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Abstract

We present an interactive rendering method for isosurfaces in a voxel grid. The un-

derlying trivariate function is represented as a spline wavelet hierarchy, which allows

for adaptive (view-dependent) selection of the desired level-of-detail by superimposing

appropriately weighted basis functions. Different root finding techniques are compared

with respect to their precision and efficiency. Both wavelet reconstruction and root find-

ing are implemented in CUDA to utilize the high computational performance of Nvidia’s

hardware and to obtain high quality results. We tested our methods with datasets of

up to 5123 voxels and demonstrate interactive frame rates for a viewport size of up to

1024× 768 pixels.

Kurzfassung

In dieser Arbeit beschreiben wir eine interaktive Darstellungsmethode für Isoflächen

gegeben als Volumsdatensatz. Die zugrunde liegenden trivariaten Funktionen werden als

Spline Wavelet Hierarchie realisiert. Durch eine gewichtete Überlagerung der Wavelet

Basis Funktionen lässt sich eine beliebige Approximation des Datensatzes herstellen.

Dies erlaubt eine adaptive und betrachtungsunabhängige Festlegung des Detailgrades.

Wir vergleichen verschiedene Implementierungen (u.A. Nullstellenfinder) und vergleichen

diese auf Präzision sowie Geschwindigkeit. Alle relevanten Teile des Ansatzes sind in

CUDA implementiert, um die volle Rechenkraft aktueller Nvidia Grafikkarten auszunutzen

und hochqualitative Ergebnisse zu erzielen. Wir haben unsere Algorithmen mit Datensätze

der Größe 5123 getestet und erreichen interaktive Wiederholungsraten für Bildgrößen von

1024× 768.
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Chapter 1

Introduction

Contents

1.1 Volume Rendering . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Isosurface Rendering . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Multiresolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Organization of this Work . . . . . . . . . . . . . . . . . . . . 3

1.1 Volume Rendering

Volumetric datasets are a widely used representation of three-dimensional data in a

variety of applications, such as medical visualization, engineering and computer games.

A convenient form of volumetric data is a voxel grid, which is a set of samples on a

regular grid in 3D-space. Due to the advance of data acquisition technologies, such

as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), and more

complex simulations, the size of used datasets is steadily increasing. The demanding

task of rendering such datasets at interactive framerates often exceeds the processing

power provided by the CPU. However, the raw processing power of current graphics

cards exceeds the CPU’s by far. Traditionally, this power has only been accessible by

the fixed function pipeline used for triangle and fragment processing, or since the advent

of programmable shading by vertex, geometry and fragment shaders. Since the release of

NVIDIA CUDA, the full power of the graphics cards is accessible to the programmer by a

convenient C interface, circumventing the use of complex modifications of algorithms to

fit into shader limitations. Current volume rendering frameworks are often still shader

based as they incorporate the use of bounding geometry, which is easily handled by

graphics APIs and the graphics pipeline.

Direct volume rendering [EHK+06] is one technique that can be implemented this way

and is suitable to display volumetric data in many cases. Every value in the volumetric

data set is mapped to a color and opacity value and projected onto the screen. When

defining data values semitransparent, this approach offers structural insight of multiple

Markus Steinberger Wavelet-based Isosurfaces



1.2. ISOSURFACE RENDERING 2

layers within the dataset. For better understanding of the three-dimensional shape

present in the dataset, local or even global lighting methods can be used. The resulting

image strongly depends on the choice of mapping from data values to presentation values,

which often turns out to be a demanding task, if a certain feature of the dataset is desired

to be visualized.

1.2 Isosurface Rendering

However, the user is often interested in an isosurface instead, i.e. a surface satisfying

f(x, y, z) = c, where f(x, y, z) represents the volumetric data at the point (x, y, z) in

object coordinates. Depending on the application, this can have different interpretations,

e.g. the boundary between a bone and its surrounding tissue, or a region of constant

pressure in a simulated combustion engine. By modifying the constant c over the range of

f , the user can investigate the entire dataset and thus gain insight into its geometric and

topologic properties. When rendering a single isosurface only, one point in the dataset

contributes to a pixel’s value on screen, therefore this task can be realized more efficiently

than direct volume rendering of a whole volume. This thus gained processing time can,

e.g. be spent on higher order interpolation of the data values or a more complex local

lighting model.

Although isosurface rendering is a task on its own, it is often combined with direct

volume rendering for applications like virtual endoscopy [SHN+06] or visualization of

3D-segmentations providing the advantage of a smoother and more exact rendering due

to the higher order interpolation.

For a well-defined isosurface to exist, we have to assume an appropriate interpolation

of the samples, which approximates the original function in the continuous domain.

Common choices include polynomial (e.g. tri-linear or tri-cubic) interpolation functions,

for which the isosurface becomes a piecewise algebraic surface, where each piece is defined

as

f(x, y, z) =
∑

0≤i,j,k≤d

fijkx
iyjzk = 0, (1.1)

with fijk given and 3d being the surface’s degree1.

1Note that in general the degree d of a tri-variate polynomial is defined with 0 ≤ i + j + k ≤ d in
Equation (1.1). Since we only discuss polynomials with equal degree along each dimension, we denote
the degree along one dimension by d.

Markus Steinberger Wavelet-based Isosurfaces



1.3. MULTIRESOLUTION 3

1.3 Multiresolution

As mentioned above, the datasets investigated by researchers are steadily increasing. It

is often neither desirable nor feasible to use the entire available data for visualization,

instead, only a properly chosen subset of the original data is used. The wavelet trans-

formation [Chu92] is well suited for this purpose, since it decorrelates data and allows

the selective removal of irrelevant data, while maintaining a good approximation of the

original data. Even after simplification, isosurface rendering still remains a demanding

task.

Our approach further deviates from traditional rendering systems and therefore we have

chosen to use CUDA as a platform that also offers the needed flexibility to cope with the

complexity of advanced strategies. Furthermore, recent programmable graphics hard-

ware [LNOM08] provides sufficient computational power to accomplish it in real-time

due to the highly parallel nature of the problem.

We also present a wavelet-based hierarchical representation of volume data, from which

an approximation of the input data can be reconstructed according to the current viewing

parameters. This task can also be carried out efficiently by the GPU. The wavelet

basis functions are written in the scaled Bernstein form, which allows simple algebraic

manipulation by convolution [SR03].

Performance critically depends on proper code optimization. Current compiler sets are

very good in understanding static control structures. While they can optimize these

structures to a high extend, they do fail for some constructs, which may have a dramatic

influence on the overall performance. To assist the optimizer, we add an advanced

preprocessing mechanism, which simplifies the control flow structure.

1.4 Organization of this Work

In Chapter 2, related work on isosurface rendering, algebraic surface rendering and multi

resolution strategies is reviewed. The core of our rendering approach is explained in detail

in Chapter 3. We start by explaining the basis of our method, which is an algebraic sur-

face renderer and extend the discussion to volume datasets given as voxel grids. Different

data representation as well as different rootfinders are compared and their realizability

for GPU-based execution is investigated. The discussion of the implementation details

is complimented by simplified C code of the used algorithms, which can be found in

Appendix A.

After the core rendering strategies have been discussed, we continue with explaining

how spline wavelets can be used in this context to generate mixed resolution isosurface

Markus Steinberger Wavelet-based Isosurfaces



1.4. ORGANIZATION OF THIS WORK 4

renderings in Chapter 4. Although the renderer explained in Chapter 3 is used for

multiresolution rendering, it is no prerequisite for understanding Chapter 4.

Code optimization and a short demonstration of the resulting speedup using our prepro-

cessing step is discussed in Chapter 5.

Results and detailed performance analysis as well as a comparison to a dedicated alge-

braic surface renderer and a hardware supported isosurface renderer is given in Chap-

ter 6. We also show performance measurements and a level of detail comparison for our

multiresolution approach.

Chapter 7 holds concluding remarks.

A short version of this work has been presented at the IEEE/EG International Sympo-

sium on Volume Graphics 2010 [SG10].

Markus Steinberger Wavelet-based Isosurfaces
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Chapter 2

Related Work

Contents

2.1 Algebraic Surface Rendering . . . . . . . . . . . . . . . . . . . 5

2.2 Volume Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Wavelets for Volume Datasets . . . . . . . . . . . . . . . . . . 7

As this thesis covers both, volume rendering of voxel grids and algebraic surface rendering

and both topics are well covered in literature, there is a lot of work available, which could

be mentioned here. However, we will only focus on latest and most important work.

2.1 Algebraic Surface Rendering

As a matter of fact, the idea of rendering algebraic surfaces is as old as computer graphics.

Theoretically, algebraic surfaces are an elegant way for describing objects with little data.

Unfortunately, describing complex objects with a single algebraic surface is infeasible, as

it would be necessary to increase the degree of the underlying polynomial too far. Already

in the 1980s, a first algebraic surface rendered using ray casting has been proposed

[Han83]. Despite the facts that a lot of excellent researches focused on this topic and

all the computational power that is available today, algebraic surface rendering is still

not considered to be efficient enough to meet real-time requirements for more than a few

surfaces and small degrees.

Recently, Loop and Blinn [LB06] came up with a technique called Bèzier tetrahedra

for rendering piecewise algebraic surfaces of small degree. Their shader based approach

can quickly calculate the univariate polynomial along a viewing ray hitting the algebraic

surface defined within a tetrahedron. After this step, the root of this polynomial is found

analytically. Kloetzli et al. [KOR08] adapted Bèzier tetrahedra for volume datasets.

Their framework commences by transforming the data given as a voxel grid to a set

of tetrahedrons, where every single tetrahedron stores an algebraic surface. Afterwards

they can use the proposed method by Loop and Blinn to render the transformed data.

Unfortunately, they can only render small datasets, as this complex data transformation

step strongly increases the memory needed to store the volume.
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2.2. VOLUME DATASETS 6

Taking the structure of splines into consideration and efficiently organizing data streams,

offers the opportunity to render bigger datasets using splines organized in a tetrahedral

form [KZ08]. Still this approach needs a preprocessing step every single time an iso-

value change occurs. Efficiently, this step can also be calculated on the GPU [KKG09].

Nevertheless, the amount of data for rendering is strongly increased.

Another dedicated algebraic surface renderer based on raycasting has been developed by

Reimers and Seland [RS08]. They came up with the so-called frustum form, which is

used to accelerate the computation of the univariate polynomial along the viewing ray.

They found a different description for the algebraic surface within the viewing frustum,

which makes it feasible to extract common computations shared by all rays. These

computations can be condensed into matrix multiplications, which are pre-calculated on

the CPU and distributed to the GPU processors. Especially for higher degrees and larger

viewports, their work demonstrates the benefit of pre-calculation steps. Apparently, this

step is only practicable for only one or just a few surfaces. Their approach uses the

Bernstein form as a stable polynomial representation. When making use of the scaled

Bernstein basis the manipulation of the underlying polynomials are further simplified by

means of the convolution operator [SR03]. However, this has not yet been investigated

in the context of isosurface rendering.

2.2 Volume Datasets

When it comes to data given as voxel grids, the well-known Marching Cubes algo-

rithm [LC87] is still a widely used alternative to direct isosurface rendering. This algo-

rithm as well as its follow-up methods [TPG99, ABJ05] extract the given isosurface by

constructing a polygonal model. Every single voxel is checked for its intersection with the

isosurface and polygons referring to the intersections are added to the mesh. Frequently

a simplification algorithm is used to get rid of tiny unnecessarily added triangles. The

actual rendering step is carried out by the standard graphics pipeline, as only triangles

need to be considered. The three main problems of this approach are the rough and

edgy surface of the resulting models, ambiguity of different cases resulting in possible

cracks in the surface, and the fact that any change in the isovalue invokes the need of

rerunning the whole surface extraction phase.

Consequently, most methods nowadays try to directly render the isosurface. Most meth-

ods are sill shader based, as shaders for the first time made it possible to exploit hardware

features (e.g. fast texture filtering) and at the same time perform complex tasks. Using

fast tri-cubic texture filtering [SH05], it is possible to render high order filtered isosur-

faces of big datasets at real-time frame rates [HSS+05]. Again, raycasting is used for

Markus Steinberger Wavelet-based Isosurfaces
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rendering. The ray is coarsely but continuously sampled using the fast tri-cubic texture

filtering, until two adjacent samples lie on both sides of the isovalue. The intersection

between the viewing ray and the isosurface is found be refining the hit point in a bi-

nary search. Furthermore, this method does not require any preprocessing for an isovalue

change and works on raw voxel data, therefore making it a good candidate for integration

into a mixed direct volume and isosurface rendering system.

2.3 Wavelets for Volume Datasets

A common problem in volume rendering is the huge amount of data required for high-

quality rendering. Compression is one possible solution, e.g. by using wavelets [Chu92,

SDS96], which is well covered in literature for volume rendering [Wes94,GLDK95,GLDH97,

KS99]. Wavelets can also be used to construct a mixed resolution representation of the

underlying data. Areas of interest can be displayed in more detail, while the context is

visualized with less effort. When used for isosurface rendering, special care needs to be

taken at the boundaries between different resolution level to avoid cracks in the surface.

