlignmentObjects.
For the export the existing ArchiveExportService is used, which returns
an XML file of the protocol. Steps within a protocol can also contain notes
or parameters. The former can be a notice made by the laborant. The latter
can be for example a used liquid and the amount of it in e.g. milliliter (ml).
Parameters and notes have to be displayed in a different way as protocol
steps, so the user can differentiate them visually. These considerations must
be accounted for the visualization. A Tapestry page was designed called
ComparisonPage consisting of two select boxes. In a first stage the user can
choose two protocols out of the set of existing protocols. After confirming the
choice the user will be redirected to the ComparisonResultPage to get the
protocol comparison visualization. Because the comparison can take longer,
two pages were implemented; after the submit of the protocol choice a wait
box is opened and is replaced by a second page.
For the processing and visualization of the comparison results a new Tapestry
component called LoadComparisonResults was introduced and derived from
the AbstractComponent. This component iterates through the list of Aligne-
mentObjects and visualizes them in a tabular view. To point out the edit
operation, steps with differences are highlighted with different colors. The

33

component also displays the steps in it’s hierarchical order. To instantiate
this component with the name LoadComparisonResults the following input
parameters must be specified:

• firstProtocol (required): specifies the first protocol selected. This
will then be displayed on the left side of the tabular view. It must be
type of ExperimentBasicVO, which defines an experiment valueobject.

• secondProtocol (required): the same as the firstProtcol argument
with the difference that it will be displayed on the right side of the
tabular view.

• diffList (required): holds the AlignmentObjects and will be pro-
vided from the protocol comparison management service. Its type is a
list of these objects.

• leftProtocolMaxDepth (required): holds the depth of childs of the
left protocol. It has the type integer.

• rightProtocolMaxDepth (required): holds the depth of childs of the
right protocol and its type is also integer.

• pageName (optional): this optional parameter influences the title of
the HTML page and is set by default to the name of the comparison
results page.

• updateComponents (optional): specifies the components which are
updated and can consist of a list of elements.

As described above protocol steps with differences are highlighted with
different colors. By moving the mouse over over a highlighted step the specific
edit operation is shown above the element. This was again realized with a
JavaScript. There is a column on both sides of the comparison view called
type that specifies if the current line represents a note or parameter. The
comparison feature in action is shown in the results section.

2.4.3 Cryptographic infrastructure

An additional step to get away from the paper-based note books is to bring
the concept of a physical signature into iLAP. In microscopy experiments the
scientist guarantees with the signature for the integrity of the documented
experimental data. One of the main aims for the cryptographic functionality
implementation is to assure the identity related to an experiment signature

34

in a reliable and secure fashion. Additionally the introduced service has to
have a modality to validate the signature and detect possible manipulation
of experimental data. To fulfill these requirements two new entities were
introduced.

Data structures and services

Experiment signature A fundamental part of the cryptographic feature
is the signature itself. To realize it a new data structure the ExperimentSig-
nature was introduced. It consists of the following fields:

• id: specifies the internal id of the signature. It is of type Long and
must be unique.

• creationTime: is from type String, which defines the date and time
when the signature was generated.

• location: points to the relative path, where the signature file was
stored. It is also of type String.

In order to relate a experiment signature to a specific experiment a
mapping between the id of the experiment signature and the experiment
is enough. The relation between the experiment and the experiment signa-
ture is a one to many association. Each signature must belong to at least one
experiment, but the experiment can own many signatures. Because there was
not introduced a separate data structure for the countersignatures additional
self-association was introduced to cover this relationship. Each signature can
hold a collection of signatures, which contains the countersignatures. Each
countersignature must have exactly one relation to a signature object. The
last relation exists between the SignKey which will be introduced later. Each
signature pertains precisely to one signers key. Also here it is sufficient to
map the id of the experiment signature to the id of the signer key. This
mapping is realized by Hibernate. The model of associations can be seen in
figure 2.6

Signer key Another necessary item for the cryptographic service is the
signer key. For this purpose the entity SignKey was implemented. This data
type consists of the following fields:

• signKeyId: holds the id the of the signer key.

• signKeyPublic: contains the public key of a user. The type is String.

35

• signKeyPrivate: holds the private key of the signer. In contrast to
the public key this one is encrypted via a symmetric algorithm and a
password. This aspect will be discussed later on.

• signKeyStatus: specifies the active status of the corresponding signer
key. The type of this field is boolean. Per user only one signer key can
be active.true.

