
Master’s Thesis

LEARNING OBJECT DETECTORS FROM

MULTIPLE CAMERAS BY CENTRALIZED

INFORMATION FUSION

Armin Berger

Graz University of Technology
Erzherzog-Johann-Universität

Institute for
Computer Graphics and Vision

Supervisor:
Univ.-Prof. Dipl.-Ing. Dr.techn. Horst Bischof

Advisors:
Dipl.-Ing. Dr.techn. Peter Roth

Dipl.-Ing. Christian Leistner

Graz, March 2010



  
Senat 

 
 
Deutsche Fassung: 
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008 
Genehmigung des Senates am 1.12.2008 
 
 
 
 
 
 

EIDESSTATTLICHE  ERKLÄRUNG 
 
 
 
Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die 
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich 
entnommene Stellen als solche kenntlich gemacht habe. 
 
 
 
 
 
 
Graz, am ……………………………    ……………………………………………….. 
         (Unterschrift) 
 
 
 
 
 
 
 
 
 
Englische Fassung: 
 
 

STATUTORY DECLARATION 
 

 

I declare that I have authored this thesis independently, that I have not used other than the declared 

sources / resources, and that I have explicitly marked all material which has been quoted either 

literally or by content from the used sources.  

 
 
 
 
 
……………………………    ……………………………………………….. 
 date        (signature) 
 
 



Abstract

Automated object detection is an important task in computer vision and visual surveillance

in particular. It is a difficult task to train accurate detectors that have a high performance on

a wide variety of scenes. For this purpose, recently, in surveillance multi-camera networks

attracted interest for training scene specific detectors to improve the detection performance

and decrease the false positive rate, since there are many problems that cannot be tackled

with single camera approaches (e.g. occlusion handling).

This thesis introduces a novel centralized approach to simplify information fusion within

a multi-camera network by learning an object detectors from multiple cameras. This ap-

proach allows to collect information form an arbitrary number of cameras. Having cal-

ibrated cameras, where the calibration has to be performed only once for each camera,

the centralized approach projects each camera’s detection information to a central (virtual)

camera. A mean-shift algorithm extracts local maxima from the fused information. This

location information is back-projected to the single camera views to extract additional ex-

amples for training. The approach is demonstrated for the task of person detection within

an on-line boosting framework. A detailed analysis of the learning behavior is given and it

is shown that the performance of state-of-the-art detectors can be achieved on single camera

views although only a small number of labeled training examples are used.
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Kurzfassung

Automatische Objektdetektion spielt eine wichtige Rolle im Bereich des maschinellen Se-

hens und in der optischen Überwachung. Jedoch erweist sich das Trainieren von generellen

Objektdetektoren die in möglichst vielen Umgebungen einsetzbar sind als äußerst schwie-

rig. Aus diesem Grund werden seit kurzem Konfigurationen mit mehreren Kameras zum

Trainieren von szenenspezifischen Detektoren im Überwachungsbereich verwendet um die

Detektionen zu verbessern und falsche Detektionen zu verhindern, da mit einzelnen Kame-

ras einige Probleme nicht gelöst werden können (z.B. Behandlung von Verdeckungen).

Diese Arbeit präsentiert einen neuen zentralistischen Ansatz um die Fusionierung der

Informationen mehrerer Kameras durch Lernen von Objektdetektoren zu vereinfachen. Der

Ansatz erlaubt es Informationen von einer beliebigen Anzahl an Kameras zu sammeln. Die

Verwendung von kalibrierten Kameras, die nur einmal kalibriert werden müssen, erlaubt

eine Translation der Detektionen jeder einzelnen Kamera in eine zentrale Ebene. Auf die-

se zentrale Ebene wird ein Mean-Shift Algorithmus angewandt um alle darin enthalten-

den lokale Maxima zu finden. Die Positionsinformationen der lokalen Maxima werden in

die einzelnen Kameras zurück projiziert um an den resultierenden Stellen positive Trai-

ningsbeispiele zu extrahieren. Dieser Ansatz wird anhand der Personendetektion in einem

Online-Boosting-Framework demonstriert. Das Lernverhalten wird im Detail analysiert und

es wird gezeigt, dass die Ergebnisse eines aktuellen Detektors auch mit einer sehr geringen

Anzahl an annotierten Trainingsbeispiele auf einzelnen Kameras erzielt werden können.
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Chapter 1

Introduction

In general, object detection is a challenging and important task in computer vision and vi-

sual surveillance. According to increasing visual surveillance also the amount of data that

has to be analyzed increases. Thus, systems for automated detection and analysis are re-

quired. The most important approach to tackle such a detection task is to apply a sliding

window technique. This means that an image is divided into a fine grid of overlapping sub-

patches on various scales. Then each patch is evaluated and checked if it corresponds to a

previously learned model. Early approaches used background models to tackle the detec-

tion task of single moving objects in un-cluttered scenes. In principle, this model can be

either generative or discriminative. Generative models directly describe the training data.

As a result, these models can create new synthetic data. In contrast, discriminative models

learn the relation between the data and its corresponding labels. Discriminative models can

be efficiently evaluated for new data, whereas generative models probably require several

iteration steps to derive a solution. As a result wrong predictions may occur if unknown

examples have to be predicted. Nowadays, the objects are modeled using a learning algo-

rithm. This means that the models are derived from numerous examples. Vaillant et al. [97]

and Sung and Poggio [91, 92] were one of the first that used a data driven learning-based

technique to tackle the object detection problem. For example, state-of-the-art approaches

use Boosting [33, 84] or Support Vector Machines [99] to solve this problem.

It is a fact that recent research only focused on effectively learning models and training

classifiers with high performance instead of efficiently labeling and acquiring accurate train-

ing data. Anyway, large amounts of positive and negative training examples are required to

train high quality classifiers, but usually this examples have to be obtained by hand labeling,

which is time consuming and thus very expensive. Semi-supervised learning [13] methods

can be applied instead of using supervised learning methods. In general, semi-supervised

learning uses labeled and unlabeled data to train a classifier. This means that a small num-
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ber of labeled examples is processed to train an initial classifier which is improved with

unlabeled data afterwards. For example, Blum and Mitchell [8] introduced co-training. Co-

training is a semi-supervise learning approach, which uses redundant views on the training

data to improve a pair of classifiers. In detail, co-training generates two initial classifiers

using labeled examples and further it uses predicted information form one classifier to train

the opposite classifier. Levin et al. [54] were the first that used co-training to learn an object

detector for a computer vision application. They used gray-value image information to train

one classifier and background/motion information to train a second classifier. These two

classifiers were then improved within a co-training framework.

The reason of using multiple cameras for a detection or tracking task is diversified.

For instance, it allows to address problems with occlusions, since single camera view ap-

proaches are unable to handle occlusions. Further, most single camera approaches for object

detection require large amounts of training data to create as general detectors as possible.

Nevertheless, most of these single camera approaches fail in practice due to lacks of repre-

sentation. To overcome such problems Leistner et al. [52] recently proposed a co-training

framework to train adaptive scene specific classifiers using information from multiple cam-

eras. This approach was extended by Roth et al. [83] later on. They assumed to use different

camera views as different views on the data. In detail, they used geometric relations be-

tween the cameras to share information between the camera views as proposed in [4], [47]

or [48], who used rather simple object or motion detectors. Most multi-camera systems es-

timate homographies to transfer information between the cameras. For example, Mueller et

al. [62] introduced a common ground plane and estimated the homographies using at least

four points from within the ground plane. By contrast, Stauffer and Tieu [89] used trajec-

tories, that were estimated from tracking data in single views, to estimate homographies

between single camera views. Further, Fleuret et al. [31] used a central 2D occupancy map

to combine information from different cameras.

The contribution of this work is to develop a centralized approach for object detection

in a multi-camera setup, whereas the cameras have partially overlapping fields of views.

The object detector is required to extract high-quality positive examples from the training

data. This approach to automatic labeling of data has two positive side-effects. First, a

high-performance object detector is trained and second, all resulting positive training data

can be deployed to train other object detectors.

The remainder of this thesis is organized as follows: In Chapter 2 several feature types

are discussed for a low-level image representation and methods that enable a fast feature

evaluation. Then, Chapter 3 depicts the basics of visual learning including the on-line

boosting approach that is required to perform learning from multiple camera views. Chap-

ter 4 derives the geometry that is essential for combining information from several cameras
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within a 3D scene. Additionally, it discusses the baseline approach on which this thesis

is built on. Further, Chapter 5 proposes the centralized approach that merges information

from several cameras using geometric constraints and it obtains positive examples using the

merged information. Chapter 6 shows experiments using the centralized approach and the

corresponding results. Finally, Chapter 7 draws the conclusion of this work and gives a

short summary.



Chapter 2

Image Representation

In this chapter we discuss image features and image representation. Image features con-

stitute the basis for complex image analysis, e.g., object detection, object recognition, or

object tracking. These tasks are very challenging, since real-world objects have a huge

variability in color, texture and appearance. For this reason it is essential to have descrip-

tive image features which are easy to compute and sufficiently describe the appearance of

objects by handling its variability. In specific cases it is necessary to turn an image into

a special image representation to compute and evaluate certain features. Moreover, at the

use of image sequences also motion information can be used to detect objects. A simple

method to obtain motion information from an image sequence is to identify the image parts

that belong to the background. This means that background models are derived to obtain

foreground and motion information.

In short, Section 2.1 presents an overview of widely used features. Section 2.2 intro-

duces the combination of different feature types. Section 2.3 depicts several image represen-

tations that allow a more efficient feature computation and evaluation. Finally, Section 2.4

depicts a simple background model that allows foreground and background identification in

image sequences.

2.1 Image Features

Image features either describe global or local image information, whereas local features

either represent information which is obtained through a local neighborhood operation or

they describe the image structure directly. In case of neighborhood operations a feature

response vector or a feature response value indicates the presence or the absence of special

image structures at certain places. For instance, certain features indicate the existence of

simple points, lines, edges, or even more complex structures. In general, these features

4



2.1. Image Features 5

have to be descriptive enough to represent specific objects. On the other hand the features

have to circumvent the object variability such that it is possible to derive an object model.

Additionally, these features should be easy to compute, since huge numbers of features have

to be evaluated.

2.1.1 Haar Wavelets

Oren et al. [69] and Papageorgiou et al. [76] proposed Haar wavelets in computer vision

for recognition tasks. Haar wavelets compute differences of averaged intensities in certain

regions. Originally there have been only three different types of Haar wavelets (see Fig-

ure 2.1a). Within this thesis an extended set of Haar-like wavelets is used similar to Viola

and Jones [100] (see Figure 2.1. Haar-wavelets are closely related to Gabor Filters1 [3], but

they are much easier and faster to compute. Lienhart and Maydt [55] proposed an further

extension to Haar-wavelets by using rotated versions of the original wavelets.

(a) Original Haar wavelets.

(b) Additional Haar-like wavelets.

Figure 2.1: (a) shows the original Haar wavelets used by Oren et al. [69] and (b)
shows the wavelets that are additionally used within this thesis.

Each wavelet describes a different type of edges or bars. For example, two-rectangle

wavelets consist of two rectangular regions of equal size that are horizontally or vertically

adjacent. Their feature response value is computed by summing up all pixel values in each

rectangular region and additionally computing the difference between these sums. Usually

the feature response is normalized to handle features on different scales. As a result, these

feature types indicate horizontal or vertical edges in the image. Another two-rectangle

1Gabor filters banks work similar to the visual image processing in the primary human visual cortex.
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wavelet consists of a larger rectangle that surrounds a smaller rectangle. The feature re-

sponse value is estimated as follows: the inner rectangle’s sum is subtracted from the sur-

rounding rectangle’s sum. Three-rectangle wavelets have an additional rectangle of equal

size compared to the others. In this case the sum of the center rectangle is subtracted from

the sum of the outer rectangles. High response values in conjunction with this special type

of features indicate horizontal or vertical lines. Finally there are four-rectangle wavelets

that compute the difference between diagonal pairs of rectangles. They indicate the occur-

rence of diagonal lines. Viola and Jones [100] used integral images to speed-up the feature

evaluation process. The computation of integral images is explained in Section 2.3.1.

2.1.2 Local Binary Patterns

Local Binary Patterns (LBP) were proposed by Ojala et al. [66] for face recognition. In

general, LBPn,r describe the texture of image patches by thresholding n neighboring points

that are placed equidistant on a circle with radius r to a central pixel. The value of the central

pixel defines the threshold. Usually, the value of any neighboring point is bilinearly inter-

polated if this point’s location does not match exactly a pixel’s location (see Figure 2.2a).

The original LBP operator considered the (8, 1) neighborhood only (see Figure 2.2b). This

means that each pixel takes n = 8 equidistant points from a circle with radius r = 1. Several

extensions [67] enabled the operator to use neighborhoods of different sizes, to use uniform

patterns or to use patterns that are rotation invariant. Uniform patterns LBP un,r with u = 2

allow at most two bitwise transitions per pattern only. The uniform patterns are assumed

to be circular: 00000000, 00110000, 11111000 or 11100011. These binary results are then

converted into decimal numbers. Based on these decimal numbers histograms are computed

to describe the texture within defined regions, since the number of uniform patterns is very

limited.

Within this thesis LBP are similarly computed as presented by Ahonen et al. [1]. They

assigned each uniform pattern to a single histogram bin. All remaining nonuniform patterns

are accumulated within one separate bin. The nonuniform patterns are merged within one

bin, because there is a large number of nonuniform patterns that occur very sparsely. Each

histogram bin Hi of a rectangular region Rj is computed as follows:

Hi,j =
∑
x,y

δ(Rlbp,j(x, y) = i) . (2.1)

Again using integral images significantly decrease the computation time for histograms of

several rectangular regions per image. The usage of integral images with LBP is depicted

in Section 2.3.2.
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(a) LBP with circular (8,1) neighborhood where the values of the red dots have to
be interpolated.

(b) Computing a LBP with (8, 1) neighborhood: neighboring pixels are thresh-
olded to get the binary pattern and then weights are assigned to get a decimal
value.

Figure 2.2: Estimating LBP: (a) neighborhood where some pixel values have to be
interpolated and (b) computation of the LBP pattern.

2.1.3 Histogram of Oriented Gradients

Histograms of oriented gradients (HOG) were originally proposed by Dalal and Triggs [20]

in context of human detection. Their method evaluates normalized local histograms of im-

age gradients in a dense grid. They divided the image into cells and computed a histogram

of oriented gradients within each cell. This is achieved by accumulating pixels with equal

gradient orientation per cell into one histogram bin. Either the cells are contrast normalized

to improve the invariance to illumination changes or several cells are combined to blocks

which are normalized (see Figure 2.3). For instance, Dalal and Triggs [20] combined four

cells to blocks and they additionally shared cells between these blocks to gain robustness.

In other words, each cell was assigned to at least four blocks. The derivations, which are es-

sential to compute each pixel’s gradient, are computed using [−1, 0,+1] and [−1, 0,+1]T

masks. Higher order filters or additional blurring would decrease the performance of the

HOG features [20]. After deriving the image, the unsigned gradients are voted into 9 his-

togram bins that are equally spaced between 0◦ and 180◦. The votes are based on the

gradient’s magnitude and are bilinearly interpolated between neighboring bin centers and

neighboring locations to reduce aliasing effects.

Within this thesis each block of HOG cells is assumed to be a single feature similar to

Zhu et al. [107]. Dalal and Triggs used cells with a fixed size and thus all blocks were of

equal size. Zhu et al. allowed variable sized blocks with an aspect ratio of (1 : 1), (1 : 2)
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or (2 : 2), such that each block returns a 36 dimensional histogram. The 36D histogram is

created by concatenating 2× 2 adjacent cells whereas each cell is described by a histogram

of 9 bins. Each block response is seen as one feature response vector v. Additionally, the

response vectors are normalized using L2-norm

v→ v√
‖v‖22 + ε2

,

which is followed by clipping. The clipping limits the maximum values of v to 0.2.

