
Master's Thesis

An Integral Mobile Robot Platform

for Research and Experiments in

the Field of Intelligent Autonomous

Systems

Máté Wolfram

Graz, May 2011

Supervisor: Univ.Prof. Dipl.Ing. Dr.techn. Franz Wotawa
Assessor: Univ.Prof. Dipl.Ing. Dr.techn. Franz Wotawa

Institute for Software Technology

Graz University of Technology

Acknowledgements

This master's thesis was authored at the Institute for Software Technology at
Graz University of Technology. Special thanks goes to everyone who supported
the project and helped me out with words and deeds, in particular to my su-
pervisors Prof. Franz Wotawa and Dr. Gerald Steinbauer.

I'd like to thank my teammates from the RoboCup team KickO�TUG for
their support and motivation and for several years of inspiring collaboration, as
well as Reinhard Günther, for sharing his knowledge in the �eld of computer
vision and Roland Angerbauer, for helping me out with the once-in-a-while
operation of the soldering iron.

I'd especially like to thank my parents, for all the educational groundwork,
for backing me, motivating and believing in me. I'd also like to thank all my
friends that made an important contribution to who I am today and last but
not least my girlfriend Lisa, who inexhaustibly supported me in times of hard
work, and helped me �nd enough time to rest my mind.

ii

Kurzfassung

Autonome mobile Roboter nehmen einen immer gröÿer werdenden Stellenwert
ein und gehören einem Forschungsfeld an, welches dank der Verfügbarkeit von
kompletten Roboterplattformen und leistbaren Sensoren, sowie einer blühenden
Community hinter Open Source Robotersoftware einem immer breiter werden-
dem Spektrum an Interessenten zugänglich ist.

Der praktische Teil dieser Arbeit beschreibt die Implementierung und Kon-
�guration eines Lieferroboters basierend auf dem Robot Operating System (ROS),
welcher in geschlossenen Räumlichkeiten navigieren und Transportaufgaben lösen
kann und dabei in der Lage ist, durch Ausführungs- sowie Sensorfehler, Fehler
in der Wissensbasis oder exogene Ereignisse verursachte Inkonsistenzen in seiner
Au�assung des Weltzustands zu detektieren und zu korrigieren.

Um die ihm auferlegten Ziele e�ektiv und verlässlich erreichen zu können,
muss der Roboter imstande sein, klassische Problemstellungen der Robotik, wie
Lokalisierung, Navigation, Hindernisvermeidung, Wissensrepräsentation und Ob-
jekterkennung zu bewältigen. Diese Themen werden im ersten Teil der Arbeit
theoretisch aufbereitet, bevor sie im Kontext des Roboters anwendungsbezo-
gen beschrieben werden. Abschlieÿend zeigen zwei Experimente die Funktion-
stüchtigkeit und Einsatzfähigkeit des Roboters.

iii

Abstract

Autonomous mobile robots are becoming more popular and sought-after every
day. Thanks to the availability of complete robot platforms and a�ordable
sensors, as well as a �ourishing community developing open source robotics
software, this �eld has become accessible to a wider spectrum of interested
people.

The practical part of this thesis describes the implementation and con�gura-
tion of a robot platform based on the Robot Operating System (ROS), capable
of carrying out delivery tasks in indoor environments, as well as detecting and
dealing with various kinds of execution and sensing failures, erroneous knowl-
edge and exogenous events.

To achieve its goals in an e�ective and dependable manner, the robot must
be capable of solving traditional problems in robotics, such as localization, nav-
igation, obstacle avoidance, belief representation and object detection. Before
discussing the application of these methods to our robot, they are explained
in further detail in the theoretical part of this document. Two experiments
demonstrating the robot's capabilities conclude this thesis.

iv

Contents

1 Introduction 1
1.1 KnowRob . 2

2 Theoretical Part 4
2.1 Transformations . 4

2.1.1 Rotation Matrices . 5
2.1.2 Quaternions . 8
2.1.3 Coordinate Transformations 11

2.2 Mapping . 12
2.2.1 Map Representation . 12
2.2.2 Map Creation . 14

2.3 Localization . 14
2.3.1 Kalman Filter Localization 14
2.3.2 Markov Localization . 15
2.3.3 Monte Carlo Localization 16
2.3.4 Challenges in Localization 18