Thus wavelets are often used on previously extracted surfaces and not directly on the

volume dataset, as the problem can be dealt with more ease [GSG96,WKE99,BDHJ00,

LHJ07].

When applied to volume datasets, linear wavelets or linear interpolation can be used

to hide boundaries between resolution levels. When data is interpolated only linearly,

Marching Cubes can also be used for rendering [UHP00]. The reduced quality of lin-

ear filtering is less apparent, when surface normals are constructed with C1 continu-

ity [KWH09]. Wavelets can further be used to analyze data and truncate unneeded

coefficients, e.g. high frequency information or irrelevantly sized basis functions, as

shown in [WB97].

Even current graphics cards’ memory capabilities still do not provide enough memory

to cope with extensive volume datasets in full size. Fortunately, in most cases it is

sufficient to hold only parts of the volume in memory. Then an out-of-core memory

management system must be incorporated. Recently, Crassin et al. showed a shader

based approach [CNLE09] for direct volume rendering, trying to use the available memory

as efficiently as possible. They keep track of used and needed data portions and only load

essential data into GPU memory as well as demonstrate blending of different resolution

levels.

Markus Steinberger Wavelet-based Isosurfaces
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Chapter 3

Rendering Method

Contents

3.1 Rendering Pipeline . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Algebraic Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Rendering Thousands of Trivariate Polynomials . . . . . . . 22

Isosurface rendering is normally related to datasets only given as voxel grids. Considering

the definition of an isosurface, as the surface corresponding to the equation f(x, y, z) = c,

we can see, that the definition for an algebraic surface with f(x, y, z) = 0 is approximately

the same as for isosurface rendering. One definition can be transformed into another by

just subtracting c. The only difference is just the representation of data. For isosurface

rendering, the data is given in a sampled manner and requires the application of a

reconstruction filter to resemble the original object the data has been sampled from. In

the case of algebraic surface rendering, on the other hand, we are given a full description

of the data in terms of a polynomial.

As mentioned above, common choices for reconstruction filters for three-dimensional

sampled data include tri-linear and tri-cubic filter methods. These filter methods can

be described in a polynomial fashion with different polynomial degrees. Extending this

polynomial view to the whole dataset, the given data is nothing but a piecewise polyno-

mial function, where each voxel can be described by a single polynomial. This implies

that the whole dataset can be viewed merely as a large number of algebraic surfaces

which are limited by axis aligned bounding boxes and are placed right next to each

other. The reader should keep this in mind, as the proposed rendering approach is based

on exactly this view on data given as sampled grids.

For the sake of clarity tri-linear, tri-square and tri-cubic filtering as well as the underlying

polynomials, shall be defined in the following. Given a polynomial of the form:

f(x, y, z) =
∑

0≤i,j,k≤d

fijkx
iyjzk = 0,

fijk are the polynomial coefficients and d is the maximal degree appearing along any

dimension in the data. For d = 1, d = 2 and d = 3, one gets tri-linear, tri-square and tri-

Markus Steinberger Wavelet-based Isosurfaces



3.1. RENDERING PIPELINE 9

cubic polynomials respectively. Tri-linear, tri-square and tri-cubic filtering is normally

based on B-spline kernels, which can be described by tri-linear, tri-square and tri-cubic

polynomials respectively.

Equipped with this basic knowledge, the reader should be able to understand the follow-

ing discussion on our rendering method. We will start by describing the idea of raycasting

used for rendering isosurfaces as well as algebraic surfaces, deal with common steps in

the rendering pipeline of both surface types and focus on each individually. The part on

algebraic surface rendering is the basis for the following discussion on isosurface render-

ing, as we will just extent the method described for a single algebraic surface. Therefore

the part on algebraic surfaces will detail in implementation and speedup strategies for

bottlenecks in the rendering of a single polynomial. The transition to grids of thousands

of voxels mainly deals with data organization and speedup strategies, e.g. skipping poly-

nomials, which do not contribute to the final image. Finally we want to extend the data

organization part by introducing wavelets as a well suited mutliresolution technique for

our kind of surface representation.

3.1 Rendering Pipeline

Raycasting is one common way to render algebraic surfaces or isosurfaces. For each pixel

on screen, a ray is casted according to the current viewing position and traced through

the given data. The first intersection between the ray and the three dimensional surface

defined as f(x, y, z) = c is responsible for the pixel’s appearance on screen. Traditional

shading methods like Phong lighting are simply based on the surface normal at the hit

position, the material assigned to the surface and the light conditions. Phong lighting is

normally sufficient for the viewer to understand the three dimensional structure of the

surface.

Markus Steinberger Wavelet-based Isosurfaces
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Basic steps of a raycasting rendering pipeline for isosurfaces or algebraic surfaces often

are as follows:

1. project the ray r(t) = p + t · v from screen space to object space

2. limit the search interval by a bounding structure

3. find a representation of the data along the ray f(t)

4. find the first root of f(t)− c = 0

5. evaluate the ray equation to obtain the hit point in object space h = r(troot)

6. calculate the normal at the given position

7. calculate lighting

8. project the position to normalized device coordinates

Depending on the application, different steps in this pipeline can be altered or split into

multiple sub-stages. Still, most raycasting approaches share the basic steps listed above.

Projecting the ray to object space simplified handling the data in its original description,

as it removes the perspective distortion introduced by perspective rendering. Especially

in the case of axis aligned bounding boxes or tree structures like octrees or kd-trees,

calculations with limiting planes become increasingly simple, when an object space de-

scription is used. After the initial setup of the ray and the intersection test with a

bounding structure, a description of the data along the ray needs to be found. For alge-

braic surfaces, this representation is often calculated explicitly in terms of a polynomial.

For isosurfaces this step is often combined with rootfinding by just sampling the ray con-

tinuously. After the first hit point is found, the normal and, if needed, other quantities,

e.g. curvature, need to be calculated before lighting can be performed. For mixing the

raycasting output with rasterizer based rendering methods, the hit position needs to be

projected to normalized clip space to determine the depth value for the z-buffer.

3.2 Algebraic Surfaces

In this section we want to present our method for rendering algebraic surfaces. It aims to

introduce as little dependencies as possible between rays and circumvent precalculation

to enable an easy extension to volume datasets as noted in the beginning of this chapter.

When dealing with polynomial data, one can choose between different forms of data rep-

resentation. Two common ways are the power form and the Bernstein form. The power

Markus Steinberger Wavelet-based Isosurfaces



3.2. ALGEBRAIC SURFACES 11

form enables fast evaluation while the Bernstein form, on the other hand, is considered

to be more stable and is often used in root finding. We want to derive our algorithms

for both forms, as polynomials with low degree can profit from the increased speed using

the power form, and complex expressions profit from good numerical conditions and a

uniform data representation through the rendering pipeline using the Bernstein form. To

be able to write multiplications of polynomials as only convolutions of coefficient vectors,

we use the so called scaled Bernstein form proposed in [SR03].

Our adapted rendering pipeline for algebraic surfaces consists of the following steps:

1. project the ray

r(t) = p + t · v (3.1)

from screen space to object space

2. compute the ray intersection with the bounding box of the object

3. calculate the polynomial along the ray (f ◦ r)(t)

4. subtract the isovalue c and find the first root position troot of the polynomial f(t)−
c = 0

5. evaluate the ray equation to obtain the hit point in object space h = r(troot)

6. calculate the normal at the given position

7. calculate lighting

When implementing this pipeline for higher order polynomials, step 3 and 4 typically

prove to be the bottleneck of the whole rendering. We will cover all other parts quickly,

before detailing on these two steps.

3.2.1 Screen Space to Object Space Transition

As the pipeline needs to be executed for every single ray, one possible execution con-

figuration for the CUDA architecture is assigning one ray to one thread. Every single

thread needs to be given its pixel coordinates, the screen dimensions and the combined

model-view projection matrix to begin the first part of the pipeline. The transformation

of a point p from object space to clip space is defined as:

pclipspace = mproj ·mmodelview · pobject,

where mmodelview and mproj correspond to the model-view and projection matrix respec-

tively. The clip space coordinates need to be divided by the w-coordinate to transform

Markus Steinberger Wavelet-based Isosurfaces



3.2. ALGEBRAIC SURFACES 12

the point to normalized device coordinates. To transform a point from normalized de-

vice coordinates to object space, one needs the inverse of mproj ·mmodelview, which can

be calculated on the CPU before the GPU kernel is started.

Again a division by w is needed:

pintermediate = (mproj ·mmodelview) · pnormalizeddevice

pobject =
pintermediate

pintermediate,w

A simple way to define a ray in object space starting from pixel coordinates is defining

two points in normalized device coordinates fulfilling the ray equation and transforming

both of them to object space, as described above. A given viewing ray in normalized

device coordinates is defined by constant x and y coordinates. These two coordinates

can be deferred from the pixel coordinates, using the screen dimensions to map them to

the defined normalized device space bounds. Although the z coordinates of both points

can theoretically be chosen arbitrary, setting them to the limits of the normalized device

space is a convenient choice. Thus places them directly on the near clip and far clip

plane. When using the transformed points in object space, one can limit the rendering

result to the viewing frustum with only considering the ray segment defined by these

two points – pobject,min, pobject,max. The ray r is then defined as:

r(t) = p + t · v
p = pobject,min

v =
pobject,max − pdefaultobject,min

|pobject,max − pdefaultobject,min|

t ∈ [0, |pobject,max − pdefaultobject,min|]

3.2.2 Ray Bounding Box Intersection

Given the ray segment r(t) limited by t ∈ [tmin, tmax], this interval can easily be refined

by the intersection with an axis aligned bounding box. The ray can be tested against

six half-spaces, each of them defined by one face of the bounding box, leading to six

intersection distances ti, which are used to further limit t.

As the intersection algorithm for all three sets of plane pairs just differs in the coordinate

index, we shall consider the xy-plane pair, which correspond to z = z0 and z = z1:
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z0 z1

dir

o

y1

y0

dirz
dz0 dz1

tz0

tz1

tz0 and tz1 can be computed knowing v, o and the planes of the axis aligned bounding

box:

dz0 = (z0 − pz)

tz0 = dz0/vz

dz1 = (z1 − pz)

tz1 = dz1/vz

A special case occurs, if the ray is parallel to one plane. To avoid a division by zero

this condition must be precluded beforehand. When supporting an arbitrary viewing

position, it can not be known if the ray intersects the plane defined by z = z0 before

z = z1 or the other way around. By exchanging the two intersection points, if the right

order is not given, the condition tz0 ≤ tz1 can be assured.

After applying this scheme to all three dimensions, the actual intersection interval can

be determined. For the given boundaries, e.g. tz0 ≤ t ≤ tz1 , the ray is inside both

planes. The ray is limited to the whole bounding box and the near and far plane, if t

stays within all boundaries:

max(tmin, tx0 , ty0 , tz0) ≤ t ≤ min(tmax, tx1 , ty1 , tz1)
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3.2.3 Horner Scheme for Composition

The composition (f ◦ r)(t) is nothing but a description of the polynomial along the ray.

For a two dimensional example, see Figure 3.1.

(a) Bi-squared area polynomial (b) Univariate polynomial of degree 4

Figure 3.1: Two dimensional example of composition (f ◦ r)(t).

For simplicity and due to focus on volume data, from now on only the three dimensional

case shall be considered. In this case the composition (f ◦ r)(t) transforms a trivariate

polynomial (e.g. tri-linear, tri-square. . . ) into a univariate polynomial of degree 3 · d.

To circumvent this costly composition, some approaches [HSS+05] even work directly on

the trivariate polynomial f(x, y, z). We, on the other hand, offer an efficient approach for

this step, which shows a tremendous speedup in comparison to naive implementations.

To depict the complexity of the task, we want to show a straight forward formulation of

the composition in power form. Therefore, we just replace every directional component

x, y and z of 1.1 by its correspondent from the ray equation 3.1 resulting in (d + 1)3

different expressions of the form:

(f ◦ r)(t) =
d∑

i=0

d∑
j=0

d∑
k=0

fi,j,k · (px + t · vx)i · (py + t · vy)j · (pz + t · vz)k

For comparison we have implemented and tested this structure for tri-cubic polynomials.