The HOG feature computation process is computationally much more expensive than

computing simple Haar-like features. Anyway, the computation time of HOG features also

can be decreased using integral images. The computation of integral images in context of

HOG features is described in Section 2.3.3.

Figure 2.3: Computation of HOG feature response: compute the gradient of an im-
age; vote the gradient into histogram bins at each pixel; combine several
pixels to cells; compute histograms for each cell by accumulating the
bins; compute the block histogram by concatenating several cell his-
tograms.
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2.2 Combining Multiple Feature Types

To increase a classifier’s performance different features are applied in parallel. The huge

advantage of using different feature types is that different local image information can be de-

scribed. For example, HOG features describe the gradient distribution within image regions

using histograms, while LBPs describe the local texture within rectangular image regions.

There are several feature types that can be combined (e.g. [103, 63, 102, 71, 41, 82]). Wojek

and Schiele [103] systematically evaluated different feature types for general people detec-

tion. They used linear Support Vector Machines (SVMs) and AdaBoost in conjunction with

decision tree stumps for classification. Moreover, Wang et al. [102] concatenated the feature

response vectors of HOG features and LBP features to combine these feature types. They

used a linear SVM to learn these concatenated response vectors. Grabner et al. [41] or Roth

et al. [82] combined Haar-like wavelets, orientation histograms, and LBPs to improve a

classifiers performance. In this case orientation histograms correspond to Haar features that

are computed on gradient images. Levin et al. [54] even combined background and gray-

value information to improve a pair of classifiers. Negri et al. [63] combined Haar-features

and HOG-features using AdaBoost for vehicle detection.

The approach used within this thesis is strongly related to their approach. Within this

thesis different feature types are combined using a robust on-line boosting algorithm for

feature selection (see Section 3.4). In detail, subsets of Haar-like wavelets, HOG features

and LBPs are combined by creating a feature pool that contains these feature types with a

certain probability. Then the features with the lowest training error are selected on the basis

of this feature pool. Finally, on-line boosting is applied on this feature pool to select those

features that represent a set of training examples best.

2.3 Speed-up Feature Computation

In general, the total time for feature evaluation is influenced by two factors. On the one hand

the total number of features that have to be evaluated per example and on the other hand the

total number of examples that have to be processed. Hence, the feature computation and

evaluation process has to be efficiently implemented to be able to compute large classifiers

which evaluate numerous features. Additionally, large amounts of training data have to

be processed to obtain good classifiers. Therefore, the remainder of this section presents

the integral image representation and its variations for different feature types, that finally

speed-up the feature evaluation process.
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2.3.1 Integral Image Representation

Crow [17] introduced this method to compute summed-area tables for texture mapping.

Viola and Jones [100] used Crow’s idea to compute rectangular features (Haar-wavelets) in

constant time. In this case, only four image access operations are necessary to compute the

sum of a rectangular region. An integral image at location x, y contains the sum of all pixels

that are placed left and above this location including the pixel value at this position:

ii(x, y) =
∑

x′≤x,y′≤y
i(x′, y′) , (2.2)

where ii(x, y) expresses the integral image and i(x, y) corresponds to the input image. By

splitting up the computation step into two separate computations it is possible to create the

integral image in one pass over of the input image as follows:

s(x, y) = s(x, y − 1) + i(x, y) (2.3)

ii(x, y) = ii(x− 1, y) + s(x, y) , (2.4)

where s(x, y) denotes the cumulative row sum. Additionally, special cases concerning the

first row and the first column of the input image have to be considered:

s(x,−1) = 0 , (2.5)

ii(−1, y) = 0 . (2.6)

Based on the integral image representation the sum of pixel values within the rectangular

region D is defined as

D = d− b− c+ a , (2.7)

where location a contains the sum of all pixel values within rectangle A. Location b stores

the pixel value sum of area A plus area B. Further, location c contains the sum of A + C

and location d = A+B + C +D as illustrated in Figure 2.4.
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b b

b b

a b

c d

Integral Image

A

B

C

D

Figure 2.4: Rectangular sum computation with four access operations [100]: The
sum of all pixels within rectangle A is stored at location a in the integral
image. Location b equates to the sum of rectangle A + B, location c
corresponds to the pixel value sum withinA+C and d = A+B+C+D.
Therefore, the sum within rectangle D = d− b− c+ a.

2.3.2 LBP Integral Image Representation

The idea of computing a LBP integral image is related to computing standard integral im-

ages (see Section 2.3.1). However, LBP-features describe the texture in a rectangular re-

gion. Therefore, they compute a histogram to represent the distribution of the different

LBP. The standard integral image was not developed to handle multidimensional input data.

Porikli [77] proposed an approach to compute integral histograms for fast histogram extrac-

tion in d dimensional data. He defined the integral histogram H(xp, b) at a point xp, where

xp is a point along a sequence of points x0, . . . ,xp:

H(xp, b) =

p⋃
j=0

Q(f(xj)) , (2.8)

where Q(·) corresponds to the bin at the current point,
⋃

denotes the union operator,

and f is any function that maps the input points to a k-dimensional tensor, for example

f([x1, . . . , xd]) = [y1, . . . , yk]. Hence, H(xp, b) is equal to the sum of the previously vis-

ited point’s histogram bin values. In short, it defines the histogram between the origin and

the current point. Finally, a histogram is extracted by

h(T, b) =
d∑
r=0

(−1)r
Cd

r∑
l=1

H(xrl , b) , (2.9)
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where T is a target region. This target region is a polytope that is enclosed by a finite number

of hyperplanes within a cartesian space. Its boundary points are xrl where the indices in each

dimension consist of r coordinates x− and d− r coordinates x+. If r is fixed there are Cdr
such combinations. If r = 0 then there is one point; if r = 1 there are already d points, and

so forth. In case of d = 2 and k = 1 this formulation is equivalent to the integral image in

Section 2.3.1.

2.3.3 HOG Integral Image Representation

Zhu et al. [107] explained a method to efficiently compute HOG features using integral im-

ages. However, their approach is inferior to Dalal’s and Triggs’ method. Dalal and Triggs

additionally applied a Gaussian mask on the cells and used a spatial bilinear interpolation.

Additionally, they bilinearly interpolated between the bins for the HOG block generation to

avoid aliasing effects. Therefore, one separate integral image has to be computed per his-

togram bin as depicted in Section 2.3.2. Wang et al. [102] proposed to include the trilinear

interpolation into the integral image approach: Convoluted Trilinear Interpolation (CTI).

They also discretized the pixel gradient into 9 histogram bins, but then they treated the pixel

value at each position as a 9 dimensional vector to overcome the problem that the gradient

is a 2 dimensional vector (magnitude and angle) at each pixel. This means that they created

one image per histogram bin to store the gradient magnitude of a specific gradient direction

for each pixel (bin image). Hence, the value at each dimension equates to the value of the

interpolated magnitude at the corresponding direction. The trilinear interpolation has to be

done after the gradient discretization and before the integral images are constructed. This

consists of two steps. First the magnitude of the gradients is voted into the histogram bins

(bilinear interpolation) and then a 7× 7 convolution kernel

Conv(k)7×7 =
1

256



1 2 3 4 3 2 1

2 4 6 8 6 4 2

3 6 9 12 9 6 3
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2 4 6 8 6 4 2

1 2 3 4 3 2 1


(2.10)

is applied on the orientation bin images afterwards. Figure 2.5 illustrates the HOG integral

image computation process. Further, they used the Fast Fourier Transform (FFT) to accel-

erate the convolution with the interpolation kernel. Anyway, within this thesis FFT was not

applied to speed-up the convolution process, instead the large kernel is split up into two 1D
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kernels. The horizontal kernel is defined as

Convsep(k)1×7 =
1

16

[
1 2 3 4 3 2 1

]
(2.11)

and the corresponding vertical kernel is defined as Convsep(k)T . In fact, applying both

kernels on the bin images is equivalent to deploying the large kernel. Using the small

convolution kernels has the advantage that one convolution with each kernel is much faster

than using the large kernel. Hence, the computation time of both kernels together is even

faster than a convolution with the large kernel.

Figure 2.5: Trilinear interpolation method in context of integral images for his-
tograms [102].

2.4 Background Models and Motion Information

In video sequences it is often helpful to use motion information for foreground/background

identification. Modeling the background accurately constitutes the basis for efficient and us-

able background subtraction to obtain the motion information. Cheung and Chandrika [14]

compared various background modeling approaches. First, background modeling methods
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can be divided into two main categories: (i) non-recursive techniques and (ii) recursive

techniques. The following summary of non-recursive and recursive background model-

ing methods discusses only highly adaptive background modeling methods and does not

mention methods that require enormous resources for initialization as in [68, 42]. These

approaches use either eigenimages or temporal minimum, maximum and maximum inter-

frame differences at all identified background pixels.

Non-recursive techniques require a buffer to store a certain number of video frames.

Hence, the simplest background model is to compute the difference between two successive

video frames (frame differencing). However, this method is unable to identify pixels of

large uniformly-colored moving objects, since only one single previous frame is considered

to compute the difference image. More sophisticated methods use several images which are

stored in a buffer to estimate an accurate background model (e.g. [94, 28]). Another simple

and commonly used method is median filtering [19, 18]. In this case the background model

is estimated by computing the median at each pixel location for all frames in a buffer.

Recursive methods estimate the background model on-the-fly which means that they do

not use a buffer to store images. Therefore, they use either a Kalman filter as in [104, 50, 45],

a Mixture of Gaussians method [38, 88], or an approximated median filter [60].

Within this thesis an approximated median filter is used which is similar to McFarlane’s

and Schofield’s approach [60]. In general, the median cuts a distributions into two halves.

Assume a finite list of n numbers. If n is an odd number, than the median is computed by

first sorting the list (xi, . . . , xn) and selecting x̃, where

x̃ = xn+1
2

. (2.12)

On the other hand, if n is an even number, then there is no single middle value. In this case

the x̃ is often computed by taking the mean of the two middle values:

x̃ =
1

2

(
xn

2
+ xn

2
+1

)
. (2.13)

Hence, the median is more robust to outliers than the arithmetic mean. For this reason,

median filtering is also used in computer vision to remove salt and pepper noise in images.

This noise consists of random occurring white and black pixels.

McFarlane and Schofield proposed a recursive filter to approximate the median. This

approach has the advantage that no buffer is required and therefore no optimal buffer size

has to be determined to compute an approximation of the median. Within their approach the

approximated median is incremented by one if the input pixel value is larger than the current

approximation. On the other hand, if the input pixel value is smaller than the currently

approximated median, the current median’s approximation is decreased by one.
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Further, there are also various methods to detect the foreground pixels in images, as

described by Cheung and Chandrika [14], using the background model. Commonly a pixel

is assigned to the foreground, if the difference between an input image It at time t and the

background model Bgt at time t is smaller than a certain threshold T :

|It(x, y)−Bgt(x, y)| > T . (2.14)

A different approach that also detects the foreground is to threshold on the basis of the

normalized statistics:

|It(x, y)−Bgt(x, y)− µd|
σd

> Ts , (2.15)

where µd and σd equate to the mean and the standard deviation of It(x, y)− Bgt(x, y) for

all spatial locations (x, y). Usually, the thresholds T or Ts are determined experimentally.

Another possibility is to use a relative distance to additionally emphasizes the contrast in

dark areas:
|It(x, y)−Bgt(x, y)|

Bgt(x, y)
> Tc . (2.16)

2.5 Summary

In this chapter local feature types are discussed. On the one hand, the basics on comput-

ing Haar-like wavelets, Local Binary Patterns and Histograms of Oriented Gradients are

depicted. And on the other hand, integral images are presented to speed up the evaluation

of each feature type. Additionally, a short introduction on background modeling is given,

since background models also allow to detect foreground objects in video sequences. More-

over, the idea of combining multiple feature types to improve a classifier’s performance is

discussed shortly. In general, these image representations/features constitute the core ele-

ments of the object detector that is presented within this work, since the object detector uses

feature selection (see Section 3.3) to create accurate object models.



Chapter 3

Boosting for Visual Learning

In general, learning refers to the process of improving performance which is obtained

through well-directed efforts. Machine learning is closely related to statistics which means

that certain behaviors or models are derived from existing data. In detail, either generative

or discriminative data models are learned. Ulusoy and Bishop [96] compare both meth-

ods for object recognition. Discriminative object models describe the relation between data

and the corresponding labels. Using this relation such models are able to predict labels for

unknown examples, but they also interpolate between known examples, which may cause

wrong predictions for novel examples. Anyway, these models can be efficiently evaluated.

Alternatively generative object models can be learned, which directly model the training

data. Hence, such models are able to create new synthetic data and handle partially labeled

data. These models are learned incrementally which makes it easy to extend them.

In computer vision many techniques rely on machine learning or are even designed for

it. Bishop [6] reflects the recent development in the area of pattern recognition and machine

learning and gives introductions to various methods. Hence, there are various machine

learning methods, which can be divided into several categories, for example supervised

learning, unsupervised learning, or semi-supervised learning. Supervised learning methods

such as Bayes classifiers, Boosting [33, 84], Nearest Neighbor Algorithm [16], Random

Ferns [75], Random Forests [11] and Support Vector Machines [99] solely use training data

with known labels, whereas often large amounts of training data are required to train an

accurate classifier. For this purpose the training data have to be labeled previously, which is

time consuming and thus very expensive.

By contrast, unsupervised learning performs either some sort of clustering or blind

source separation, since this kind of algorithms use unlabeled examples only. In most cases

even the number of cluster centers within a dataset is unknown. Under this directive it is

very difficult to find the correct cluster centers. Duda et al. [26] give an overview of unsu-

16
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pervised learning methods and an introduction to clustering. In general, there are several

methods to perform efficient clustering. For instance, hierarchical clustering, which cre-

ates cluster centers in a tree structure, whereas the top level in the tree correspond to coarse

clusters and the lowest level correspond to a very fine clusters. Lloyd [56] proposed the stan-

dard k-means algorithm for clustering which is a Partitional Clustering method. Another

approach to clustering is conceptual clustering which uses the data structure by generating

a concept description of each cluster [61, 90]. Comon [15] introduced the concept of in-

dependent component analysis for blind source separation. More methods are introduced

in [23, 9, 39].

Semi-supervised learning [13] is a tradeoff between supervised and unsupervised learn-

ing. This means that these learning algorithms use labeled and unlabeled data. In general,

these methods use a small amount of labeled data to train a classifier and use large amounts

of unlabeled data afterwards to improve this classifier. Zhu [108] proposed an overview of

familiar semi-supervised learning techniques including multi-view learning [22, 86, 10] and

co-training [8, 65, 106].

Learning algorithms additionally can be separated into two main categories. On the one

hand there are off-line algorithms, that have access to all training data during the training

process. They create a classifier that is available after training. And on the other hand

there are on-line algorithms that operate on single examples only. This means that on-line

algorithms discard the example after processing. Hence, these algorithms do not need large

amounts of memory to save all training examples and the classifier is available all the time.

In general, off-line algorithms try to find the best possible solution to learn all training

data. By contrast on-line algorithms have to adapt their solution every time a new example

arrives.

In short, this chapter discusses the basics of boosting and object modeling in Section 3.1.

Section 3.2 discusses the advantages of on-line boosting in contrast to off-line boosting.

Section 3.3 depicts the usage of boosting for computer vision tasks and how boosting is

deployed for feature selection. Further, Section 3.4 presents a robust method for off-line

and on-line boosting to better handle wrongly labeled data. Finally, the concept of cascades

and the WaldBoost algorithm is explained in Section 3.5 to speed-up the evaluation of large

classifiers.