2.4 Navigation . 18
2.4.1 Global Path Planning . 19
2.4.2 Local Planning and Obstacle Avoidance 20

2.5 The Robot Operating System (ROS) 22
2.5.1 Languages Supported by ROS 23
2.5.2 ROS File System . 24
2.5.3 Nodes . 26
2.5.4 Master . 26
2.5.5 Messages . 28
2.5.6 Topics . 31
2.5.7 Services . 31
2.5.8 ROS Time . 32
2.5.9 Parameter Server . 32
2.5.10 Networking . 32
2.5.11 Transformation Framework 34
2.5.12 Point Cloud Library . 39
2.5.13 Tools . 42
2.5.14 Debugging with ROS . 49

v

CONTENTS CONTENTS

2.5.15 RViz . 49
2.5.16 Advanced Concepts . 50

2.6 Situation Calculus . 52
2.6.1 The Quali�cation Problem 52
2.6.2 The Frame Problem . 52
2.6.3 Basic Elements . 53
2.6.4 Basic Action Theories . 54
2.6.5 Golog . 55
2.6.6 IndiGolog . 57

2.7 Object Recognition . 59
2.7.1 AR Tag Recognition Basics 60
2.7.2 AR Recognition backed by Depth Information 60

3 Practical Part 62
3.1 Hardware . 63

3.1.1 Robot Base . 63
3.1.2 Sonar . 65
3.1.3 Gripper . 65
3.1.4 Laser Measurement Unit 67
3.1.5 Kinect . 69
3.1.6 High-De�nition Webcam 71
3.1.7 Controller Laptop . 72

3.2 World Model . 72
3.2.1 Aliases . 73
3.2.2 Attributes . 73
3.2.3 Relations . 74
3.2.4 Messages . 74
3.2.5 Topics . 78
3.2.6 Services . 78
3.2.7 System Architecture . 80
3.2.8 Sample Use Case . 83
3.2.9 WMLogic . 84
3.2.10 World Model Visualization 87

3.3 Execution Modules . 88
3.3.1 Action Servers . 89
3.3.2 Simple State Machine . 93
3.3.3 Indigolog Integration . 93

3.4 System Con�guration . 94
3.4.1 Mapping . 94
3.4.2 Localization . 94
3.4.3 Navigation . 95
3.4.4 Object Recognition . 99

3.5 Experiments . 102
3.5.1 Belief Repair Demonstration 102
3.5.2 Longterm Experiment . 106

vi

CONTENTS CONTENTS

4 Conclusions & Future Work 109

vii

List of Figures

2.1 Aeroplane with RPY Axes . 6
2.2 Cardan Suspension and Gimbal Lock 6
2.3 Localization - Particles representing hypotheses 17
2.4 Dynamic window in the 2D velocity search space 20
2.5 DWA - Map of environment . 21
2.6 ROS Master establishing communication channel 27
2.7 Star-Like Communication Topology 33
2.8 Peer to Peer Communication Topology 34
2.9 Transformation Visualization in RViz 38
2.10 O�ce chair displayed as Point Cloud 40
2.11 Screenshot of the rxbag tool . 45
2.12 Graph of a running ROS system 46
2.13 Screenshot of the rxplot tool . 47
2.14 Screenshot of RViz in action . 50
2.15 An AR (Augmented Reality) Tag 59
2.16 A sample application of AR Tag Recognition 60

3.1 Pioneer P3-DX platform and equipment 64
3.2 Sonar Array . 65
3.3 Components of the 2D Gripping Device 66
3.4 Laser Measurement Mechanism 68
3.5 Laser Scans displayed in RViz . 69
3.6 Microsoft Kinect . 70
3.7 World Model: System Architecture 81
3.8 WMStorage internal design . 82
3.9 Sensor pipeline (a) . 84
3.10 Sensor pipeline (b) . 84
3.11 Sensor pipeline (c) . 85
3.12 WMLogic with surrounding modules 86
3.13 Object upright and lying . 87
3.14 World Objects displayed in RVIZ 88
3.15 World Objects displayed in RVIZ - Closer Look 89
3.16 Costmap visualized in RViz . 96
3.17 Milkbox with AR Tags . 100

viii

LIST OF FIGURES LIST OF FIGURES

3.18 The attachedto relation type . 101
3.19 RViz View: Multiple tags attached to the same object 101
3.20 O�ce Environment hosting Experiments 103
3.21 Longterm Experiment - map and photo 107
3.22 Hotswapping the robot's batteries 108

