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Abstract

Single channel source separation aims to recover one or several source signals from a
single mixture recording. Since we deal with at least 2 interfering sources, this problem
is under-determined in any case. Bregman showed in [1] that the human auditory system
uses various heuristics to separate the time-frequency plane of a perceived auditory scene,
and that it reorganizes the resulting parts according to likely objects. Computational
auditory scene analysis [2, 3, 4] aims to mimic this mechanism. Roweis [5] introduced
the refiltering framework, where spectrogram masks are used to indicate the parts of the
mixture spectrogram belonging to a specific source. Resynthesis of the source wave forms is
achieved by modulating the original mixture phase onto the masking signals and applying
the inverse Fourier transform. The challenging part is to estimate suited masking signals
for each source. The factorial max vector quantization (max-VQ) system [6] models the
source spectrograms with independent vector quantizers, and estimates the most probable
states for each source given the mixture data. The corresponding code words of the
vector quantizers give an approximation of the source spectrograms, which can be used to
estimate the masking signals.

The K-SVD algorithm [7] was proposed for the design of overcomplete dictionaries for
sparse coders. On the other hand, this algorithm can be seen as generalization of k-means,
the standard training algorithm for vector quantizers. In this thesis we aim to extend the
factorial max-VQ system by replacing k-means with a more flexible and more expressive
training method. We propose a new algorithm which combines nonnegative sparse coding
with nonnegative matrix factorization (NMF) [8], which we call NMF with ℓ0 constraints.
We develop a probabilistic framework for single channel source separation and compare
our system to factorial max-VQ in systematic experiments using data from the database
by Cooke [9]. These experiments confirm that our system performs on average better
than factorial max-VQ in terms of signal-to-interference ratio. Furthermore, the proposed
method needs a much lower computational effort, so that it can be executed up to 15
times faster than the baseline system. Additionally, we apply our algorithm to real-world
mixture data recorded from various TV broadcasts [10].



Kurzfassung

Single Channel Source Separation versucht eine oder mehrere Quellen aus einer einkanali-
gen Mischung zu extrahieren. Dieses Problem ist unterdeterminiert, da mindestens 2
Quellen miteinander interferieren. Bregman zeigte in [1], dass das menschliche Gehör
mehrere Heuristiken verwendet um die Zeit-Frequenz Darstellung einer akustischen Wahr-
nehmung in Teile zu zerlegen und diese dann entsprechend plausibler Objekte reorgan-
isiert. Computational Auditory Scene Analysis [2, 3, 4] versucht diesen Mechanismus
zu imitieren. Roweis [5] führte die Methode des Refiltering ein, bei der Spektrogramm-
masken die Teile einer bestimmten Quelle im Spektrogramm der Mischung markieren. Mit
Hilfe dieser Masken können die Quellsignale resynthetisiert werden, indem die originale
Phase des Mixturspektrogramms der Maske aufmoduliert wird, und diese einer inversen
Fourier Transformation unterzogen wird. Die Herausforderung dabei ist es, geeignete
Maskensignale für jede Quelle zu schätzen. Das factorial max Vector Quantization (max-
VQ) System [6] modelliert die Quellspektrogramme mit unabhängigen Vektor Kodierern
und schätzt die wahrscheinlichsten Zustände für jede Quelle bei gegebenen Mischung. Die
dazugehörigen Kodevektoren ergeben eine Approximation der Quellspektrogramme, mit
denen die Masken geschätzt werden können.

Der K-SVD Algorithmus [7] wurde zum Design von überkompletten Wörterbüchern
für Sparse Coder entwickelt. Andererseits kann dieser Algorithmus als Generalisierung
von k-means gesehen werden, dem Standardtrainingsalgorithmus für Vektor Kodierer. In
dieser Masterarbeit versuchen wir das factorial max-VQ System zu erweitern, indem wir
k-means mit einer flexibleren und ausdrucksstärkeren Methode ersetzen. Wir präsentieren
einen neuen Algorithmus, der eine Kombination von nicht-negativem Sparse Coding und
nicht-negativer Matrix Faktorisierung (NMF) [8] darstellt. Wir nennen diesen neuen Al-
gorithmus nicht-negative Matrix Faktorisierung mit ℓ0 constraints. Wir entwickeln ein
probabilistisches Modell für Single Channel Source Separation und vergleichen unsere
Methode mit factorial max-VQ in systematischen Experimenten, wobei wir die Datenbank
von Cooke [9] verwenden. Diese Experimente zeigen, dass unser System im Durchschnitt
ein höheres Signal-Interferenz Verhältnis als factorial max-VQ erreicht. Weiteres ist der
Rechenaufwand für die vorgeschlagene Methode wesentlich niedriger, so dass sie bis zu
15 Mal schneller als das Vergleichssystem ausgefhrt werden kann. Außerdem wenden wir
unseren Algorithmus auf realistische Mischungen von verschiedenen TV Sendungen an
[10].
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Chapter 1

Introduction

Humans constantly receive a large amount of information via their senses. The ability to
cope with this stream of information is essential for us to survive and to orient ourselves
in our environment. Although we interpret the information we gain with apparent ease,
this task is not easy to be automatized and implemented in a computer.

One task the human brain solves during the processing of incoming information, is to
split the sensory input into meaningful parts and to reorganize these according to objects.
More precisely, it solves the so called source separation problem, in the auditory domain
also known as the ”Cocktail Party Problem” [11].

Humans show great skill in perceiving a certain sound source out of a mixture. We can
hear a specific voice in an environment like a noisy cocktail party, although the surrounding
noise may be much louder than the voice we are concentrating on. This outstanding ability
has motivated many different approaches to implement effective computational systems
which are able to solve the source separation problem. These systems can be used as a front
end for automatic speech recognizers, since their performance usually drops dramatically
when the target voice is interfered with noise, speech or other sounds. Other applications
for source separation systems are audio processing, automatic music transcription systems
and smart hearing aids.

In general, the problem of source separation is to extract one or several sources from a
set of n recordings, where the source signals are mixed in a different way for each recording.
Figure (1.1) illustrates this setup for n = 3. If we have only one mixture signal (n = 1),
we speak about single channel source separation (SCSS). Note that since we have at least
2 source signals, this case is necessarily underdetermined, and several systems proposed so
far can not be applied. However, in various applications we do not have several recordings
of an auditory scene, like in telephony, or we are not willing to make the effort with more
than one channel. This fact should motivate us to develop methods which can treat the
SCSS task in a more satisfying manner.

1.1 Scope of Research

In this thesis we extend the factorial max-vector quantization (VQ) model for SCSS intro-
duced by Roweis [6]. This system models the magnitude-log spectrogram of the sources
with the output of vector quantizers plus Gaussian noise. For SCSS, the most probable

1
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Figure 1.1: Principal setup for source separation.

code words for each VQ are inferred, which represent approximations of the source spec-
trograms. These approximations can be used to calculate so called binary masks, which
again can be used for the resynthesis of the source waveforms. However, the codebooks
of the VQ have to be trained for source specific data, where the well known k-means
algorithm is used.

Aharon et al. [12] proposed the K-SVD algorithm (K singular value decompositions)
for the design of overcomplete dictionaries for sparse coders, which was successfully applied
for data compression and denoising. K-SVD can be seen as a generalized version of k-
means and works in an expectation-maximization like manner. Therefore, to extend the
factorial max-VQ using K-SVD instead of k-means would seem to be promising. Aharon et
al. [12] provided also a nonnegative version of K-SVD, which is more suitable for this task,
since factorial max-VQ operates with magnitude-log spectrograms, i.e. nonnegative data.
However, in this thesis we introduce a simpler and more effective version of nonnegative K-
SVD, by replacing the M-step with nonnegative matrix factorization (NMF), as introduced
by Lee and Seung [8]. This new algorithm is called nonnegative matrix factorization with ℓ0

constraints (NMFℓ0). For the E-step, which consists of the application of a sparse coder to
the training data, we adapt the orthogonal matching pursuit (OMP) [13] in order to satisfy
nonnegativity constraints. We call this adapted version of OMP nonnegative matching
pursuit (NMP). Additionally, we introduce a generalized algorithm which represents an
intermediate solution between the fast but greedy NMP and the optimal but intractable
full search. This generalized algorithm is called beam-search NMP (BS-NMP).

Analog to factorial max-VQ, we define a probabilistic framework which models the
sources with sparse coders and which we call factorial sparse coder model (factorial SC).
Since it is intractable to search the optimal solution for this model, we restrict the search
space to a sub-set of plausible solutions.

We show in systematic experiments with synthetic mixture data [9], that the proposed
algorithm performs better than max-VQ in terms of the mean signal-to-interference ratio.
Additionally, the computational effort of the new method is much lower than for the
baseline system, which allows close to real-time applications. Finally, we apply factorial
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SC to real-world mixture data recorded from various TV broadcasts [10]. To evaluate the
separation quality, we use informal listening tests and compare the results of an automatic
speech recognizer (ASR), one time applied to the original mixture and the other time
applied to the separated signals. While we can state due to the listening tests that our
algorithm clearly extracts the target source, the ASR results significantly increase only for
one target out of four.

1.2 Organization of the Thesis

In chapter 2, we review several approaches for source separation. We discuss independent
component analysis (ICA), the standard algorithm for general source separation. We
argue that ICA and sparsity are related concepts, and that a sparse code is a useful
representation for cognitive systems. The baseline system of our work, factorial max-VQ,
is also discussed.

In chapter 3, we describe K-SVD in detail. We introduce the alternative algorithm for
nonnegative K-SVD, which we call nonnegative matrix factorization with ℓ0 constraints
(NMFℓ0). The adapted version of OMP, nonnegative matching pursuit (NMP), and its
generalized version, beam-search NMP, are also discussed.

In chapter 4, we apply K-SVD and NMFℓ0 to the SCSS problem by using a simple
straight forward solution. We perform a best case analysis, in order to estimate an upper
performance bound which can be achieved when K-SVD or respectively NMFℓ0 dictionar-
ies are used in a refiltering approach. Further we define the factorial sparse coder model,
and use the BS-NMP algorithm in order define a plausible restricted search space, and to
find the optimal solution within this restricted space.

Finally, chapter 5 concludes this thesis.