3.1 Boosting

Boosting is a supervised learning method that has been successfully used for many machine

learning tasks such as text filtering, routing, and medical diagnosis. A more comprehensive

list of machine learning tasks using boosting can be found in [85]. In general, boosting im-
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proves the accuracy of any given learning algorithm by linearly combining weak classifiers

to form a strong classifier. There is also a strong relation between boosting and support vec-

tor machines as discussed in [79]. For example, both methods try to maximize the margin

between positive and negative training examples to find a proper decision boundary. Fur-

ther, they generate discriminative models to describe objects. Freund [33] and Schapire [84]

published the original boosting algorithms. Today there is a large number of different boost-

ing algorithms. The primary divergency between most of these algorithms is the method of

computing the training example weights and weighting the weak learners. Table 3.1 depicts

the AdaBoost algorithm which was proposed by Freund and Schapire [35].

• RequiresN labeled training examples (xn, yn), a base learning algorithm Lb and
the number of base models M

• Initialize D1(n) = 1
N for all n ∈ {1, . . . , N}

• For m = 1, . . . ,M :

1. Call Lb with the distribution Dm

2. Get back a hypothesis hm : X → Y

3. Calculate the error of hm : εm =
∑

n:hm(xn)6=yn Dm(n)

4. If εm > 1
2 then set M = m− 1 and abort loop

5. Set βm = εm
1−εm

6. Update distribution Dm:

Dm+1(n) = Dm(n)
Zm

×
{
βm ifhm(xn) = yn
1 otherwise

where Zm is a normalization constant chosen so that Dm+1 is a probability
distribution

• Output the final hypothesis: H(x) = arg maxy∈Y
∑

m:hm(x)=y log 1
βm

.

Table 3.1: AdaBoost algorithm proposed by Freund and Schapire [35].

3.1.1 Weak Classifiers

In principle, a weak classifier ht can be any kind of decision rule that has to perform slightly

better than making a random decision, e.g., a Bayes classifier, a decision tree, or something

superior. Hence, in case of a binary decision task the error rate has to be below 50%. For

example, binary decision stumps estimate the mean and the variance of a positive and a

negative class respectively. A simple threshold between the mean values is sufficient to

derive a hypothesis for unknown examples. In particular, within this thesis histograms and

nearest neighbor classifiers are used as weak learners.
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Histograms are able to handle multi-modalities and can still be efficiently computed

even in the on-line case. In the binary case there have to be two probability distributions.

A weak classifier’s positive feature responses are incrementally added to the correspond-

ing positive distribution’s bins W i
t,+ during training and the negative feature responses are

added to the corresponding negative distribution’s bins W i
t,−. As mentioned before, the

creation is straight forward. Further, the evaluation is also easy to perform. The evaluation

procedure consists of comparing the positive and the negative distributions. A confidence

measure is computed using these distribution values as in [78]:

ht(i) =
1

2
log

(
W i
t,+

W i
t,−

)
. (3.1)

A distribution is more accurately modeled if more histogram bins are used, but using too

many bins may cause overfitting whereas using too little bins may causes underfitting and a

loss of accuracy.

Nearest neighbor classifiers model the cluster center c+ of the positive training data

and the cluster center c− of the negative training data respectively. This classifier predicts

an unknown example x to be positive if

d(x, c+) < d(x, c−) (3.2)

and vice versa. Therefore, a distance measure d(p,q) is essential. The Euclidean distance

is a proper choice in the Euclidean space:

d(p,q) =
√

(p1 − q1)2 + (p2 − q2)2 + . . .+ (pn − qn)2 . (3.3)

Further, the nearest neighbor classifier is able to handle nD feature responses. The on-line

nearest neighbor classifier has to estimate an on-line mean for feature responses computed

on positive data c+ and an on-line mean for feature responses determined on negative ex-

amples c−, that were already processed.

3.1.2 Strong Classifiers

A strong classifierH is constructed by computing a linear combination of T weak classifiers

ht, where T defines the number of iterations:

H(x) =
T∑
t=1

αtht(x) . (3.4)

The weights αt are inversely proportional to the training error εt of each weak classifier ht.
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3.2 Off-line Boosting versus On-line Boosting

An on-line learning algorithm processes an example only once as it arrives. This means

that an example is discarded after it is processed and that the classifiers are learned incre-

mentally. This approach is needed if data continuously arrives or huge data sets have to

be processed, since most off-line learning algorithms have to process examples multiple

times. Another advantage of on-line learning methods is that the classifier is available for

classification of unknown examples all the time.

Oza and Russel [74] developed an on-line boosting algorithm (see Table 3.2) that corre-

sponds to the off-line AdaBoost.M1 algorithm [35]. The on-line algorithm requires a set of

M weak learner hm, an incremental on-line learning strategyOnlineBase(), and a training

example d. The on-line learning strategy takes a current hypothesis and the current example

and returns an updated hypothesis. If an example is misclassified the example weight λd is

increased for the next weak learner using a loss-function, otherwise it is decreased. In the

off-line case the sum of all weights equates to one, but in the on-line case the sum of all λs

equates to N , which is the number of examples that have been already processed. Hence,

λscm and λswm are scaled, which correspond to the number of correctly and wrongly classified

examples. Introducing the scale factors f cm and fwm leads to

λscmf
c
m =

N

2
=⇒ f cm =

N

2λscm
(3.5)

λswm fwm =
N

2
=⇒ fwm =

N

2λswm
, (3.6)

where λscm and λswm can be treated as weights. Further, it is expected that λscm > N
2 and

λswm < N
2 , f cm < 1, and fwm > 1. Therefore, the weights of correctly classified examples

decrease and the weights of incorrectly classified examples increase. Oza [72] also showed

that on-line computed weak Naı̈ve Bayes classifiers converge to the weak Naı̈ve Bayes

classifiers that are obtained by an off-line boosting algorithm if the number of iterations

converges to infinite and if the same training examples are processed in both cases.
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• Requires M on-line weak learners hm and a training example d.

• Set example’s weight λd = 1.

• For m = 1, . . . ,M :

1. Set k according to Poisson(λd).

2. Do k times: hm = OnlineBase(hm, d)

3. If hm(d) is correctly labeled

(a) λscm ←− λscm + λd

(b) λd ←− λd
(

N
2λscm

)
4. Else

(a) λswm ←− λswm + λd

(b) λd ←− λd
(

N
2λswm

)
To classify new examples:

• For m = 1, . . . ,M :

1. Calculate εm = λswm
λscm+λswm

2. Calculate βm = εm
1−εm

• Return:
h(x) = arg max

c∈C

∑
m:hm(x)=y

log
1

βm
. (3.7)

Table 3.2: On-line boosting algorithm proposed by Oza and Russel [74].

3.3 Boosting for Feature Selection

For computer vision tasks like object detection or object tracking, the objects are modeled

using image features to obtain robustness. In specific cases the number of possible image

features can be very large. Assuming a rectangular detection window with the size 30× 60,

creating all possible Haar-features within this window would lead to an overcomplete set of

several million features. It is impossible to perform a complete evaluation using all features

because of limited resources. Thus, an optimal subset of features Fsub is extracted from the

entire set of all possible features F . For this reason, Fsub should be able to represent the

designated objects as best as possible. In detail, the designated objects are modeled using

several weak learners, whereas one feature is assigned to one weak learner, on the basis

of feature response values. Finally, numerous weak learners are boosted to form a strong

classifier. As a result, this strong classifier only depends on a small number of features.
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3.3.1 Off-line AdaBoost

Tieu and Viola [93] were the first that enabled AdaBoost to solve a feature selection task.

Their approach requires a set X = {(x1, y1), . . . , (xL, yL)} of labeled training images,

where yi = 0, 1 for negative and positive examples respectively. This training data set

is divided into m negative and l positive examples. Based on this information the initial

example weights are set to w1,i = 1
2m ,

1
2l for yi = 0, 1 respectively. The boosting algorithm

trains a weak classifier hj for each feature j using the example weights wt at time t. Based

on the resulting training errors εj the weak learner with the lowest error is selected and

added to Fsub:
εj = Prwt

i [hj(xi) 6= yi] , (3.8)

where εj specifies the proportion of wrongly predicted examples by the weak learner hj .

On the basis of the lowest training error εt = εj the new example weights are computed as

follows:

wt+1,i = wt,iβ
1−ei
t , (3.9)

where ei = 0, 1 for the example xi whether it is correctly or incorrectly predicted and

βt =
εt

1− εt
. (3.10)

Additionally all weights wt+1,i are normalized to form a distribution:

wt+1,i =
wt+1,i∑n
j=1wt+1,j

. (3.11)

Finally, a strong classifier is computed on linearly combining the selected weak learners:

H(x) =
T∑
t=1

αtht(x) ≥ 1

2

T∑
t=1

αt , (3.12)

where

αt = log
1

βt
. (3.13)

An overview of this off-line feature selection algorithm is depicted in Table 3.3.
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• Given example images (x1, y1), . . . , (xn, yn) with yi = 0, 1.

• Initialize weights w1,i = 1
2m ,

1
2l for yi = 0, 1

• For t = 1, . . . , T :

1. Train one hypothesis hj for each feature j using wt, with error
εj = Prwt

i [hj(xi) 6= yi].

2. Choose ht(·) = hk(·) such that ∀j 6= k, εk < εj and set εt = εk

3. Update:
wt+1,i = wt,iβ

1−ei
t ,

where ei = 0, 1 for the example xi and βt = εt
1−εt .

Normalize wt+1,i ← wt+1,i∑n
j=1 wt+1,j

• The final hypothesis is:

H(x) =
T∑
t=1

αtht(x) ≥ 1

2

T∑
t=1

αt ,

where αt = log 1
βt

Table 3.3: Discrete off-line AdaBoost algorithm for feature selection [93].

3.3.2 Discrete On-line Boosting

Based on the Oza’s ideas (see Section 3.2), Grabner and Bischof [40] presented an on-line

boosting framework for feature selection. For this purpose they introduced a new concept

called selector, since Oza’s approach is not directly applicable to extract a subset of features

Fsub from F .

A selector holds a fixed set of M weak learners. Each weak learner is assigned to a

feature. And the weak learner with the lowest training error corresponds to the selector’s

decision. Therefore, a selector acts like a weak classifier. If a selector hsel is trained, all its

weak classifiers are updated with respect to the importance weight λ of the current example:

hsel(x) = hm(x) , (3.14)

where

m = arg min
i
ei . (3.15)

The training error ei for each weak classifier hi is computed using the number of correctly
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λcorrecti and wrongly λwrongi classified examples that have already been processed:

ei =
λwrongi

λcorrecti + λwrongi

. (3.16)

The on-line boosting algorithm for feature selection is illustrated in Figure 3.1. It is ini-

tialized with N selectors hsel1 , . . . , hselN that contain a fixed number of weak learners which

are assigned to randomly generated features. Now, each selector has its own feature pool

Fsub,n. If a new training example 〈x, y〉 arrives, all weak learners within the first selector

are updated with the example weight λ = 1 and the weak learner with the lowest training

error εt is selected. Note, that the weak classifiers can be updated by any on-line learning

algorithm. Further, λ and the update weight αn are computed using the selector’s training

error. λ is passed to the next selector until all selectors are computed. The strong classifier

H that results form on-line boosting is available any time and it is computed by linearly

combining all selectors using αn:

H(x) = sign

(
N∑
n=1

αn · hseln (x)

)
. (3.17)

Figure 3.1: On-line boosting for feature selection proposed by Grabner and
Bischof [40].
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3.4 Robust Boosting

Maclin and Optiz [57] were one of the first that noticed AdaBoost’s sensitivity to label noise

(i.e. an example was wrongly labeled during the labeling process). Generally, AdaBoost

tries to learn the training examples by re-weightening the examples. This means that high

weights are assigned to hard examples and low weights are assigned to easy examples,

respectively. This enables the algorithm to concentrate on the hard examples. If a weak

learner predicts the actual label of the example and the actual label does not coincide with

the assigned label, AdaBoost increases the weight of this specific examples to concentrate

on it. Hence, the weak learners are forced to learn this noisy examples which may corrupt

the learned classifier. Mason et al. [59] were the first who analyzed boosting algorithms

using functional gradient descent that seem to be more robust in case of label noise if certain

loss functions are used. Within this context they also proposed the AnyBoost framework that

allows to easily change the loss functions.

In general, a loss function describes the cost or the effort of specific events. In other

words, it maps an event onto a real value. In case of boosting they map the classification

margin to real values.

Mason et al. also proposed the DoomII loss function [59] that shows increased ro-

bustness to noisy data label. Further, Friedman et al. [36] showed the connection between

boosting algorithms and stage-wise additive logistic regression methods. They proposed

another loss function and the corresponding boosting algorithm (LogitBoost). Other loss

functions and boosting methods are published in [25] (MadaBoost), [34] (BrownBoost)

and [58] (SavageBoost). Table 3.4 and Figure 3.2a illustrate possible loss functions. Differ-

ent loss functions have different effects on the training strategies if label noise is present.

loss functions
Exponential `exp(yH(x)) = exp(−yH(x))

DoomII `doom(yH(x)) = 1− tanh(yH(x))

Logit `log(yH(x)) = log(1 + exp(−yH(x)))

Savage `sav(yH(x)) = 1/(1 + exp(2yH(x)))2

Table 3.4: Most commonly used loss functions for boosting.

As already mentioned, AdaBoost strongly weights mislabeled examples. The corre-

sponding loss function increases exponentially which originates the aggressive weighting

strategy. For instance, the Logit loss function increases linearly in case of misclassification

which is less aggressive and the Savage and the DoomII loss functions are even constant

from a certain point on. As a result, these loss functions stop penalizing the classifier if

it continuously predicts the wrong label in case of massive misclassification. Additionally,

Figure 3.2b reflects the corresponding weight functions.
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Figure 3.2: Different loss functions used for boosting and their corresponding
weight functions.

Leistner et al. [53] introduced an on-line boosting algorithm for feature selection that

is an on-line formulation of the GradientBoost proposed by Friedman [37]. Friedman’s

approach performs stage-wise gradient descent at a given loss function. Leistner et al.

derived that maximizing the weighted classification accuracy

ft(x) = arg max
f(x)

N∑
n=1

wnynf(xn) , (3.18)

where wn = −`′(ynFt−1(xn)), is equivalent to solving the optimization problem which

uses a loss function ` to find a set of weak learners {f1(x), . . . , fM (x)} and the corre-

sponding boosting model

F (x) =
M∑
m=1

fm(x) , (3.19)

that minimizes the loss. This boosting model is slightly differs form a discrete boosting

model (see Equation 3.17), since this approach uses a probabilistic output of the weak learn-

ers like the RealBoost algorithm [36] does:

f(x) =
1

2
log

p+(x)

1− p+(x)
, (3.20)

where p+(x) constitutes the probability of the sample to be positive. This robust on-line

boosting algorithm for feature selection is depicted in Table 3.5. In detail, the algorithm

uses a fixed set of weak learners and performs boosting on the selectors, similar to the on-

line boosting algorithm in Section 3.3. Again each selector selects its weak learner with the
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lowest total weight error:

fm(xn) = f jm(xn) , (3.21)

where

j = arg min
k
ekm . (3.22)

The total weight error is computed for each weak learner as follows:

ekm = ekm + wn · δ(sign(fkm(xn)) 6= yn) , (3.23)

where

δ(x) =

{
1, if x = true

0, if x = false
. (3.24)

The optimization step, that is depicted in Equation 3.18, is iteratively performed. This

means that the samples are propagated through the selectors and that the weights λm are

estimated according to the negative derivative of the loss function (see Figure 3.2).

• Requires a training example (xn, yn), a differentiable loss function `(·), M se-
lectors and K weak learners per selector

• Set F0(xn) = 0 and set initial weight wn = −`′(0)

• For m = 1, . . . ,M :

1. For k = 1, . . . ,K:

(a) Train kth weak learner fkm(x) with 〈xn, yn〉 and weight wn
(b) Compute error: ekm = ekm + wn · δ(sign(fkm(xn)) 6= yn).