The SignKey object is related in a one to many association with the
experiment signature. The relation from the application user to the signer
key is a one to many, because each user can have multiple keys. For example
if one forgets the password for the private key a new pair must be generated
and the old one is stored to verify signatures made until this point of time.
All associations between the introduced data structures can be seen in figure
2.6.

Experiment

SignKeyExperimentSignature

ApplicationUser

0..1

0..*

0..*

1

0..*

1

0..*

1

Figure 2.6: The cryptographic entities and their relations.

SignKey management service In order to administer the signer keys
the new service SignKeyManagement was created. This service performs all
necessary operations to store, create and retrieve the signer keys. In detail
these are the following methods with their corresponding inputs:

36

• createNewSignKey: this method takes as input parameter the user
valueobject and the password. This password will never be stored and
only the user knows it. With this password the private key will be
encrypted.

• getSignKeyForUser: takes the user as input and returns the corre-
sponding signer key. This is the key with the status set to the value
true.

• getAllSignKeysForUser: does the same as the method above, but
returns the complete list of signer keys generated by the current user.

• getDecryptedSignKey: takes as input a signer key and the password.
The method returns the SignKey structure with the decrypted private
key.

• getSignKeyOwner: gets as input the signer key and returns the owner.
The return value is of type SigningUserVO which is a derivate of the
ApplicationUserVO object.

Experiment signature management service This management service
is responsible for the experiment signatures and therefore named Experi-

mentSignatureManagement. It provides different methods for persisting the
signatures:

• createSignature: takes the signer key, the experiment and the relative
path into which the signature file has to be stored.

• createCounterSignature: has the same inputs as the method for cre-
ating a signature but with the additional experiment signature argu-
ment, which specifies the signature that must be counter signed.

• deleteSignature: simply deletes the current signature by taking the
user value object and the experiment signature as inputs. This oper-
ation can onyl be performed, if the given user has the special role of
ROLE_SIGNATURE_CLEANER. This role was first introduced here.

Crypto management service The Cryptographic service builds the core
of this new feature. It is designed in a fashion that later on, the algorithm of
cryptographic operations on the experiments can be extended easily. This is
realized through the implementation of a factory pattern and considering that
old signatures can be still verified if new signature methods are introduced.

37

Therefore a new implementation version must be specified in the CryptoIn-

frastruchtureFactory. Each new implementation must implement the in-
terface CryptoAgent. To integrate rapidly cryptographic functionality into
iLAP, the java-based JCA/JCE framework is used. This provides standard
implementations of cryptographic methods, like signing, verifying or en- and
decryption.
The service called Crypto consists of the following four principal methods:

• signExperiment: specifies the process of signing an experiment and
takes the valueobjects for the user, the experiment, the signer key and
the password to decrypt the private key as arguments.

• verifyExperimentSign: verifies an existing experiment signature and
takes therefore as argument the valueobject for the user and the exper-
iment signature itself.

• counterSignExperiment: countersigns an experiment signature. It
has to be provided with the same input parameters as the signExper-

iment method and additionally the experiment signature that has to be
counter signed. Only users with the special role ROLE_COUNTERSIGNER

are allowed to perform this action.

• verifyExperimentCounterSign: verifies a countersignature by verify-
ing also the parent experiment signature. This function gets the same
inputs as the verifyExperimentSign operation and additionally the
experiment signature.

The signExperiment method consists of several procedures. In a first
step the private key of the signer is decrypted and the experiment specific
data is accumulated for the signing process. This includes experiment notes,
attached dataobjects and a XML export of the current working protocol.
Also a file is created, that holds the signature of each part of the experi-
ment. It has to be noted that each export of a protocol contains a tag of
the export date and time. This tag has to be removed, because otherwise
the verification process will never be successful. For the purpose of writing
all relevant data for the signing process to a file a helper class was added to
the framework. The SignatureWriter does the work for constructing the
signature file. An example file for a typical experiment signature holds the
information shown in the listing 2.6. Additionally the listing shows that the
file contains the signer information. It is important that this information
must be always checked by querying it in the database to be sure that the
public key is consistent. The example signature file contains no dataobjects,