Chapter 2

Related Work

In this chapter we review some source separation systems, where in general we can distin-
guish two main approaches. The first approach relies on statistical properties of the source
signals and is known as independent component analysis (ICA). In section 2.1 we describe
ICA in its classical definition as the solution for an unmixing problem. We also point out
the relationship between ICA and sparse coding, and argue that sparseness is a useful
concept for cognitive information processing systems. The second approach is known as
computational auditory scene analysis (CASA), which is is briefly reviewed in section 2.3.
Generally, CASA tries to mimic the ability of humans to separate sound sources by apply-
ing a so called auditory scene analysis (ASA) [1]. Section 2.4 introduces the factorial max
vector quantization (max-VQ) system by Roweis [6], which tries to combine the main ideas
of ICA and CASA. On the one hand a technique called refiltering is basically used by all
CASA systems and on the other hand statistical methods are applied for the estimation
of so called masking signals. In section 2.5 we discuss Nonnegative Matrix Factorization
(NMF) [8] and its application to the SCSS problem.

2.1 Independent Component Analysis

Independent component analysis (ICA) [14] is the classical approach to the source sepa-
ration problem. In its standard definition, ICA needs at least as many mixture signals
as source signals. Although under-determined versions of ICA exist [14], it can not be
applied in the monophonic case.

Consider an auditory scene with n sources and n microphones. According to the laws
of physics, the signal waveforms emitted by the sources are mixed in an additive way. Due
to different distances between sources and microphones, and due to the specific geometric
constellation in the given scene, the sources will be mixed with different gain factors.
When we denote the ith signal with si(t) (1 ≤ i ≤ n) and the jth mixture with mj(t)
(1 ≤ j ≤ n), then the mixture model has the following form:

mj(t) = aj,1s1(t) + aj,2s2(t) + . . . + aj,nsn(t) , 1 ≤ j ≤ n. (2.1)

The variable t denotes time and aj,i are the gain factors for the ith signal and the jth

mixture. Note that in a realistic setup the assumption that the mixtures are generated by
a mere linear combination of the source signals does not hold. Usually we have to consider

4
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delay factors due to different distances and the impulse responses of the surrounding area.
However, for simplicity’s sake let us consider this simple linear mixture model. In matrix
notation, the model according to Eq. (2.1) takes the compact form

m(t) = As(t). (2.2)

The source and the mixture signals are arranged into vectors s and m respectively, and
the gain factors are combined to the mixing matrix A. We see now clearly how to solve
the problem. If we knew the mixing matrix A, and if it was invertible, we simply have to
multiply the inverse mixing matrix with the mixture vector in order to regain the source
signals:

s(t) = A−1m(t). (2.3)

However, usually we do not know A. The key idea in ICA is that we can usually that
the sources are statistically independent. Therefore we try to find a demixing matrix
so that the demixed signals are as independent as possible. However, it is not easy to
measure independence. The standard definition of statistical independence is that the
joint probability density function (pdf) of a random vector factorizes into the product of
the marginal pdfs of the individual random variables. In order to use this definition we
would have to estimate the joint pdf and the product of the marginal pdfs of the demixed
signals and to compare these via some measure like the Kullback-Leibler divergence.

The central limit theorem provides an easier method to measure statistical indepen-
dence. The pdf of the sum of independent random variables with nongaussian pdfs is
closer to a Gaussian distribution than the individual pdfs. Therefore we can use the dis-
similarity between the pdf of the demixed signals and a Gaussian distribution in order to
measure independence. The prerequisite for this approach is that the original signals are
distributed according to nongaussian pdfs. The Gaussian distribution is fully determined
by its mean value and its variance, while all higher order cumulants are zero. It is also
the only distribution whose higher order cumulants are all zero. Therefore we can aim
to maximize the absolute value of higher order cumulants to achieve nongaussianity and
hence independence.

The classical choice for ICA is to maximize the fourth order cumulant, the kurtosis.
The kurtosis corresponds to the “peakyness” of a pdf. Pdfs with large positive kurtosis are
called super-Gaussian and are concentrated in a peak around the mean value with “heavy
tails”, what means that they fall off slower than the Gaussian distribution for values which
are far away from the mean. On the other hand, pdfs with negative kurtosis are called
sub-Gaussian and are more similar to the uniform distribution.

In order to increase the statistical independence of the unmixed signals, we can use a
gradient ascent method to maximize the absolute value of the kurtosis. The most basic
ICA algorithm therefore consists of:

1. Remove the mean of the mixed signal.

2. Prewhite the mixed signals, i.e. decorrelate the mixture signals and normalize to
unit variance.

3. Find a demixing matrix that maximizes the absolute value of the kurtosis of the
demixed signals, using a gradient ascend method.
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Bell and Sejnowski [15] developed a new view on ICA. They generalized the infomax
principle by Linsker [16, 17] to neural networks with nonlinear activation functions. The
infomax approach intents to maximize the information flow from input to output (i.e.
the mutual information) in a network by tuning the network weights. They showed that
information maximization between input and output generally yields into a reduction of
the mutual information between the outputs. Hence, the statistical independence of the
outputs is increased.

2.2 ICA and Sparsity

Bell and Sejnowski applied their algorithm to patches of natural images [18] and found that
the independent components are similar to observed responses of simple cells in the visual
cortex. These responses can be described as localized, oriented and similar to Gabor filters.
On the other hand, Olshausen and Field [19] drew parallels between the observed coding
in the primary visual cortex and a sparse coding strategy. Their sparse coding algorithm
turned out to be very similar to the ICA algorithm by Bell and Sejnowski and produced
similar results. This shows that ICA and sparse coding are familiar concepts, which can
be illustrated by the following argument. ICA tries to transform data so that the output
has higher statistical independence, where we can use the kurtosis as an independence
measure. Pdfs with high kurtosis are peaky around their mean value. Since a sparse code
tries to use only few significantly active elements to code the data, the pdf of the sparse
output will naturally have a peak around zero and therefore have a high kurtosis. Thus
the output of a sparse coder will usually be more statistically independent than the input.
However, ICA using kurtosis as an independence measure will only produce a sparse code,
if the kurtosis is actually maximized. In ICA we usually aim to maximize the absolute
value of the kurtosis, which allows the kurtosis to also be negative. However, in many
cases we deal with signals with positive kurtosis, like e.g. speech signals.

Field [20] proposed that a general strategy for early sensory input could be a sparse
distributed code. He distinguished between sparse distributed codes and compact codes.
A compact code has the goal to describe multidimensional input with as few basis vectors
(cells) as possible. These vectors can be adapted to certain data by minimizing the recon-
struction loss. The result is a dimensionality reduction and a compression. In contrast, a
sparse distributed code does not aim to reduce the dimensionality, but rather to minimize
the number of active cells. The difference between compact coding and sparse-distributed
coding is illustrated in figure (2.1). Sparse representation of sensory input has several
advantages. The authors in [21] and [22] show, that an associative memory network has
significantly higher capacity when its input shows a sparse structure. Foeldiak [23] ar-
gues, that the training of these networks becomes slow for distributed input, and that the
resulting learning rules are more complicated. Moreover, it is plausible that a cognitive
system can more easily handle input in sparse form. When we interpret the basis vectors
as features, a sparse activation implies that a certain feature is inactive most of the time.
On the other hand, if a feature is active for specific input, this means that we registered
an important event connected to this feature.
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Figure 2.1: Compact coding versus sparse-distributed coding [20].

2.3 Computational Auditory Scene Analysis

Bregman [1] found that the human brain seems to use various heuristics in order to perform
the source separation task. He called this process auditory scene analysis (ASA), in
parallel to scene analysis in computer vision. The cochlea in the inner ear provides a
short term frequency analysis of the incoming sound. The parts of this time-frequency
representation are organized by the brain into so called streams, where several grouping
rules are used, like common on- and off-set of energy in different frequency bands, harmonic
stacking and co-modulations of quasi-sinusoids. The work by Brown and Cooke [2] was
the first attempt to design a sophisticated system which takes use of the physiological and
psychological findings about the human auditory system. Wang and Brown developed in
[3] a neurologically inspired oscillatory correlation model for the source separation task.

2.4 Factorial max-VQ model

Roweis [5] recognized that the grouping rules of the CASA systems proposed so far are
more or less hand designed. He proposed to build explicit models by applying machine
learning techniques to training data of the sources. In the separation step, these models
are used to find the components corresponding to the sources. Roweis introduced the
general framework of refiltering, where the first step is to split the mixture into sub bands
using a filter bank. By weighting each channel with a nonstationary masking weight
between 0 and 1, and by recombinating the weighted channels, a certain source signal can
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be resynthesized. In more detail, if bi(t) denotes the ith mixture channel and ai(t) are the
weights to choose, a certain source signal s(t) can be recovered by

s(t) =
∑

i

ai(t)bi(t) (2.4)

Two signals rarely interfere in both time and frequency, therefore this approach is very
promising. In contrast to ICA, where several mixtures are reweighted and added, the
refiltering approach reweights and adds the sub bands of a single mixture. The short time
Fourier transform (STFT) is equivalent to a filter bank with linear equidistantly spaced
center frequencies. Refiltering can therefore be performed by reweighting the mixture spec-
trogram with the masking signals, applying the inverse Fourier transform to the columns,
and an overlap-add procedure. The remaining and challenging task is to estimate the
correct masking signals ai(t) in order to extract a desired source. Roweis made the sim-
plification that the masking signals are binary (i.e. 0 or 1) and stationary in each analysis
frame. Each spectrogram bin is therefore assigned to only one source. For a small number
of sources however, this simplification still allows good results. The factorial max-VQ
system [6] models the magnitude-log spectrograms of the sources as the output of vec-
tor quantizers. Further, the magnitude-log spectrogram of the mixture is approximated
by the element-wise maximum of the magnitude-log spectrograms of the sources, plus a
Gaussian noise term. In this system, the output in a certain time frame is assumed to
be independent from all other frames. Therefore, source separation can be performed for
each spectrogram column separately. In [5], the factorial-max HMM model was proposed
which also considered time dependencies using hidden Markov models (HMM). However,
the factorial-VQ model performs almost as well as this system, while needing much less
computational effort.