To reduce the number of operations, all identical computations are precalculated before

being used in the final expression. Still, this approach requires a lot of operations and

an exceedingly large number of registers as to fit into a GPU based framework (see

Table 3.1).
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To obtain a more efficient structure, we write the composition with convolution operators

[SR03]:

f(t)→ f =
d∑

i=1

d∑
j=1

d∑
k=1

fijk · ri
x ∗ rj

y ∗ rk
z ,

with rx = [px, vx] being the coefficient sequence of the (linear) polynomial describing

the x-component of the ray in equation (3.1), ry, rz defined likewise, and f being the

coefficient sequence of the resulting polynomial f(t) of degree 3d. The power expressions

are n-folded convolutions:

rn
x = rx ∗ rx ∗ · · · ∗ rx︸ ︷︷ ︸

n times

,

which are computed incrementally, i.e. rn
x = rn−1

x ∗ rx (this is equivalent to the Horner

scheme for polynomial evaluation), and similar for rj
y and rk

z . Reordering leads to

f =
d∑

i=0

ri
x ∗

d∑
j=0

rj
y ∗

d∑
k=0

fijk · rk
z︸ ︷︷ ︸

fij︸ ︷︷ ︸
fi

This structure separates the calculations needed for all three dimensions as good as

possible. For realization on the GPU another important property of this structure can

be exploited: Merely one factor fij and fi need to be available at the same time. Thus,

the memory for f00 is reused for f01 and so on, therefore, also enabling better parallelism.

This evaluation scheme strongly decreases memory usage when implemented accordingly.

The C code for the structure can be found in Listing A.1.

The Bernstein form of a polynomial is often used for root finding, as it shows good

numerical properties [FR87]. Our approach can also be derived in the so called scaled

Bernstein form proposed in [SR03]. This offers a uniform data representation throughout

the rendering pipeline, better stability for the composition and also avoids basis changes

from power form to Bernstein form for root finding:

f̃ =
d∑

i,j,k=0

b̃ijk · q̃d−i
x ∗ ũi

x ∗ q̃d−j
y ∗ ũj

y ∗ q̃d−k
z ∗ ũk

z

=
d∑

i=0

q̃d−i
x ∗ ũi

x ∗
d∑

j=0

q̃d−j
y ∗ ũj

y ∗
d∑

k=0

b̃ijkq̃
d−k
z ∗ ũk

z , (3.2)

with ũ being the ray component in scaled Bernstein form, and q̃ = 1− ũ.
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For a single dimension, the composed scaled Bernstein coefficient sequence b̃ can be

obtained in a recursive manner (similar to the Horner scheme for the power form):

b̃ =
d∑

i=0

b̃iq̃
d−i ∗ ũi

= b̃dũ
d + q̃ ∗ (̃bd−1ũ

d−1 + . . .+ q̃ ∗ (̃b1ũ + b̃0q̃)).

A large amount of computational work can be saved by applying this substitution to

the three sum terms in Equation (3.2). As the expression q̃d−k ∗ ũk in the sum over

k is computed repeatedly, the number of operations can additionally be reduced by

precomputing and reusing it for k = 0 . . . d. Against our first intuition, our simulations

have shown that performing this precalculation even for the sum over j provides a faster

algorithm although more operations are then needed. We assume the reason for this

surprising results are the fewer dependencies of this structure, which offer the optimizer

more freedom and the ability to combine more multiplications and additions to ’mad’

operations. In contrast to the power basis, the Bernstein basis consists of non-zero

components and therefore, the evaluations turn out to be more complex.

See Table 3.1 for an overview of the different implementations. The difference of two to

three orders of magnitude in performance between the naive approach and our proposed

structure, is based on the fact that our structure easily fits within the register space

of current graphics cards. Although the implementation in scaled Bernstein form is

approximately six times slower than the implementation in power form, this difference

is responsible for only a few percent in the overall rendering time. The big speedup in

this step of the algebraic surface rendering pipeline shifts the main execution time to the

rootfinding step. One can also see that the scaled Bernstein form provides the lowest

MSE. The difference to the power form implementation is only crucial for rays that are

close to silhouettes of the surface. For more details on optimizations that should be

implemented for an efficient execution on graphics cards hardware, see Chapter 5.

3.2.4 Rootfinding

After focusing on composition, we want to focus on root finding, which consumes most

of the execution time. A good and stable rootfinder is essential for an exact evaluation

of the intersection between viewing ray and surface.

The first intersection between viewing ray and surface corresponds to the first root, which

is found along the ray. For an efficient implementation, a rootfinder should be chosen,

which tries to determine only the first root, not wasting any effort on other possible

roots behind the first one. Most rootfinders used in algebraic surface rendering work on
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method naive PF SB0 SB1 SB2

mul 1839 234 741 687 720

add 990 360 483 490 558

reg 135 27 72 60 66

time 1 3.6e-3 26e-3 23e-3 22e-3

MSE 162.3 22.6 5.15 4.78 4.78

Table 3.1: Comparison between different algorithms for trivariate to univariate compo-

sition (f ◦ r)(t) of random polynomial data in the tri-cubic case. Operation count is

taken from the optimized machine code of the CUDA compiler. Execution time is stated

relatively to slowest method, mean squared error is scaled by 10−12 and relative to the

coefficients. PF stands for power form and SBx for scaled Bernstein form with terms

q̃d−k ∗ ũk precomputed for the x innermost loops. The naive approach is described in the

beginning of Section 3.2.3.

the Bernstein form or a spline representation, which can be derived from the Bernstein

form. The variation diminishing property is what makes the Bernstein form a common

choice. The coefficients in Bernstein form can be seen as a control polygon placed at a

regular interval. A root can only exist, if this control polygon crosses the zero axes.

Another representation that can be described using a control polygon are B-splines.

Furthermore, if there is a crossing between the control polygon and the zero axes, a

good estimate for a root can be found in this crossing. Especially when dealing with

higher order polynomials, roots that are close to the silhouette of the surface can be

badly conditioned, therefore, we will mainly focus on stable rootfinders in Bernstein

form and B-spline form. Rootfinders in power form suffer from less stability when facing

such roots and a lack of geometrical representation of the coefficients. This makes it

more difficult to write efficient algorithms for the power form. Nevertheless, we shall

present a root finder in power form.

The facts that most rootfinding algorithms are defined recursively and their register

consumption can not be fixed at compile time, make it difficult to write an efficient

implementation for graphics hardware. Since CUDA does not support recursive function

calls all recursively defined algorithms need to be transfered into a iterative description.

Sometimes this limits the maximum number of iterations, as an explicit stack is used.

An unknown register consumption is not well suited for this architecture due to mainly

two reasons: First of all, the high register count prevents the algorithm to fit into register

space of the multi processor. The compiler solves the problem by moving data to local
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memory1, which is around 300 times slower. An alternative is manually placing variables

in shared memory, which also limited in size. Secondly, increasing register consumption

normally comes along with indexed memory access, which is only provided for shared

memory and local memory. Thus the programmer’s options are limited and/or the whole

algorithm is slowed down. For more details on code optimization see Chapter 5.

We present four different root finding algorithms: [LR81], [MR07], a regula falsi method

using De Casteljau subdivision for root isolation and a Sturm Series [LS75] based ap-

proach working in power form.

[LR81] Rootfinder

LR81 is based on the fact that the control polygon of the Bernstein form approximates the

true shape of the polynomial curve, especially, if the spacing between intervals becomes

increasingly small. Thus, if the connection between two consecutive control points crosses

the zero axes, this interval is likely to contain a root. Furthermore, this intersection is

a good estimate for the root itself and can easily be computed. Hence LR81 suggests

to subdivide the control polygon using the De Casteljau algorithm to obtain two new

polynomials, whereas either the left or the right polynomial should contain the root

close to the end or the beginning respectively. By recursive subdivision the root can

be determined to an arbitrary accuracy. For more details on the original algorithm,

see [LR81].

Our GPU based version of the algorithm is implemented with constant memory usage

(see Listing A.2). This is possible as the algorithm continues to subdivide only one of the

two polynomials obtained by the last step. Therefore, the parent polynomial as well as

the other polynomial are simply discarded and their memory cell is reused for the child

polynomials. This way no index operation is required on the data and the algorithm can

be implemented using only fast register space.

LR81 shows quadratic convergence speed with quadratic complexity for each step due

to the de Casteljau algorithm. Even for tri-cubic data it seems to be sufficient to fix

the number of iterations to 9 to 11 and 5 to 7 for algebraic surfaces and voxel data sets

respectively. This limitations did not produce any visible artifacts for our test cases.

A good selection for the fixed number of iterations is crucial. If the number of iterations

is too big, it will strongly slow down the whole rendering pipeline. If the the number of

iterations is too low, the algorithm might even fail to identify rays which do not actually

hit the surface. This can happen, as the variation diminishing property only guarantees

1Local memory is a CUDA terminology for thread local memory, which is physically placed in GPU
main memory, which is around 300 times slower than the registers located at the multi processor.
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for a root within the given interval if an uneven count of zero crossings is present in the

control polygon.

[MR07] Rootfinder

MR07 is also based on incrementally refining the polynomial around the root. This

algorithm though, does operate on the B-spline form, thus requiring the Bernstein form

polynomial to be transformed to a B-spline description. Algorithmically, this corresponds

only to an additional knot vector. For refining the root, knots are inserted based on the

approximated root position inferred from the linear control polygon.

We also tried to build an efficient GPU based version of this algorithm. Unfortunately,

there is no way to rid the implementation of the index operations needed when inserting

knots, as the position for knot insertion depends on the polynomial, which changes for

different input data and viewing position. Therefore, we placed the coefficient vector, as

well as the knot vector in shared memory, to prohibit the compiler from placing it in local

memory. Furthermore, these two vectors grow in size with every knot insertion. As the

knot insertion can occur at an arbitrary location, parts of the vectors have to be shifted

in memory. One possible countermeasure for too extensive memory growth, might be

dropping knots at the front or back, depending on the current insertion position. As it is

possible that the estimation of the root location emerges as a dud, this countermeasure

bares the risk of discarding existential information.

When it comes to convergence and execution speed, MR07 shows linear complexity for

both. Still, knot insertion is a quite demanding task, which involves divisions and copy

operations, which, in combination with all other drawbacks, renders this algorithm not

so well suited for GPU execution. Therefore, our optimized MR07 version is more than

ten times slower than our LR81 implementation.

Regula Falsi with De Casteljau Subdivision (aRFBS )

We also implemented a Regula Falsi rootfinder combined with a binary search scheme (for

guaranteed exponential convergence) using De Casteljau Subdivision for root isolation

(see Listing A.3). The principle idea of this algorithm is the possibility to use a fast

and simple root finder, if it can be guaranteed that only a single root exists in a given

interval. For a polynomial given in Bernstein form, this condition can again be tested

using the variation diminishing property.

The root isolation phase splits the given polynomial exactly between the first two zero

crossings of the control polygon. Still, this split does not essentially need to produce a

separated root. The split could also just reveal a dud or produce another control polygon
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with two zero crossings. However, in virtually every case exhibited in our examples, one

to three splits were sufficient to separate the first root.

The second phase consists of alternating a binary search step with a regula falsi step.

Both need only a fast polynomial evaluation, which we implemented in scaled Bernstein

basis, for increased speed. The evaluation itself is based on the Horner Scheme adapted

for scaled Bernstein form for a faster polynomial evaluation. An alternative in Bernstein

form would be the De Casteljau algorithm, which provides more stability but does so

slower.

Although, the second phase of our aRFBS algorithm outperforms our LR81 implemen-

tation when a root has been isolated, the isolation step itself is not as well suited for

the CUDA architecture as our LR81 implementation. The problem of our aRFBS root

isolation step can be found in divergent branches which appear, when a ray can not iso-

late the root quickly, or needs more time to conclude that there is no root in the whole

polynomial. In this case, a big number of threads are idle, until all of them can continue

with the second phase. All other characteristics of the implementation are as well suited

for GPU execution as our LR81 implementation: constant memory usage, no compile

time unknown index operations and high arithmetic intensity [LNOM08] in comparison

to memory access.

Binary Search based on Sturm Series

Root finding is not only limited to polynomials in Bernstein form, and as we are able

to formulate all other parts of the pipeline using power form, we also implemented a

rootfinder in power form. We apply the Sturm Series [LS75], which can be used to count

multiplicities of roots in a given interval. We subdivide the given search interval in a

binary manner to confine the root further and further (see Listing A.4). This simple

algorithm is converging exponentially with constant memory consumption. The Sturm

Series is only computed one time at the beginning of the algorithm and evaluated once

during every iteration step. Therefore, and due to little branching, the algorithm is espe-

cially fast for an increasing iteration count. On the other hand, the numerical problems,

which are natural for power form implementations, become increasingly severe for more

iterations. The second down side of the algorithm is its high memory consumption, as

the complete Sturm Series needs to be kept in memory during the whole execution.

Comparison

For a comparison between all four rootfinders see Table 3.2. Although, aRFBS is the

fastest algorithm on average, we suggest to use our LR81 implementation, as it shows
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the least mean squared error and least maximal error, whilst being nearly as fast as the

aRFBS approach. The relatively high maximal error has been tolerated for this com-

parison, as all algorithms were setup to achieve approximately the same mean squared

error and our MR07 implementation reached the boundaries of shared memory.

method LR81 MR07 aRFBS Sturm

reg 42 30 + 9d+ 2i 43 73

time 0.076 1.0 0.062 0.077

mse 0.003 0.034 0.016 0.003

max err 0.66 0.85 0.99 1.0

Table 3.2: Performance of different root finders for degree 9 (tri-cubic): Execution time

and maximum error are relative to worst result indicated by 1.0. Mean squared error

is relative to the search interval. Note: only a few iterations (i) for all methods were

considered, as our [MR07] implementation reached the limit of shared memory.