38

but in general this tag consists of the dataobjects id, name and the encrypted
hashvalue. All XML tag specifications are defined in the SignatureXMLSpec

interface. The file name of an experiment signature is composed of the lead-
ing string SignatureFile, the signers id and the creation timestamp in this
way ”SignatureFile <SIGNERID> <TIMESTAMP>.xml”. This file will be
archived in the data folder of the corresponding experiment. Another helper
class is the ExperimentSigner which digitally signs each part of the protocol
separately. Figure 2.7 reveals how the process of signing works in iLAP. For
each part of an experiment like notes, dataobjects the hash value is calcu-
lated and afterwards it is decrypted with the private key of the signer.
As discussed earlier the cryptographic service was implemented in a man-
ner to support different versions of the underlying cryptographic agent. The
agent realized through this work with the name CryptoAgent_V_1_0 con-
tains the specifications for the algorithms used for key generation, private
key encryption, hash calculation and encryption. The JCA/JCE framework
supports algorithm implementations of different providers. The algorithms
used here are RSA from the SunRsaSign provider for the key pair generation.
The key size can be chosen by varying the corresponding value in the Cryp-

toAgent_V_1_0 class. The default length is 2048. To store the private key of
each signer by encryption in the database the PBEWithMD5andDES encryption
algorithm from the SunJCE provider was applied. In this context the leading
PBE expression stands for ”Password Based Encryption” and is a symmetric
algorithm as discussed in the beginning of this chapter. Normally also an
incorrect password input returns a decrypted private key. For this reason a
placeholder string was attached to the user specific password, so that a fault
entry can be recognized. The last algorithm included for signing data is the
MD5withRSA provided from SunRsaSign.

To validate such a signature the cryptographic service offers the verify-
ExperimentSign. The procedural workflow of this method is similar to the
precedent operation of signing with an additional verification step. For this
purpose a helper class the ExperimentVerifier was introduced. It performs
a specific verification operation on each part of the experiment, like the ex-
periment notes, dataobjects and protocol. The SignatureReader performs
the reading of the decrypted hash out of the signature file. This procedure
is illustrated in the figure 2.8. The algorithms for computing the hash value
on the data are the same as discussed in the previous section. If these are
different a signature can never be verified successfully. Each part of an exper-
iment is signed separately. In that way it can be determined at which parts
the verification has failed. For this reason the verification method returns
a VerificationResult object, that contains collections of verified and not

39

<experiment -signature >

<!--iLAP Experiment Signature -->

<cryptoagent -version >0</cryptoagent -version >

<protocol >

<protocol -path>u_1011\p_10000\e_10000\signatures\

ProtocolExport_1_20100224161407.xml

</protocol -path>

<protocol -signature >hVNBhdtiizccmHbLx +5bf/

PdVzAHhyOsDRqKgKv95+A/LaWg7tN0SgqG8nlNhzTM5eUj2/yhIgvq

cABRsPEJ+RPESzFk3Gh/CW/bUclkyOZ/

wYAxBwGz5xZseWcG3LRqEsQSsCnvsJYwk698pFGZVYT5

njWTKKByU9nUIyXamfyWSoazGzp50Q6SX7Tqf2apEdjipZY+ZSReE/

h9l/ec7nYbRUMonDD5Y67c vG9DpCv3eOLaj4HS4zAPM+

OkTbhryX4wvHP+ibByQ5T5+W37fAR+CyFvB6GIuhEv0fmqqPbtuRoE

jgmc9TTlVFJqj10E32oxiBaHDHZ1wKFitDcqfw ==

</protocol -signature >

</protocol >

<notes>

<notes -signature >p4OtydMoNiVeMV8ZxusQdZ4+B3uwh/

WvM00eUu3bIcJK/FhZCa0E1529rOEHbnS0yWsJJdlrhpPD

qhj3npzXRWx4mYG0i3vN6MmDktG8NrhK6wckGhw4deOKJvQz6eW8W

cbmcHKBPBVIrnY6K/qY3VwNcSgFMXYIR1uBDEYbYDLGDBSt2OTmM 6

G8ZAcE3fBDtVDRXIk50HsweCTBi+SPDezYOY7HQYukqLyV 1

Tpc1FbGTCaIBKeC18VxQxz8K2cyAKe0ZfxAHpOr7v191qveTmAo7dq 7

Y7KvtqHtSVC0Y9i4CIy9

BjJaO8hkZu1zfQpagAxu256LkkMF7x8m2wXH+A==

</notes -signature >

</notes>

<dataobjects/>

<signer >

<signer -id>1</signer -id>

<signer -name>huber</signer -name>

<signer -publickey >

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAl35HRlY23M

jdvC5T7ThUDst8GT4l4Jk0 7FQtfupRsOE+a+

AuOLXiK919aBHshahq3FQ8kEucYjynxSyWMIGfmMLG+

uYpUOKSfD5VHnfM08/P UUb8pPWSffRm +7 LfLv9S6f7v /65

oKsJgILOu7dKw3daYGLvikYVgynj9g4EyZrGi6H4vFF2M6Dsz

VHOcyInzoodrKeyu7yM181ceZD4LQaeYDdugsRrKulC+

Imc30E9T2xLpcFRRUOLXclK9DPvqYw60

Syaddnz1Ls5IiOnXg4YCRm7Pi+

I714K36jQZZctzZIWNtUo0XrBWj8tl4TKsPKjYg8M1XIhSY24Z

jLDsuwIDAQAB

</signer -publickey >

</signer >

</experiment -signature >

Listing 2.6: The experiment signature file.