When we assume thatM sources are present in an auditory scene, the factorial-max VQ
model consist of M vector quantizers, each with KM codebook entries, where the kth code
word of themth VQ is denoted by vk

m. The latent variables zm ∈ {1, . . . ,Km}, 1 ≤ m ≤M
hold the indices of the codewords which are selected by the VQ. The probabilities of the
code words are denoted by πk

m and are assumed to be fixed:

πk
m = p(zm = k), 1 ≤ m ≤M, 1 ≤ k ≤ Km. (2.5)

The joint probability of the outputs is given as p(z) =
∏

m p(zm), where z = (z1, . . . , zm).
Given the codebook selections z, the index ad of the VQ which has the maximal output
in the dth dimension is

ad = arg maxm (vzmm )d . (2.6)

Hence, the dth entry of the mixture spectrogram xd is distributed according to

p(xd|ad,v,Σ2) = N (xd|v
zad
add

,Σ2
add

), (2.7)

where N (·|µ, σ2) is the Gaussian distribution with mean value µ and variance σ2. The
value v

zad
add

is the maximum of the outputs of the sparse coders in the dth dimension and

Σ2
md are noise variances, which are shared between the code words of one VQ. The entries

of the mixture x are assumed to be independent of each other, so that the probability of



CHAPTER 2. RELATED WORK 9

x given the codebook selections z can be written as

p(x|z,v,Σ2)) =
D
∏

d=1

p(xd|ad,v,Σ2), (2.8)

where D is the number of spectrogram frequency bins. The marginal probability of x is
given as

p(x|v,Σ, π) =
∑

z

p(z)p(x|z,v,Σ2). (2.9)

In order to train the code books for the VQ model, k-means is applied to the magnitude-
log spectrograms of source specific training data. The residual error of k-means can be
used to estimate the noise variances Σ2

md and the prior probabilities πk
m can be estimated

by counting code word appearances.
For source separation, following a maximum a posteriori (MAP) approach, we are

interested in a single z given the mixture x, which maximizes the summand in Eq. (2.9),
since

p(z|x) ∝ p(z)p(x|z,v,Σ2). (2.10)

To find the optimal z in principle a full search has to be performed, which has a compu-
tational complexity of O(KM ) (assuming that Km = K, ∀m). Roweis proposed a branch
and bound technique in order to alleviate this problem. He defined an upper bound for
the posterior probability for each code word, independent from the state of all other VQ.
When the upper bound of a code word is below the exact posterior of an already consid-
ered combination of code words, then this code word does not have to be considered any
more.

When the selection z with the highest posterior is determined, then the code book
entry vzm

m represents an estimation of the log-magnitude spectrogram column of the mth

source. Repeating this process for every time frame, we get approximations of the whole
source log-magnitude spectrograms. Further, we can use these approximations to estimate
a set of binary or continuous masks, one for each source. For the continuous masks it is
necessary to invert the logarithm in order to obtain the magnitude spectrograms in the
linear domain. Let Ŝm

dn denote the estimation of the linear magnitude spectrogram of the
mth source, where d corresponds to the frequency bin and n to the time index. The binary
mask (BM) for each source is given as

BMm
dn =

{

1 if Ŝm
dn > Ŝl

dn ∀l 6= m
0 otherwise

. (2.11)

The continuous mask (CM) for each source is given as

CMm
dn =

Ŝm
dn

∑

l Ŝ
l
dn

. (2.12)

2.5 Nonnegative Matrix Factorization

Lee and Seung [8, 24] proposed nonnegative matrix factorization (NMF) in order to rep-
resent a nonnegative matrix X as a matrix product of nonnegative matrices W and H:

X ≈W H. (2.13)
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When X is a D × N matrix, then W and H have the dimensions D × R and R × N ,
respectively, where the inner dimension (approximation level) R has to be chosen by the
user. When we interpret the columns of X as data samples, then the columns wi (i =
1 . . . R) of W can be interpreted as bases vectors and the elements of H as corresponding
weight coefficients, since

xj ≈
R
∑

i=1

hijwi 1 ≤ j ≤ N. (2.14)

Since the coefficients are nonnegative, each data point is represented by a mere addition
of nonnegative bases vectors, without allowing subtractions. Eq. (2.13) implies that we
have to minimize a distance measure between X and its reconstruction W H. Lee and
Seung showed in [8] that the Euclidean distance is non increasing under the update rules

Haµ ← Haµ ⊗
(WTX)aµ

(WTWH)aµ
,

Wia ←Wia ⊗
(XHT )ia

(WHHT )ia
. (2.15)

where ⊗ and / denote element wise product (Hadamard product) and element wise divi-
sion, respectively. Similarly as for the Euclidean distance, they showed that the Kullback-
Leibler divergence between X and WH is non increasing under the following update
rules.

Haµ ← Haµ ⊗
∑

iWiaXiµ/(WH)iµ
∑

k Wka

,

Wia ←Wia ⊗
∑

µHaµXiµ/(WH)iµ
∑

ν Haν

. (2.16)

By inspection of the equations (2.15) and (2.16) it is clear, that they will not violate the
nonnegativity constraint, given that X and the initial matrices W and H are nonnegative.

Hoyer [25] proposed an NMF version with additional sparsity constraints. In order to
define sparsity, he used the following measure for an arbitrary vector x with n elements:

sparseness(x) =

√
n− L1(x)/L2(x)√

n− 1
, (2.17)

where L1(·) and L2(·) denote the ℓ1 norm and ℓ2 norm, respectively. Indeed, this function
will be 0 only when the x are all equal and nonzero, and it will be 1 when all entries
except one are 0. For all other vectors this function smoothly interpolates between these
extreme cases. Hoyer provided a gradient descend method to reduce ‖X−WH‖2F , where
the columns of W or H (or both) are constrained to have the sparseness according to
Eq. (2.17). ‖ · ‖2F denotes the Frobenius norm. Virtanen [26] applied sparse NMF for an
automatic transcription system.

Analog to Roweis’s system, we can use NMF for SCSS in a two stage approach. Let us
assume M interfering sources. In the training stage we take for each source the magnitude
spectrogram Sm of source specific training data and remove the redundant frequency bins.
We train bases sets Wm for each source by applying the NMF update rules to Sm, where
Wm and Hm are initialized randomly.
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In the separation step we build the concatenation W of all bases matrices, i.e.W =
W1 ∪ W2 · · · ∪ WM . Starting from a randomly initialized coefficient matrix H, we
apply the NMF update rule for H to the mixture spectrogram X, while keeping W fixed.
The resulting coefficient matrix can be split into parts H1, H2, . . . , HM , according to
the original bases sets. Finally, we can calculate an approximation Ŝm of the mth source
spectrogram as Ŝm = WmHm. With these approximations we can calculate binary or
continuous masks according to Eq. (2.11) and Eq. (2.12), respectively, and resynthesize
the source waveforms.



Chapter 3

The K-SVD algorithm

The K-SVD algorithm was proposed by Aharon et al. [7] as a method for the design of
overcomplete dictionaries for sparse coders. A sparse coder approximates a given signal
x with a linear combination of maximal L so called signal atoms out of a dictionary
containing K atoms. Formally, this means

x ≈
L
∑

i=1

hziwzi , (3.1)

where wk is the kth signal atom, hk is the corresponding coefficient and z = (z1, z2, . . . , zL)
denote hidden variables which hold the indices of the atoms which are used to approximate
x, i.e. 1 ≤ zi ≤ K, ∀i and zi 6= zj , for i 6= j. We can reformulate Eq. (3.1) as

x ≈W h, s.t. L0(h) ≤ L (3.2)

where L0 denotes the ℓ0 norm and the signal atoms are organized in the columns of the
dictionary matrix W. The vector h holds the coefficient hzi in the zi

th entry and has zeros
elsewhere. Thus it encodes both the coefficients hzi and the hidden variables z.

To represent a signal in a sparse way has many advantages and applications, like data
compression, denoising, feature extraction and more. Also, we argued in section 2.2 that
sparse coding is related to ICA and that a sparse distributed code has several advantages
for information processing systems. To provide a suitable dictionary to a sparse coder is
crucial for the result. Many predefined dictionaries have been proposed for various signal
classes like the overcomplete Wavelet dictionary or the Haar dictionary [27]. The next
step is to design a dictionary for a specific signal class, given as a set of training examples.
Let us assume N given training signals of length D which are arranged in the columns of
the data matrix X. We can formally define the dictionary design task as minimizing the
objective

EL = ‖X−WH‖2F s.t. L0(hi) ≤ L, (3.3)

where hi is the ith column of H, which is accordingly the coefficient vector for the ith

training signal xi. An alternative objective proposed in [7] is the average number of used
dictionary atoms while maintaining a given error bound, i.e.

Lǫ = 〈L0(hi)〉 s.t. ‖X−WH‖2F ≤ ǫ, (3.4)

12
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where 〈·〉 denotes the average operator.
Throughout this thesis we will only use the definition related to Eq. (3.3). Firstly,

because also the authors of K-SVD primary develop their ideas according to this definition.
Secondly, the K-SVD algorithm as proposed in [7] does not guarantee to solve Eq. (3.4).
In some rare cases it does indeed increase the number of used dictionary atoms. Thirdly,
it is the first approach Eq. (3.3) which can be seen as a generalization of k-means, and
which is therefore suitable to extent the system by Roweis [6]. Indeed, when we set the
parameter L to 1, which means that maximal one atom is allowed to be used for each
training example, and, if the value of this coefficient is constrained to be 1 (hz1 = 1), then
an algorithm which minimizes Eq. (3.3) reproduces per definition the results of k-means.

Similar as k-means, K-SVD works in an expectation-maximization (EM) like manner.
The E-step in k-means is the assignment of each data point to one of K cluster centers.
In K-SVD this step is generalized in order to find an assignment to up to L dictionary
atoms and the respective coefficients. Regarding Eq. (3.3), this means to find an assign-
ment vector z and the corresponding coefficients hzi , 1 ≤ i ≤ L, so that x is optimally
approximated. Therefore, the E-step of K-SVD consists of running a sparse coder for each
training example, while holding the dictionary fixed. In the next section we will review the
problem of sparse coding and describe the orthogonal matching pursuit algorithm, which
is primarily used in K-SVD.