2. Find best weak learner with the least total weighted error:
j = arg mink e

k
m

3. Set fm(xn) = f jm(xn)

4. Set Fm(xn) = Fm−1(xn) + fm(xn)

5. Set the weight wn = −`′(ynFm(xn))

• Output the final model: F (x)

Table 3.5: Robust on-line boosting algorithm for feature selection introduced by
Leistner et al. [53].
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3.5 Speed-up Classifier Evaluation

In general, is the goal to maximize the performance and minimize the evaluation time of

classifiers. In other words, the classifiers should have a high recall and a high precision and

should be evaluable in real time. The classifier performance is mostly improved by using

larger classifiers if the tasks to solve become harder.

An excellent method to decrease the evaluation time for large classifiers is the usage of

cascades or WaldBoost.

3.5.1 The Concept of Cascades

Cascades of classifiers are completely degenerated decision trees (see Figure 3.3) that per-

form early rejection of wrongly classified image patches. In general, the idea is to use sim-

ple and small classifiers at low cascade stages to reject the majority of examples as early as

possible. This means that an example is passed on to the next classifier only if the response

of the current classifier is positive. If any classifier in the cascade computes a negative re-

sponse for an example, this example is rejected immediately and no longer processed (see

Figure 3.3). In order to get an efficient classifier, each cascade stage has to reduce the false

positive rate.

Figure 3.3: Typical structure of a classifier cascade.

Viola and Jones [100] introduced cascades to perform a fast evaluation on large classi-

fiers for object detection. They constructed the cascade stages by training classifiers using

Adaboost. Afterwards they adjusted the thresholds to minimize the false negatives. Any-

way, lower thresholds not only lead to higher detection rates but also to higher false positive

rates. Within their approach they added features until a defined detection rate and the false

positive rate are met. Further, stages are added to the cascade until an overall detection rate

and false positive rate are met.

The cascades that are used within this thesis are related to Visentini et al. [101]. They

proposed a framework to build a cascade of on-line updated classifiers within an on-line

boosting framework [73]. Each weak learner’s training error constitutes the basis for the
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level a weak learner belongs to. A low training error indicates a low false negative rate.

Ideally the first cascade levels have a low false negative rate and a moderate false positive

rate to be able to reject most of the examples in which no object is present. Additionally,

they introduced a level threshold. A weak learner is assigned to a cascade level, if its training

error is below this threshold θl. They compute each examples confidence on a certain level

by adding the confidence from the previous level to the confidence of the current level.

As usual an example is passed to the next cascade level if its computed confidence on the

current level is positive. An algorithmic overview is depicted in Table 3.6.

• Requires randomly initialized strong classifier H , feature pool F , confidence
map CM and a base learner model L0

• For t = 1, . . . , T :

1. For each subwindow xt,k in Framet:

(a) Apply cascade and fill CM : CM ← Ht(xt)

2. x+
t,k ← arg maxk(CMt,k)

3. λ← 1

4. OnlineBoosting(Ht, L0, (x
+
t,k, 1), λ) [73]

5. For each negative sample x−t,k:

(a) λ← 1

(b) OnlineBoosting(Ht, L0, (x
−
t,k, 0), λ) [73]

6. Build cascade with the features in F
For l = 1, . . . , L:

(a) For hm ∈ H,m = 1, . . . ,M :
– If εm ≤ θl then Hl ← hm

Table 3.6: Cascaded on-line boosting for feature selection [101].

3.5.2 WaldBoost

Sochman and Matas [87] proposed a method called WaldBoost. It integrates AdaBoost-

based measurement selection and Wald’s optimal sequential probability ratio test (SPRT) to

optimize the classification time. WaldBoost executes the SPRT test using a strong classifier

HT with a sequence of thresholds θ(t)A and θ(t)B . Then, either HT exceeds a threshold and a

decision is made, or the next weak classifier is taken. In the case that no decision is made

within T iterations, the input is classified using HT and user-defined threshold γ. Table 3.7

gives a short overview of the WaldBoost classification procedure. AdaBoost’s output is

taken as a measurement which is essential for SPRT. According to this measurement the

thresholds A and B are determined.
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• Given: h(t), θ(t)A , θ
(t)
B , γ, (t = 1, . . . , T )

• Input a classified object x.

• For t = 1, . . . , T :

1. If Ht(x) ≥ θ(t)B then classify x as positive and terminate

2. If Ht(x) ≤ θ(t)A then classify x as negative and terminate

• If HT (x) > γ then classify as positive, else classify as negative

Table 3.7: WaldBoost algorithm [87].

3.6 Summary

In this chapter basic methods on visual learning are discussed using boosting. First, a

short introduction to boosting is given. Additionally, weak classifiers and strong classifiers

are depicted. Second, the differences between on-line boosting and off-line boosting are

presented. Then the idea of using boosting for feature selection depicted in the off-line case

and in the on-line case. Further, robust on-line feature selection in context of label noise

at the training data is examined, which constitutes the basis for learning object detectors

within this work. Finally, the concept of cascades and the WaldBoost algorithm is presented

to speed-up the evaluation of large classifiers.



Chapter 4

Multi-Camera Learning1

Multi-camera learning is a special variation of multi-view learning. In general, multi-view

learning denotes a learning process that takes redundant information from existing data to

perform learning. For example, training different classifiers such as decision trees or SVMs,

etc. from the same labeled data is sufficient to perform multi-view learning. Moreover,

training one classifier with one feature type and training another classifier with a differ-

ent feature type using the same data would have the same effect. Co-training which was

proposed by Blum and Mitchell [8] is a specific multi-view learning method, which uses

redundant views on the training data to train one classifier with information that is obtained

by another classifier. Leistner et al. [52] were one of the first who used co-training to solve a

visual object detection task. They assumed different camera views as different views on the

data. In addition, Roth et al. [83] showed that the training results can be significantly im-

proved if additional cameras are incorporated in the training procedure by using geometric

relations additionally.

For this reason, this chapter presents the geometric basics of multi-camera learning. In

order to combine information from different cameras. Further, the basics on co-training are

also discussed to provide a basis for learning from multiple camera views as introduced by

Leistner et al. [52]. In brief, Section 4.1 shows a principal scene model. Then, Section 4.2

derives the camera model and it also explains the basics of radial lens distortion, since it

is considered within the camera calibration algorithm. Section 4.3 gives an introduction to

camera calibration. Further, Section 4.4 discusses point transfers with an arbitrary plane in

the 3D scene using a homography, which is a simple method to transfer information from

one camera view to another camera view. Then an overview of multi-camera approaches is

given in Section 4.5. Finally, the original co-training approach is discussed in Section 4.6 to
1The geometric issues within this chapter are widely based on the book of Hartley and Zisserman [43] and

Tsai’s work [95].

31
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depict the idea of learning from redundant views on the training data. Finally, Section 4.7

presents the baseline approach for this thesis.

4.1 Scene Model

The camera locations and the corresponding poses are kept constant in a training scene dur-

ing the training process. This means that a set of n cameras with partially overlapping fields

of view observe a scene as illustrated in Figure 4.1. The designated objects are assumed

to move on a ground plane only. Further, the world coordinate system’s origin is placed

somewhere in the ground plane such that the z-axis specifies the height within the scene.

X
Y

Z

cam1

cam2

cam3

cam4Object

Figure 4.1: A scene containing an object on a ground plane that is observed by mul-
tiple cameras.

4.2 Camera Model

Real-world cameras have to be approximated by parametric camera models to be usable for

computer vision applications that use geometry information. Hence, a model is needed that

describes the camera geometry. For example, the pinhole camera model is a very simple

model that expresses the mapping of 3D points onto a 2D plane.

4.2.1 Central Projection and Homogeneous Coordinates

The simple pinhole camera projects a 3D point onto a 2D plane, whereas the camera center

C is placed in the origin of an Euclidean coordinate system. The image plane is placed

parallel to the XY-plane of this coordinate system at the distance f in front of the camera.
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Thus, f is called the focal length and it is measured along the positive Z-axis. This model

is illustrated in Figure 4.2. A line that connects the camera center and a 3D point in front of

the camera, pierces the image plane at some point. This special mapping from a 3D point

X onto a point x in a 2D plane is called a central projection. If this 3D point is placed on

the Z-axis of the coordinate system, the pricing point is called principal point p.

Figure 4.2: Simple pinhole camera model.

Considering homogeneous coordinates, this projective mapping can be expressed as a

linear mapping. Assuming a 3D point X = (X,Y, Z, 1)T that is multiplied with a 3 × 4

camera matrix P is a projective mapping onto a 2D point x = (x, y, 1)T in the image plane.

This can be written as

x = PX . (4.1)

Using similar triangles x = f XZ , y = f YZ and homogeneous coordinates, the central pro-

jection for the pinhole camera can be expressed as

 fX

fY

Z

 =

 f 0 0 0

0 f 0 0

0 0 1 0




X

Y

Z

1

 . (4.2)

4.2.2 Image Coordinate System

Equation 4.2 is only valid if the origin of the image coordinate system is placed on the

principal point p = (px, py)
T where the positive Z-axis pierces the image plane. Anyway,

for practical issues it is more convenient to place the image coordinate system in an image

corner. The camera coordinate system and the image coordinate system are depicted in
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Figure 4.3. The mapping

 fX + Zpx

fY + Zpy

Z

 =

 f 0 px 0

0 f py 0

0 0 1 0




X

Y

Z

1

 (4.3)

performs this translation using homogeneous coordinates. Rewriting this equation leads to

x = K[ I 0 ]Xcam , (4.4)

where K defines the camera calibration matrix:

K =

 f 0 px

0 f py

0 0 1

 . (4.5)

Further, I equates to the identity matrix, 0 is a zero column vector and Xcam = (X,Y, Z, 1)T ,

which marks a real-world point in the camera coordinate system. X is given in homoge-

neous coordinates.

Figure 4.3: Illustration of the camera and the image coordinate systems.

4.2.3 World Coordinate System

Generally real-world points are not expressed in camera coordinates, but in world coordi-

nates. A mapping between these two coordinate systems is performed through rotation and

translation as illustrated in Figure 4.4.

A 3D point X̃w, that is given in inhomogeneous world coordinates, has to be mapped

onto a point X̃cam in the camera coordinate system. C̃w defines the camera center in inho-

mogeneous world coordinates (the origin of the camera coordinate system). Thus,

X̃cam = R(X̃w − C̃w) (4.6)
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Figure 4.4: A mapping between the camera coordinate system and the world coor-
dinate system that is performed through rotation and translation.

represents the transformation between the coordinate systems. Here R equates to a 3 × 3

rotation matrix that represents the camera coordinate system’s orientation. Rewriting this

equation in homogeneous coordinates leads to:

Xcam =

[
R −RC̃w

0 1

]
X

Y

Z

1

 . (4.7)

Combining Equation 4.4 and Equation 4.7 leads to

x = KR
[

I −C̃w

]
Xw , (4.8)

where Xw represents a point in the world coordinate system in homogeneous coordinates.

All in all, this pinhole camera model provides 9 degrees of freedom (DoF), where K has 3

DoF, R has 3 DoF and C̃ has 3 DoF respectively.

In practice, the transformation from the world coordinate system to the image coordinate

system is mostly written as X̃cam = RX̃w + t, where t = −RC̃w and the camera center is

not explicitly considered. Therefore, the camera matrix is computed as

P = K
[

R t
]

. (4.9)

All parameters in K are called internal camera parameters (f, px, py) and the parameters

R and C̃w are called external camera parameters respectively.
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4.2.4 Finite Projective Camera

A finite projective camera is more general than the pinhole camera, since it has 11 degrees

of freedom and an arbitrary scale. This extended camera model is needed for several CCD

cameras. The additional degrees of freedom are reached by adding a skew parameter s,

which is usually zero for normal cameras and the parameters αx respectively αy that repre-

sent the camera’s focal length in terms of pixel dimensions in each direction. Some CCD

cameras do not have squared pixels, in that case the number of pixels per unit x-direction

differs from the number of pixels per unit y-direction. αx = fmx and αy = fmy, whereas

mx and my correspond to the number of pixels per unit distance measured in image coor-

dinates per direction and f depicts the focal length. Finally, the more general calibration

matrix is written as

K =

 αx s px

0 αy py

0 0 1

 . (4.10)

4.2.5 Radial Lense Distortion

In theory the camera models map 3D points linearly onto 2D points in the image plane,

but in reality a projection error occurs because of imperfect lens manufacture. Figure 4.5

and Figure 4.6 depict the error caused by radial lens distortion. To receive a more exact

estimation of the internal and the external camera parameters though camera calibration,

this radial distortion can be considered additionally.

Figure 4.5: Displays the error caused by lens distortion.
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The radial distortion is modeled by(
xd

yd

)
= L(r)

(
xu

yu

)
, (4.11)

where (xd, yd) represents the actual image point after radial distortion, (xu, yu) is the ideal

position of the projected point in a pinhole camera model, r =
√
x2u + y2u that corresponds

to the Euclidean distance from the center for the radial distortion andL(r) defines a function

that computes the radial distortion factor based on r.

Figure 4.6: Applying a correction on a radial distorted square leads to a square that
looks like obtained with a perfect lense.

The distortion is corrected by using an arbitrary function, that is assumed as a Taylor

expansion L(r) = 1 +κ1r
2 +κ2r

4 + . . .. The coefficients κ1, κ2, . . . are also considered as

internal camera parameters. The following equation computes the corrected point position

(xu, yu) in pixel coordinates:

xu = xc + L(r)(xd − xc) yu = yc + L(r)(yd − yc) , (4.12)

where (xd, yd) is the measured point in the image plane (distorted coordinates), (xc, yc)

defines the center of the radial distortion and r =
√

(xd − xc)2 + (yd − yc)2 to take the

distance to center of radial distortion into account. The principal point is often assumed

to be the center of radial distortion, even though these two points do not coincide exactly.

Within this thesis the radial distortion correction is performed using a first order Taylor

polynomial, which is sufficient precise.

4.3 Camera Calibration

Many computer vision problems require calibrated cameras (e.g. stereo-vision, structure

from motion, change detection, etc.). In general, there are many calibration algorithms

available (e.g. [105, 51, 44]). However, within this thesis Tsai’s camera calibration algo-

rithm [95] is applied to calibrate the camera and estimate its pose, since it allows to estimate
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the internal and external camera parameters using either coplanar or non-coplanar 3D points

for calibration. It only requires 3D point to 2D pixel correspondences and does not require

a specific calibration target like a chessboard plane. Further, it can estimate the internal

and the external camera parameters separately. If desired the external parameters can be

estimated only. This property is useful if the camera is moved to a different place in the

3D scene. Within this thesis the world coordinate system’s xy-plane (zw = 0) is assumed

to be the ground plane to perform the calibration (see Figure 4.1). The origin of the world

coordinate system is placed such that it is neither close to the camera view centers nor close

to the y-axes of the camera coordinate systems, otherwise it can be simply moved to an-

other location. Further, all points, that are needed for calibration, are taken from the ground

plane. Tsai’s algorithm estimates the internal and the external parameters within two steps.

An algorithmic overview is given in Table 4.1. Tsai’s camera model has six fixed intrinsic

camera constants additionally to the eleven camera parameters: dx, dy, Ncx, Nfx, dpx and

dpy. dx and dy correspond to the center to center distance between adjacent sensor elements

in x and y direction respectively, Ncx corresponds to the number of sensor elements in x di-

rection and Nfx equates to the number of pixels in the frame grabber’s x direction. Further,

dpx and dpy define the effective pixel dimensions in x and y direction of the frame grabber.