40

Private Key

Public Key

User 1

Calculation

of hash

value

Experiment

Notes

Protocol

Data objects

Decryption

with private

key

Signaturefile

Figure 2.7: Overview of the signing process.

verified dataobjects and booleans for the protocol and notes. This makes it
possible to offer the user a verification report by pointing out manipulated
parts of the experiment. Corresponding to this verification object a Tapestry
component for illustrating this verification report was implemented and will
be described in the results part of this work. To get the corresponding veri-
fication agent, the version of the used agent is specified in the signature file.

Since one can share experiments and declare access rights to other users
also signatures are shared. If a user has the special role for countersigning,
the user can create a countersignature as well. This procedure consists in
a first step of a verification of the signers signature. If this operation was
successful the signature will be countersigned and a countersignaturefile is
created. The new generated file contains the same experiment specific in-
formation as the signature file, but the signer tag will be substituted by the
countersigner tag shown in the listing 2.7. In contrast to the signers tag
in the signature file this one holds an additional one the <countersigner-

signature>. This field holds the decrypted hash value of the signature file
of the signer. Also the relative destination of the signature file is attached to
the file.

The last method offered by the cryptographic management service is the
verifyExperimentCounterSign. It performs a verification of the signature-
file and afterwards of the countersignaturefile. The result of the verification

41

Calculation

of hash

value

Experiment

Notes

Protocol

Data objects

1

Private Key

Public Key

User 1

Encrypt hash

value of

notes

User 2

2

Signaturefile

!

=

Figure 2.8: Overview of the signature validation.

<countersigner >

<countersigner -id>2</countersigner -id>

<countersigner -name>stocker </countersigner -name>

<countersigner -publickey >

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAqg+ ...

</countersigner -publickey >

<countersigner -signature >

<countersigned -filepath >u_1011\p_10000\e_10000\signatures\

SignatureFile_1_20100224162333.xml

</countersigned -filepath >

<countersigned -signature >p4OtydMoNiVeMV8ZxusQdZ4+B3uwh/

WvM00eUu3bIcJK/ ...

</countersigned -signature >

</countersigner -signature >

</countersigner >

Listing 2.7: A pullout of the countersignature file.

42

will also be returned in an instance of the VerificationResult as the sig-
nature verification operation does.

Graphical user interface

To give the user a graphical interface for signing its experiments some Tapestry
components were introduced. These components are integrated on the Ex-

perimentSignaturesPage page.
The first component to discuss is the NewSignKeyForm. If one has not gener-
ated yet a key pair for signing, this component will appear. It consists of two
password input fields. The password filled in is the one the user needs to sign
an experiment or if this user has the countersigner role to countersign experi-
ment signatures. Only the user knows this password and will never be stored
in the database. In the case the password is forgotten, the administrator has
only to set the status of this signer key to false. The next time the user gets
on the signatures page, the indicated component will be shown again. The
NewSignKeyForm has no input arguments apart from a updateComponent pa-
rameter which optionally specifies the area that will be refreshed and it is
not required. The component consists of a client side password validation.
This validation checks the password length and the confirmation field. The
password has to be typed two times, if the two input fields are holding the
same string and the two input fields are not null the key pair is generated.
The signer password has to have a minimal length of ”8” and maximal length
of ”16” digits. These values can be changed in the interface PasswordSpecs.
The next component implemented for the purpose of signing is the NewEx-

perimentSignatureForm. This component offers the principal operation of
signing an experiment as described before. This component has the following
three input arguments:

• signer (required): is of type GlobalUserVO and specifies the signing
user.

• experiment (required): defines the experiment that has to be signed
and is an instance of the ExperimentBasicVO valueobject class.

• updateComponent (optional): specifies the area that has to be up-
dated after signing.