The M-step on the other side aims to improve the dictionary using the result of the
sparse coding step. Relating to Eq. (3.3), this means to optimize the dictionary entries
wk and their corresponding coefficients, while holding the assignment vector z fixed. In
k-means this is achieved by updating the cluster centers with the mean vectors of the
assigned data clusters. In K-SVD however, this step applies the calculation of a singular
value decomposition (SVD) of an error matrix for each of the K atoms, hence the name
K-SVD. In section 3.2, we describe this step in detail.

There are several ways to initialize the dictionary. Possible choices are prespecified
dictionaries, random dictionaries or randomly picked signals out of the set of training
signals.

3.1 Sparse Coding

Formally, the problem to solve is to minimize the objective given in Eq. (3.3) with respect
to H only, while keeping W fixed. Unfortunately, the sparse coding problem is known
to be NP-hard [28], since all possible

(

L
K

)

combinations had to be considered in order to
guarantee the optimal solution. Note that the actual challenging task is to select the atoms
which are able to approximate a certain data sample best. If we had this information,
Eq. (3.3) can be minimized by a least squares (LS) approximation using the selected atoms.

Since it is unfeasible to find the optimal solution, we have to use approximative meth-
ods. Simple and yet effective algorithms are matching pursuit (MP) [29] and orthogonal
matching pursuit (OMP) [13]. Both select the atoms for a certain data vector in a sequen-
tial and greedy manner. Other approaches are basis pursuit (BP) [27] and the focal under
determined system solver (FOCUSS) [30], which replace the ℓ0 norm with a ℓ1 norm and a
ℓp norm (p ≤ 1), respectively. Also NMF with ℓ1 sparsity constraints [25] can be counted
to this group of methods.
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The OMP algorithm is described in detail in Algorithm (1). In the initial steps 1-2,

Algorithm 1 Orthogonal Matching Pursuit (OMP)
1: r← x

2: z = [ ]
3: for l = 1:L do

4: a = WT r

5: z∗ = argmax |a|
6: z← [z, z∗]
7: c = W+

z x

8: x̂ = Wz c

9: r← x− x̂

10: end for

the residual r is defined as the data vector x and the index vector z is defined as zero
dimensional vector. In each execution of the for -loop (steps 3-10), one atom and its
corresponding coefficient is selected. In step 4, the scalar projection of the residual in the
direction of every dictionary atom is calculated, where without loss of generality we can
constrain the atoms to have unit length, i.e. ‖wk‖ = 1, 1 ≤ k ≤ K. In step 5, the index
of the atom which approximates the residual best is determined, by searching the scalar
resolute with the largest absolute value. In step 6, the index vector is replaced with the
concatenation of the old index vector and the index selected in the previous step. In the
steps 7-8, the data vector is projected into the space of the atoms collected so far, where
Wz denotes the sub dictionary containing only the atoms indicated by z, and W+

z is its
Moore-Penrose inverse. Finally in step 9, the new residual is defined as the difference
between x and its reconstruction x̂.

After the algorithm has terminated, z contains the indices of the selected atoms and
c holds the corresponding coefficients, i.e. hzi = ci. It is obvious that the residual r
is reduced in every step, and that r is always orthogonal to x. Also, for small L it is
empirically verified that OMP delivers a close to optimal solution [13].

3.2 Enhancing the Dictionary

The dictionary is updated in sequential manner, i.e. the single atoms are enhanced in
random sequence, while the rest of the dictionary is kept fixed. When wk denotes the
atom which shall be enhanced, then we can reformulate the objective Eq. (3.3) as

EL =

∥

∥

∥

∥

∥

∥

X−
K
∑

j=1

wjh
j

∥

∥

∥

∥

∥

∥

2

F

=

∥

∥

∥

∥

∥

∥



X−
K
∑

j 6=k

wjh
j



−wkh
k

∥

∥

∥

∥

∥

∥

2

F

=
∥

∥

∥
E(k)−wkh

k
∥

∥

∥

2

F
, (3.5)
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where hk denotes the kth row of H. Clearly, the error according to Eq. (3.5) would be
minimal if E(k) = wkh

k. When the singular value decomposition (SVD) of E(k) is given
as

E(k) = UΣVT , (3.6)

then it is known that the product u1Σ1,1(v1)
T is the best rank 1 approximation of E(k).

The best solution is therefore to set wk = u1 and hk = Σ1,1(v1)
T . However, if we did this

step immediately, we would destroy the sparse structure of the coefficient matrix, since
maximal L elements in each column of H are nonzero as a result of the sparse coding step.
The SVD approximation would introduce many additional nonzero elements in entries
which held zeros before. The solution to this problem is to restrict the error matrix E(k)
and the coefficient vector hk to those columns where hk is nonzero. Let ωk be a list which
contains the indices of the nonzero elements of hk, i.e.

ωk = {i|1 ≤ i ≤ N,hk(i) 6= 0}. (3.7)

We can define a sub error matrix Ê(k) with the columns of E(k) which are indexed by ωk:

Ê(k) = E(k)ωk
. (3.8)

Using Ê(k), we can define a modified objective:

ÊL =
∥

∥

∥Ê(k)−wkh
k
ωk

∥

∥

∥

2

F
. (3.9)

The modified objective ÊL is evaluated only for those training examples, where the atom
wk is used, i.e. where the corresponding coefficients are nonzero. Now we can use the SVD
of Ê(k) to replace the dictionary atom and the support of the coefficient vector. When
the SVD of the restricted error matrix is given as

Ê(k) = UΣVT , (3.10)

we set wk ← u1 and hk
ωk
← Σ1,1 (v1)

T .
After each update, the dictionary is heuristically corrected by reinitializing atoms

which are rarely used or which are too similar to other atoms. The M-step and the E-step
are alternated for a fixed number of iterations, or until a convergence criterion is met. The
K-SVD algorithm is summarized in Algorithm (2).

3.3 Efficient Version of K-SVD

Rubinstein developed in [31] a more efficient version of K-SVD. Every training signal has to
be sparse coded with the current dictionary, which can be very time consuming. Rubinstein
optimized the OMP algorithm (see Algorithm 1), by using a Cholesky factorization which
allows to reuse the pseudo inverse of the last iteration. This enhanced algorithm called
Batch-OMP performs superior compared to OMP, especially for large training sets.

However, the main effort in K-SVD comprises the SVD of large error matrices for each
atom. Note, that it is not necessary to calculate the full SVD, but only the first singular
value and its corresponding singular vectors. The original implementation by Aharon et
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Algorithm 2 K-SVD

1: Initialize dictionary W

2: for i = 1:numIter do
3: Sparse code data X, resulting in H (e.g. Algorithm (1))
4: r = randperm(K)
5: for c = 1:K do

6: k = rc
7: ωk = {i|1 ≤ i ≤ N,hk(i) 6= 0}
8: E(k) =

(

X−∑K
j 6=k wj h

j
)

9: Ê(k) = E(k)ωk

10: Calculate SVD: Ê(k) = UΣVT

11: wk ← u1

12: hk
ωk
← Σ1,1 (v1)

T

13: end for

14: Heuristically correct dictionary
15: end for

al. [7] already took use of this fact by using the function svds in Matlab, which calculates
only the first singular terms. However, Rubinstein noted in [31] that for an arbitrary
matrix E the iterative process

w ← Eh

w ← w

‖w‖
h ← ET w. (3.11)

converges to the first singular terms of E. In practice it can be observed that already the
first iteration of this algorithm already comes close to the optimal solution. Therefore,
the exact calculation of the first singular terms can be replaced with one iteration of
Eq. (3.11). Since also K-SVD proceeds in iterations, the iterative SVD approximation
will start with better and better initial values. The replacement of the exact SVD with
one iteration of the approximation algorithm results in a large speed up while resulting
in close to optimal results. Another advantage using the iterative SVD approximation is
that an explicit calculation of the error matrix can be avoided, which is time and memory
consuming. To see this fact, Eq. (3.11) is rewritten as:

E = X−WH

w ← Xh−WHh

w ← w

‖w‖
h ← XT w −WHT w. (3.12)

3.4 Nonnegative Version of K-SVD

When the data is known to be nonnegative, it is also plausible to constrain the dictionary
and the coefficients to be nonnegative. Aharon et al. [12] modified K-SVD in order to
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introduce nonnegativity constraints. For the sparse coding stage, H is uniformly initialized
with a small positive number and several iterations of the NMF update rule for H only are
performed (see Eq. (2.15)). After that, the L dictionary atoms with the largest coefficients
are selected for every data vector xk, 1 ≤ k ≤ N . Using these L atoms, xk is approximated
using the nonnegative LS solver described in [32].

As in the dictionary update of standard K-SVD, the atoms are are enhanced in a
randomly picked sequence. Also, as in the original algorithm, the error matrix E(k) is
restricted to the support of hk, i.e.

ωk = {i|1 ≤ i ≤ N,hk(i) 6= 0}
Ê(k) = Eωk

(k).

However, the replacement of wk and hk
ωk

with the first singular terms of the restricted
error matrix would generally violate the nonnegativity constraints. Therefore, the SVD in
Algorithm (2) (step 10) is replaced by an iterative method, similar to the iterative SVD
approximation (see Eq. (3.11)), with an additional projection to the nonnegative space
after each iteration. This operation is described in Algorithm (3), where [·]+ denotes the
element wise maximum of the argument and zero. As in standard K-SVD, any arbitrary

Algorithm 3 Nonnegative SVD approximation

1: Calculate SVD: Ê(k) = U Σ VT

2: w = [U1]+
3: h = [V1]+
4: for i = 1:numIter do
5: w←

[

Ê(k)h
ht h

]

+

6: h←
[

wT Ê(k)
wT w

]

+
7: end for

8: a = wT w

9: w = w

a

10: h = ah

nonnegative sparse coder can be used for the sparse coding stage. In the next section
we introduce an alternative sparse coding method, a modified version of OMP which
implements nonnegativity constraints.

3.5 Nonnegative Matching Pursuit

When we inspect the OMP algorithm (Algorithm (1)), we see that the first point where
we can violate nonnegativity is step 5:

z∗ = argmax|a|. (3.13)

The vector a holds the scalar resolutes of the residual when projected into the direction of
the atoms. Since we are searching for the atom with the maximal absolute scalar resolutes,
we also allow atoms with negative scalar resolute. If we remove the absolute operator in
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Figure 3.1: Least squares solution results into many negative residual values.