3.2.5 Normal Estimation and Lighting

For algebraic surfaces, the normal, which is very often needed for local lighting models,

can easily be evaluated by calculating the gradient of the algebraic surface at the hitpoint

h:

n = ∇f(x, y, z) =

[
∂f(x, y, z)

∂x
,
∂f(x, y, z)

∂y
,
∂f(x, y, z)

∂z

]T
∣∣∣∣∣
h

When comparing the normal evaluation with other parts of the pipeline, this step proves

to be quickly computable. The needed data coefficients are normally present in texture

cache, as they have been used for the composition step of the same data. The derivative

calculations are yet again accelerated using the Horner scheme.

For our implementation we simply used Phong lighting and calculated the local lighting

model in a shader applying deferred shading. If there is just one isosurface/material

present in the scene, it is considerable faster to calculate the lighting model in CUDA

and just transmit the resulting color and depth values to OpenGL, as the current CUDA

architecture needs to copy buffers whenever they are interchanged between OpenGL and

CUDA.

Of course, our implementation is not limited to shading techniques that solely rely on

the normal. It is also easy to access curvature or other local features, as long as they

can be deduced from the algebraic definition. Thus, it is no problem to produce images

as proposed in [HSS+05].
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3.3 Rendering Thousands of Trivariate Polynomials

As the size of common voxel data sets is steadily increasing, it is common to face datasets

of 5123 voxels and more. Therefore, the need for good empty space skipping strategies

and a multi resolution approach naturally arises. Still, there will be thousands of voxels

active at the same time. For a smooth isosurface, higher order interpolation is required,

e.g. tri-cubic interpolation is needed for smooth reflections. From an algebraic point of

view, this corresponds to a trivariate polynomial for each voxel, which is influenced by

(d+ 1)3 data values (influence coefficients IC).

Our approach shows good frame rates for this scenario, as every ray can work through

the whole rendering pipeline independently from all others. In contrast, other methods

like [RS08] are designed for a single polynomial and precalculate common terms for all

rays. Such approaches do not scale well for an increasing number of polynomials, as the

precalculation step is too time consuming when only a few rays – that actually hit this

one voxel – can benefit from it.

3.3.1 From a Voxel Grid to Algebraic Surfaces

To transform a given voxel grid into an algebraic surface description, every trivariate

polynomial needs to be calculated from its surrounding sample values. This calculation

can either be carried out before the renderer is started or on-the-fly, as an additional

step in the rendering pipeline. Every explicit polynomial description needs (d+ 1)3 coef-

ficients, therefore calculating the polynomial description of every single voxel beforehand

increases the memory consumption for the volume dataset by a factor of (d+ 1)3. For a

few voxels this might be a good choice, given that enough rays hit the same voxels, thus

not requiring too much additional bus transfer.

For big volumes, calculating the polynomial description on-the-fly is the only option to

stay within memory bounds of current graphics cards. In this case, it is possible to work

directly with the original data representation, as it is normally just desired to interpolate

the given data.

In our case, however, this transformation corresponds only to a basis transformation.

Tri-linear filtering and its natural extensions like tri-cubic filtering, are based on the

B-spline polynomials. From another point of view, this means that the polynomial of a

certain voxel is given in the B-spline basis by the data values surrounding the voxel. The

basis transform from the one dimensional B-spline basis to either the one dimensional

scaled Bernstein basis or power basis, corresponds to a multiplication of the data vector

with a matrix of size (d+ 1)× (d+ 1).
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The one dimensional interpolation polynomials or B-spline basis is given by the columns

of the B-spline to power form transition matrices:

• cubic d = 3:

MBSpline→Power,3 =
1

6
·


1 4 1 0

−3 0 3 0

3 −6 3 0

−1 3 −3 1


where the transformation to power form looks like that:(

x3 x2 x 1
)
·MBSpline→Power,3 · c,

with c being the B-spline coefficient vector. All other matrices are stated in the

same manner.

• square d = 2:

MBSpline→Power,2 =
1

2
·

 1 1 0

−2 2 0

1 −1 1


• linear d = 3:

MBSpline→Power,1 =

(
1 0

−1 1

)
The one dimensional scaled Bernstein basis is given by the formula:

b̃i,d(x) = xi(1− x)d−i = uivd−i

or explicitly, by the matrices:

• cubic d = 3:

B̃3 =


1 0 0 0

−3 1 0 0

3 −2 1 0

−1 1 −1 1


• square d = 2:

B̃2 =

 1 0 0

−2 1 0

1 −1 1


• linear d = 1:

B̃1 =

(
1 0

−1 1

)
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The transformation matrices from the one dimensional B-spline basis to scaled Bernstein

basis can be calculated from the above stated matrices:

MBSpline→scaledBernstein = B̃−1 ·MBSpline→Power

• cubic d = 3:

MBSpline→scaledBernstein,3 =
1

6
·


1 4 1 0

0 12 6 0

0 6 12 0

0 1 4 1


• square d = 2:

MBSpline→scaledBernstein,2 =
1

2
·

1 1 0

0 4 0

0 2 1


• square d = 1:

MBSpline→scaledBernstein,1 =

(
1 0

0 1

)

Aiming at matrices containing the highest number of ones, we omit the scaling factors e

(1/6 or 1/2), thus reducing the number of required operations. Then, for a one dimen-

sional basis transformation only six and eight multiplications are needed for transitions to

scaled Bernstein basis and power basis in the cubic case respectively. When we consider

linear polynomials, we see that both basis are identical.

The N -dimensional basis transformation can be constructed from N · (d + 1)N−1 one

dimensional basis transforms, as the N -dimensional basis itself is just a tensor product

of the one dimensional basis.

This basis transformation can efficiently be integrated either in our Horner Scheme for

composition, which also shows this separation of single dimensions, or be calculated in

shared memory by a set of threads – logically forming a packet of rays – hitting the same

polynomial. For few polynomials/voxels hit by many rays, the second approach shows

higher frame rates, whereas many voxels, however, are rendered more quickly using the

first approach, as the coherence between rays is not as high.

3.3.2 Rendertree

For handling big datasets, knowledge of the underlying data and its location in memory

is required. We store all meta information in an octree: Every node stores a conserva-

tive estimate of the minimum and maximum value appearing in its subtree to quickly
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identify regions, which can not contain the isosurface. During traversal of the octree,

this information is used to enable a conservative empty space skipping strategy. Each

leaf in the octree corresponds to a group of b3 adjacent voxels/polynomials, also called

brick. b forms a trade-off factor between more efficient empty space skipping and memory

requirement of the tree structure.

A fully filled tree, with b = 1 needs more than the double amount of memory as the data

itself. Even more memory is needed, if the brick’s location in memory or a pointer to

the children is needed. Therefore, we choose b = 1 only for small volumes and increase

b for bigger volumes to reduce the storage overhead of the octree structure.

The minimum and maximum values at leaf nodes can be estimated using the convex

combination property of the B-spline basis2and are propagated towards the root of the

tree.

During rendering, we use a GPU-enabled version of the parametric octree traversal

algorithm proposed in [RUL00]. To circumvent the usage of an explicit stack in shared

memory, the current octree coordinate is stored in a single 32 bit data word. Every

three bits encode the chosen subvoxel when descending the tree. Thus, 30 bits suffice to

support octrees of depth 10, which is ample for data dimensions beyond 10243, if brick

dimensions are chosen appropriately.

2The global extrema of the polynomial function fv(x) in the interval [0, 1]3 are bound by the extrema
of the B-spline influence coefficients vecIC:

min (fv(x)) ≥ min
(
IC1(v), IC2(v), · · · , IC(d+1)3(v)

)
max (fv(x)) ≤ max

(
IC1(v), IC2(v), · · · , IC(d+1)3(v)

)
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3.3.3 Pipeline

Our adapted rendering pipeline for isosurface rendering enabled by algebraic surfaces

includes the following steps:

1. project the ray r(t) = p + t · v from screen space to object space

2. compute the ray intersection with the octree boundaries

3. traverse the tree checking only these nodes, which can possibly contain a hit

4. synchronize threads as soon a brick containing possible hits has been identified

5. check the brick for a hit

(a) identify the first/next hit voxel within the brick

(b) calculate the trivariate polynomial scaled by a constant factor e·f(x, y, z)3from

the B-spline coefficients

(c) calculate the polynomial along the ray e · (f ◦ r)(t)

(d) subtract the isovalue scaled by the factor e extracted from the basis transform

(e) find the first root position troot of the polynomial e · f(t)− e · c = 04

(f) if a hit is identified, calculate object space hit point and normal, continue at

6

otherwise, go to next voxel (5a) or, if the whole brick did not contain a hit,

continue with octree traversal (3)

6. calculate lighting

3.3.4 Execution Configuration

The execution of CUDA kernels is controlled by setting up a grid of thread blocks.

For current graphics cards, a so called warp is formed by 32 threads, which all are

provided with the same command stream. This means, if threads within a warp take

different branches, all branches, even those which are only taken by one thread, have

to be executed. All threads, which did not choose this branch, remain idle during this

time. Therefore, it is important to choose a good execution configuration, with as many

3The constant factor e is introduced because of the acceleration techniques applied to the basis
transformation, see Section 3.3.1.

4The zero crossing of the polynomial f(t)− c are equal to the zeros of e · (f(t)− c).
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coherent threads as possible. We have chosen to assign one thread per ray and form

blocks for 8× 8 pixel areas (8× 4 pixels correspond to one warp).

Additionally, it is desired to start as little blocks as possible. It would be a waste of

resources starting threads for all pixels on screen, if the projection of the objects bounding

box can be evaluated easily. Thus, we project the object space bounding box (octree

bounds) to screen space and start threads only for the rectangle which is defined by the

minimum and maximum coordinates of the projected bounding box corners. Figure 3.2

indicates how many threads have to be started for an arbitrary scene and how fast the

whole block can finish.
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Figure 3.2: Execution configuration for a rendering of the Bucky dataset: one thread

is started for each pixel that lies within a rectangle that is defined by the projection of

the bounding box on the screen. In this particular example, 752 blocks (29%) finished

immediately, 799 blocks (31%) never identified a possible hit and only in 1050 blocks

(40%) rootfinding has been performed on a polynomial level. Blue: blocks that finish

immediately after failing the bounding box check (step 2 in the pipeline); green: blocks

for which no thread identifies a voxel that can possibly contain a hit; red: blocks for which

rays exist that need to start rootfinding for at least one voxel along the ray
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Chapter 4

Wavelet-based Multiresolution
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When facing bigger datasets, multiresolution techniques often are considered. Especially

when a mixed resolution rendering technique can be developed, renderings of big volu-

metric datasets can benefit the most. Parts being close to camera and therefore being

responsible for a big portion of the image, should be rendered in their highest resolution,

while for distant parts it is not necessary to include every detail, as the thus excluded

detail might only be at sub pixel size. For such small features, reducing the resolution

even addresses aliasing as raytracing is only sampling the isosurface on a regular basis

and does not consider the extend of the pixel from where the ray originates. In our case,

less detail also increases rendering speed: If the resolution is decreased to a coarser level,

less but bigger sized voxels need to be rendered. As our method scales approximately

linearly with the number of voxels, a coarser representation greatly accelerates the whole

rendering.

Especially mixing different resolutions is known to be a complex task. The borders

between different resolutions need to be handled with care, as not reveal differences in

resolution. For isosurface rendering, this task is even more demanding, as inconsistencies

stand out as holes in the surface. One possible choice for building a multiresolution data

description are wavelets.

Analyzing the data and building differently sized representation of the data are two

different steps in a wavelet framework: The analysis step is called decomposition and can

be build from recursively applying filtering and downsampling to the current resolution

level of the data. Additionally, to the lower resulting representation, so called detail

coefficients are produced that correspond to the information needed to reconstruct the

higher resolution from the lower resolution data. The reconstruction step works exactly

the other way around: the highest available resolution level is upsampled, filtered and
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added to the upsampled and filtered detail coefficients. The result of this step is the

next higher resolution representation of the data.

The wavelet decomposition is an offline preprocessing step, which only needs to be done

once per dataset and is therefore not time-critical. When only a small set of different

resolutions of the data should be available, they can also be precomputed and stored for

direct access during rendering. Wavelet reconstruction for a mixed resolution framework

needs to be invoked whenever the desired resolution is changed and therefore has to be

optimized carefully. The amount of data needed to be able to reconstruct all resolution

levels corresponds exactly in size to the original number of data coefficients.