Another component is the VerificationDetails component, that gen-
erates a visual representation of the verification results in the case the verifi-
cation process fails. It writes a list of the experiment parts like the protocol,

43

notes, dataobjects and countersignatures and shows the corresponding verifi-
cation status. As the component described before it holds an input parameter
updateComponents and additional it gets an object of the type Verifica-

tionResult as described in the section before.
For countersigning a specific experiment signature the NewCounterSigna-

tureForm was designed and is composed by a single input field for the pass-
word and two buttons for the submit and cancel operation. This field will
only appear if the current user holds the countersigner authorization. It will
be displayed beside the corresponding signature. It has to be provided by
the following inputs:

• countersigner (required): holds an object of the GlobalUserVO

class and defines the countersigning user.

• signature (required): specifies the signature that will be counter-
signed.

• updateComponent (optional): defines the area that will be refreshed
after the action.

Screenshots of the ExperimentSignaturesPage composed by these com-
ponents and a tabular view of existing signatures will be shown in the next
chapter.

44

Chapter 3

Results

The main achievement of this work is the introduction of the digital signature
process. iLAP was extended to offer its users several cryptographic methods
like signing, verifying and countersigning of experiments. To guarantee the
identity of the signer and countersigner a special key store was created.
Additionally a web based protocol comparison for experiments in iLAP was
generated. This assists the user in detecting relevant differences derived from
protocol optimization or unauthorized changes. To enhance the usability of
data handling in iLAP several visual components were implemented.

3.1 Cryptographic infrastructure

Before a user gets the possibility to sign experiments one has to generate
a user specific key pair. The component shown in figure 3.1 provides this
operation of key pair generation. The user has to enter a password, that
is required for the encryption of the private key as discussed earlier. The
password has to be typed in two times and will never be stored. After a key
pair is generated the view of the page will change. From then on one can
sign experiments as demonstrated in figure 3.2.

Figure 3.2 shows a selected experiment where a set of existing signatures
and corresponding countersignatures is displayed. This view is an example
for a user who has the authorization of deleting signatures and creating coun-
tersignatures. By clicking on the Verify link in the right column an experi-
ment signature or countersignature can be validated. If this process fails one
can further inspect the reasons for the unsuccessful verification procedure.
An example for this is shown in figure 3.3.

The validated signature has two dataobjects attached, which are verified
successfully. In the screenshot the part of the experiment which has caused

45

Figure 3.1: Component for creating a new key pair.

Figure 3.2: Tabular view of signatures and countersignatures in an experi-
ment.

46

the validation failure is located in the protocol. In this case it is possible to
compare the protocol attached to the signature with the current one. The
protocol comparison presented in the next section will be a good choice for
this.

Figure 3.3: Feedback mask for a failed signature verification.

3.2 Protocol comparison

In order to compare two protocols the iLAP user has to go to the comparison
page. In a first phase this page consists of two property selection boxes
illustrated in figure 3.4 where also shared projects are provided. After one
has chosen two protocols, the comparison can be started. For extensive
protocols this can take some time. Therefore an intermediate wait box is
displayed.

Figure 3.4: Page for selecting protocols before comparison.

After the comparison process is completed, the user reaches the compari-
son view (see figure 3.5). The left side of the view represents the first protocol
selected and the right the second one. Each protocol step is consecutively

47

numbered and parameters as well as notes are identified in the Type column.
All lines that are rendered in black occur unchanged in both protocols. Col-
ored sections mark the detected differences, which are illustrated in figure
3.6.

Figure 3.5: Comparison view of two different protocols.

By moving the mouse over a colored region an additional line appears
which explains the corresponding change. Blue marked steps indicate changes
in the content. Red lines stand for a deletion, which means that this specific
step exists only in the left protocol. Steps that are marked in green are inserts
and exist only in the right protocol.

Figure 3.6: Possible differences between two protocols.

3.3 Usability improvements

The figure 3.7 shows the DataObjectDetailView component which was ex-
tended by the following features. The first one is the edit box for changing the

48

description of a dataobject. By clicking the Edit link an input field appears
in which one can type in a new description. The changing of the behavior of
this component is done in a way that only the part marked with ”1” in figure
3.7 is refreshed.
The area marked with ”2” opens the big preview of the current dataobject
which is shown in figure 3.8.
Also for the experiment exists a component that shows the experimental de-
tails. There a similar preview link can be found. By accessing this link one
gets to the preview page where all dataobjects attached to the corresponding
experiment are displayed.
The third marked area is the RatingBox. In the depicted case 3.7 the dataob-
ject has the highest rate and the rating can be changed at any time. The
rating function was also ported to experiments. In the tree view of the
overview page the ratings are also displayed. The last improvement marked
in the figure is the delete operation. This link appears only if the current user
holds the role of ROLE FILE MANAGER. The operation is not processed
immediately because a confirmation dialog is opened to avoid unwanted dele-
tion.