Eq. (3.13), then we are searching for the actual maximum of the projections, which is most
probably positive, i.e. we change step 5 of OMP into

z∗ = argmax a. (3.14)

In the case that the largest scalar resolutes is also negative, the algorithm has to terminate.
The second point were OMP can violate the nonnegativity constraint is step 7, were

we project the data vector into the subspace of the collected atoms:

c = W+
z x. (3.15)

In general, the multiplication of the data vector with the pseudo inverse will also return
negative values. The remedy to this problem is to replace Eq. (3.15) with a nonnegative
LS solution. We can use the already mentioned algorithm in [32] or several iterations of
the NMF update rule for H only, where x corresponds to X, c to H, and Wz to W in
Eq. (2.15). In practice we observed that even one iteration of NMF produces good results.

Although these modifications already guarantee nonnegativity, we still have to deal
with a problem which is illustrated in Figure (3.1). When we approximate the data vector
(a) with the atom (b) in least squares sense, the residual (c) will generally have many
negative entries. Since we always reduce the residual, we will quickly arrive at a point
where most of the residuals entries are negative, which can not be approximated with
nonnegative atoms any more. This means that the algorithm has to terminate too early,
when no positive z∗ in Eq. (3.14) can be found. We can alleviate this problem by scaling
the least squares solution with a correction factor 0 < f < 1. In Figure (3.1) (d) we
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see a version of the residual where the optimal coefficient was scaled with 0.7. We see
that the residual has less negative values and more energy in positive entries. Instead of
scaling all entries of c, we scale only the recently selected atoms with heuristic correction
factors of 0.7, 0.8 and 0.9 for the last three collected atoms. A detailed description of the
modified version of OMP, which we call nonnegative matching pursuit (NMP), is given
in Algorithm (4). The scaling with the heuristic correction factors is realized via the

Algorithm 4 Nonnegative Matching Pursuit

1: f = [0.9, 0.8, 0.7]
2: r← x

3: z = [ ]
4: c = [ ]
5: for l = 1:L do

6: a = WT r

7: z∗ = argmaxa
8: a∗ = maxa
9: if a∗ < 0 then

10: Terminate
11: end if

12: z← [z, z∗]
13: c← [c, a∗]

14: c← c⊗ (WT
z
x)

(WT
z
Wc)

15: if l ≤ 3 then

16: ∆ = diag(f(3− (l − 1) : 3))
17: else

18: f ← [1, f ]
19: ∆ = diag(f)
20: end if

21: x̂ = Wz ∆ c

22: r← x− x̂

23: end for

multiplication with a diagonal matrix ∆. The function diag(a) returns a diagonal matrix
with the elements of the vector a written in the main diagonal.

A very similar algorithm called nonnegative orthogonal matching pursuit (NOMP)
was proposed by Yang et al. [33], which was not known by us when we developed NMP.
There are two differences between NMP and NOMP. Firstly, NOMP does not perform the
heuristic correction of the coefficients, thus it can be called orthogonal, while in NMP the
residual is on purpose not orthogonal. Secondly, in NOMP the estimation of the coefficients
ck (which corresponds to step 14 in Algorithm (4)) is achieved via the multiplication with
the Moore-Penrose inverse, as in Eq. (3.15). However, this step will generally introduce
negative values for some entries of c, which means that the nonnegativity constraints can
be violated.
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3.6 Beam Search NMP

NMP and the original OMP algorithm are greedy algorithms, since they select the locally
best atom without the possibility to change the selection in a later step. We can design an
intermediate algorithm between the optimal and intractable solution, and the affordable
but suboptimal matching pursuit. This algorithm, which we call beam search NMP (BS-
NMP), is described in Algorithm (5). The set s contains the found solutions, where a
solution is represented with a triplet 〈r, z, c〉, i.e. the residual, the index vector and the
corresponding coefficient vector. The solution set s is initialized with a single trivial
solution, where the selection vector z and the coefficient vector c are empty and the
residual is the data vector x. In every iteration of l, we build up to M new solutions for
every solution out of s. These new solutions are inserted into a second solution set s∗,
where s∗ replaces s at the end of the iteration.

Instead of selecting only the best atom in each iteration (step 7 in Algorithm (4)),
we select the M best atoms, i.e. the M atoms with the largest scalar resolute. This
operation is realized using a sorting algorithm in step 12. For each of these M atoms, we
run steps 14-22 of Algorithm (4)), where different solutions for z, c and r are calculated
and inserted into s∗. To assure nonnegativity, we test for a nonnegative scalar resolute in
step 14. Therefore it is possible that less than M new solutions are found.

After T iterations we start to prune the solution set to the MT best solutions (steps
25-31), since the solution space grows exponentially.

Finally after L iterations, we take the best branch as result. Dependent on the pa-
rameters M and T we can control the size of the search space. For M = 1 and T = 1,
the algorithm reduces to NMP, while for M = K and T = L, we perform a redundant full
search over all possible combinations.

3.7 NMF with ℓ
0 constraints

Although the dictionary update of nonnegative K-SVD (Algorithm (3)) successfully intro-
duces nonnegativity constraints to K-SVD, this method nevertheless is a circumvention
of the problem. Nonnegativity is artificially achieved by simply setting negative values
to zero. Therefore, we propose to use the NMF update rules (see Eq. (2.15)) for the
dictionary update. NMF is the natural choice for this step, since it reduces the objective
‖X −WH‖2F while maintaining nonnegativity. Additionally, NMF does not destroy the
sparse structure of H, since the update rule consists of a Hadamard product of H itself
with another matrix term. Therefore, if an element of H is zero before the update, it will
also be zero afterwards. This algorithm does not use a SVD in the dictionary update step
and should therefore be called NMF with ℓ0 constraints (NMFℓ0). The NMFℓ0 algorithm
is described in Algorithm (6).

We compared NMFℓ0 and nonnegative K-SVD by applying both methods to the same
synthetic data. A random nonnegative dictionary matrix W of size 500× 100 was created
(i.e. K = 100, D = 500). A 100 × 2500 coefficient matrix H was generated by setting 5
randomly selected entries per column to random values between 0 and 10, while setting
all other entries to zero (i.e. L = 5). The synthetic data X is given as X = WH, which
results into N = 2500 training examples. Both NMFℓ0 and nonnegative K-SVD were
executed with the correct dictionary size K = 100 and sparsity factor L = 5. For both
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Algorithm 5 Beam-Search NMP

1: f = [0.9, 0.8, 0.7]
2: s← ∅
3: r← x

4: z = [ ]
5: c = [ ]
6: s← s ∪ 〈r, z, c〉
7: for l = 1:L do

8: s∗ ← ∅
9: for ∀s̃ ∈ s do

10: 〈r, z, c〉 ← s̃
11: a = WT r

12: [a∗, z∗] = descendSort(a)
13: for m = 1 : M do

14: if a∗(m) < 0 then

15: Break
16: end if

17: 〈r, z, c〉 ← s̃
18: z← [z, z∗(m)]
19: c← [c,a∗(m)]
20: Perform steps 14-22 of Algorithm (4).
21: s∗ ← s∗ ∪ 〈r, z, c〉
22: end for

23: end for

24: s← s∗

25: if l > T then

26: for ∀s̃ ∈ s do

27: 〈r, z, c〉 ← s̃
28: E(s̃) = ‖r‖2
29: end for

30: reduce s to maximal MT elements with smallest E(s̃)
31: end if

32: end for

33: find s̃ ∈ s with smallest E = ‖r‖2
34: 〈r, z, c〉 ← s̃
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Algorithm 6 NMFℓ0

1: Initialize dictionary W

2: for i = 1:numIter do
3: Sparse code data X, resulting in H (e.g. Algorithm (4))
4: for c = 1:numNMF do

5: H← H⊗ (WTX)
(WTWH)

6: W←W ⊗ (XHT )
(WHHT )

7: end for

8: end for

9: Heuristically correct dictionary

algorithms we used NMP in the sparse coding stage and 30 iterations in the M-step, i.e. 30
iterations of nonnegative SVD approximation (Algorithm (3)) in nonnegative K-SVD, and
30 NMF updates (Eq. (2.15)) in NMFℓ0. Both methods were executed for 25 iterations,
i.e. the E-step and the M-step were alternated 25 times. After each iteration, the root
mean squared error (RMSE) was calculated:

RMSE =

√

‖X−WH‖2F
(DN)

. (3.16)

This experiment was repeated 20 times and the RMSE was averaged over these 20 runs.
Figure (3.2) shows the averaged RMSE as a function of the number of iterations. The
standard deviation is represented with vertical bars. We see that NMFℓ0 achieves a sig-
nificantly lower reconstruction error than nonnegative K-SVD.
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Figure 3.2: NMFℓ0 (solid) compared to nonnegative K-SVD (dashed).



Chapter 4

Single Channel Source Separation

4.1 Simple Inference

Analog to the 2 stage approach using NMF (see Section (2.5)), we can apply K-SVD and
NMFℓ0 to the SCSS problem. This method, which we call simple inference, is illustrated
in Figure (4.1). In the training stage we take for each of the M sources the magnitude
spectrogram of source specific data. Further, we train a dictionary Wm for the mth source,
using either K-SVD or NMFℓ0. For each source, we use the same parameters K and L.

In the separation stage, we concatenate the source specific dictionaries, i.e. W =
W1∪W2∪· · ·∪WM . With the concatenated dictionary W, we run an appropriate sparse
coding technique, like OMP for K-SVD and NMP for NMFℓ0, where maximal M.L atoms
are allowed to be used per spectrogram column. Finally, we split the returned coefficient
matrix H according to the original dictionaries, resulting in coefficient matrices Hm, for
each source. An approximation Ŝm of the mth magnitude spectrogram Sm is given as
Ŝm = WmHm. When K-SVD is applied, some entries of X̂m can contain negative values,
since K-SVD is not constrained to be nonnegative. In this case, we simply set negative
values to a small positive number. Using these approximations, we can calculate binary
masks BMm or continuous masks CMm for each source, according to Eq. (2.11) and
Eq. (2.12). The approximation of the mth source signal in time domain is given as

ŝm(t) = ISTFT(BMmX), (4.1)

in the case of a binary mask, and

ŝm(t) = ISTFT(CMmX), (4.2)

for the continuous mask. ISTFT denotes the inverse STFT, i.e. the column-wise inverse
DFT and an overlap-add procedure (see also Section (2.4)).