Most proposed isosurface renderers, which use wavelets for data simplification do not

consider the type of wavelets during rendering. During reconstruction of resolution

levels borders between resolution levels are not considered, they are taken care of in

an individual step. This is also the reason why linear interpolation is mostly chosen

for these approaches: mixing two resolutions is trivial for linear interpolation, as a set

of higher resolution coefficients just needs to ’smear-in’ the first set of lower resolution

coefficients.

In contrast to such approaches, we haven chosen wavelets which can be directly rendered

with our framework: Polynomial spline wavelets [CDF92]. The scaling function of these

wavelets is the B-spline basis function. A single B-spline basis function is described as

a single coefficient in the volume dataset (see Section 3.3.1 and Figure 4.1). Using the

appropriate degree of interpolation enables us to render an exact representation of the

scaling function and hence a wavelet function, which is constructed from a superposition

of scaling functions. In other words this means: constructing and rendering a higher

resolution level with all detail coefficients disabled (no additional information is added),

produces exactly the same result as the lower resolution level.

Therefore, the continuity property of B-spline wavelets is transferable directly to render-

ings spanning multiple levels of resolution. This guarantees that the reconstruction (and

hence the isosurface) is continuous and no complex additional border handling between

resolutions needs to be considered (for more details see Section 4.4). The non-standard

scheme for decomposition and reconstruction [SDS96] is employed in order to obtain a

localized influence of a single wavelet coefficient and thus, a useful approximation of the

input data at each level.

4.1 Used Wavelets

As volumetric datasets are naturally three-dimensional, a three-dimensional wavelet

transformation is required. Three-dimensional wavelets can be constructed from the
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B-Spline Basis functions

Spline Wavelet

single coefficient for one
B-Spline Basis function

Figure 4.1: The spline wavelet function ψ3,1 is constructed from 4 B-spline basis functions

and can thus be rendered with 4 coefficients.
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degree
filter size vanishing polynomial pieces

low high moments low high

linear (ψ2,2) 3 5 2 2 6

linear (ψ2,4) 3 9 4 2 10

square (ψ3,1) 4 4 1 3 6

square (ψ3,3) 4 8 3 3 10

cubic (ψ4,2) 5 7 2 4 10

cubic (ψ4,4) 5 11 4 4 14

Table 4.1: Size of support of wavelet reconstruction low/high pass filters (one dimen-

sional).

one dimensional wavelet transformation by a simple tensor product. In the one dimen-

sional case one has a scaling function φ and a wavelet function ψ. When constructing the

three-dimensional functions, one ends up with one scaling function which is essentially

the tensor product of three one dimensional φ, one along each direction. All other seven

possible combinations of tensor products between φ and ψ, along all directions, form

seven wavelet functions.

One three-dimensional decomposition step thus results in seven times as many detail

coefficients as scaling coefficients, whereas every different wavelet has associated an equal

number of detail coefficients. The reconstruction step is changed accordingly. The

therefore needed three-dimensional filtering is separable, which means that the whole

data can be filtered along one dimension after another. This is essential for a fast

implementation.

We consider wavelets for tri-linear to tri-cubic B-splines to support all so far available

rendering methods. Note that higher orders would also be possible when accepting

lower frame rates. We also experimented with different numbers of vanishing moments,

whereas we concluded that the least possible number of vanishing moments seems to

be the best choice. A higher number of vanishing moments implies a bigger support of

the wavelets and thus increases the time needed for reconstruction tremendously and

in addition small voxels are more quickly inserted to the data. An overview of the

number of vanishing moments for the used wavelets can be found in Table 4.1 and the

one dimensional versions of them are depicted in Figure 4.2, 4.3 and 4.4, including a

listing of the associated low and high pass filter coefficients used for reconstruction.
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(a) scaling and wavelet functions

linear
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(b) filter coefficients

Figure 4.2: (a) One dimensional plot of the linear scaling function φ2, and two associ-

ated wavelet functions ψ2,2 and ψ2,4 as well as the corresponding frequency coverage of

the given mother functions. (b) One dimensional filter coefficients for the used scaling

functions and wavelet functions.
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(b) filter coefficients

Figure 4.3: (a) One dimensional plot of the linear scaling function φ3, and two associ-

ated wavelet functions ψ3,1 and ψ3,3 as well as the corresponding frequency coverage of

the given mother functions. (b) One dimensional filter coefficients for the used scaling

functions and wavelet functions.
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(b) filter coefficients

Figure 4.4: (a) One dimensional plot of the linear scaling function φ4, and two associ-

ated wavelet functions ψ4,2 and ψ4,4 as well as the corresponding frequency coverage of

the given mother functions. (b) One dimensional filter coefficients for the used scaling

functions and wavelet functions.
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4.2 Selection of Wavelets Coefficients

The selection of the wavelet coefficients used for reconstruction strongly depends on the

scenario. Traditional wavelet applications are noise reduction, for which mostly high

frequency bands are discarded, and compression, which discards coefficients with low

magnitude. Although our work does not focus on compression, we want to show that

our rendering framework can also use wavelets for compression, which is one of the most

common applications for wavelets. A lossy three-dimensional data compression can be

carried out, when selecting the biggest coefficients only (see Figure 4.5).

Although there are less coefficients used to describe the dataset in the compression

scenario, this does not essentially aid our rendering framework for increase in frame

rates. At a finer level, big coefficients are not removed, while still producing a bigger

number of small voxels, which need more time to render.

Considering the overlap of adjacent wavelets, which is given by their support, one can

e.g. remove 99% of wavelet coefficients from the last level and still not reduce the number

of voxels needed for rendering: The support for one of the used tri-cubic wavelets is 73,

which means activating exactly one wavelet coefficient adds 73 voxels to the dataset. If

the distance between activated wavelet coefficients is chosen with exactly the size of the

support along each direction, a whole level of voxels is created for only 1% of activated

data. In this case, one could also render the whole dataset with the same number of

voxels (thus with the same framerates), but in full detail.

To avoid that situation from happening, as little transitions as possible between different

resolution levels should be included when advancing from neighbor to neighbor within

the dataset. This idea is also accompanied by a view dependent selection of wavelet

coefficients. Regions close to the camera should be present with their full resolution,

whilst the resolution of distant regions can decrease gradually (see Figure 4.6). In par-

ticular, we collapse an octree node if s
c
< ε, where s is the node diameter, c is its distance

from the camera, and ε is a user-defined threshold. This approach is very simple and

there exist more sophisticated approaches which have been proposed for multiresolution

meshes, e.g. based on silhouettes and specular highlights [XV96, Hop97]. These ideas

are out of scope for this work.

4.3 Integration

To support a multiresolution description during rendering, the current description of the

data needs to be embedded into our octree structure, which is used for rendering. A

chosen approximation of the original data can be seen as linear combination of a subset
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(a) 100% (b) 20% (c) 5%

(d) 2% (e) 1% (f) 0.1%

(g) 0.05% (h) 0.01% (i) 0.0001%

Figure 4.5: Dragon dataset: wavelet reconstruction involving data from different scales,

with coefficient selection based on greatest magnitude. The images demonstrate that a

small subset of the whole volume dataset already yields good results.
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(a) scene with view-dependent LOD

(b) octree nodes superimposed (c) different view of (b) with frozen LOD

Figure 4.6: View-dependent multiresolution scene (a) spanning several levels of the

wavelet hierarchy (indicated by the black cubes in (b) and (c)).
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of the available basis functions (i.e. wavelets), weighted by the corresponding detail

coefficients (obtained by the decomposition step). The levels of the octree form a set

of nested vector spaces (much like the wavelets themselves [SDS96]). Hence, we can

expand octree nodes (starting from the root) as needed, until the vector space spanned

by the currently expanded nodes is powerful enough to hold the desired approximation.

Note: the octree itself just keeps track of polynomial pieces and their organization in

memory, whereas the underlying data itself is given as a set of scaled and dilated B-spline

functions, which are used to represent exactly the chosen subset of activated wavelets

(i.e. for which the detail coefficients are not set to zero).

(a) before insertion (b) wavelet (c) after insertion

Figure 4.7: Expanding the spline octree (a) for insertion of a wavelet (b), resulting in

a new octree (c) which can represent the newly added detail; dark grey: single activated

detail coefficient, light grey: influenced spline coeffcients, blue: additional polynomial

pieces needed for rendering the spline coefficients (light grey)

Figure 4.7 illustrates a single step of this procedure. However, a straightforward im-

plementation would be inefficient for two reasons. First, distributing spline coefficients

within a wavelet’s support (light grey square in Figure 4.7(b)) to all influenced data co-

efficients involves a scattering memory access pattern. Though possible on recent GPUs

by means of atomic operations, such an approach suffers from performance penalties due

to bus locking. Instead, we proceed by traversing the hierarchy and gathering contribu-

tions of wavelets, which influence the data coefficient under consideration. This entails

another problem: the processing step for a single data coefficients needs to know whether

the surrounding wavelets are activated or not. Again, this either involves a scattering

access pattern or the error metric needs to be evaluated for all surrounding wavelets

for the computation of a single data coefficient. We will deal with this problem in the

Section 4.4.
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Nevertheless, the problem gets even more demanding for three-dimensional data. The

number of wavelet coefficients influencing a single node grows cubicly with the support

of the one dimensional wavelet (e.g. 73 non-zero influence coefficients for the tri-cubic

case). More efficiently, one can use the separability of the B-spline wavelet basis and

sequentially perform the transformation in z-, y-, and x-direction. This reduces the

number of influence wavelet coefficients to three times the number needed in the one

dimensional case (e.g. 3× 7 coefficients have to be considered in the tri-cubic case).

4.4 Efficient Wavelet Reconstruction

Concerning bigger data sets, the wavelet reconstruction can get rather time consuming,

thus we try to use different speedup strategies. In general, frame-to-frame coherence can

be exploited if camera movements are not too drastic. When a higher resolution becomes

necessary, wavelet reconstruction does not need to start at the root level. The highest

available resolution level can be chosen as a starting point. When advancing wavelet

reconstruction towards higher resolution, we also keep low resolution data in memory,

therefore reduction of the desired level of detail is trivial.

Still, the most important point is the granularity at which the wavelet reconstruction is

carried out. Although possible, it is not feasible to keep track of the activation and the

influence of every single wavelet (see Figure 4.7 and Section 4.3). Especially communi-

cation of states and evaluation of the view dependent error metric form an undeniable

overhead, when implemented on a per spline coefficient basis. Furthermore, only tasks

which can be subdivided into a sufficient number of subtasks of identical structure can

be implemented with maximum performance on SIMD hardware, which is only possible,

if a bigger set of adjacent wavelets display the same activation pattern. We therefore

operate on chunks of k × k × k nodes (we choose k = 8) and activate a whole chunk

of wavelet coefficients at once (such that all nodes within the chunk can be processed

efficiently in a similar way).

An activated chunk needs to be reconstructed fully. Chunks which are not activated, do

not add any additional data to the reconstruction and their detail coefficients are thus

set to zero. If all detail coefficients contributing to a chunk are set to zero, the output

corresponds exactly to the data at the next lower resolution level, sampled with twice as

many points along each dimension. Therefore, we can omit reconstruction of all chunks,

which are neither activated nor needed to maintain continuity. Since the support of

some wavelets in an activated chunk extends into neighboring chunks, these neighbors

also have to be reconstructed and used for rendering to maintain continuity. As the

polynomial description of a voxel is constructed during rendering from its neighboring
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data entries and resolutions are only switched at chunk borders, we also have to compute

one or two data coefficients in high resolution chunks next to the resolution borders. For

a detailed description on which chunks need to be activated see Figure 4.8.
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Three different CUDA kernels are used for the reconstruction of a single resolution level.

One kernel is used for the convolution along each dimension. Whereas the second and

the third kernel’s tasks only consist of convolution and are equal apart from different

operation directions, the first kernel also covers additional responsibilities, namely:

• evaluating the error metric for the chunk under consideration

• evaluating the error metric for surrounding chunks to correctly handle the influence

of the possibly activated wavelets within these chunks

• storing information of whether this chunk needs to be reconstructed or not

• updating the octree structure to correctly render the resulting approximation of

data (i.e. setting the right references to data locations for all nodes coinciding with

the current chunk)

• loading the lower resolution data

• loading detail coefficients if the chunk is activated

For more details on all three kernels, their execution and remapping of thread duties see

Algorithm 1, 2 and 3.

The CUDA kernels for all three dimensions each consist of blocks of k×k threads. Each

thread computes the one-dimensional convolution with the wavelet filter kernels (low

pass and high pass). One thread block is responsible for a beam of k×k voxels along the

current convolution direction. Reconstruction is applied to one chunk after another and

deactivated chunks are simply skipped (see Figure 4.9). At each reconstruction step it

is assured that all needed data resides in register space before the convolution is carried

out. Data fetched for the reconstruction of the previous chunk is reused, which also

enables storing the altered data at exactly the same memory location as the input data.