In the first step Tsai’s algorithm requires a set of image coordinates (xdi, ydi) much

larger than five and the corresponding world coordinates (xwi, ywi) to compute the 3D ori-

entation and the xy-position. It uses the point correspondences to compute r1
ty
, r2ty ,

tx
ty
, r4ty and

r5
ty

by solving an overdetermined system of linear equations:

[ ydixwi ydiywi ydi −xdixwi −xdiywi ]



r1
ty
r2
ty
tx
ty
r4
ty
r5
ty


= xdi . (4.13)

Then r1, . . . , r9, tx and ty have to be computed from r1
ty
, r2ty ,

tx
ty
, r4ty and r5

ty
. Therefore, |ty| is

computed using

C ≡

[
r′1 r′2
r′4 r′5

]
≡

[
r1
ty

r2
ty

r4
ty

r5
ty

]
. (4.14)

If a whole column or row does not vanish from C then

t2y =
sr −

√
s2r − 4(r′1r

′
5 − r′4r′2)2

2(r′1r
′
5 − r′4r′2)2

, (4.15)
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where sr = r′21 + r′22 + r′24 + r′25 . Otherwise,

t2y =
1

r′2i + r′2j
, (4.16)

where r′i and r′j correspond to the row or the column in C that do not vanish. At the next

step the sign of |ty| has to be determined. Therefore, an object point (xfi, yfi) has to be

picked in image coordinates that is away from the image center with the corresponding

world coordinates (xwi, ywi, zwi). Assuming the sign of ty to be positive, compute

r1 =
r1
ty
· ty , (4.17)

r2 =
r2
ty
· ty , (4.18)

r4 =
r4
ty
· ty , (4.19)

r5 =
r5
ty
· ty , (4.20)

tx =
tx
ty
· ty , (4.21)

x = r1xw + r2yw + tx , (4.22)

y = r4xw + r5yw + ty . (4.23)

If the sign of x equates to the sign of xd and the sign of y equates to the sign of yd then the

sign of ty is positive, otherwise, it is negative. Based on this result r1, r2, r4, r5 and tx have

to be recomputed if the sign of ty is negative. Then determine R:

R =

r1 r2
√

1− r21 − r22
r4 r5 s

√
1− r24 − r25

r7 r8 r9

 , (4.24)

where s = − sign(r1r4 + r2r5). Further, compute r7, r8 and r9 from the outer product of

the first two rows using the orthonormal and right-handed property of R.

In the second step compute approximations for f and for tz by solving an overdeter-

mined system of linear equations without considering radial distortion:

[
yi −dyydi

] [ f

tz

]
= widyydi , (4.25)

where

yi = r4xwi + r5ywi + ty (4.26)
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and

wi = r7xwi + r8ywi . (4.27)

If f < 0 then the rotation matrix has to be corrected as follows:

R =

 r1 r2 −
√

1− r21 − r22
r4 r5 −s

√
1− r24 − r25

−r7 −r8 r9

 . (4.28)

Finally, the exact solutions for f, tz and κ1 have to be computed by applying a standard op-

timization scheme on the mapping that projects 3D points onto the image plane considering

radial distortion. The already estimated values of f and tz with κ1 = 0 are used as the

initial guess.

Tsai’s camera calibration algorithm requires at least five data points due to the fixed

internal camera parameters for coplanar calibration. To get an accurate estimation for the

lens distortion and the image center parameters the data points have to be distributed broadly

across the image. Ideally the data point positions are measured with subpixel accuracy.

1. Compute camera’s position (tx, ty) and estimate its 3D orientation R

(a) acquire distorted image coordinates (xd, yd)

(b) acquire the corresponding world coordinates (xw, yw)

(c) compute the five unknowns r1
ty
, r2ty ,

tx
ty
, r4ty ,

r5
ty

using point correspondences
between (xd, yd) and (xw, yw, zw)

(d) compute (r1, . . . , r9, tx, ty) from r1
ty
, r2ty ,

tx
ty
, r4ty ,

r5
ty

i. compute |ty| from r1
ty
, r2ty ,

tx
ty
, r4ty ,

r5
ty

ii. determine the sign of ty
iii. compute 3D rotation matrix (r1, . . . , r9) and tx
iv. compute f and if (f < 0) then correct rotation matrix

2. Compute the effective focal length, the distortion coefficients and the camera’s
tz position

(a) compute an approximation of f and tz by ignoring lens distortion

(b) compute the exact solution for f , tz and κ1

Table 4.1: Tsai’s camera calibration algorithm [95].
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4.4 Homographies – Point Transfers Using Planes

In general, homographies describe the relation of corresponding image points, that are lo-

cated in a plane, between two views. For instance, a homography Hπ transfers a point x

from one camera view to a point x′ in another camera view using an arbitrary plane π:

x′ = Hπx , (4.29)

where x and x′ are the projections of any 3D point X on the plane π. π does not have to

meet the camera centers C and C′. This point correspondence is depicted in Figure 4.7.

Figure 4.7: A homography is applied to transfer points, that are on the plane π, from
one camera view to another camera view.

Any plane is estimated by selecting at least four point correspondences per camera view

on the plane. The estimation can be computed using the Direct Linear Transformation

(DLT) [43], for example.

Further, the homography between a world plane with z = 0 and the image plane of a

calibrated camera P = K[ R t ] is defined as:

H = K
[
r1 r2 t

]
, (4.30)

where ri corresponds to the columns of R, since

x = PX =
[
p1 p2 p3 p4

]


X

Y

0

1

 =
[
p1 p2 p4

] X

Y

1

 . (4.31)

4.5 Multi-Camera Approaches

Nowadays, multi-camera approaches consider classifier responses and additionally take

knowledge about the scene geometry into account to address the problem of occlusions.
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Using both leads to more accurate detections with less false positives. For example, Berclaz

et al. [4] apply a fixed pretrained classifier repeatedly to each 3D position per camera

view. This leads to one map of classifier responses per camera. Then, they perform a

post-processing and combine all maps with a probabilistic approach to yield the final detec-

tions. Kim et al. [49] also use a fixed pretrained classifier to detect objects in a multi-camera

configuration.

Other works use change detections to derive foreground information instead of using

classifiers. For example, Khan and Shah [47] classify individual pixels as background or

foreground (i.e. moving objects). They map all foreground points to the ground plane using

planar homographies and finally multiply the mapped points to segment each person’s feet

region. Fleuret et al. [31] did not detect or track people in each camera view. They refor-

mulated the problem and used a 2D occupancy grid which is placed parallel to the ground

plane to gather evidences form all views about the presence of persons at all ground point

locations. Then they used this information to detect and track persons using the occupancy

grid information. Franco and Boyer [32] even used a 3D occupancy grid. Further, Eshel

and Moses [29] used a head detector and multiple cameras to estimate person’s locations in

dense crowds. Mueller et al. [62] also project all detected objects in a common reference

and then they mark the nearest objects which have the same size and center of gravity with

the same label. By contrast, Caspi et al. [12] and Orwell et al. [70] track objects in the

single camera views and finally they fuse estimated trajectories to identify objects.

However, there are also works which share information directly between cameras with-

out projecting each view to a common reference plane, for example, Stauffer and Tieu [89],

Black et al. [7] and Leistner et al. [52]. They use planar homographies between the camera

views to transfer information. Hence, they suffer to solve the occlusion problem.

4.6 Co-Training

Co-training was originally presented by Blum and Mitchell [8]. It is a semi-supervised

learning algorithm, that requires two distinct views for each example. At first two separate

classifiers are trained using labeled data for both views. Afterwards each classifier has to

classify unlabeled data and has to predict the examples’ labels that are required to update

the other classifier with the obtained information. This method is based on two assumptions

that have to be satisfied:

1. Features of each view are sufficient descriptive so that the classifiers’ predicted labels

can be trusted.

2. Features in one view are conditionally independent from the features in the other

view.
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The Co-training algorithm is depicted in Table 4.2. It uses as set of L labeled examples x

and a set U of unlabeled examples. Based on U co-training extracts u random examples to

create a set U ′. Then two classifiers h1 and h2 are trained using the x1 and the x2 portion

of the example x respectively. Afterwards, h1 and h2 are employed to label p positive and

n negative examples from U ′. The self-labeled examples are added to L. Finally, 2p + 2n

examples are randomly selected from U to replenish U ′. Then h1 and h2 are trained again.

The training and labeling steps are performedK times to generate co-trained classifiers. The

two conditions proposed by Blum and Mitchell are often hard to fulfill in practice and were

therefore relaxed in [2]. Anyway, the training algorithm should never provide hypotheses

that are confident but wrong.

Levin et al. [54] proposed a visual detection system using a co-training approach to

improve a pair of classifiers. They used a grey image classifier and a background differ-

ence classifier to fulfill the requirement of two independent views as proposed by Blum and

Mitchell [8]. Their grey image classifier used the grey scale images directly, whereas the

background difference classifier evaluates the difference between each video image and the

video image’s average background that is computed from the whole video clip. There are

some extensions to the original co-training approach. For example, Javed et al. [46] ex-

tended the co-training approach for on-line learning. They also used a background model to

perform classification on moving objects only. Further, they used different feature types to

get two independent views on the data to process co-training. Finally, they used a combina-

tion of all features for classification. Another extension is presented by Zhou and Li [106].

They proposed tri-training that is an extension to co-training by adding a third classifier.

In detail, they trained three classifiers on a small set of labeled examples and refined the

classifiers by processing unlabeled data afterwards. This means that one unlabeled example

receives a label, that is determined by a majority decision of all available classifiers, per

tri-training iteration.
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• Requires a set L of labeled training examples and a set U of unlabeled examples

• Create a pool U ′ of examples by choosing u examples at random from U

• For k = 1 . . .K:

1. Use L to train a classifier h1 that considers only the x1 portion of x

2. Use L to train a classifier h2 that considers only the x2 portion of x

3. Allow h1 to label p positive and n negative examples from U ′

4. Allow h2 to label p positive and n negative examples from U ′

5. Add these self-labeled examples to L

6. Randomly choose 2p+ 2n examples from U to replenish U ′

Table 4.2: Co-training algorithm by Blum and Mitchell [8].

4.7 Baseline Approach

Leistner et al. [52] introduced a multi-camera learning approach within a co-training frame-

work. They further used geometric relations to share information between the camera views.

Roth et al. [83] extended this approach to assure more robust learning. Hence, this extended

approach constitutes the baseline for this thesis (see Table 4.3). The approach which was

proposed by Leistner et al. performed suboptimal classifier updates which were caused

by projection errors due to geometric inaccuracies. To limit these errors Roth et al. per-

formed an additional alignment check on projected information to prevent these suboptimal

classifier updates.

The multi-camera approach uses simple homographies (see Section 4.4) to transfer

points from one camera view into another camera view using the ground plane. This in-

formation transfer is illustrated in Figure 4.8 at the use of four cameras. Further, a general

classifier HP is trained using off-line AdaBoost for feature selection to initialize the multi-

camera co-training approach. The off-line boosting algorithm is applied on a fixed set of

positive and negative training patches. Afterwards, this initial classifier is cloned to assign

one copy to each camera. Then each camera’s initial classifier is improved by performing

on-line classifier updates using a co-training strategy. Anyway, each camera view is con-

sidered as an independent view on the data for co-training, where the initial classifiers lead

to independent observations and predictions. Hence, the independence criteria of views on

the data, that is required for co-training (see Section 4.6), is fulfilled.

In the this case co-training is performed on the camera classifiers by verifying or fal-

sifying each prediction by using information from another camera view. Further, a decen-

tralized camera setup is assumed where only limited bandwidth is available (i.e. the data
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Figure 4.8: The baseline approach uses pairwise homographies to transfer informa-
tion from one camera view to another camera views.

exchange between the cameras has to be minimized). Therefore, a confidence threshold Θ

is introduced to come along with this restriction. Θ classifies each camera’s predictions.

Each prediction Hi at camera i with a confidence value larger than Θ is assumed to be

correct and not further considered. On the other hand, if Hi predicts a confidence value

that is smaller than Θ, the corresponding confidences of the other cameras are considered

additionally. To avoid centralized information merging, a simple strategy is proposed: each

camera has its own confidence map which is overlaid with requested confidences from other

cameras. Then, non-maximum and non-minimum suppression are performed on the merged

confidence map to extract patches which have the highest positive and the highest negative

disagreement to perform updates. Additionally a conservative verification and falsification

step is performed to increase the classifier stability. At the verification and falsification step

all classifier responses are examined. If the responses of all classifiers are positive, the patch

is verified and added to the positive training data set. Otherwise, if the responses of all other

classifiers are negative, a negative update is performed on the classifier Hi and the example

is falsified. After each negative update the positive training data set is checked for consis-

tency. If the positive training set is no longer consistent, a positive update is performed with

the corresponding example. Table 4.4 summarizes this co-training update strategy.

• Train an initial classifier HP

• Clone HP n times

• Assign one copy to each camera

• While t

1. update i classifiers Ht−1
i (Table 4.4)

Table 4.3: Co-training with partly overlapping camera views [83].
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• Requires K detections xk and Ht−1
i

• For k = 1, . . . ,K:

1. If Ht−1
i (xk) > Θ then

(a) For j = 1, . . . , J :
i. Project xk onto other views: xj = Hijxk

ii. Evaluate Ht−1
j (xj)

iii. Check alignment: align(xj)

iv. If Ht−1
j (xj) > Θ & align(xj) = true then

A. update(Ht−1
i , xk,+)

v. Else if Ht−1
j (xj) < 0 then

A. update(Ht−1
i , xk,−)

Table 4.4: Co-training update strategy [83].

4.8 Summary

This chapter derives the geometric basics for sharing information between multiple cameras,

which are widely base on the book of Hartley and Zisserman [43] and on Tsai’s work [95].

First, the scene model is depicted. Then, a camera model is derived and an introduction

to correction of radial lens distortion is given. Further, Tsai’s camera calibration algorithm

is discussed to estimate the internal and external camera parameters. The calibration is

required for efficient centralized information fusion as proposed within this work. Finally,

multi-camera approaches for detecting objects are presented. Further, details on co-training

are given and the baseline approach for this thesis is discussed.



Chapter 5

A Centralized Approach to Multi-View
Learning

This chapter introduces a centralized approach to learn scene specific classifiers in a multi-

camera network. A centralized approach has several advantages compared to the baseline

approach as discussed in Section 4.7. The centralized approach collects information from an

arbitrary number of cameras without increasing the computational effort of merging the in-

formation. Similar to the baseline approach at least two cameras have to be used. The base-

line approach uses simple pairwise homographies to transfer information from one camera

view to another camera view. Anyway, the number of homographies increases quadratically

if the number of cameras increases linearly. For instance, a setup consisting of two cameras

requires two homographies to provide each camera’s detections in the opposite camera view.

Using three cameras would require six homographies to achieve the same result and so on.

In general,N cameras requireN(N−1) homographies to share information within all cam-

eras. Thus, the required effort to determine the homographies also increases quadratically.

On the contrary, the centralized approach requires calibrated cameras only, since all infor-

mation is projected to a single central map. This means that the required effort is restricted

to calibrate each camera once. Further, the information merging algorithm is completely

independent from the subjacent learning algorithm, insofar the learning algorithm returns

confidence values for all detections and supports on-line learning.

In short, Section 5.1 gives an overview of the centralized approach. Section 5.2 dis-

cusses the object detection process for single camera views. Further, Section 5.3 derives the

required geometry to transfer information from the top view map to the single camera views

and vice versa. The initialization of the centralized approach is introduced in Section 5.4.

Then, Section 5.5 describes the process of collecting and fusing the detection information

in a central map. Section 5.6 proposes the method to extract positive examples using the

47
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fused information. Section 5.7 discusses the process of gathering negative examples using

a background model or bootstrapping. Finally, Section 5.8 presents cascades that speed-up

the evaluation of large classifiers.

5.1 Centralized Approach – Overview

The centralized approach requires classifiers for each camera within the multi-camera net-

work. These classifiers should be adaptive to assure a high detection performance even if the

light or the environment itself slightly change within the training scene. Additionally, these

initial classifiers have to be created with minimum labeling effort. To fulfill these properties

an on-line training algorithm (see Section 3.4) has to be deployed to train the classifiers.