We selected 2 female and 2 male speakers (which we call Female1, Female2, Male1 and
Male2) from the speech data base by Cooke et al. [9]. We took approximately 3 minutes
training speech for each speaker, where a sampling frequency of 16 kHz was used. For
the calculation of the spectrograms we used a hamming window with 1024 samples length
and 512 samples overlap. No zero padding was used and redundant frequency bins were
discarded. For K-SVD and NMFℓ0 we tried all combinations of the following parameter

24
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Training Stage:

sm(t) |STFT|
K-SVD Wm

NMFℓ0 Wm

Separation Stage:

W = W1 ∪W2 ∪ · · · ∪WM

x(t) |STFT|
OMP H

W

NMP H

W
H =: H1 ∪H1 ∪ · · · ∪HM

Ŝm = WmHm

BMm
dn =

{

1 if Ŝm
dn > Ŝl

dn ∀l 6= m
0 otherwise

CMm
dn =

Ŝm
dn∑

l Ŝ
l
dn

BM: ŝm(t) = ISTFT(BMmX)

CM: ŝm(t) = ISTFT(CMmX)

Figure 4.1: Simple SCSS system for K-SVD and NMFℓ0.
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Female1 Female2 Male1 Male2

speaker 18 speaker 20 speaker 1 speaker 2

“lwixzs” “lwwy2a” “pbbp3s” “lwwm2a”
“sbil4a” “sbil2a” “sbwo3a” “sgai7p”
“prah4s” “prbu5p” “priv6p” “priv3n”
“lbbc6a” “lbbp1p” “lbiq3a” “lbbk3n”
“bgiz3p” “bgwm5p” “bgin3a” “bgig8a”
“brae1n” “brbe3n” “brag1a” “bgwb6a”
“lgix8a” “lgwr2s” “lrarzn” “lgir7n”
“bbbk5p” “bbbeza” “bbbm3a” “bbbmzs”
“prbo3p” “prwb6s” “pwaj6n” “pwad2s”
“lwwd9n” “lwwyzs” “pbbv6n” “lwws5p”

Table 4.1: Speaker labels, speaker ids used in [9] and test file names.

values of the dictionary size K and the maximal allowed number of atoms L:

K = 50, 60, 70, 80, 90, 100, 120, 140, 160,

180, 200, 250, 300, 350, 400, 450, 500

L = 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40

In the separation stage we restricted ourselves to mixtures with two speakers only. We
selected 10 utterances from each speaker as shown in Table (4.1), which were not used for
training. Every speaker was combined with all other speakers, which results in 12 speaker
pairs. For every speaker pair we mixed all possible utterances (i.e. 100 mixture utterances)
with a signal to interference ratio (SIR) of 0 dB. The SIR after source separation is a
measure for the achieved separation quality. In order to neglect phase distortion effects
introduced by resynthesis, the SIR is calculated in the magnitude spectrogram domain,
where Sm is the original source magnitude spectrogram and Ŝm is its estimation:

SIR = 10 log

(

‖Sm‖2F
‖Sm − Ŝm‖2F

)

. (4.3)

Figures (4.2) and (4.3) show the average SIR after demixing as a function of K, for
K-SVD and NMFℓ0, respectively. Each sub figure shows the SIR for a specific target
speaker compared to the other three speakers as interfering speakers. Each interfering
speaker is represented by a color and a marker. For every value of K, the mean over
all mixture utterances and over all values of L was calculated. The solid lines show the
result when a CM (see Eq. (2.12)) was used, while the dashed lines show the result for
the BM (see Eq. (2.11)). The straight lines with an additional marker (black circle) show
the result when an optimal mask (OM) is used. We can calculate the OM by using the
original source spectrograms instead of approximations. The result with an OM gives an
upper bound for the separation quality which can be achieved by refiltering. We see that
the dictionary size does not seem to be important for this simple demixing system.

It is obvious that the CM is preferable to the BM, since the performance is always
slightly better when the CM is used. Also for the other SCSS methods factorial max-VQ
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Figure 4.2: Mean SIR for K-SVD with BM (dashed) and CM (solid).
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Figure 4.3: Mean SIR for NMFℓ0 with BM (dashed) and CM (solid).
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and NMF we observed a similar behavior. Therefore, we will only use the CM for the
remainder of this thesis.
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Figure 4.4: Mean SIR as function of L for K-SVD (solid) and NMFℓ0 (dashed)

Figure (4.4) shows the average performance of K-SVD and NMFℓ0 as a function of L,
where the mean was taken over all mixture utterances and all values of K. For K-SVD,
the SIR decreases with larger L, while the performance of NMFℓ0 stays nearly constant.
NMP (Algorithm (4)) terminates in step 10, when no atom with positive scalar resolute
can be found. This means that NMP often selects less than the L allowed atoms, which
introduces some robustness when this parameter is set too large. However, Figure (4.4)
indicates that the optimal range for L is 2 ≤ L ≤ 5.

Figure (4.5) compares the results of K-SVD, NMFℓ0 and max-VQ, where we see that
max-VQ performs best. This is understandable, since max-VQ uses the optimal solution
and additional prior information, while K-SVD and NMFℓ0 use a quick error minimization
technique. On the other hand, the execution of K-SVD and NMFℓ0 is much faster than
max-VQ, while still giving considerable good results, especially for small K. When we
compare K-SVD and NMFℓ0, we see that their performance is approximately the same.
This means that the nonnegativity constraints of NMFℓ0 do not seem to have any advan-
tage nor disadvantage for this simple SCSS system.

It is notable, that the SIR for both sparse coding techniques drop dramatically in
comparison to max-VQ, when two speakers of the same gender have to be demixed. In
this case, the spectra of the two speakers overlap to a larger extent than in the case of
two speakers of different gender. Both K-SVD and NMFℓ0 are generalizations of k-means,
and therefore they provide a larger expressibility. However, this expressibility can easily
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Figure 4.5: Mean SIR for K-SVD (solid), NMFℓ0 (dashed) and max-VQ (dotted).

lead to a mismatch of the signal atoms, especially when the spectra of the two speaker are
overlapping. We can compare this phenomenon to polynomial curve overfitting. When
we use polynomials of higher and higher order (i.e. functions with higher expressibility),
we can increasingly improve the interpolation quality for a given set of points, i.e. we can
make the approximation error smaller and smaller. However, when this set of points is
generated by some physical process, it is unlikely that a higher order polynomial represents
this process correctly. For our task this means that although K-SVD and NMFℓ0 are able
to approximate the mixture data better than the factorial max-VQ model, this does not
mean that the more sophisticated models automatically find the underlying causes, i.e. the
real sources. According to this idea, we have to introduce additional constraints, in order
to control the flexibility of K-SVD and NMFℓ0.

However, we can try to improve the simple SCSS system with NMFℓ0 by using BS-
NMP in the sparse coding stage instead of NMP. In this case, the reconstruction error
will be smaller, which should increase the separation quality. Figure (4.6) compares the
results of the simple system using NMFℓ0 with NMP (NMFℓ0/NMP), NMFℓ0 with BS-
NMP (NMFℓ0/BS-NMP) and max-VQ. Again, the SIR is plotted as a function of K,
where L = 5 for both NMFℓ0/NMP and NMFℓ0/BS-NMP. For BS-NMP we selected the
parameters N = 4 and T = 2 (see Section (3.6)). We see that the separation quality
increases when BS-NMP is used due to a better error reduction. However, max-VQ still
performs better in many cases, especially for large K. Furthermore, we still can observe a
dramatical performance drop-off in the same gender case. This experiment confirms that
error reduction alone does not lead to a successful identification of the sources.
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Figure 4.6: Mean SIR for NMFℓ0/BS-NMP (solid), NMFℓ0/NMP (dashed) and max-VQ
(dotted).

4.2 Best Case Analysis

The results of the simple SCSS system in the last section are not satisfying. We would
expect that K-SVD and NMFℓ0 perform better, since they are generalized versions of
k-means, the training algorithm of the max-VQ system. However, reasons for this low
performance are that the simple system does not include any additional constraints nor
prior information, and that quick but greedy and suboptimal error minimization techniques
are applied. In this section we want to demonstrate, that the generalized versions of k-
means are at least able to perform better. Also we want to determine, if the nonnegativity
constraints of NMFℓ0 have any advantage for the SCSS problem. Intuitively we would
expect so, since we are dealing with magnitude spectrograms, i.e. nonnegative data.

Again, we executed the separation stage of the simple system, but this time we ap-
plied the sparse coders (OMP or respectively NMP) to the original source magnitude
spectrograms, using the dictionary of the corresponding source. This means, we merely
reconstructed the original spectrograms using a sparse coder. In practice of course this
approach is useless, since if we had the original source spectrograms, we would not have
to perform source separation. However, we performed this step merely to determine the
best performance which can be achieved with K-SVD and NMFℓ0. Although OMP and
NMP do not return the optimal solution, let us assume that the result gives an approxi-
mate upper performance bound. Also for max-VQ we performed a best case analysis, by
replacing each source spectrogram column with the closest code book entry.

Figure (4.7) shows the achieved performance for the optimal case. We see that the SIR
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Figure 4.7: Result of Optimal Analysis for K-SVD (solid), NMFℓ0 (dashed) and max-VQ
(dotted).

for K-SVD and NMFℓ0 is already close to the absolute maximum which can be achieved
by using an OM. Also for K = 500, the SIR for both methods is approximately 2 dB higher
than for max-VQ. This means, as expected, that both methods can perform better than
max-VQ.

K-SVD always performs slightly better than NMFℓ0, because the separation quality
in the optimal case is reciprocal to the reconstruction error of the method. K-SVD can
approximate the data better, since it is not constraint to be nonnegative as NMFℓ0, which
results in a better performance in the optimal case.

However, in the optimal analysis we were provided with a close to optimal H, i.e. with
close to optimal atom indices and corresponding coefficients. We can ask how our simple
system would perform if we were provided with the optimal indices only, without coeffi-
cients. Therefore, we again performed the optimal analysis, but this time we discarded the
values of the coefficients returned by OMP and NMP. Instead we found new coefficients
by calculating an LS approximation of the mixture data, using the atoms of all sources
indicated by the sparse coder. For K-SVD this task is solved analog as in Algorithm (1),
steps 7 and 8, and for NMFℓ0 we used the nonnegative LS solver [32].