ix

List of Tables

2.1 LOC for generated messages and services 28
2.2 Built-in types . 30

3.1 Gripper Commands . 66
3.2 Laser Scan Resolutions and Response Times 68
3.3 World Model Topics . 78
3.4 Statistics collected during longterm experiment 107

x

Listings

1.1 KnowRob example 1 . 3
1.2 KnowRob example 2 . 3
2.1 WMObject.msg . 28
2.2 WMObject Usage in Java . 29
2.3 Example for a message constant 29
2.4 Example for a comment . 29
2.5 GetWMObjectByID.msg . 31
2.6 Publishing Transformations to the Transformation Framework . . 35
2.7 Requesting Transformations from the Transformation Framework 36
2.8 Transforming Poses using previously fetched Transforms 37
2.9 Launch �le containing a static transform publisher entry 39
2.10 downsample_pointcloud.launch 42
2.11 teleop.launch - an exemplary launch �le 47
3.1 Gripper.msg . 67
3.2 WMObject.msg . 75
3.3 ObjectID.msg . 75
3.4 AttributeEntry.msg . 76
3.5 RelationEntry.msg . 77
3.6 WMObjectAttributes.msg . 77
3.7 WMObjectRelations.msg . 77
3.8 WMObjectDiscovery.msg . 78
3.9 GetWMObjectAliases.srv . 79
3.10 GetWMObjectAttributes.srv . 79
3.11 GetWMObjectRelations.srv . 79
3.12 GetWMObjectByID.srv . 79
3.13 GetWMObjects.srv . 80
3.14 Marker.msg snippet . 88
3.15 Positioning.action . 89
3.16 Gripobject.action . 91

xi

Chapter 1

Introduction

Mobile autonomous robotics is a thriving �eld of research, incorporating a vast
amount of subtopics including knowledge representation, sensing and vision,
arti�cial intelligence, path planning, robot dynamics, localization etc.

As of today, it's valid to state that it's an area anyone can participate in,
regardless of age, gender or provenance. A glance into the RoboCup1 domain
reveals numerous subleagues that concentrate on di�erent problems of robotics
and address di�erent interest groups. This diversity makes it clear that interest
is the only requirement for getting in touch with robotics.

The Robot Operating System (ROS) (developed at WillowGarage 2) o�ers
many modules and mechanisms necessary for implementing autonomous agents,
in an easy to understand, yet powerful system. It's an open source framework
that's designed to make progress in the robotics �eld available to the public,
thus encouraging collaboration between researchers and avoiding unnecessary
re-inventions of the wheel. It eases the �rst steps in robotics but also allows
advanced developers to dive into selected libraries and improve them.

Not only robotics software, but also ready-to-go hardware is available and be-
coming increasingly a�ordable. Such platforms comprise mobile robots such as
the Pioneer series, quadcopters equipped with GPS sensors, cameras and IMUs,
as well as humanoid robots3, to name only a few. Sensors are also becoming
cheaper and more powerful, o�ering complete, easily integrable solutions. One
example is the Microsoft Kinect (described in section 3.1.5 on page 69, an in-
expensive visual 3D sensor based on structured light, that's an extension to the
XBox 360. Out-of-the-box, it provides 3D spatial information, as well as human
skeleton estimation and is therefore highly popular in robotics research.

Robots are more and more becoming part of our lives, not only in industry
but also in the private sector. They are becoming increasingly smart, inex-
pensive and safe. While a simple robotic vacuum cleaner used to drive around
randomly a few years long ago, its successor today is capable of ful�lling navi-

1http://www.robocup.org/
2http://www.willowgarage.com
3http://www.aldebaran-robotics.com/en

1

1.1. KnowRob Chapter 1. Introduction

gation tasks using images of the ceiling as sensory input for localization. Mobile
robots can carry out delivery tasks in o�ces or storage spaces and guide us
through museums [TBB+99]. Some of them are prepared to navigate in out-
door settings [IB06], not even necessarily on our planet [TO06]. Not only can
robots make our lives easier and more comfortable, but some of them might even
save them by locating and rescuing victims from a disaster area. Children have
a di�erent view of Lego R©today than one or two decades ago. Back then they'd
have proven themselves architectural geniuses, today they can additionally �nd
out whether they'll become tomorrow's robotics researchers.