As mentioned before the big preview looks like shown in the figure 3.8.
On the left it has similar fields as in the DataObjectDetailView and shows
dataobject specific information like file name, description, file size and so on.
The second table at the left consists of operations like download, rating and
a close button. The table headers are colored according the common iLAP
color code of the parent like green for experiments, blue for projects, red for
analyses, etc.

Figure 3.9 demonstrates a typical view of all dataobjects that are attached
to an experiment. In this example the DataObjectImageGrid component is
configured to show only three columns. This can be changed by modifying
the corresponding parameter of the component. For images or dataobjects
that possess no preview a placeholder picture is shown that indicates the
absence of it. On this page also the big preview can be started for further
inspection and rating can be performed.

49

1 Edit box for changing description

2 Link(s) to big preview

3 RatingBox

4 Deletion of dataobject

Figure 3.7: Usability enhancements for the dataobject details.

50

Figure 3.8: Big preview of a dataobject attached to an experiment.

Figure 3.9: Example for an overview page for experimental data.

51

Chapter 4

Discussion and Outlook

4.1 Discussion

One major aim of iLAP consists in the substitution of the handwritten note-
books in the laboratory. An important part of such notebooks is the physical
signature of the experimenter to guarantee for the authenticity of the de-
scribed data. In analogy to this physical signature the concept of digital
signature was integrated in iLAP, which gives the user the opportunity to
sign, validate and countersign experiments. This functionality allows to val-
idate the consistency of the experiment as well as the authenticity of the
signer. In a next step a key store was introduced to persist asymmetric keys
in a reliable manner. A user with a higher authorization such as a head
of laboratory can countersign the signed experiment, which represents the
last instance of this process. This functionality improves the quality man-
agement of worflows and brings iLAP closer to a full featured digital labbook.

In order to detect differences between protocols and to optimize results of
experiments it is essential to compare them. Therefore iLAP was addition-
ally extended to visualize protocol comparison based on an already existing
algorithm. This comparison allows the experimenter on the one hand to de-
tect illegal changes of protocols and on the other hand the optimization of
experimental data. This feature had to be integrated in the web interface of
iLAP. An additional user interface was created to select two protocols out
of a working set. This selection is used in a component that produces an
intuitive representation of the resulting differences.
Further on the usability of iLAP was improved and essential extensions were
integrated in the area of file preview and experimental rating of data.

52

4.2 Outlook

4.2.1 Usability improvements

iLAP represents a solid platform to describe laboratory workflows and to
store related data. Automatic postprocessing is performed for example multi-
channel images are processed to generate ordinary preview images with color
channels. A possible enhancement is the implementation of an image viewer
for high level image processing. Such interesting processing might be image
segmentation, where the user marks manually a set of seed points to extract
a region of interest.
Since the web layer is realized with the Tapestry 4 framework, another en-
hancement could be the porting of the web tier to the new Tapestry 5 web
framework. Tapestry 5 introduces some new interactive components and
pages are based on POJOs. Therefore it is not necessary anymore to inherit
them from framework specific classes. Also the testing procedures of web
components are easier to perform. However, the realization would be a huge
effort because Tapestry 5 is not backwards compatible. For further readings
on this topic consult [30] or [23].

4.2.2 Protocol comparison

The protocol comparison tool was newly introduced in iLAP during the im-
plementation of this thesis. Nevertheless one further possible enhancement
could consist in the comparison of multiple protocols. Hereby it would be
interesting to find hotspots in a complete series of protocols or experiments.
Another drawback is the minimal interaction of the user with the comparison
view. A comparison view with editable protocol steps, parameters and notes
would be useful as well.

4.2.3 Cryptographic infrastructure

The main goal of this work was to create a service for signing and validating
experimental data. This feature could be extended to sign also a complete
project hierarchy in iLAP.
In addition to this there exist several software projects that are implementing
new algorithms in their own provider implementations for the JCA frame-
work. The integration of such a implementation in the existing cryptographic
infrastructure of iLAP could provide additional state of the art algorithms
for encryption, signing, etc. Such implementations are commercially available
like the CRYPTO Toolkit from the IAIK group [5]. Another non-commercial

53

implementation for Java represents the Bouncy Castle Crypto API [20].
A further enhancement could be the usage of a certified signature. This
would imply the requirement for a certificate provider. If this provider is
an accredited trustcenter, the signature would be legally binding as well.
The last possible improvement could be the integration of smartcards in the
cryptographic process of iLAP.