Figure (4.8) shows the result of this experiment, compared to the optimal solution of
max-VQ. NMFℓ0 clearly achieves the highest separation quality. Also we can see that
the performance of NMFℓ0 is still quite close to the optimal solution with the OM. We
can interpret this result as follows: When we managed to determine the optimal atom
indices for NMFℓ0 dictionaries, given the mixture data, then we can also infer suitable
coefficients by using a simple nonnegative LS approximation. This means that we merely
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Figure 4.8: Result of LS solution with optimal selected atoms for K-SVD (solid) and
NMFℓ0 (dashed), and optimal max-VQ (dotted).

need to know a good selection of NMFℓ0 atoms to achieve good separation quality. On
the other hand, for K-SVD dictionaries, we would also need to infer suitable coefficient
values, e.g. with gradient methods, to obtain similar or better performance. Therefore
we can reduce the separation algorithm using NMFℓ0 dictionaries to a search problem of
appropriate atom indices.

4.3 Factorial Sparse Coder Model

In this section we propose a probabilistic factorial sparse coder (SC) model, analog to the
factorial max-VQ system by Roweis [6]. The overall system for M interfering sources is
shown in Figure (4.9). The mixture magnitude spectrogram column x is assumed to be
the sum of the magnitude spectrogram columns of the sources, i.e.

x =
M
∑

m=1

sm. (4.4)

The source spectrogram column sm is modeled as the output ŝm of the mth sparse coder
using the dictionary Wm, plus an additive noise term nm, for 1 ≤ m ≤ M . The output
of the mth sparse coder is given as

ŝm =
L
∑

k=1

hmzm
k
wm

zm
k
= Wm

zm hm
zm , 1 ≤ m ≤M, (4.5)
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ŝ2
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+
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SCM

WM

ŝM
+

nM

+
sM x

Figure 4.9: Factorial Sparse Coder Model.

where Wm
zm is the sub-dictionary of Wm and hm

zm is the sub-vector of hm, with the atoms
and the entries indicated by zm, respectively. As argued in the previous section, we assume
that the coefficients are given by the nonnegative LS approximation of x, using the atoms
indicated by zm, i.e.











h1
z1

h2
z2

...
hM
zM











= argminh
∥

∥x−
(

W1
z1

W2
z2
. . .WM

zM

)

h
∥

∥

2
, s.t. hk ≥ 0, ∀k, (4.6)

where the left hand side of Eq. (4.6) is the concatenation of hm
zm , 1 ≤ m ≤ M , and

(

W1
z1

W2
z2
. . .WM

zM

)

denotes the the concatenated sub-dictionaries. We define x̂ as the
LS approximation for given selections zm, 1 ≤ m ≤M , i.e.

x̂ =
(

W1
z1

W2
z2
. . .WM

zM

)











h1
z1

h2
z2

...
hM
zM











=
M
∑

m=1

ŝm. (4.7)

In the training stage of NMFℓ0 we observed that the entries of the residual (i.e. the
rows of the error matrix E = X−WH) are distributed similar to Laplacian distributions.
The Laplacian distribution is given as

pL(x|µ, λ) =
1

2λ
e−

|x−µ|
λ , (4.8)
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where µ is the mean value and λ is a form factor, which is given as a function of the
variance of the distribution:

λ =

√

E{p(x)2}
2

. (4.9)

Figure (4.10) shows the normalized histograms of 4 randomly selected entries of the NMFℓ0

residual, where the data matrix X is the magnitude spectrogram of 3 minutes of speech
from the data base by Cooke et al. [9]. Additionally, the plot shows fitted Laplacian distri-
butions, with form factors calculated according to Eq. (4.9). The residual entries contain
some large outliers, which would lead to a misestimation of the variance. Therefore we
used only 90% of the residual samples which are closest to zero, in order to discard outliers
and to gain a robust variance estimation. We see that the fitted Laplacian distributions
match well with the normalized histograms.
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Figure 4.10: Normalized histograms of 4 randomly selected frequency bins and fitted
Laplacian distributions.

Therefore we assume that the noise nm (1 ≤ m ≤ M) is distributed according to
a Laplacian distribution with zero mean, and furthermore, that each frequency bin is
independent from all other bins. Using Eq. (4.9) we can calculate the form factors
λ
m = (λm

1 , λm
2 , . . . , λm

D) for the noise vectors nm, 1 ≤ m ≤ M , where the robust variance
estimation is used. Furthermore, since sm = ŝm+nm, we see that the source spectrogram
column sm is distributed according to a Laplace distribution with ŝm mean and form
factors λm, where all frequency bins are mutual independent:

p(smd ) = pL(s
m
d |ŝmd , λm

d ), 1 ≤ d ≤ D, 1 ≤ m ≤M. (4.10)
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Recalling Eq. (4.4), the mixture x is modeled as x =
∑M

m=1 s
m. The pdf of the sum of

several independent random variables is the convolution of the individual pdfs. Therefore,
the dth frequency bin of x is distributed according to the convolution of M Laplacian
distributions:

p(xd) = pL(s
1
d|ŝ1d, λ1

d) ∗ pL(s2d|ŝ2d, λ2
d) ∗ . . . ∗ pL(sMd |ŝMd , λM

d ) (4.11)

For simplicity we restrict ourselves to the case M = 2. In this case, xd is distributed
according to

p(xd|x̂d, λ1
d, λ

2
d) =

1

2

[

λ1
d

(λ1
d)

2 − (λ2
d)

2
e

−|xd−x̂d|

λ1
d +

λ2
d

(λ2
d)

2 − (λ1
d)

2
e

−|xd−x̂d|

λ2
d

]

, (4.12)

where ŝ1d + ŝ2d was substituted by x̂d (see Eq. (4.7)). For a derivation of Eq. (4.12) see
Section (A.1). Using Eq. (4.12), we can define the likelihood of the selections z1 and z2:

p(x|z1, z2) = p(x|x̂(z1, z2),λ1,λ2) =
D
∏

d=1

p(xd|x̂d, λ1
d, λ

2
d). (4.13)

The probability of a selection zm is the joint probability of its entries, which is approx-
imated by a Markov chain:

p(zm) = p(zm1 , zm2 , . . . zmL ) ≈ p(zm1 )
L
∏

k=2

p(zmk |zmk−1), m ∈ {1, 2}. (4.14)

The probabilities p(zm1 ) and p(zmk |zmk−1) can be estimated from the coefficient matrix in
the training stage. According to Bayes theorem, the posterior probability of the selections
z1 and z2, given the mixture data x, is can be written as

p(z1, z2|x) = p(x|z1, z2)p(z1, z2)
p(x)

. (4.15)

Assuming independent sources and using Eq. (4.13) and Eq. (4.14), we find

p(z1, z2|x) ∝ p(z1)p(z2)
D
∏

d=1

p(xd|x̂d, λ1
d, λ

2
d). (4.16)

The source separation problem is now defined as maximization of Eq. (4.16) with respect
to z1 and z2. The approximations of the source spectrograms are found implicitly by the
LS approximation of the data (Eq. (4.6)) and are given as ŝm = Wm

zm hm
zm , m ∈ {1, 2}.

Finding the optimal solution of Eq. (4.16) is an intractable problem, since we had to

consider
(

L
K

)2
combinations. Therefore, we restrict the search space in order to find z1

and z2 with a high posterior. For this task, we use BS-NMP (Algorithm 5) with a changed
pruning criterion: Instead of keeping the branches with the lowest approximation error in
step 24, we prune the coding tree to the MT branches with highest a posterior according
to Eq. (4.16). In step 28, we select the branch with the highest posterior probability as
final result.
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Figure 4.11: Mean SIR of factorial SC (solid), factorial max-VQ (dashed) and NMF
(dotted).

Again we performed the separation experiment described in Section (4.1), where we
used NMFℓ0 dictionaries trained with L = 4, and set M = 4, T = 2 for BS-NMP with
changed pruning criterion. Figure (4.11) compares the SIR of factorial SC, factorial max-
VQ and NMF (see Section 2.5). We see that the factorial SC system clearly performs best.
Only in two cases (Female1-Female2 and Female2-Female1) the max-VQ system performs
slightly better. NMF has a significantly lower separation quality than NMFℓ0 and in
most cases it is also outperformed by factorial VQ. Only in some cases and K < 100,
NMF achieves a better performance than factorial VQ. Figure (4.12) shows the standard
deviation (in linear domain, not in dB) of the achieved SIR for all three systems. We see
that the standard deviation is correlated with the achieved mean SIR, so that the results
presented in Figure (4.11) seem to be little significant.

However, Figure (4.13) shows the percentage of examples where factorial SC, factorial
max-VQ and NMF performed best, respectively. We see that in about 60% of the examples
factorial SC performed best, factorial max-VQ achieved in approximately 30% the best
performance and in less than 10% (for K > 100) NMF had the best separation result.
The percentage is calculated using all 1200 separation results per value of K (4 speakers, 3
interfering speakers, 100 mixed utterances: 4×3×100 = 1200 experiments). Figure (4.14)
shows the same percentage, where the 3 separation systems are compared pairwise. Both
factorial SC and factorial max-VQ achieved in more than 75% (for K > 150) a better
result than NMF. We can also see that in more than 60% factorial SC performed better
than factorial max-VQ, for each value of K.



CHAPTER 4. SINGLE CHANNEL SOURCE SEPARATION 37

0 100 200 300 400 500 600
0

2

4

6

8

10

12

S
ta

nd
ar

d 
de

vi
at

io
n

Female1

 

 

0 100 200 300 400 500 600
0

2

4

6

8

10

12
Female2

 

 

0 100 200 300 400 500 600
0

2

4

6

8

10

12

K

S
ta

nd
ar

d 
de

vi
at

io
n

Male1

 

 

0 100 200 300 400 500 600
0

2

4

6

8

10

12

K

Male2

 

 

Female2
Male1
Male2

Female1
Male1
Male2

Female1
Female2
Male2

Female1
Female2
Male1

Figure 4.12: Standard deviation of the linear SIR for factorial SC (solid), factorial max-VQ
(dashed) and NMF (dotted).
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Figure 4.13: Percentage of examples where factorial SC (solid), factorial max-VQ (dashed)
and NMF (dotted) performed best.
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Figure 4.15: Computational effort for factorial SC (solid), factorial max-VQ (dashed) and
NMF (dotted). The ordinate is in logarithmic scale (base 10).