Notice, that the initial classifiers can be also trained with an off-line learning algorithm,

since Roth et al. [81] showed that off-line trained classifiers can be easily re-trained with

on-line learning algorithms. Anyway, for simplicity the initial classifiers are trained with an

on-line learning algorithm. These initial classifiers are generated by using about 20 positive

and 20 negative examples, which are randomly selected from a much larger dataset, for

training (see Section 5.4).

To collect information from all cameras within the multi-camera network each camera

view has to perform an object detection process on its own (see Section 5.2). Thus, the base

point of each detection are projected into a common top view map on the ground plane using

the camera calibration (see Section 5.3.2). The next step fuses this information and extracts

locations on which the designated objects are located most likely (see Section 5.5. Finally,

these extracted locations are projected to the camera views to extract positive examples (see

Section 5.6), with which all classifiers are updated immediately to implicitly improve the

classifiers. Additionally, an occlusion check is performed in each camera view before an

example is extracted to circumvent suboptimal updates. Further, negative updates have to

be performed to keep the classifier statistics balanced. The negative examples are extracted

by bootstrapping and evaluating foreground information of detections using a background

model (see Section 5.7). Optionally, cascades can be deployed to efficiently evaluate large

classifiers (see Section 5.8).

5.2 Single View Detection Process

A sliding window approach that uses a single classifier or a cascade of classifiers accom-

plishes the detection on various scales and locations as introduced by Viola and Jones [100].

In general, the detection window is shifted by ∆x and ∆y to reach different locations. Dif-

ferent scales are achieved by scaling the detection window itself. Note, that this method is
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much more efficient than scaling the whole image. In addition, the current scale s affects

the shift distance ∆. Therefore, round(s∆) computes the effective shift distance on various

scales.

Within a multi-camera scene the possible sub-window scales and locations can be short-

ened. In this case a ground plane is estimated and the sliding window is restricted to po-

sitions on the ground plane, since it is assumed that the objects can move on the ground

plane only. Further, it is assumed that the object size decreases if an object moves from the

front to the back in a camera’s field of view. Hence, all possible scales are restricted to the

relative maximum object size that is related to the ground plane location. As a result the

sliding window positions have to be computed for each camera view separately.

Another approach would be to discretize the ground plane and place sub windows at

each discrete ground plane position. Then these locations are transferred to each camera

view as proposed in [31]. This approach has the disadvantage that locations in the front are

scanned on a more coarse level than locations in the back of a camera’s field of view. This

means that a camera’s more flat angle of view leads to larger differences on the scanning

resolution between the foreground and the background locations and varying errors due to

projection and detection inaccuracies.

5.3 Information Transfer Between Cameras and a Central Map

Assume that the ground plane is observed from a point that is located orthogonally above

this plane. Then a map is placed on the ground plane such that the world coordinate sys-

tem’s XY -plane coincides with the top view map. Further, this map stores all locations of

detections that are reported by each camera classifier after a post-processing step. Hence, all

classifier detections that occur on the ground plane have to be transferred from the recorded

image locations to their corresponding locations in the top view map. For this purpose, all

cameras have to be calibrated to measure each detection’s ground plane coordinates in the

world coordinate system. This means that an inverse projection from the image coordinate

system to the ground plane has to be performed to consider the radial lens distortion by us-

ing the camera model which was derived in Section 4.2. If there is no need to consider the

radial lens distortion a simple homography can be applied to convert the coordinates as ex-

pressed in Section 4.4. In detail, a detection is transferred from a camera view to the central

map by transfusing its base point via backward projection (see Section 5.3.2). A forward

projection is performed to transfer information from the top view map to the camera views

(see Section 5.3.1). Figure 5.1 illustrates the information transfer using a centralized map

with four cameras. The basics to transfer information between camera views and the top

view map are discussed in Chapter 4.
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Figure 5.1: Information transfer using a centralized top view map.

5.3.1 Forward Projection Considering Radial Distortion

The internal and external camera parameters are estimated with Tsai’s algorithm (see Sec-

tion 4.3). Thus, the mapping from world coordinates to the pixel coordinates are computed

as follows [95]. The translation from the world coordinates to camera coordinates equates

to (see Section 4.2.3),

xcam = RXw + t . (5.1)

Then, the undistorted sensor coordinates are,

xu = f
xcam
zcam

sx (5.2)

yu = f
ycam
zcam

. (5.3)

Further, use the radial distortion model (see Section 4.2.5)

xu = xdL(r) (5.4)

yu = ydL(r) , (5.5)

where r =
√
x2d + y2d, to compute the distorted sensor coordinates. Finally, the image

coordinates are,

xi =
sxxd
dx

+ px (5.6)

yi =
yd
dy

+ py . (5.7)
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5.3.2 Backward Projection Considering Radial Distortion

The back-projection from image coordinates to the real world works as follows. First,

compute the distorted sensor coordinates:

xd = (xi − px)
dx
sx

(5.8)

yd = (yi − py)dx . (5.9)

Based on the xd and yd the undistorted sensor coordinates have to be computed using Equa-

tion 5.4 and Equation 5.5. This undistorted point is then back-projected as a ray in the real

world using the camera center. Then the ray is intersected with the ground plane (z = 0 in

the world coordinate system). Using the relation depicted in Equation 4.31 leads to

 Xw

Yw

sw

 =


f 0 0

0 f 0

0 0 1


r11 r12 tx

r21 r22 ty

r31 r32 tz



−1  xu

yu

1

 . (5.10)

Finally, the inhomogeneous ground plane coordinate is

X̃w =
[

Xw
sw

Yw
sw

0
]T

. (5.11)

5.4 Initialize the Centralized Approach

The centralized learning approach requires N ≥ 2 calibrated cameras, that observe a 3D

scene from arbitrary angles of view. These calibrated cameras allow the framework to

forward the detection information to a central top view map (see Section 5.3). Further,

an initial classifier for each camera is required. Within this thesis the initial classifier is

trained with an on-line GradientBoost algorithm using a logistic loss-function as depicted

in Section 3.4. The initial classifier is trained with a small number of positive and negative

examples only (e.g. 20 positive and 20 negative).

In general, the proposed approach is completely independent from the learning algo-

rithm. Anyway, an off-line learning algorithm is not applicable to generate adaptive classi-

fiers, since the classifier has to change during the training process and additionally has to

be available all the time. Similar to the baseline approach, the initial classifier is trained

on a desired object category using some positive and negative training examples. Then,

the classifier is duplicated N times and one copy is assigned to each camera. These initial

classifiers detect objects from time to time, which is essential and sufficient for merging the

information to finally obtain positive updates. Using these updates the classifier improves
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and finally yields excellent single camera view detection performance on the training scene.

A summary of the initialization procedure is given in Table 5.1.

• Requires N ≥ 2 calibrated cameras and a small set of positive and negative
training examples (X+ and X−).

• Train an initial on-line classifier using X+ and X−.

• Clone the classifier N times.

• Assign one copy to each camera.

• Create top view map.

Table 5.1: Initializing the centralized approach.

5.5 Combining Information from Multiple Views

Each camera’s classifier returns a confidence value for each classified sub-window within

its own view. A threshold is applied on the confidence values to discard very weak and neg-

ative responses. Moreover, a simple but efficient non-maximum-suppression (NMS) [64] is

applied on the threshold output to ensure that each object is detected only once in each cam-

era’s field of view. This aggressive post-processing leads to a very sparse list of detections

at each camera view and may cause a loss of information, but it alleviates the following

merging process. The remaining detections, that survive the post-processing, are trans-

ferred to the central top view map considering geometry as introduced in Section 5.3. As

a result, the top view map stores the confidence values from all detections at each camera

view. Additionally, it retains information about the camera views in which the detections

occurred.

One problem arises from the fact that many detections in the different camera views

are shifted. This leads to misaligned entries in the top view map. In addition, there is

a projection error, since the camera calibration is also imperfect. The baseline approach

applied an extra alignment check to handle misaligned detections, but within this approach

an additional alignment check in the single camera views is not required, since the proposed

approach transfers all information into a centralized map. Thus, corresponding detections

from different camera views have to be fused in the top view map. To perform this task,

check the distance between neighboring points in the top view map to find corresponding
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detections from different views:

d(pi,pj) =
√

(pix − pjx)2 + (piy − pjy)2 . (5.12)

Further, a central camera count is introduced. This camera count is incremented by one for

each detection entry in the top view map, if the distance to a neighboring point, that belongs

to another camera view, is smaller than a threshold Θ.

Next, a probability density map is created on the basis of this camera count map and

the corresponding confidence values in the top view map. In particular, top view items are

transferred to the density map only, if c ≥ 2 at the point’s location. In other words an

agreement of at least two camera views is required to gain suitable locations for positive

updates. Then, a mean-shift clustering algorithm is applied on the resulting density map

to find all its local maxima Pχ = {pχ,1, . . . , pχ,k}. Finally, Pχ represents locations on the

ground plane on which the desired objects are most likely located. Table 5.2 summarizes

the information combining process formally.

For each input image:

• Clear top view map.

• For n = 1, . . . , N :

1. Detect objects in camera view n.

2. Apply NMS on the detection output→ Dn.

3. Transfer Dn into the top view map.

• If (∃ d(pi,pj) < Θ ∀ j 6= i,) and
(camera view of pi 6= camera view of pj) then

1. Increment camera count at pi

• Top view map→ probability density map ∀ pi with camera count ≥ 2

• Apply mean-shift algorithm on probability density map→ local maxima
Pχ = {pχ,1, . . . , pχ,k}.

• Output: Pχ

Table 5.2: Combining detection information from multiple views to extract possible
ground plane locations for positive updates.
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5.6 Gathering Positive Updates

Eventually, it is the goal to gain positive training examples from the 3D scene that is ob-

served by an arbitrary number of cameras. The information merging algorithm, which is

introduced in Section 5.5, combines detections from all camera views in a central map and

provides a set of locations Pχ. These positions depict locations on the ground plane where

the desired objects are located most likely. Hence, these ground plane locations that are

back-projected to the single camera views and restore its corresponding bounding box to

obtain a positive example.

In detail, all locations in Pχ are projected to each camera view in which the correspond-

ing detections originated. Then their corresponding bounding boxes (see Section 5.2) are

restored. Anyway, one problem remains. Assume that there are two objects moving on the

ground plane. Two cameras observe the scene. One camera detects both objects and the

second camera detects only one object. Unfortunately, this object is partly occluded by the

second object which is not detected in this camera view. In this case a suboptimal update

would be performed on both cameras using the patch with the partly occluded object. Such

suboptimal updates may corrupt the classifiers and have to be avoided.

Therefore, an additional occlusion check is performed at each camera view to ensure ro-

bust learning with fully visible objects. The occlusion check evaluates if the back projected

points and its restored bounding boxes are completely visible. In detail, each camera view’s

occlusion check considers all detections that survived the post-processing and were added

to the top view map. It computes the overlap with the back projected bounding boxes. Pos-

itive updates are not performed if the overlap between any detection and a back projected

bounding box exceeds a threshold Φ. The overlap is computed as follows:

overlap(rect1, rect2) =
area(rect1 ∩ rect2)

min(area(rect1), area(rect2))
. (5.13)

A summary of this process is depicted in Table 5.3.
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• Requires Pχ with K locations from N cameras.

• For n = 1, . . . , N :

1. For k = 1, . . . ,K:

(a) Project pχ,k into camera view n.
(b) Compute the corresponding bbox.
(c) Compute overlap between pχ,k and Dn.
(d) If overlap(Dn,j , bbox(pχ,k)) < Φ ∀ j 6= k then

i. Positive update with bbox(pχ,k) at all classifiers

Table 5.3: Generating positive updates using locations that are determined by com-
bining detection information from multiple views (see Table 5.2).

5.7 Gathering Negative Updates

Negative examples are much easier to obtain than positive examples. For instance, the

integration of a background model to perform background subtraction or simple bootstrap-

ping are excellent methods to extract negative examples from any external database or video

sequence. Bootstrapping negative examples from an external database is a very common ap-

proach to improve a classifiers performance by generating hard negative examples. Details

on bootstrapping are given in Section 5.7.1. Using an external database to train a classifier

has the advantage that the classifier becomes more general, since a huge variety of negative

examples can be obtained. This means that the classifier will have a high performance on

arbitrary scenes and not on the training scene only. On the other hand using a background

model allows to extract negative examples from the training scene. In this case the classi-

fier does not generalize as good as using an external database, because only scene specific

negative examples are processed, but it enables the classifier to specialize on one specific

scene. Obtaining negative examples with background models is discussed in Section 5.7.2.

5.7.1 Bootstrapping

To obtain negative updates with a bootstrapping method any set of images that do not con-

tain positive examples of the desired object can be processed. Notice, in statistics bootstrap-

ping is a resampling method that randomly extracts data from already existing data. It was

originally proposed by Efron [27]. Therefore, bootstrapping is performed if the number of

examples is insufficient to derive accurate statistics. In computer vision bootstrapping is

sometimes also referred as self-learning. In this case a classifier is trained using all avail-

able positive and negative training examples. Then this classifier is applied on a set of
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images that do not contain positive examples. For this reason, all detections within this

set of images are false positives. Then the classifier is retrained with this set of false pos-

itive examples to gain an improvement. In general, these steps are repeated several times

to increase the classifier’s performance. Further, approaches that also used a bootstrapping

method to improve the classifier performance are proposed in [92] and [76].

5.7.2 Use Background Subtraction

As already mentioned, movable objects can be identified by performing background sub-

traction in video sequences. Section 2.4 discusses several background models and methods

to identify foreground pixels by using a background model. Accordingly, this foreground

information is essential to extract negative examples from a training sequence. This method

has the advantage that it is very easy to obtain negative examples, since it has to be checked

only if foreground pixels are present in an update patch. On the other hand, the obtained

negative examples are scene specific and thus the updates lead to a more specialized classi-

fier for a specific training scene.

Within this thesis the background model computation is very similar to McFarlane’s

and Schofield’s approach [60]. Instead of incrementing and decrementing the approximated

median by one an arbitrarily fixed step size is used. Then the foreground pixels are identified

by computing the absolute difference between the approximated median and the pixel values

as expressed in Equation 2.14. In detail, the negative examples are obtained by checking all

detections on foreground information. Assume a detection window that contains only a few

foreground pixels and all these pixels are additionally placed near the detection window’s

borders. In this case the training algorithm immediately performs a negative update on the

classifier that has developed the detection. Anyway, if the number of foreground pixels is

below a threshold compared to the patch size, then the detection is also assumed to be a

false positive.

5.8 Improving Performance with Cascades

The principal concept of cascades is presented in Section 3.5.1. The cascades that are used

within this thesis are related to the approach of Visentini et al. [101]. They introduced

a concept that fits into Oza’s on-line boosting approach (see Section 3.3). By contrast,

within this work Grabner’s and Bischof’s [40] on-line boosting approach is used. Hence,

to come along with the implementation of selectors, the number of cascade stages and its

corresponding classifier sizes have to be defined in advance.

Generally, low cascade levels consist of small classifiers and higher levels consist of

more complex classifiers, since the examples that have to be processed in higher levels are
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more difficult. Thus, to initialize the cascade, each cascade stage’s classifier is initialized

randomly. This means that a feature pool is generated for each classifier at random using

the predefined number of selectors and the predefined number of weak learners per selector.

Afterwards, the cascade is trained stage-to-stage such that each stage’s classifier selects its

best weak learners. In detail, a negative training example is passed to the next cascade stage

if the current stage is unable to learn and predict it correctly. By contrast, positive examples

are always processed at all cascade stages.

5.9 Summary

In this chapter a novel centralized approach for information fusion is introduced. The dif-

ferences to the baseline approach are discussed. It describes the process of object detection

in single camera views and the procedure of collecting and merging this information in a

central map. Based on this map, positive examples are extracted from the unlabeled train-

ing scene and immediately deployed for training the object detector. Further, methods are

discussed to also extract negative examples from unlabeled training data. Finally, the usage

of cascades is presented in this context to speed-up the evaluation of large classifiers.