54

Glossary

AJAX Asynchronous JavaScript and XML

AOP Aspect Oriented Programming

API Application

CWP Current Working Protocol

DAO Data Access Object

EIS Enterprise Information System

EJB Enterprise Java Beans

HTML Hypertext Markup Language

IDE Integrated Development Environment

iLAP Laboratory data management, Analysis and Protocol development

IoC Inversion of Control

JEE Java Platform, Enterprise Edition

JPG Joint Photographics expert Group

JSP Java Server Pages

MDA Model Driven Architecture

PDF Portable Document Format

PNG Portable Network Graphics

POJO Plain Old Java Object

SOP Standard Operating Procedure

55

SQL Structured Query Language

UML Unified Modeling Language

VO Value Object

XMI XML Metadata Interchange

XML Extensible Markup Language

56

List of Figures

1.1 Overview of the intended data hierarchy in iLAP. 8

2.1 Representation of three tier architecture. 12
2.2 Representation of the modular architecture within Spring frame-

work. 15
2.3 Representation of the provider framework of the JCA. 18
2.4 Dataobject representation. 27
2.5 Process of protocol comparison. 32
2.6 The cryptographic entities and their relations. 36
2.7 Overview of the signing process. 41
2.8 Overview of the signature validation. 42

3.1 Component for creating a new key pair. 46
3.2 Tabular view of signatures and countersignatures in an exper-

iment. 46
3.3 Feedback mask for a failed signature verification. 47
3.4 Page for selecting protocols before comparison. 47
3.5 Comparison view of two different protocols. 48
3.6 Possible differences between two protocols. 48
3.7 Usability enhancements for the dataobject details. 50
3.8 Big preview of a dataobject attached to an experiment. 51
3.9 Example for an overview page for experimental data. 51

57

Bibliography

[1] AndroMDA.
http://www.andromda.org/index.php
April 8th, 2010

[2] AndroMDA Cartridges.
http://www.andromda.org/docs/andromda-cartridges/index.html
April 8th, 2010

[3] AndroMDA Hibernate Cartridge.
http://team.andromda.org/docs-3.3/andromda-cartridges/andromda-
hibernate-cartridge/profile.html
April 8th, 2010

[4] Eclipse.
http://www.eclipse.org
April 8th, 2010

[5] IAIK CRYPTO Toolkit.
http://jce.iaik.tugraz.at
April 8th, 2010

[6] Introduction To OMG’s Unified Modeling Language.
http://www.omg.org/gettingstarted/what is uml.htm
April 8th, 2010

[7] Java Cryptography Architecture (JCA), Java Cryptography Extension
(JCE).
http://www.docstoc.com/docs/20887185/Java-Cryptography-Architecture-
%28JCA%29-Java-Cryptography-Extention-%28JCE%29
April 8th, 2010

[8] Java(TM) Cryptography Architecture (JCA) Reference Guide.
http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
April 8th, 2010

58

http://www.andromda.org/index.php
http://www.andromda.org/docs/andromda-cartridges/index.html
http://team.andromda.org/docs-3.3/andromda-cartridges/andromda-hibernate-cartridge/profile.html
http://team.andromda.org/docs-3.3/andromda-cartridges/andromda-hibernate-cartridge/profile.html
http://www.eclipse.org
http://jce.iaik.tugraz.at
http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.docstoc.com/docs/20887185/Java-Cryptography-Architecture-%28JCA%29-Java-Cryptography-Extention-%28JCE%29
http://www.docstoc.com/docs/20887185/Java-Cryptography-Architecture-%28JCA%29-Java-Cryptography-Extention-%28JCE%29
http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html

[9] Java(TM) Cryptography Extension (JCE) Reference Guide.
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html
April 8th, 2010

[10] MagicDraw UML.
http://www.magicdraw.com
April 8th, 2010

[11] Maven.
http://maven.apache.org/what-is-maven.html
April 8th, 2010

[12] MDA-Frameworks: AndroMDA.
http://www.wi.uni-muenster.de/pi/lehre/ws0506/seminar/02 andromda.pdf
April 8th, 2010

[13] MyEclipse.
http://www.myeclipseide.com
April 8th, 2010

[14] Object Management Group.
http://www.omg.org
April 8th, 2010

[15] pgAdmin.
http://www.pgadmin.org
April 8th, 2010

[16] PostgreSQL.
http://www.postgresql.org
April 8th, 2010

[17] Spring.
http://www.torsten-horn.de/techdocs/jee-spring.htm
April 8th, 2010

[18] Tacos Library.
http://tacos.sourceforge.net/tacos4.1/tacos-core/tapdocs/index.html
April 8th, 2010