This growing need for and interest in robots in general yields an increasing
focus on this topic at numerous educational establishments, including the Uni-
versity of Technology in Graz, that has a strong background in the RoboCup
domain, and hosts various other projects in the �eld of robotics, such as the
one presented in the practical part of this document. The theoretical part, on
the other hand, is designed to convey an understanding of various subtopics
of the robotics domain and to present the Robot Operating System (ROS),
that was applied in the project. Before starting, let's have a look at a selected
subtopic, namely the robot's belief and knowledge of the real world, and how
this challenge is met at the Technical University of Munich.

1.1 KnowRob

Autonomous personal robots require mechanisms for acquiring, managing and
reasoning over knowledge, to be able to do the right things at the right time
[TB09]. KnowRob is a framework developed at the Intelligent Autonomous
Systems4 lab of the Technical University of Munich, that provides autonomous
agents with the aforementioned capabilities. It uses encyclopedic knowledge
in combination with information about possible actions to decide which tasks
the robot is capable to perform at which locations, and to infer subtasks that
have to be carried out. The underlying knowledge is represented in an OWL
ontology that is inspired by Cyc [TB09] and extended manually to provide
richer detail for relevant topics. KnowRob is based on SWI Prolog and therefore
allows to query the ontology and to add knowledge using Prolog queries. The
parameters to these queries are RDF triples (subject, predicate and object). For
easy integration with ROS, there are accessor implementations in C++, Java,
Python and Lisp as well [Ten10].

Perceiving and Learning from the Real World. Equipped with a sensor
that delivers 3D point cloud information, an agent is capable of segmenting the
spatial information into separate objects and classify them into categories of
the underlying knowledge base. The robot can then decide how the perceived
objects can and should be manipulated. Besides the type of object, its location
is also relevant for inference of possible actions. If cups are often put down on

4http://ias.cs.tum.edu/

2

1.1. KnowRob Chapter 1. Introduction

a table, then the tableside might be added to the knowledge base as a �Put-
down-objects-place� [TB09]. This and similar information can be retrieved by
observing human actions5 or other robots. The ontology used in KnowRob
contains special objects called Computables that are mainly responsible for two
things:

• Querying relations from and writing them to an SQL database

• Calculating new relations on the �y. This is especially interesting, as
concepts such as �inObject� and �onObject� can be inferred by comparing
object positions.

Examples. Consider the following two basic examples for querying the KnowRob
knowledge base. The �rst example shows how to get subclasses of FoodOrDrink.�
?− owl_subclass_of (A, knowrob : ' FoodOrDrink ') .
A=' http :// i a s . c s . tum . edu/kb/knowrob . owl#FoodOrDrink ' ;
A=' http :// i a s . c s . tum . edu/kb/knowrob . owl#Drink ' ;
A=' http :// i a s . c s . tum . edu/kb/knowrob . owl#Coffee−Beverage ' ;
A=' http :// i a s . c s . tum . edu/kb/knowrob . owl#In fus ionDr ink ' ;
A=' http :// i a s . c s . tum . edu/kb/knowrob . owl#Tea−Beverage ' ;
A=' http :// i a s . c s . tum . edu/kb/knowrob . owl#Tea−Iced '
� �

Listing 1.1: KnowRob example 1

The second example shows how to retrieve information on relation instances of
a certain object, in this case Drawer1.�
?− owl_has (knowrob : ' Drawer1 ' , P, O) .
P=' http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type ' ,
O=' http :// i a s . c s . tum . edu/kb/knowrob . owl#Drawer ' ;
P=' http :// i a s . c s . tum . edu/kb/knowrob . owl#widthOfObject ' ,
O=l i t e r a l (type (xsd : f l o a t , ' 0 .58045006 ')) ;
P=' http :// i a s . c s . tum . edu/kb/knowrob . owl#

properPhys i ca lPar t s ' ,
O=' http :// i a s . c s . tum . edu/kb/knowrob . owl#Door4 ' ;
� �

Listing 1.2: KnowRob example 2

The KnowRob tutorial slides [Ten10] o�er more examples as well as helpful
information on how to link KnowRob with the rest of a ROS ecosystem.

5Human motion is analyzed with 51 degrees of freedom and classi�ers are trained to convert
them to abstract concepts [TB09]

3

Chapter 2

Theoretical Part

This chapter is aimed to convey background information on selected subtopics
of the robotics domain. Most of the topics mentioned here are applied to the
project that will be presented in the practical part of this document.