Thus, a single read instruction from global memory per sample is sufficient to com-

pute the convolution. Fast memory transactions can be guaranteed, if threads access

a continuous region in memory (coalescing). A chunk laid out for access along a cer-

tain dimension shows suboptimal access patterns along a different dimension. Therefore,

data is reordered in shared memory, before being written back to global memory. Bank-

ing conflicts in shared memory are avoided by additional padding, much like described

in [HSO07]. This method is only applicable for conflict free access patterns within two

dimensional data. Due to the execution order of z → y → x only data vectors between

the x and y dimension (second and third kernel) have to be interchanged and therefore

this simple padding method can also be applied here.
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full reconstruction compute convolution
skip deactivatedmaintain continuity

Figure 4.9: Processing scheme for selective wavelet reconstruction, the arrows indicate

the execution of a single thread block in the CUDA kernel. Boxes do not refer to octree

nodes, but to chunks of k × k × k nodes as explained in Section 4.4.

Algorithm 1 Efficient wavelet reconstruction kernel z part 1

1: each thread computes its 2D-thread id (t0, t1)

2: while not all chunks in threadblock’s associated beam have been checked do

3: assign all threads to individual unchecked chunks

4: for x = −2 . . . 2,y = −2 . . . 2 do {neighborhood of the chunk}
5: c0 = lower resolution chunk active

6: c1 = error criteria of the chunk fulfilled

7: c2 = isovalue within min/max range of associated octree node

8: if c0 and c1 and c2 then {chunk activate}
9: store a bit indication chunk’s activation type in shared memory

10: end if

11: end for

12: store the activation of the current chunk in global memory

13: synchronize

14: for z = −2 . . . 2 do {z neighborhood of the chunk}
15: gather chunk activity from shared memory and update current chunks activity

accordingly

16: end for

17: end while

18: synchronize
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Algorithm 2 Efficient wavelet reconstruction kernel z part 2

19: every thread is now responsible for a one dimensional data vector

20: for i = 0 . . . N/k do {entire range of 1D convolution}
21: load chunk activity from shared memory (broadcast)

22: if chunk i active or neighbor active then

23: load low pass data from lower resolution

24: if chunk i active then

25: load detail coefficients

26: end if

27: if left chunk (i− 1) active then

28: load detail coefficients of left chunk

29: end if

30: if right chunk (i+ 1) active then

31: load detail coefficients of right chunk

32: end if

33: for x = 0 . . . k − 1 do {compute convolution}
34: each thread performs the convolution (i.e. computes the dot product of the

fetched data and filter kernels)

35: each thread stores the item in global memory(coalesced access) (t0, t1, z)

(conflict-free access)

36: end for

37: end if

38: end for
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Algorithm 3 Efficient wavelet reconstruction kernel y/x

1: reserve 3 chunks of data in register space: pre, main, post

2: keep track of loaded chunks nloaded = 0

3: for i = 0, . . . , N/k do {entire range of 1D convolution}
4: if chunk i active then

5: if nloaded == 2 then {post and main can be reused}
6: pre = main

7: main = post

8: else if nloaded == 1 then {post can be reused}
9: pre = post

10: load chunk main (i) from global memory (coalesced access)

11: reorder chunk main using shared memory to grant every thread with the right

data (conflict-free access)

12: else if nloaded ≤ 0 then {none to reuse}
13: load chunks pre (i− 1), main (i) from global memory (coalesced access)

14: reorder chunks pre, main using shared memory to grant every thread with

the right data (conflict-free access)

15: end if

16: load chunk post (i+ 1) from global memory (coalesced access)

17: reorder chunk post using shared memory to grant every thread with the right

data (conflict-free access)

18: nloaded = 2

19: else

20: nloaded = nloaded − 1

21: end if

22: for j = 0 . . . k − 1 do {compute convolution}
23: each thread performs the convolution (i.e. computes the dot product of the

fetched data and filter kernels)

24: each thread stores the result in shared memory (conflict-free access)

25: end for

26: for j = 0, . . . , k − 1 do {reorder results}
27: each thread fetches a single item from shared memory (conflict-free access)

28: each thread stores the item in global memory(coalesced access)

29: end for

30: end for
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Chapter 5

Code Optimization

According to [LNOM08] high arithmetic intensity is necessary within the context of

CUDA, as full utilization of computational resources naturally is essential for high per-

formance. If the equations in Section 3.2.3 are implemented in a straightforward fashion,

the produced code includes several nested loops with the trip count being known in ad-

vance. The design of the CUDA compiler is as such as to detect static program flow

constructs and regard these within the optimization of the code (i.e. unroll loops). How-

ever, this is not realized in this particular case, because inner loop limits depend on outer

loop indices.

Although the code demonstrated in Listing A.1 has already been unrolled manually for

all three dimensions to demonstrate the needed steps, the convolution inplace calls

contain a loop depending on the loop index of the current dimension. Therefore the

compiler also fails in unrolling for these constructions. The problem gets even more

severe, if an innermost loop can not be unrolled, as this also prohibits outer loops from

unrolling.

Hence, the resulting program performs dynamic looping, which, however, is very ineffi-

cient for two reasons. First, a certain overhead is associated with loop counter manipu-

lation and conditional branching. Second, and most important, since indirect addressing

is not supported in register space, the indexed quantities like polynomial coefficients are

stored in local memory, which has significantly higher latency and lower bandwidth than

the on-chip register file. To overcome this problem, we added a code transformation step

to our build framework which is invoked before the CUDA compiler. We thereby “flatten

out” the entire static control flow of the program, which generates 81 times faster code

for the tri-cubic composition and subsequent root finding than with dynamic branching.

Without this optimization, this part of the algorithm is the bottleneck of the system,

consuming 88 ± 5% of total frame time tri-cubic rendering. After optimization, it only

contributes 30± 5% to the frame time and overall performance has been improved by a

factor of approximately 17. The remaining 70± 5% consist mainly of traversal and data

transfer time.

The developed preprocessor consists of three steps:

1. Parsing steps:
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• load input files

• generate C++ code for step 2 from marked regions

• pass through standard C++ code to remain unchanged

2. Compile and Run step:

• compile the produced intermediate file

• run the generated executable

• produce a new source file containing the passed through original code and the

generated code

3. include the generated file to the project

The parsing step 1 understands the following pragmas and sets a preprocessor definition

to enable to programmer to write code that can also be compiled without the prepro-

cessing step.

• meta refer to input file turns references to the original source on and off

• meta begin , meta end encloses code that is to be compiled and executed by the

preprocessor

• meta early begin , meta early end encloses code that can also include #include

statements and function definitions

• meta include includes files that are compiled and executed by the preprocessor

• meta parse opens the given file, parses it and adds the resulting output to the

current parsing location

• ${, } inline synonym of meta begin and meta end

Our preprocessor would convert the statement:

1 f l o a t out = 0 .0 f ;

2 #pragma meta begin

3 f o r ( i n t i = 0 ; i < 3 ; ++i )

4 f o r ( i n t j = 0 ; j <= i ; ++j )

5 {
6 #pragma meta end

7 out += in [ ${ i } ] [ ${ j } ] ;

8 #pragma meta begin

9 }
10 #pragma meta end

to an unrolled:
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1 f l o a t out = 0 .0 f ;

2 out += in [ 0 ] [ 0 ] ;

3 out += in [ 1 ] [ 0 ] ;

4 out += in [ 1 ] [ 1 ] ;

5 out += in [ 2 ] [ 0 ] ;

6 out += in [ 2 ] [ 1 ] ;

7 out += in [ 2 ] [ 2 ] ;

This framework offers a nearly unlimited amount of options, as it does not only support

loop unrolling, but also C++ code, which is executed at compile time. We also use the

framework to easily support different interpolation kernels, switch methods for octree

traversal or hardcode wavelet coefficients into the GPU code.
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Chapter 6

Results

Contents

6.1 Frustum Form vs. Our Approach . . . . . . . . . . . . . . . . 50
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6.3 Multiresolution Performance . . . . . . . . . . . . . . . . . . 62

This chapter is split into three parts: Firstly we will show results for algebraic surface

rendering and compare our approach to a dedicated algebraic surface renderer [RS08].

We will proceed with isosurface rendering of volume datasets and compare our approach

to [HSS+05], which is – as far as we know – still the reference for isosurface rendering of

volume datasets. Finally, we will consider the performance of our wavelet reconstruction

strategies in comparison to rendering times and show the influence on image quality. All

performance measurements were carried out on an Intel Core i7 and a single NVIDIA

GeForce 285 running on both Microsoft Windows Vista and Linux.

6.1 Frustum Form vs. Our Approach

[RS08] showed that it is possible to reduce the complexity of per ray calculations for

multivariate to univariate composition, as needed in algebraic surface raycasting, by

extracting common computations and pre-calculate them on the CPU. The polynomial

describing the data is sampled along the frustum planes and plugged into a tensor product

equation. This equation is efficiently solved by a sequence of matrix multiplications

and leads to the Frustum Form that is transmitted to the GPU. The transition from

Frustum Form to Bernstein coefficients describing the polynomial along the ray, involves

evaluations only along two coordinate axis and can therefore be carried out efficiently.

[RS08] were kind enough to provide us with their original implementation, thus enabling

us a comparison to our work.

Figure 6.1 shows a comparison for different view port sizes as well as different polynomial

degrees. One can clearly see that our approach outperforms the Frustum Form, especially

for lower polynomial degrees. In these cases our composition scheme (see Section 3.2.3)
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Stage tri-linear tri-squared tri-cubic

Setup and Load 8.390 0.903 0.187

to Object Space 6.936 0.743 0.141

BBox Check 6.090 0.676 0.139

Composition 3.941 1.823 1.029

Rootfind 71.017 93.551 97.489

Evaluate 1.546 1.732 0.972

Lighting 2.079 0.571 0.042

Table 6.1: Time (in %) spent in each stage of our algebraic surface rendering pipeline.

One can clearly see that our composition step is efficient in comparison to the time needed

for the root finder (6(d+ 1) iterations of our [LR81] implementation).

as well as the step from Frustum Form to polynomial coefficients along the ray involve

a small amount operations. We believe the main reason for our approach outperforming

the Frustum Form is to be found in optimization. For increasing degree and view port

size, the Frustum Form approach is getting closer to our approach, which reflects that the

Frustum Form should theoretically be faster for dedicated algebraic surface rendering.

Another important point is the preprocessing step that needs to be calculated and trans-

mitted to the GPU for the Frustum Form, whereas our approach does not need any addi-

tional CPU to GPU communication. As one can see, this preprocessing step (turquoise)

is slowing down the whole approach only if the algebraic surface is responsible for a small

screen area or in this case small view port. This demonstrates that the Frustum Form

is not well suited for rendering many algebraic surfaces as we carry it out for volume

datasets. When rendering a big number of voxels, a single voxel is only responsible for a

small portion of the screen. Therefore, only few rays hit this voxel and a preprocessing

step like the one used in the Frustum Form approach, carried out for every single voxel

would simply be too slow.

Table 6.1 shows how much time is spent on each stage of our algebraic surface rendering

pipeline (see Section 3.2). The table demonstrates that our composition step is efficient

enough to shift the bottleneck to the root finding phase when rendering a single algebraic

surface. Note that the same relations do not hold for rendering volume datasets.

6.2 Tri-cubic Texture Sampling vs. Our Approach

Efficient tri-cubic texture sampling is the key for interactive isosurface rendering as pro-

posed in [HSS+05]. Simple tri-cubic texture sampling is enhanced by hardware support,
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(a) tri-linear: x + y + z + xyz − 1
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(b) tri-square: 4x2 + 4y2 + 4z2 + 16xyz − 1 + x2y2z2
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(c) tri-cubic: x2 + y2 + z2 − x3y3z3 − x2y − 1

Figure 6.1: Comparison between the frustum form (FF) approach [RS08] and our imple-

mentation for raycasting a single algebraic surfaces. Both approaches were configured to

work with 6(d+ 1) iterations of an [LR81] rootfinder.
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using tri-linear texture sampling as proposed in [SH05]. Using this technique, a tri-cubic

texture lookup is constructed from eight tri-linear texture lookups, whereas their texture

coordinates are inferred from the tri-cubic sample position and have to be weighted and

combined accordingly. This strategy can not only be used for tri-cubic interpolation,

but also for the calculation of derivatives of the tri-cubicly interpolated data.

Their isosurface renderer does not explicitly work on any polynomials. Samples are

simply drawn along each viewing ray, until a transition from below isovalue to above

isovalue or vice-versa is found. This limits the position of the first root to an interval

equal to the step length used for drawing samples along the ray, which is further refined

in a binary manner: A sample is drawn exactly in the middle of the last two samples.

Using the same idea as before the interval containing a transition from below isovalue

to above is further refined. This step is simply called hitpoint refinement.

The chosen step length is crucial for both, an exact result as well as fast rendering. For

best performance, the step length should be chosen as high as possible, depending on the

maximal frequency occurring in the data, as not to miss any root close the silhouettes

of the surface. This also leads to the idea of adaptive sampling, whereas different step

length are used depending on how close the current sample is to the isovalue. For some

data sets and especially during interaction, one can choose step lengths greater than one

voxel.