Chapter 6

Experimental Results

This chapter illustrates several experiments with various data sets. Multi-camera learning

is performed with the centralized approach, which requires calibrated cameras during train-

ing. By contrast, the evaluation procedure does not require calibrated cameras, since each

camera view is evaluated on its own, if multiple camera views are available. The intrinsic

and extrinsic camera parameters are determined by Tsai’s camera calibration algorithm [95]

(see Section 4.3). In practice, Tsai’s camera calibration toolbox1 was deployed to estimate

the parameters. The performance of the centralized approach is evaluated on learning a

person detector. This special scenario was taken, because there are various reference im-

plementations and many benchmark datasets publicly available. Further, on-line boosting is

selected to be the subjacent learning algorithm (see Section 3.1). However, the centralized

approach is neither limited to learn person detectors nor it is restricted to a certain learning

algorithm.

In brief, Section 6.1 explains the training and evaluation methodology with the apper-

taining performance measures. Section 6.2 presents the training and test data sets that con-

stitute the basis for all experiments. The basic setup of all experiments is introduced in

Section 6.3. Section 6.4 illustrates the learning behavior over time for each classifier within

a multi-camera setup using the centralized approach. Then the implemented feature types

are compared within Section 6.5. Section 6.6 compares the on-line histograms and on-

line nearest neighbor classifiers as weak learners. Further, Section 6.7 shows the classifier

results if the training is performed with an increasing number of cameras. Finally, Sec-

tion 6.8 presents the performance of scene specific classifiers. Section 6.9 compares the

results obtained with the baseline approach and the centralized approach and Section 6.10

demonstrates generalization of the classifiers.
1http://www.cs.cmu.edu/˜rgw/TsaiCode.html
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6.1 Evaluation Methodology

The evaluation methodology strongly influences an experiment’s results. In general, there

are several alternatives to evaluate a multi-camera object detection system. For instance, an

evaluation method on the basis of a top view map is useful if the goal is to detect all objects

in a scene whether all objects are visible in each view or not.

Within this thesis all classifiers are evaluated on single views only, since the aim is to

improve each camera’s classifier by using the centralized multi-camera learning approach.

Hence, there is no collaboration between the cameras during evaluation.

6.1.1 Per-Window versus Per-Image Evaluation

As already discussed by Dollár et al. [24] there are two methods to compare detection

results. On the one hand there is the per-window evaluation method and on the other hand

there is the per-image evaluation method. Per-window evaluation does not consider effects

caused by NMS. Using this method a binary classifier only has to decide if a cropped image

patch contains an object or not. Within this thesis such an evaluation approach would not

make sense, because the objects additionally have to be located in the images to obtain

positive training examples. For this purpose all experiments use an per-image evaluation

method to produce viable results.

Per-image evaluation considers the whole image. Therefore, rectangular detection in-

formation is processed to determine the evaluation results of the whole image. This means

that the detection system additionally has to perform a NMS or any similar post processing

method to avoid multiple detections of the same object. It also has to return all detected

objects’ bounding boxes. Additionally, ground truth data have to be available for the evalu-

ation images. A detection counts as true positive if the overlap a0 between the detection’s

bounding box Bdet and the corresponding ground truth bounding box Bgt exceeds 50% as

introduced in the PASCAL object detection challenges2:

a0 =
area(Bdet ∩Bgt)
area(Bdet ∪Bgt)

. (6.1)

Multiple detections of the same object count as false positives. For example, the same object

is detected three times in one image. Then one detection counts as true positive detection

and the remaining two detections count as false positive.
2http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/devkit_

doc_14-May-2009.pdf

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/devkit_doc_14-May-2009.pdf
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/devkit_doc_14-May-2009.pdf
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6.1.2 Precision/Recall Curves

The detection results are plotted into Precision/Recall (PR) curves to determine the system’s

performance as proposed by Davis and Goadrich [21]. A PR curve is determined by plot-

ting the Recall on one axis and the Precision or 1−Precision on the other axis. Further, a

classifier’s predictions can be divided into four categories:

• True Positives (TP) are positive examples that are predicted as positives.

• False Positives (FP) are negative examples that are misleadingly labeled as positives.

• True Negatives (TN) refer to negative examples that are predicted as negatives.

• False Negatives (FN) correspond to positive examples that are predicted as negatives.

Based on these definitions the Recall is defined as the fraction of positive examples that are

correctly predicted and the Precision measures the fraction of examples that are predicted

to be positive and are truly positive:

Recall =
TP

TP + FN
, (6.2)

Precision =
TP

TP + FP
. (6.3)

This means that the performance of a classifier is high if both Recall and Precision are high.

6.1.3 F-Measure

Rijsbergen [98] introduced the F-Measure to weight the performance with respect to Preci-

sion and Recall. It computes the weighted harmonic mean between the Precision and the

Recall. The general formula to compute the F-Measure is as follows:

Fβ =
(1 + β2) · (Precision ·Recall)

(β2 · Precision+Recall)
, (6.4)

where β has to be a non-negative real value. This means that the Fβ-Measure gives β times

importance to the recall than to the precision. Within this thesis the traditional F-Measure

is used as an additional performance measure. The traditional F-Measure is computed as

follows:

F =
2 · Precision ·Recall
Precision+Recall

. (6.5)
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6.2 Training and Test Data

The required datasets for the experiments have to be divided into two categories: (i) training

data and (ii) evaluation data. The difference between training and evaluation data is that

the main training data have to be recorded with a multi-camera setup with synchronized

cameras. This property is essential for the centralized learning approach. Further, single

view datasets are required to train the initial classifiers and to additionally bootstrap negative

examples during training. By contrast, there are no restrictions for the evaluation data,

since there is no camera collaboration during evaluation. Figure 6.1 contains gaps from the

training and evaluation image sequences. Examples from the INRIA Person Dataset are not

shown, since this dataset is used for bootstrapping negative training examples only.

• DT2 - Set43: This synchronized sequence shows an indoor scene with moving per-

sons. It is observed by three static cameras. The video sequence contains 2589

frames. The frame size is 384× 288 pixels.

• BC064: Is a dataset consisting of four synchronized cameras observing an outdoor

scene. This video sequence consists of 5000 frames with an image size of 360× 288

pixels.

• INRIA Person Dataset5: This dataset contains a large amount of positive and neg-

ative examples [20]. Within this thesis this dataset is predominantly used to obtain

additional negative examples via bootstrapping for classifier updates. The dataset

contains 1832 training images with varying resolution whereas 1218 images do not

contain positive examples and 614 images contain positives.

• Caviar dataset6: The evaluation image sequence was recorded in a shopping center

showing various persons moving on a corridor. The image size equates to 384× 288

pixels. The whole sequence contains 370 images.

• PETS2006 dataset7: This evaluation dataset observes an indoor public place with

various moving and stalling persons. This image sequence contains 307 images,

whereas each image has the size of 720× 576 pixels.

3Provided by the Institute for Computer Graphics and Vision, University of Technology Graz
4Provided by the Computer Vision Laboratory, École Polytechnique Fédéral de Lausanne
5http://pascal.inrialpes.fr/data/human/
6http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
7http://pets2006.net/data.html

http://pascal.inrialpes.fr/data/human/
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
http://pets2006.net/data.html
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(a) DT2 Set4 - Camera 1 (b) DT2 Set4 - Camera 2 (c) DT2 Set4 - Camera 3

(d) BC06 - Camera 1 (e) BC06 - Camera 2 (f) BC06 - Camera 3

(g) BC06 - Camera 4 (h) Caviar (i) PETS2006

Figure 6.1: Gaps of training and evaluation datasets. (a), (b) and (c) show the same
frame from the DT2 Set4 dataset for all three cameras. (d), (e), (f) and
(g) show one frame from the BC05 dataset for all four cameras. (h)
shows one frame from the Caviar dataset and (i) shows one frame from
the PETS2006 dataset.

6.3 System Setup Description

All experiments in conjunction with the centralized approach are performed with a slightly

varying system configuration. The on-line GradientBoost algorithm, which was discussed in

Section 3.4, is used as the basic learning algorithm at each experiment. This GradientBoost

uses a logistic loss function to determine the example weights. The principle detection

process is performed as described in Section 5.2. According to this the classifier evaluates

features within a detection window. The corresponding number of features is defined by

the number of used selectors (see Section 3.3). The size of the overall feature pool that is

available for the classifier is defined by the number of weak learners per selector, since one
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feature is assigned to one weak learner. All selectable image feature types are discussed

in Chapter 2. To handle the nD feature response vectors of HOG- and LBP-features the

Euclidean distance to nD reference vectors is computed. The reference vectors are deter-

mined in context of the classifiers’ initialization by computing a mean response vector of

20 randomly selected training examples. Incremental on-line histograms are deployed as

weak learners (see Section 3.1.1). The centralized approach for learning requires a camera

setup with at least two stationary cameras (see Section 5.5). Thus, either the DT2 - Set4

dataset or the BC06 dataset are required to perform the centralized approach. To enable the

use of geometry these scenes have to be calibrated. Therefore, Tsai’s camera calibration

algorithm is deployed (see Section 4.3). All initial classifiers are trained with 20 positive

and 20 negative examples that are randomly selected from the INRIA Person Dataset. The

initial classifiers are cloned and assigned to single cameras in the multi-camera setup (see

Section 5.4). The training process is illustrated in Figure 6.2. Finally, the classifiers are

either evaluated on the sequence they are trained on or they are evaluated on the PETS2006

and Caviar dataset respectively. Notice, that there is no collaboration between the camera

views during evaluation!

6.4 Classifier Improvement Over Time

This experiment demonstrates the progress of the classifier performance through on-line

learning using the centralized approach. The setup for this experiment consists of three

calibrated cameras that observe an indoor scene whereas people walk on the floor (DT2

- Set4 dataset). All frames are processed to gain positive and negative updates, whereas

each tenth frame is taken to finally evaluate each camera’s classifier. The initial classifier

is trained as described in Section 6.3. In detail, the initial classifier consists of 50 selectors

and 50 weak learners per selector. Each weak learner is assigned to a randomly generated

Haar-like-wavelet. An on-line GradientBoost algorithm with a logistic loss-function is em-

ployed to learn the examples (see Section 3.4). The positive examples are obtained using

the centralized approach which is introduced in Section 5.6. The negative examples are

extracted by the usage of an approximated median background model (see Section 5.7.2).

Additionally, negative examples are bootstrapped from an the INRIA Person Dataset. The

classifier is saved at fixed times during training. Then these stored classifiers are evalu-

ated on the whole training set separately to measure its Precision and Recall. Finally, these

measures are assigned to the corresponding saving times and plotted into Recall/time and

Precision/time curves respectively (see Figure 6.3).

Figure 6.3 clearly shows that the performance of the final classifiers is almost reached

after 500 training frames. The more important property is, that the classifier’s Recall and
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(a) Camera 1, t = 0 (b) Camera 2, t = 0 (c) Camera 3, t = 0

(d) Camera 1, t = 250 (e) Camera 2, t = 250 (f) Camera 3, t = 250

(g) Camera 1, t = 500 (h) Camera 2, t = 500 (i) Camera 3, t = 500

(j) Camera 1, t = 750 (k) Camera 2, t = 750 (l) Camera 3, t = 750

(m) Camera 1, t = 1500 (n) Camera 2, t = 1500 (o) Camera 3, t = 1500

(p) Camera 1, t = 2000 (q) Camera 2, t = 2000 (r) Camera 3, t = 2000

Figure 6.2: Training process using three cameras on the DT2 - Set4 dataset. White
bounding boxes are detections in the single camera views. Red bound-
ing boxes correspond to negative updates that are obtained with a back-
ground model and green bounding boxes correspond to positive updates
that are obtained using the centralized approach. Grey bounding boxes
indicate suppressed updates.
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(a) First camera
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(b) Second camera
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(c) Third camera

Figure 6.3: Illustration of the classifier performance at fixed training times for each
camera view that is evaluated on the whole training set.

its Precision keep stable over time after 500 training frames. This reasons that the posi-

tive updates do not loose quality after some time. Further, it can be seen that the Recall

increases dramatically after about 100 processed training frames. This results from the fact,

that positive updates are extracted and processed starting from this time. In other words, no

persons are visible beforehand within this dataset. Moreover, an extreme drop of the recall

is recorded in the second and the third camera view within the first few frames. As men-

tioned above, there are no persons visible within the first few frames of the training scene.

Additionally, negative updates are obtained using motion information, which is computed

by means of a background model. Thus, negative updates are performed on the classifiers

without performing positive updates, since there are no persons visible yet (false positives).

According to these negative updates the Recall drops drastically, but stabilizes after a few

positive updates.
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6.5 Feature Performance Evaluation

In Chapter 2 several low-level image representations are discussed. This experiment com-

pares the performance of the implemented feature types. All classifiers are trained using

the centralized approach. Further, one initial classifier is trained per feature type using 20

positive and 20 negative training examples that are randomly selected from a much larger

dataset. Then the classifiers are on-line trained using the centralized approach with the

DT2 - Set4 dataset. Each classifier consists of 50 selectors and 10 weak learners per selec-

tor. Details on the basic setup are depicted in Section 6.3. Different feature types are boosted

together to a final classifier. In the case of using multiple feature types the classifiers are

initialized with an even number of features per feature type.

Figure 6.4 and Table 6.1 show that Haar-like-wavelets and HOG-features have almost

the same performance on the indoor scene. By contrast, using only LBP-features performs

poorly, since these features may be too descriptive to generate high-quality updates in the

first place. Moreover, the PR-curves show that classifiers which combine multiple feature

types have a higher performance. Especially the combination of Haar-like-wavelets with

LBP-features reach the highest Recall within this scenario, but it has even a lower precision

than Haar-like-wavelets alone. On the other hand, a combination of Haar-like-wavelets and

HOG-features have a rather high Recall and the highest Precision. Table 6.2 gives a more

detailed distribution of the feature types that the classifiers deployed within this scenario. It

is shown that usage of all feature types is warranted. Additionally, the performance of the

different initial classifiers is evaluated on the Caviar dataset. The initial classifiers are taken

to check their performance on external data without performing on-line updates. This eval-

uation clearly shows that combining multiple feature types increases the performance for

some combinations. The corresponding PR-curves are depicted in Figure 6.5 and Table 6.3.
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(a) Comparing Haar-, HOG- and LBP-features.
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(b) Comparing combinations of different feature-
types.

Figure 6.4: Performance of the final classifiers using different low-level image rep-
resentations.

Recall Precision F-Measure
Haar 0.83 0.97 0.89
HOG 0.82 0.97 0.89
LBP 0.17 0.36 0.23

(a) Comparing Haar-, HOG- and
LBP-features.

Recall Precision F-Measure
Haar+HOG 0.84 0.98 0.91
HOG+LBP 0.83 0.94 0.88
Haar+LBP 0.86 0.95 0.90
Haar+HOG+LBP 0.84 0.96 0.90

(b) Comparing boosted feature-types.

Table 6.1: Performance of the final classifiers using different low-level image repre-
sentations.

No. Features Haar [%] HOG [%] LBP [%]

Haar+HOG 50 42.0 58.0 0.0
HOG+LBP 50 0.0 76.0 24.0
Haar+LBP 50 52.0 0.0 48.0
Haar+HOG+LBP 50 26.0 54.0 20.0

Table 6.2: Distribution of feature types at the classifiers that combine multiple fea-
ture types.
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(a) Comparing Haar-, HOG- and LBP-features.
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(b) Comparing boosted feature-types.

Figure 6.5: Performance of the initial classifiers that are evaluated on the Caviar
dataset.