[19] Tapestry, Framework Component Reference.
http://tapestry.apache.org/tapestry4.1/components/index.html
April 8th, 2010

[20] The Legion of the Bouncy Castle.
http://www.bouncycastle.org
April 8th, 2010

59

http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html
http://www.magicdraw.com
http://maven.apache.org/what-is-maven.html
http://www.wi.uni-muenster.de/pi/lehre/ws0506/seminar/02_andromda.pdf
http://www.myeclipseide.com
http://www.omg.org
http://www.pgadmin.org
http://www.postgresql.org
http://www.torsten-horn.de/techdocs/jee-spring.htm
http://tacos.sourceforge.net/tacos4.1/tacos-core/tapdocs/index.html
http://tapestry.apache.org/tapestry4.1/components/index.html
http://www.bouncycastle.org

[21] Unified Modeling Language.
http://www.uml.org
April 8th, 2010

[22] Dhrubojyoti, K. Pro Java(TM) EE Spring Patterns. Apress, 2008.

[23] Drobiazko, I. Tapestry 5, Die Entwicklung von Webanwendungen mit
Leichtigkeit. Addison-Wesley, 2010.

[24] Fischer, M. Digital Lab Book, a web-based module for experiment
management within the Scientific Microscopy Lab Environment project.
Master’s thesis, Graz University of Technology, 2006.

[25] Hamilton, K., and Miles, R. Learning UML 2.0. O’Reilly, 2006.

[26] Harrop, R., and Machacek, J. Pro Spring. Apress, 2005.

[27] Hook, D. Beginning Cryptography with Java. Wiley Publishing Inc., 2005.

[28] Johnson, R. Expert One-on-One J2EE Design and Development. Wiley
and Sons, 2002.

[29] Kainz, S. ”Data retrieval” and ”automatic data post-processing” within
iLAP (Laboratory datamanagement, Analysis and Protocol development).
Master’s thesis, Graz University of Technology, 2008.

[30] Kolesnikov, A. Tapestry 5, Building Web Applications. Packt Publishing,
2007.

[31] Mak, G. Spring Recipes: A Problem-Solution Approach. Apress, 2008.

[32] Oberstolz, M. Archiving and comparison of experimental data within
iLAP (Laboratory data management, Analysis and Protocol development).
Master’s thesis, Graz University of Technology, 2009.

[33] Rosen, K. H. An Introduction to Cryptography. Taylor & Francis Group,
LLC, 2007.

[34] Ship, H. M. L. Tapestry in Action. Manning, 2004.

[35] Stark, T. J2EE - Einstieg für Anspruchsvolle. Addison-Wesley, 2005.

[36] Stocker, G., Fischer, M., Rieder, D., Bindea, G., Kainz, S.,
Oberstolz, M., McNally, J. G., and Trajanoski, Z. iLAP: a
workflow-driven software for experimental protocol development, data
acquisition and analysis. BMC bioinformatics 10 (2009).

[37] Tong, K. Enjoying Web Development with Tapestry. Tip Tec
Development, 2005.

60

http://www.uml.org

	1 Introduction
	1.1 iLAP
	1.2 Objectives
	1.2.1 Usability improvements
	1.2.2 Protocol comparison
	1.2.3 Cryptographic infrastructure

	2 Methods
	2.1 JEE - Java Enterprise Edition
	2.2 Technologies
	2.2.1 Spring framework
	2.2.2 Hibernate
	2.2.3 Cryptography
	JCA/JCE framework

	2.2.4 Tapestry
	2.2.5 UML

	2.3 Tools
	2.3.1 Maven
	2.3.2 Eclipse
	2.3.3 MagicDraw
	2.3.4 AndroMDA
	Model Driven Architecture
	Cartridges
	Hibernate cartridge
	Spring cartridge

	2.3.5 pgAdmin

	2.4 Design and implementation
	2.4.1 Usability improvements
	Image preview
	Edit box for description
	Deletion
	RatingBox

	2.4.2 Protocol comparison
	2.4.3 Cryptographic infrastructure
	Data structures and services
	Experiment signature
	Signer key
	SignKey management service
	Experiment signature management service
	Crypto management service

	Graphical user interface

	3 Results
	3.1 Cryptographic infrastructure
	3.2 Protocol comparison
	3.3 Usability improvements

	4 Discussion and Outlook
	4.1 Discussion
	4.2 Outlook
	4.2.1 Usability improvements
	4.2.2 Protocol comparison
	4.2.3 Cryptographic infrastructure

	Glossary
	List Of Figures