Our approach, on the other hand, needs to check every voxel that can possibly contain

a hit – not discarded by empty space skipping. We can also benefit from low frequency

data by using the wavelet transformation (see Section 4) to reduce the number of small

voxels. Omitting the time needed for traversing the octree data structure, the rendering

performance of our implementation scales linearly with the number of tested voxels.

Another important point is empty space skipping. [HSS+05] constructs proxy geometry

from the voxel dataset, which equals the union of the boundaries of all voxels that can

possibly contain the isosurface. This geometry needs to be rendered twice. During

the first pass only back-faces are drawn to the framebuffer. The second pass is only

carried out for front faces, which provides the starting point for all rays. The whole ray

traversal as described above is carried out in the fragment shader of the second pass.

The framebuffer of the first pass is bound as a texture to define the exit point of each

ray. The proxy geometry is efficiently constructed only if the isovalue has been altered.

This strategy results in approximately the same volume that needs to be tested, as yielded

by our octree structure. The advantage of using this constructed proxy geometry is the

fact that it can efficiently be applied to the rendering process as the rasterizer converts

it into entry and exit points for ray traversal. Our approach, on the other hand, does

not need a construction step after isovalue changes and is not limited to a single entry
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and exit point. Imagine a dataset of a human head, where the user is interested in its

bone structure. An empty space skipping strategy relying only on a single entry and exit

point, will lead to a ray segment that is active throughout the whole head. Handling

such scenarios with bounding geometry involves techniques like depth peeling or more

advanced methods [KGB+09]. Our octree based method, however, will skip the volume

inside the skull automatically, as the minimum and maximum estimates stored in the

octree are evaluated for every node during rendering.

We tested our approach with various examples, showing interactive frame rates for large

datasets (see Table 6.2 and Figures 6.2, 6.3 6.4, 6.5). The images demonstrate the effect

of different reconstruction filters. For the chosen lighting setup, tri-squared interpolation

already yields very good results. Every figure also contains a rendering which shows all

active bricks as to demonstrate the number of voxels which have to be considered for

rendering. We compared our approach to our implementation of fast tri-cubic sampling

using the same octree structure for empty space skipping. For the comparison we tried

to configure the fast tri-cubic sampling implementation to meet good visual quality (see

figures). To make a fair comparison possible, all these performance measurements have

been carried out with the original data and multiresolution reconstruction disabled. As

shown in Table 6.2, tri-cubic sampling outperforms our method in terms of rendering

speed. On the other hand, tri-cubic texture sampling shows considerable artifacts due to

the limited precision of the texture interpolation hardware (9 bits [NVI08]). In volume

rendering applications and in particular for tasks such as virtual endoscopy, closeup

views are often desired. In this case a big part of the screen area is covered by only a few

voxels. For this, 9 bits are often not sufficient for high quality renderings, introducing

artifacts which may be distracting or misleading (see Figure 6.6). The quality of our

approach, on the other hand, is independent of the voxel sizes and it is even faster for

bigger voxels.

To conclude the performance analysis of our technique applied to volume rendering,

we want to analyze the time spent in every phase of the rendering pipeline (see 3.3.3).

Table 6.3 shows both, the absolute and the relative execution times. A few further points

should be addressed in the following:

• Especially, concerning bigger data sets, most time is spent for octree traversal

(60-90%). This demonstrates, that our implementations for composition and root

finding are fast enough as not to limit the rendering times for this approach.

• One can also see that synthetic datasets, e.g. the distance field represented by

the dragon dataset is rendered faster than ”real-life” datasets, such as the foot or

vertebra dataset. The traversal time, which should scale approximately logarith-
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(a) tri-linear (b) tri-squared

(c) tri-cubic

(d) sampled (e) bricks (13) displayed

Figure 6.2: Bucky Ball 323
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(a) tri-linear (b) tri-squared

(c) tri-cubic

(d) fast tri-cubic sampling (e) bricks (23) displayed

Figure 6.3: Dragon 1283
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(a) tri-linear (b) tri-squared

(c) tri-cubic

(d) fast tri-cubic sampling (e) bricks (23) displayed

Figure 6.4: Foot Dataset 2563
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(a) tri-linear (b) tri-squared

(c) tri-cubic

(d) fast tri-cubic sampling (e) bricks (43) displayed

Figure 6.5: Vertebra 5123
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Bucky Dragon Foot Vertebra

tri-linear 31.2 fps 9.8 fps 4.6 fps 6.6 fps

tri-square 16.3 fps 6.9 fps 2.8 fps 5.3 fps

tri-cubic 7.1 fps 4.6 fps 1.5 fps 3.5 fps

sampling 29.8 fps 18.3 fps 12.0 fps 4.7 fps

Table 6.2: Performance measurement for datasets from Figure 6.2-6.5: Viewport size

1024 × 768; first three methods correspond to our approach using different degree for

interpolation; sampling is our implementation of [SH05] using our octree structure for

emtpy space skipping. The relatively low frame rates for sampling approach occur as it

has been configured to reach high visual quality – still some difference to the true solution

is visible.

mically with the size of the dataset, is double as high for the foot dataset as it is

for the dragon dataset.

• The traversal time is decreased for lower order of interpolation. The reason for this

might be the more exact estimation of minimum and maximum values within leaf

nodes.

• While for algebraic surface rendering the ratio of the time investment of composi-

tion to root finding favors the composition part, this ratio inverses for isosurface

rendering of volume datasets (see Table 6.1). In case of algebraic surface render-

ing, only a single polynomial is processed. In case of voxel datasets, it occurs more

frequently that the polynomial along the ray is computed and the root finder can

trivially reject it, as the control polygon does not show any zero crossing. Further-

more, we reduced the number of iterations for the root finder to three, five and

seven for tri-linear, tri-square and tri-cubic interpolation respectively.
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(a) (b)

(c) (d)

Figure 6.6: Vertebra dataset (see Figure 6.5); inside view of an artery close to an

aneurysm found in a human head: Fast tri-cubic sampling [SH05] (a) produces artifacts

due to low number of bits used in interpolation hardware (see (c) for a closeup view),

which may be both distracting and misleading for diagnosis. (d) shows the difference of

normals between (a) and (b).
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6.3 Multiresolution Performance

Our method used for multiresolution wavelet selection can even run on a per frame basis

with an overhead of less than 10% whilst increasing framerates up to 100% and more.

See Table 6.4 and Figure 6.7 for our method applied to the Dragon dataset. Due to

the exact representation in terms of piecewise polynomials and the uniform layout of

the pipeline, even closeups of regions, which are covered by different resolutions, do not

show any artifacts or holes in the surface. Figure 6.8 details on a multiresolution border,

to demonstrate this smooth transition between different resolution levels. Although, our

method has been designed with the idea of mixing resolutions within a dataset, it can

also be directly applied for datasets being displayed at greater distances. In this case the

resolution of the whole dataset is decreased automatically and composed by coefficients

of one or two resolution levels.

full 6.7(b) 6.7(c) 6.7(d) 6.7(e) 6.7(f)

reconst. 7.23 8.72 9.25 6.11 6.92 3.58

rendering 225 219 161 115 89.3 61.4

MSE 0 24 45 57 176 370

chunks 4681 3421 1877 585 295 73

chunks (%) 100% 73% 40% 12% 6% 1.6%

Table 6.4: Performance measurement for view dependent wavelet selection of datasets

from Figure 6.7. Reconstruction and rendering times are given in ms, MSE is scaled

by 103 and calculated over all colored pixels. Fully reconstructed Dragon dataset 1283

consists of a total of 4681 chunks.

One problem of this approach is rooted in the idea of decreasing the resolution of the

volume dataset and not the isosurface directly. As the data is rendered using a direct

isosurface renderer, this is the only possible target for decrease in resolution. Unfortu-

nately, which voxels are replaced by a lower resolution representation and the way the

isosurface extends within in these nodes is not linked. The expressibility of a single voxel

is limited due to the limited expressibility of the underlying B-spline function, which is

also expressed in its polynomial representation. Accordingly, a limited number of voxels

can neither represent an arbitrary complex function nor surface. This behavior is, on

the one hand, desired for smoothing parts of the surface, when decreasing the resolution

level. On the other hand, this also introduces problems, if the resolution is decreased

too aggressively. As soon as the topology of the underlying isosurface exceeds the ex-

pressibility of the chosen subset of voxels, topological changes can be introduced (see

Figure 6.9).
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(a) 100% (b) 73.1%

(c) 40.0% (d) 12.5%

(e) 6.3% (f) 1.6%

Figure 6.7: Dragon dataset: View dependent Wavelet Reconstruction greatly reduces

rendering time (see Table 6.4), while retaining good visual quality.
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(a) different view on 6.7(b) (b) with bricks displayed

(c) closeup on the transition (d) with bricks displayed

Figure 6.8: Close-up on the transition from one resolution to another of rendering 6.7(b):

Our methode implicitly handles borders between different resolution levels, showing no

artifacts or holes in the surface.
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(a) full resolution rendering

(b) aggressive(6%) multiresolution rendering (c) back view of the frozen setup

Figure 6.9: Bucky 323: an aggressive multi resolution setup introduces topological changes

in the surface, due to the limited expressibility of the lower resolution data. Note: on the

other hand, the same principle is desired for smoothing the surface.
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Chapter 7

Conclusions and Future Work

We demonstrated that rendering of higher order algebraic surfaces is applicable to volume

datasets of bigger extend, if implemented to utilize the full power of current graphics

hardware. The actual ray/surface intersection can be performed in, e.g., the power form

or the scaled Bernstein form, which results in simpler expressions at the same numerical

stability as the frequently used (classical) Bernstein form. Moreover, all static flow

control constructs are resolved before the source code is compiled to aid the optimizer

in producing efficient machine code. Our rendering algorithm does not need a special

data representation or preprocessing step, since an appropriate basis transformation can

be applied on-the-fly. The proposed method is more accurate (though slower) than a

texture hardware based intersection algorithm [SH05], and it is more efficient than the

dedicated algebraic surface renderer proposed by [RS08].

Three-dimensional spline wavelets themselves are nothing but piecewise algebraic func-

tions, which can directly be rendered by our rendering framework. This enables us

to build a multiresolution description of the volume dataset and render an arbitrary

approximation of the data. A view-dependent error metric is used to decrease the reso-

lution of distant parts, to speed up rendering while high visual quality is retained in the

foreground. Even transitions between different resolution levels are rendered seamlessly

without any additional effort. Any desired level of continuity can be obtained by choos-

ing wavelets of appropriate order. Cubic wavelets (for C2-continuity) already provide

good results in terms of visual quality. An octree is well suited to keep track of the

underlying data and resolution levels.

Performance measurements have shown that our optimizations have shifted the main

effort from composition and rootfinding to octree traversal. As this strategy of empty

space skipping applied to fast approaches like [SH05] also limits their frame rates dra-

matically, we would want to compare fast initial node finding for our octree, different

methods for empty space skipping and apply further optimizations to improve overall

rendering performance.

Data organization in an octree opens up a number of new opportunities for additional

features. Since irrelevant subtrees are pruned during traversal, it is not necessary to

upload the entire tree to GPU memory at once, merely those parts required for the
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current frame have to be available. If transmission cannot keep up with the rate at

which data is needed for visualization, e.g. due to disk I/O (out-of-core rendering)

or network delay (progressive transmission), the visual quality of the rendered images

gradually degrades.
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Appendix A

Code Examples

This chapter offers different simplified code snippets from the implementation, which

should assist the reader in understanding the underling algorithmic and structural ideas.

Listing A.1: C code of our Horner Scheme for multivariate to univariate composition:

tri-cubic case; power form. Note: only 16 registers for input and 11 temporary registers

needed; inplace convolution for b of size two does not need any additional registers.