Further, we measured the time which was needed for the method specific inference.
Figure 4.15 compares the computational effort as a function of the dictionary size. The
effort for the factorial SC inference is nearly constant, since it mainly depends on the
BS-NMP parameters M and T , which remain fixed. For K = 500, the time needed for
factorial SC is approximately 10 seconds, which is more than 15 times faster than max-VQ.
The time needed by max-VQ grows nearly quadratically, since in principle a full search
has to be performed.

4.4 Speech Recognition

In the experiments carried out so far we only used artificial speech mixtures, which were
generated by simply adding the source signals. For a more realistic setup we applied the
factorial SC system to data from the “SAIL real life SCSS corpus” [10], which provides
clean speech of several persons from TV broadcasts. Additionally, it contains recordings of
situations where two of these persons interfere. We applied our system to these real-world
mixture data, after training dictionaries for the individual speakers. We used approxi-
mately 2 minutes of speech for training, the dictionary size was set to K = 300 and the
number of allowed atoms was set to L = 3. Note that this task is particularly challenging,
since the training data usually contains read text, while the mixture recordings contain
spontaneous dialog and sometimes even laughter. Nevertheless we found in informal lis-
tening tests that our system successfully filtered out the target person, while suppressing
the interfering speech. Notable artifacts were a vocoder like noise and occasional distor-
tions of the target voice. To quantify the separation quality, we compared the results of an
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automatic speech recognizer (ASR) (SAIL LABS Media Mining Indexer version 5.1 (MMI)
[34]), where one time the mixtures and the other time the demixed signals were used as
input. For this experiments we used 13 utterances of 4 different speakers: Alexander von
Thien (AvT), Peter Klöppel (PK), Ulrike von der Gröben (UvG) and an unknown female
speaker (fu). The utterances are labeled with the speaker id of the target speaker and an
increasing counter. The resulting word error rates (WER) of the ASR for the mixed and
the demixed signals are compared in Table (4.2).

Utterance WER mixed WER demixed

AvT1 87.5 87.5
AvT2 44.4 44.4
PK1 33.3 44.4
PK2 90 90
PK3 93.3 80
PK4 30.8 30.8
UvG1 80 80
UvG2 50 33.3
UvG3 55 70
UvG4 93.3 86.7
UvG5 85.7 92.9
fu1 50 0
fu2 60 20

Table 4.2: Results of the ASR for mixed and demixed speech.

We see that the source separation step does not significantly decrease the WER for
the first three speakers (AvT, PK, UvG). In 4 cases the WER remains unchanged for
the demixed signals, in 4 cases it slightly increases and in 4 cases it slightly decreases.
For the fourth speaker (fu) however, we see that the source separation preprocessing
clearly enhances the result. The mixture utterances of the first three speakers are chatting
dialogs, sometimes interleaved with laughter. It seems that these utterances are generally
hard to recognize, and the source separation step merely leads to slight variations in the
recognition results. On the other hand, the utterances of the fourth speaker are very clear
and understandable, and similar to read text. The source separation step delivered a very
good separation of target and interfering speaker in this case, what explains the increased
performance of the ASR.



Chapter 5

Conclusion

In this thesis we proposed an alternative to nonnegative K-SVD [12], an algorithm for the
design of dictionaries for sparse coders. We showed that nonnegative matrix factorization
(NMF) as proposed by Lee and Seung [8] is the natural method for the dictionary update
step. Further, we proposed a nonnegative version of orthogonal matching pursuit [13], the
so called nonnegative matching pursuit (NMP), which can be used for the sparse coding
step. Further, we introduced a generalization of the quick but greedy matching pursuit
called beam search NMP (BS-NMP). This algorithm allows to consider more than just
one atom in each selection step and postpones the selection decision to a later point in
time. Our proposed dictionary design algorithm combines NMF with a nonnegative sparse
coder which ensures ℓ0-constraints on the columns of the coefficient matrix. Therefore, we
called this method NMFℓ0.

We applied K-SVD and NMFℓ0 in a simple method for single channel source separation
(SCSS) in order to gain approximations of the original magnitude source spectrograms.
The approximations allowed us to estimate masking signals, which can be used for re-
filtering [5]. In all separation experiments we received better results using a continuous
mask than when a binary mask was used. We observed that the simple system success-
fully separated sources, where the separation quality did not depend on whether K-SVD
or NMFℓ0 dictionaries were used. However, compared to the factorial max-VQ system by
Roweis [6], the performance was not satisfying. Especially in the case of two speakers of
the same gender we observed a dramatic performance drop-off. Since the spectra of two
same gender speakers overlap to a larger extent, we concluded that the sparse coder model
has to be constrained in order to infer spectrogram approximations of higher quality. This
conclusion was confirmed by using BS-NMP in the simple system, which results in bet-
ter error reduction. Although the error was successfully reduced, the separation quality
increased only to a small extent. Also the problem of the same gender case remained.

In an optimal case analysis we found upper bounds for the separation quality which
can be achieved by max-VQ, K-SVD and NMFℓ0. We demonstrated, that the more
general methods K-SVD and NMFℓ0 are at least able to perform better than max-VQ. In
the next step, we replaced the optimal coefficients with values found by a least squares
approximation of the data, using the atoms selected by the optimal case analysis. The
separation performance after this experiment was superior for NMFℓ0. We concluded that
an inference method for NMFℓ0 has to provide merely the indices of suitable atoms in
order to achieve good separation quality.

41
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Finally, we proposed a probabilistic factorial sparse coder (SC) model. We defined the
posterior probability of atom selections for each source, given the mixture data. To find
the optimal atom selection is intractable, therefore we proposed to search over the space
which is considered in BS-NMP. In experiments, we observed a superior performance of
the factorial SC system in comparison to the baseline system, namely factorial max-VQ.
We observed that the standard deviation of the SIR is correlated with the achieved mean
value. However, we can state that factorial SC achieves in more than 60% of the cases a
better result than factorial max-VQ.

Measurements of the method specific inference times show that our system is up to 15
times faster than factorial max-VQ.

5.1 Future Work

The discussed models need to be provided with clean, speaker specific data. This is un-
satisfying, since in real applications we can not provide training data for every unknown
source. Therefore we suggest to modify the discussed systems in order to be more gen-
eral and less source specific. For instance, we could train a dictionary on a variety of
sounds, and further organize this dictionary in order to be able to produce source specific
dictionaries on the fly.

Although NMF seems to be the optimal choice for the dictionary update step in non-
negative dictionary design, the problem of nonnegative sparse coding is not solved to a
satisfying extend.

Finally, the factorial sparse coder model could be refined by additional constraints on
the coefficients values. We showed that we can achieve good results without taking these
into account, and therefore we could simplify our task. However, to incorporate prior
knowledge about the coefficient values could further increase the separation quality.
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Appendix A

Derivations

A.1 Convolution of Two Laplacian Distributions

We want to show that the convolution of the two Laplacian distributions

p1(x|µ1, λ1) = 1
2λ1

e
−|x−µ1|

λ1 (A.1)

p2(x|µ2, λ2) = 1
2λ2

e
−|x−µ2|

λ2 (A.2)

is given as

p(x|µ1, λ1, µ2, λ2) = p1(x|µ1, λ1) ∗ p2(x|µ2, λ2) (A.3)

=
1

2

[(

λ1

λ2
1 − λ2

2
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e
−|x−(µ1+µ2)|

λ1 +

(

λ2

λ2
2 − λ2

1

)

e
−|x−(µ1+µ2)|

λ2

]

(A.4)

Firstly, consider two zero-mean Laplacian distributions pZ1(x|λ1) and pZ1(x|λ2):

pZ1(x|λ1) = 1
2λ1

e
−|x|
λ1 (A.5)

pZ1(x|λ2) = 1
2λ2

e
−|x|
λ2 (A.6)

The convolution pZ(x|λ1, λ2) of pZ1(x|λ1) and pZ2(x|λ2) is defined as:

pZ(x|λ1, λ2) = (pZ1 ∗ pZ2)(x|λ1, λ2)

=

∫ ∞

−∞

pZ1(y|λ1) pZ2(x− y|λ2) dy

=

∫ ∞

−∞

1

2λ1
e

−|y|
λ1

1

2λ2
e

−|x−y|
λ2 dy (A.7)

To solve the integral in Eq. (A.7), we have to consider two cases:

1. x < 0

2. x ≥ 0

46
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Case 1: x < 0

pZ(x|λ1, λ2) =
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Case 2: x ≥ 0

pZ(x|λ1, λ2) =
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We see that we can combine Eq. (A.8) and Eq. (A.9) to

pZ(x|λ1, λ2) =
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(A.10)

We can reformulate p1(x|µ1, λ1) and p2(x|µ2, λ2) as the convolution of the zero-mean pdfs
pZ1(x|λ1) and pZ2(x|λ2) with Dirac impulses at the positions µ1 and µ2, respectively:

p1(x|µ1, λ1) = pZ1(x|λ1) ∗ δ(x− µ1) (A.11)

p2(x|µ2, λ2) = pZ2(x|λ2) ∗ δ(x− µ2) (A.12)

Using Eq. (A.10), (A.11) and (A.12), we can reformulate p(x|µ1, λ1, µ2, λ2) as

p(x|µ1, λ1, µ2, λ2) = p1(x|µ1, λ1) ∗ p2(x|µ2, λ2)

= pZ1(x|λ1) ∗ δ(x− µ1) ∗ pZ2(x|λ2) ∗ δ(x− µ2)

= (pZ1(x|λ1) ∗ pZ2(x|λ2)) ∗ (δ(x− µ1) ∗ δ(x− µ2))

= pZ(x|λ1, λ2) ∗ δ(x− µ1 − µ2)

=
1

2

[(

λ1

λ2
1 − λ2

2

)

e
−|x−(µ1+µ2)|

λ1 +

(

λ2

λ2
2 − λ2

1

)

e
−|x−(µ1+µ2)|

λ2

]