Recall Precision F-Measure
Haar 0.74 0.39 0.51
HOG 0.64 0.40 0.49
LBP 0.25 0.16 0.19

(a) Comparing Haar-, HOG- and
LBP-features.

Recall Precision F-Measure
Haar+HOG 0.78 0.43 0.55
HOG+LBP 0.63 0.37 0.46
Haar+LBP 0.67 0.34 0.45
Haar+HOG+LBP 0.75 0.55 0.63

(b) Comparing boosted feature-types.

Table 6.3: Performance of the initial classifiers on the Caviar dataset.

6.6 Weak Learner Performance Evaluation

In Section 3.1.1 two different weak learners are discussed. The first weak learner computes

an incremental histogram to approximate a probabilistic distributions of the positive and

the negative object class, whereas the second weak learner is a nearest neighbor classifier

that estimates the cluster centers of the positive and the negative object class in an on-

line manner. This classifier computes the distance to each cluster center within the feature

space for new examples and assigns the new example to the class with the lower distance

to. By contrast, the on-line histogram compares the bins of the positive an the negative

distribution to decide whether a new example contains an object or not. This experiment
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compares these two weak learners at the use of multidimensional feature response vectors.

The performance of HOG features is evaluated, where each HOG feature return feature

vectors with 36 dimensions. The on-line nearest neighbor classifier can directly handle this

multidimensional feature vectors, whereas on-line histograms have to compute the distance

to a reference vector for each feature to deliver competitive results. Section 6.3 introduces

further details on handling multidimensional feature response vectors at the use of on-line

histograms.

The performance of these two weak learners is evaluated on the DT2 - Set4 dataset.

The on-line histograms use 16 bins to approximate the positive and the negative object class

distributions. The initial classifier for this experiment uses 50 selectors and 50 weak learners

per selector. The initial classifier is again trained with 20 positive and 20 negative examples

only. Finally, Figure 6.6 and Table 6.4 depict the performance of both final classifiers. These

curves clearly show, that the on-line histogram delivers much better results overall at the use

of HOG features. As a result, the on-line histograms are deployed as weak classifiers for all

experiments within this thesis.

Recall Precision F-Measure
Histograms 0.84 0.93 0.89
Nearest Neighbor 0.86 0.91 0.89

(a) Camera 1

Recall Precision F-Measure
Histograms 0.84 0.96 0.90
Nearest Neighbor 0.67 0.94 0.78

(b) Camera 2

Recall Precision F-Measure
Histograms 0.87 0.92 0.89
Nearest Neighbor 0.82 0.87 0.84

(c) Camera 3

Table 6.4: Performance evaluation of on-line histograms and on-line nearest neigh-
bor classifiers as weak learners.
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(a) Camera 1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Precision

R
ec

al
l

 

 

Histograms
Nearest Neighbor

(b) Camera 2
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(c) Camera 3

Figure 6.6: Performance evaluation of on-line histograms and on-line nearest neigh-
bor classifiers as weak learners.

6.7 Increasing Number of Camera Views

This experiment compares classifiers that are trained with two views and three views re-

spectively. The basic setup is set as depicted in Section 6.3. The initial classifier is trained

using 20 positive and 20 negative example and it consists of 50 selectors and 50 weak learn-

ers per selector. For this experiment Haar-like-wavelets are used only, since they perform

well on the DT2 - Set4 dataset if the centralized approach is deployed to on-line update the

classifiers. Finally, the classifiers are evaluated on a subset of the training sequence. For

this purpose, each tenth frame is evaluate.

Figure 6.7 and Table 6.5 depict the performance of the final classifiers that are trained

either with two cameras or with three cameras. They clearly show, that the performance

increases if more camera views are deployed for training. This fact is feasible, since higher

performance can be obtained if more information is available to update the classifiers.
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(b) Camera 2

Figure 6.7: Performance of the final classifiers using 2 cameras and 3 cameras dur-
ing training on the DT2 - Set4 dataset respectively.

Recall Precision F-Measure
2 Cameras 0.83 0.92 0.87
3 Cameras 0.87 0.95 0.91

(a) Camera 1

Recall Precision F-Measure
2 Cameras 0.75 0.96 0.84
3 Cameras 0.88 0.96 0.92

(b) Camera 2

Table 6.5: Performance of the final classifiers using 2 cameras and 3 cameras during
training on the DT2 - Set4 dataset respectively.

6.8 Scene Specific Classifiers

Scene specific classifiers are a byproduct if positive updates are gained from an arbitrary

training scene. Hence, the classifiers are immediately updated with positive and negative

examples as they are obtained. This experiment shows the detection results of the final

classifiers that were obtained within the experiment, that shows the classifiers’ performance

improvement over time (see Section 6.4). Additionally, this experiment shows the per-

formance of two static state-of-the-art person detectors on the same dataset (DT2 - Set4).

The first state-of-the-art person detector within this experiment was proposed by Dalal and

Triggs [20] (D&T), who used the HOG-descriptor with Support Vector Machines. And the

second state-of-the-art person detector was proposed by Felzenszwalb et al. [30] (FS), who

used a deformable part based model to identify persons within images. Each state-of-the-art

detector is applied to the single camera views and compared with the corresponding on-line
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trained classifiers that are obtained using the centralized approach. Remember, that there is

no collaboration between the cameras during evaluation.

The results that are depicted in Figure 6.8 and Table 6.6. They show that the scene

specific classifiers outperform the static state-of-the-art classifiers as expected. Remember

that the scene specific initial classifier was trained with 20 positive and 20 negative examples

only, whereas the static classifiers have been trained with 10, 000s of positive and negative

training examples. As a result, the centralized approach establishes opportunities to train

scene specific classifiers with a modicum of effort.

A further classifier is trained on the BC06 dataset. This classifier has the same speci-

fications as the classifier that was trained on the DT2 - Set4 dataset. Finally, the classifier

is evaluated on a subset of the training sequence. The evaluation sequence contains 250

frames, which corresponds to each twentieth frame of the training sequence. Figure 6.9

Table 6.7 shows the performance for both cameras.
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(b) Second camera
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(c) Third camera

Figure 6.8: Scene specific classifiers’ performance using DT2 - Set4 dataset
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Recall Precision F-Measure
Camera 1 0.72 0.25 0.37
Camera 2 0.71 0.29 0.41
Camera 3 0.75 0.31 0.43

(a) initial classifiers

Recall Precision F-Measure
Camera 1 0.87 0.96 0.91
Camera 2 0.88 0.96 0.92
Camera 3 0.91 0.98 0.94

(b) final classifiers

Table 6.6: Performance measures for all three cameras that are trained with the pro-
posed approach on the DT2 - Set4 dataset.
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(b) Second camera

Figure 6.9: Scene specific classifiers using BC06 data.

Recall Precision F-Measure
Camera 1 0.76 0.39 0.51
Camera 2 0.81 0.64 0.71

(a) initial classifiers

Recall Precision F-Measure
Camera 1 0.77 0.93 0.84
Camera 2 0.86 0.94 0.90

(b) final classifiers

Table 6.7: Performance measures for all three cameras that are trained with the pro-
posed approach on the BC06 dataset.
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6.9 Centralized Approach versus Baseline Approach

This experiment compares the baseline approach (see Section 4.7) and the centralized ap-

proach which is proposed within this thesis. Both approaches are applied on the DT2 -

Set4 dataset using two cameras only. The initial classifiers are trained with 20 positive and

20 negative examples. Section 6.3 introduces additional details on the basic setup. The

classifiers consist of 50 selectors whereas each selector contains 50 weak learners.

Figure 6.10 and Table 6.8 depict the performance of the final classifiers at each camera

view. Hence, the PR-curves clearly show, that the baseline approach and the centralized

approach deliver almost the same performance.
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Figure 6.10: Performance of the final classifiers using either the baseline or the cen-
tralized approach with the DT2 - Set4 dataset.

Recall Precision F-Measure
Centralized Approach 0.87 0.96 0.92
Baseline Approach 0.85 0.95 0.90

(a) Camera 1

Recall Precision F-Measure
Centralized Approach 0.82 0.95 0.88
Baseline Approach 0.81 0.96 0.88

(b) Camera 2

Table 6.8: Performance of the final classifiers using either the baseline or the cen-
tralized approach with the DT2 - Set4 dataset.
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6.10 Classifier Generalization

Section 6.8 shows that the centralized approach produces excellent scene specific classifiers.

However, it is the goal the produce classifiers that have a high performance on a large variety

of scenes. Therefore, this experiment evaluates the classifier performance on a much more

general setup to proof its generalization. To perform this task, a much larger classifier is

trained. Hence, cascades are deployed to speed-up the classifier’s evaluation time. The

cascade configuration is depicted in Table 6.9, since the cascade has to be parametrized

in advance (see Section 5.8). Further, Haar-like-features and HOG-features are combined

Stage 1 Stage 2 Stage 3 Stage 4
# Selectors 10 20 40 80
# Weak Learners per Selector 100 100 100 100

Table 6.9: Cascade configuration for generalizing classifier.

using the on-line Gradientboost algorithm with a logistic loss-function (see Section 3.4).

The initial classifier contains 50% Haar-like-features and 50% HOG-features. Moreover, 20

positive and 20 negative examples are picked at random from the INRIA Person Dataset to

train the initial classifier. This classifier is retrained by deploying the centralized approach

on the DT2 - Set4 dataset using three cameras. After training, the final classifier of one

camera is evaluated on the PETS2006 and the Caviar dataset. The D&T detector and the

FS detector are evaluated on the same datasets to obtain reference results by using state-of-

the-art person detectors.

Figure 6.11 shows the classifiers’ PR-curves and Table 6.10 depicts the corresponding

performance values. In both cases the centralized learning approach achieves excellent re-

sults compared to the static state-of-the-art detectors. Especially the Recall is much better

on both datasets. This shows that the centralized approach is able to produce general classi-

fiers that work on scenes with similar geometric conditions concerning the objects that have

to be detected.
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(b) PETS2006 Data

Figure 6.11: Classifier performance on PETS2006 and Caviar data.

Recall Precision F-Measure
Centralized Approach 0.72 0.89 0.79
Dalal and Triggs 0.45 0.99 0.62
Felzenszwalb 0.52 0.92 0.66

(a) Caviar Data

Recall Precision F-Measure
Centralized Approach 0.62 0.94 0.75
Dalal and Triggs 0.40 0.90 0.55
Felzenszwalb 0.58 0.86 0.69

(b) PETS2006 Data

Table 6.10: Classifier performance on PETS2006 and Caviar data.

6.11 Summary

This chapter illustrates all experiments and the corresponding results which show the learn-

ing behavior of the centralized approach. The approach is applied to various datasets and it

is shown that this approach performs stable learning which means that the classifier perfor-

mance improves and finally saturates at a certain degree. Further, the centralized approach

is compared to the baseline approach and to several state-of-the-art detectors. Finally, it

is shown that scene specific classifiers which are trained with the novel approach outper-

form the state-of-the art detectors and that they yield competitive results on various other

datasets, since this classifiers also generalize.



Chapter 7

Summary and Conclusion

This thesis presents a novel centralized approach to learn single-view classifiers from multi-

camera scenes. This approach combines information from several camera views exploiting

geometric constraints to obtain positive examples from an unlabeled training scene. Fur-

ther, a method is introduced, that allows to train an object detector from a limited number

of labeled data only. Hence, the approach implicitly labels data during training the de-

tector. Compared to the baseline approach, which was proposed by Roth et al. [83], the

centralized approach is able to use an arbitrary number of cameras without increasing the

computational complexity of merging information. Moreover, the detector that is trained

using a multi-camera setup, can be simply applied to any single-camera setup, which is im-

portant especially at surveillance applications, since there is mostly a single-camera setup

available. In other words, there are hardly overlapping fields of camera views due to reduce

the costs of surveillance systems. Finally, the centralized approach reduces the complexity

of setting up a multi-camera training scene, since it requires calibrated cameras only. This

means that each camera has to be calibrated once, after it is placed within the 3D scene. In

detail, the calibrated cameras are deployed to transfer information from each camera view

to a centralized top view map. In contrast, the baseline approach requires numerous ho-

mographies that have to be estimated for each pair of cameras. In this case, the number of

required homographies increases quadratically if the number of cameras increases linearly.

Another advantage of the centralized approach is the property, that it is completely inde-

pendent from the subjacent learning algorithm and the single-view classifiers, since they

provide confidence measures for all detections.

The centralized approach requires single-view detections with corresponding confi-

dence measures. This novel approach collects all single-view detection information and

projects them into a common top view map using each camera’s calibration information.

In the next step, the information fusion algorithm creates a density map on the basis of

77
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the top view map, whereas only detections are transferred to the density map if the de-

tection occurred in at least two different camera views. Due to calibration inaccuracies

neighboring detections from different camera views in the top view map are regarded as

one, if the euclidean distance between these detections is smaller than a certain threshold.

To finally extract positive examples from the training data, a mean-shift algorithm is ap-

plied on the density map to find all local maxima. These local maxima correspond to top

view locations of positive examples within the training data. Furthermore, these locations

are back-projected into the single camera views to extract positive examples. Additionally,

occlusion checks are performed before the examples are extracted, since possible overlap-

ping examples may cause suboptimal positive updates and thus may corrupt the classifiers.

Hence, scene specific classifiers are a byproduct of gathering positive examples. To finally

obtain balanced classifiers negative updates are performed using negative examples that are

bootstrapped from any external dataset that does not contain positive examples and neg-

ative examples that are extracted from the training scene using an approximated median

background model.

Within the experimental section an on-line GradientBoost algorithm using a logistic

loss-function is deployed to obtain classifiers via feature selection. Additionally, various

feature types and weak learner types are evaluated. The initial classifiers are trained using

20 positive and 20 negative examples from a much larger external dataset. These classifiers

are then retrained in an on-line manner to improve their performance using the centralized

approach. The experiments showed that the centralized approach delivers equivalent results

to the baseline approach without increasing the computational complexity if the number of

cameras increases. Further, the experiments show that using more cameras during train-

ing leads to better classification results during single-view evaluation, since more cameras

provide more information to train the classifiers. It is also shown that the classifiers’ per-

formance saturates after some time and keeps stable. Additionally, this indicates that the

quality of the positive updates remains at a high level. Further, it is shown that the scene

specific classifiers outperform state-of-the-art detectors on the training scenes as it is ex-

pected even though only 20 positive and 20 negative examples are taken to train the initial

classifier. Finally, it is shown that classifiers that are trained using the centralized approach

also generalize well. Such classifiers obtained more than competitive results compared to

the state-of-the-art detectors’ performance on publicly available benchmark datasets.

Future work will focus on integrating a part based detector to better handle partly occlu-

sions in the single camera views. The current detector only detects objects if they are almost

completely visible in single camera views to guarantee reliable detections. Further, more

accurate weak learners have to be developed, that fit into the on-line boosting framework, to

additionally increase the detection performance especially at the use of features that deliver
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heigh-dimensional response vectors like HOG features or LBP features. Moreover, it is the

goal to get rid of the background model (e.g. integrate a conservative learning strategy [80]).

Currently the background model delivers negative examples from the multi-camera scene

during training by evaluating motion information at detections. A negative update is trig-

gered immediately if a detection occurs and there is no motion information present within

the detection rectangle. Within this thesis the background model works fine, but it has sev-

eral disadvantages. Assume an outdoor training scenario with multiple cameras, where a

person is walking along a wall. The person causes a shadow on the wall and at least person

detectors from two different cameras detect the person itself and the shadow during training.

In this case positive updates are performed using both detections and the background model

does not trigger a negative update on the shadow, since there is also motion information

present.



Appendix A

Publications

For the sake of completeness the remainder of this chapter lists all publications that were

published during the course of this work.

1. A. Berger, P.M. Roth, C. Leistner, H. Bischof, Centralized Information Fusion for

Learning Object Detectors in Multi-Camera Networks, Austrian Association for Pat-

tern Recognition, 2010 (submitted) [5]
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