1 void add ( r e a l t ∗a , r e a l t ∗b , i n t s i z e ) ;

2 r e a l t g e t f ( i n t i , i n t j , i n t k ) ;

3

4 void c onvo l u t i on i np l a c e ( r e a l t ∗a , r e a l t ∗b , i n t s i z e a )

5 {
6 // s i z e b == 2

7 a [ s i z e a ] = a [ s i z e a −1]∗b [ 1 ] ;

8 f o r ( i n t i = s i z e a −1; i > 0 ; −− i )

9 a [ i ] = b [ 0 ] ∗ a [ i ] + a [ i −1]∗b [ 1 ] ;

10 a [ 0 ] ∗= b [ 0 ] ;

11 }
12

13 void compos i t ion ( r e a l t r x [ 2 ] , r e a l t r y [ 2 ] , r e a l t r z [ 2 ] , r e a l t r e s u l t [ 1 0 ] )

14 {
15 // r e s u l t needs to be f i l l e d with z e r o s a l r eady

16 r e a l t ∗ f t = r e s u l t ;

17 r e a l t f i [ 7 ] ;

18 r e a l t f i j [ 4 ] ;

19 f o r ( i n t i = 3 ; i >= 0 ; ++i )

20 {
21 // s e t f i to zero

22 f o r ( i n t t = 0 ; t < 7 ; ++t )

23 f i [ t ] = 0 ;

24 // c a l c u l a t e next f i

25 f o r ( i n t j = 3 ; j >= 0 ; ++j )

26 {
27 // s e t f i j to zero

28 f o r ( i n t t = 0 ; t < 4 ; ++t )

29 f i j [ t ] = 0 ;

30 // c a l c u l a t e next f i j

31 f o r ( i n t k = 3 ; k >= 0 ; ++k)

32 {
33 f i j k = g e t f ( i , j , k ) ;

34 //add f i j k to f i j

35 add ( f i j , f i j k , 1 ) ;

36 // convo lut ion with r x − implementing Horner Scheme

37 i f ( k != 0)

38 c onvo l u t i on i np l a c e ( f i j , r z ,4−k ) ;
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39 }
40 //add f i j to f i

41 add ( f i , f i j , 4 ) ;

42 // convo lut ion with r y − implementing Horner Scheme

43 i f ( j != 0)

44 c onvo l u t i on i np l a c e ( f i , r y ,7− j ) ;

45 }
46 //add f i to f t

47 add ( f t , f i , 7 ) ;

48 // convo lut ion with r x − implementing Horner Scheme

49 i f ( i != 0)

50 c onvo l u t i on i np l a c e ( f t , r x ,10− i ) ;

51 }
52 }

Listing A.2: Simplified C code of our LR81 implementation for the tri-cubic case. Note:

Algorithm has constant memory consumption and does not need any pointer or index

operation that could not be evaluated at compile time, which makes this implementation

well suited for GPU execution.
1 bool f i ndCro s s i ng ( r e a l t poly [ 1 0 ] , i n t& c r o s s i n g ) ;

2 void copy ( r e a l t ∗dst , r e a l t s r c ∗ , i n t l ength ) ;

3 void d eCa s t e l j auSp l i t ( r e a l t parent [ 1 0 ] , r e a l t l e f t [ 1 0 ] , r e a l t r i g h t [ 1 0 ] , r e a l t at )

4 {
5 r e a l t u = 1.0− at ;

6 l e f t [ 0 ] = parent [ 0 ] ; r i g h t [ 9 ] = parent [ 9 ] ;

7 f o r ( s i z e t i = 1 ; i <= 9 ; ++i )

8 {
9 l e f t [ i ] = u∗parent [ 0 ] + t ∗parent [ 1 ] ;

10 r i g h t [9− i ] = u∗parent [9− i ] + t ∗parent [10− i ] ;

11 f o r ( s i z e t j = 1 ; j < 9− i ; ++j )

12 parent [ j ] = u∗parent [ j ] + t ∗parent [ j +1] ;

13 parent [ 0 ] = l e f t [ i ] ;

14 parent [9− i ] = r i gh t [9− i ] ;

15 }
16 }
17 r e a l t approxRoot ( r e a l t poly [ 1 0 ] , i n t c r o s s i n g )

18 {
19 // l i n e a r l y i n t e r p o l a t e between po in t s

20 r e a l t k = poly [ c r o s s i n g ] − poly [ c r o s s i n g +1] ;

21 r e turn = poly [ c r o s s i n g ] / (10 . 0∗ k ) + c r o s s i n g / 1 0 . 0 ;

22 }
23 i n t l r 8 1 ( r e a l t poly [ 1 0 ] , r e a l t& rootpos )

24 {
25 r e a l t ∗ l e f t = poly ;

26 r e a l t r i g h t [ 1 0 ] , temp [ 1 0 ] ;

27 i n t c ro s s ing , f i r s t s p l i t ;

28 r e a l t at , ActRoot ( 1 ) , CurRoot ( 1 ) , OldCRoot ( 1 ) , Sca l e ( 1 ) ;

29

30 //no root at a l l

31 i f ( ! f i ndCro s s i ng ( poly , c r o s s i n g ) )

32 r e turn 10 ;

33

34 r e a l t at = approxRoot ( poly , c r o s s i n g ) ;

35 f i r s t s p l i t = c r o s s i n g ;
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36 /∗ . . . snipped update o f Sca l e and Root

37 ∗/
38 copy ( temp , poly ) ;

39 f o r ( i n t i t e r a t i o n = 0 ; i t e r a t i o n < MAX ITERATION; ++i t e r a t i o n )

40 {
41 deCa s t e l j auSp l i t ( temp , l e f t , r i ght , at ) ;

42 i f ( f i ndCro s s i ng ( l e f t , c r o s s i n g ) )

43 {
44 at = approxRoot ( l e f t , c r o s s i n g ) ;

45 /∗ . . . snipped update o f Sca l e and Root ∗/
46 copy ( temp , l e f t ) ;

47 }
48 e l s e i f ( f i ndCro s s i ng ( r i ght , c r o s s i n g ) )

49 {
50 at = approxRoot ( r i ght , c r o s s i n g ) ;

51 /∗ . . . snipped update o f Sca l e and Root ∗/
52 copy ( temp , r i g h t ) ;

53 }
54 e l s e

55 {
56 //no root

57 r e turn 10 ;

58 }
59 }
60 rootpos = ActRoot ;

61 }

Listing A.3: Simplified C code of the first and second phase of our aRFBS implementation

for the tri-cubic case.
1 i n t f i n dF i r s tC r o s s i n g s ( r e a l t poly [ 1 0 ] , r e a l t& cro s s ing1 , r e a l t& c r o s s i n g2 ) ;

2

3 bool aRFBS( r e a l t poly [ 1 0 ] , r e a l t& rootpos )

4 {
5 r e a l t ∗ l e f t = poly ;

6 r e a l t temp [ 1 0 ] , r i g h t [ 1 0 ] ;

7 i n t c r o s s i n g s ;

8 r e a l t c ro s s ing1 , c r o s s i n g2 ;

9 r e a l t ActSp l i t ( 1 ) , CurSpl i t ( 1 ) , OldCSplit ( 1 ) , Sca l e ( 1 ) ;

10 c r o s s i n g s = f i ndF i r s tC r o s s i n g ( l e f t , c ro s s ing1 , c r o s s i n g2 ) ;

11 i f ( c r o s s i n g s == 0)

12 r e turn f a l s e ;

13

14 // begin phase one

15 i f ( c r o s s i n g s > 1)

16 {
17 c r o s s i n g1 = 0 . 5∗ ( c r o s s i n g1 + c r o s s i n g2 ) ;

18 /∗ . . . snipped update o f Sca l e and Root ∗/
19 copy ( temp , l e f t , 1 0 ) ;

20 whi le ( c r o s s i n g s > 1)

21 {
22 deCa s t e l j auSp l i t ( temp , l e f t , r i ght , c r o s s i n g1 ) ;

23 c r o s s i n g s = f i ndF i r s tC r o s s i n g ( l e f t , c ro s s ing1 , c r o s s i n g2 ) ;

24 i f ( c r o s s i n g s == 0)

25 {
26 c r o s s i n g s = f i ndF i r s tC r o s s i n g ( r i ght , c ro s s ing1 , c r o s s i n g2 ) ;
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27 i f ( c r o s s i n g s > 1)

28 {
29 copy ( temp , r i ght , 1 0 ) ;

30 c r o s s i n g1 = 0 . 5∗ ( c r o s s i n g1 + c r o s s i n g2 ) ;

31 /∗ . . . snipped update o f Sca l e and Root ∗/
32 }
33 e l s e i f ( c r o s s i n g == 0)

34 r e turn f a l s e ;

35 e l s e

36 copy ( l e f t , r i ght , 1 0 ) ;

37 }
38 e l s e i f ( c r o s s i n g > 1)

39 {
40 copy ( temp , l e f t , 1 0 ) ;

41 c r o s s i n g1 = 0 . 5∗ ( c r o s s i n g1 + c r o s s i n g2 ) ;

42 /∗ . . . snipped update o f Sca l e and Root ∗/
43 }
44 }
45 }
46 phase2 ( l e f t , rootpos ) ;

47 r e turn true ;

48 }
49

50 void be rn s t e i n2Sca l edBe rn s t e in ( r e a l t poly [ 1 0 ] ) ;

51 r e a l t eva lSca l edBerns te inHorner ( r e a l t poly [ 1 0 ] , r e a l t where ) ;

52 void phase2 ( r e a l t poly [ 1 0 ] , r e a l t& rootpos )

53 {
54 // begin phase two

55 be rn s t e in2Sca l edBe rn s t e in ( poly ) ;

56 r e a l t a = 0 ;

57 r e a l t b = 1 ;

58 r e a l t f a = poly [ 0 ] ;

59 r e a l t fb = poly [ 9 ] ;

60 // i n i t c with f i r s t ze ro c r o s s i n g

61 r e a l t c = c r o s s i n g1 ;

62 r e a l t fc , u ;

63

64 f c = eva lSca l edBerns te inHorner ( l e f t , c ) ;

65 i f ( abs ( f c ) < RES)

66 {
67 rootpos = c ;

68 /∗ . . . snipped update o f Sca l e and Root ∗/
69 r e turn true ;

70 }
71

72 i f ( f c ∗ f a > 0 . 0 )

73 a = c , f a = f c ;

74 e l s e

75 b = c , fb = f c ;

76

77 f o r ( s i z e t i t e r a t i o n = 1 ; i t e r a t i o n < i t e r a t i o n s ; ++i t e r a t i o n s )

78 {
79 i f ( i t e r a t i o n % 2)

80 // r egu la f a l s i s t ep

81 c = ( a∗ fb−b∗ f a )/ ( fb−f a ) ;

82 e l s e
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83 // binary step

84 c = 0 . 5∗ ( a+b ) ;

85 f c = eva lSca l edBerns te inHorner ( l e f t , c ) ;

86

87 i f ( f c ∗ f a > 0 . 0 )

88 a = c , f a = f c ;

89 e l s e

90 b = c , fb = f c ;

91 }
92 }

Listing A.4: Simplified C code for our Sturm Series based Rootfinder for the tri-cubic

case.
1 void ca l cS t rumSer i e s ( r e a l t ∗∗ sturmChain ) ;

2 unsigned sturmComputeSignChanges ( r e a l t ∗∗ sturmChain , r e a l t pos )

3 {
4 unsigned changes = 0 ;

5

6 // i n i t va lue s

7 r e a l t va lue [ 1 0 ] ;

8 f o r ( i n t i = 0 ; i < 10 ; ++i ) va lue [ i ] = 0 ;

9

10 // eva luate sturm chain f o r pos us ing horner scheme

11 f o r ( i n t i = 0 ; i < 10 ; ++i )

12 f o r ( i n t j = 9− i ; j >= 0 ; −−j )

13 {
14 i f ( j != 0)

15 value [ i ] = ( value [ i ] + sturmChain [ i ] [ j ] ) ∗ pos ;

16 e l s e

17 value [ i ] += sturmChain [ i ] [ j ] ;

18 }
19

20 // check s i gn changes

21 f o r ( i n t i = 1 ; i < 10 ; ++i )

22 changes=changes+(value [ i −1]∗ value [ i ] < 0 ) ;

23 r e turn changes ;

24 }
25

26 bool sturmbinary ( r e a l t poly [ 1 0 ] , r e a l t& rootpos )

27 {
28 // par t s o f the sturm s e r i e s

29 r e a l t s t1 [ 9 ] , s t2 [ 8 ] , s t3 [ 7 ] , s t4 [ 6 ] , s t5 [ 5 ] , s t6 [ 4 ] , s t7 [ 3 ] , s t8 [ 2 ] , s t9 [ 1 ] ;

30 r e a l t ∗ sturmChain [ 1 0 ] = { poly , st1 , st2 , st3 , st4 , st5 , st6 , st7 , st8 , s t9 } ;
31 ca l cS t rumSer i e s ( sturmChain ) ;

32

33 // s ignchanges

34 unsigned sc a , s c b ;

35 r e a l t pos a ( 0 ) , pos b ( 1 ) ;

36

37 s c a = sturmComputeSignChanges ( sturmChain , pos a ) ;

38 s c b = sturmComputeSignChanges ( sturmChain , pos b ) ;

39 i f ( sca == scb )// equal number o f s i gn changes −> no root

40 r e turn f a l s e ;

41

42 f o r ( unsigned i t = 0 ; i t < ITERATIONS; ++i t )

80



43 {
44 r e a l t pos m = 0 .5∗ ( pos a+pos b ) ;

45 unsigned sc m = sturmComputeSignChanges ( sturmChain , pos m ) ;

46 i f ( sc m == sc a ) //no zero in f i r s t h a l f

47 // second ha l f w i l l be subdiv ided f u r t h e r

48 pos a = pos m , s c a = sc m ;

49 e l s e // z e r o s in f i r s t h a l f

50 // f i r s t h a l f w i l l be subdiv ided f u r t h e r

51 pos b = pos m , sc b = sc m ;

52 }
53 r e turn true ;

54 }
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