First o�, some basics about coordinate transformations in space shall be
discussed, followed by typical challenges in mobile autonomous robotics such
as map representation and generation, localization and navigation. This will
be followed by a section dedicated to the Robot Operating System (ROS), one
on Situation Calculus and its applications and �nally a discussion about object
recognition, focusing on recognition of previously tagged objects.

2.1 Transformations

Before diving into this topic, I'd like to express my appreciation for the excellent
work of Thomas Koch (FH Gelsenkirchen), whose Master's thesis [Koc08] served
as a basis for most of the information presented in this section.

When representing poses of objects in a three-dimensional world, two com-
ponents have to be taken into account, namely the object's position and its
orientation. The object's position is represented in and handled as a regular
three-dimensional vector, as opposed to its orientation, which is trickier to han-
dle. To learn how to deal with orientations or rotations in 3D space, several
topics have to be covered in advance.

As we know, 3D vectors can be interpreted as a translation or as a posi-
tion in space (as the �nal position can be seen as the sum of the origin and a
translation). The same is true for representations of rotation (and orientation,
respectively). An orientation is the result of starting in a neutral pose and ap-
plying a rotation. Thus, in the following sections it will be su�cient to stick to
the terms translation and rotation.

4

2.1. Transformations Chapter 2. Theoretical Part

2.1.1 Rotation Matrices

Two fundamental ways of representing rotation in space shall be presented in
this document, one of which are Rotation Matrices. These work well in two
dimensions, so why not use them in 3D space. The 2D-version of a rotation
matrix is shown in the following equation [Koc08]:

R(α) =

(
cosα −sinα
sinα cosα

)
To perform a rotation, this matrix with the desired rotation angle α set correctly
has to be multiplied with the vector that needs to be rotated, as in(

x′

y′

)
=

(
cosα −sinα
sinα cosα

)
·
(
x
y

)
If we wish to follow the same principle in three dimensions, we have to extend
the term rotation matrix. It's de�ned by a set of sequential (ordered) rotations
around arbitrary axes in space, that are required to traverse the coordinate
system's origin [Koc08]. In practice, we choose the coordinate system's three
axes (X, Y and Z) and de�ne one rotation for each axis, resulting in three
rotation matrices, Rx, Ry and Rz and requiring three rotation angles, α, β
and γ. The three aforementioned angles are called Euler Angles and the three
matrices are Euler's Rotation Matrices. The latter are de�ned as follows [Koc08]:

Rx(α) =

1 0 0
0 cosα −sinα
0 sinα cosα

Ry(β) =

 cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ

Rz(γ) =

cosγ −sinγ 0
sinγ cosγ 0

0 0 1

Given an (ordered) triple of rotation angles (α, β and γ), we can use them to
perform the composite rotation:

~v′ = Rx(α) ·Ry(β) ·Rz(γ) · ~v

Please note that the order in which these rotations are performed is vital. These
operations are NOT commutative. However, they are associative, so as long as
we stick to the same rotation order, we can keep one composite rotation matrix
(the product of the three rotation matrices Rx, Ry and Rz). The three rotation
axes are often referred to as roll, pitch and yaw, terms used in avionics. Figure
2.1 shows an aeroplane and how rotations around the three aforementioned axes
can be used to alter its orientation.

5

2.1. Transformations Chapter 2. Theoretical Part

Figure 2.1: Aeroplane with RPY Axes, courtesy of [ROS08]

Gimbal Lock

In the previous section we learned how to represent rotation in 3D space using
rotation matrices. This section, however, will let the bubble burst by pointing
out a serious drawback of this representation. To start with, consider the con-
struction depicted in Figure 2.2a. The three rings (in this case frames) around
the aeroplane in the center correspond to the three possible rotation angles,
these are referred to as Cardan1 rings. They enable the aeroplane to take any
orientation in space.

(a) Cardan Suspension (b) Gimbal Lock

Figure 2.2: Cardan Suspension and Gimbal Lock, courtesy of [Koc08]

In a situation where the outer ring is aligned with the center ring, as depicted
in Figure 2.2b, we are suddenly unable to apply yaw rotation (around its Z

1http://library.wolfram.com/examples/quintic/people/Cardan.html

6

2.1. Transformations Chapter 2. Theoretical Part

axis) to the aeroplane. On the other hand, rotating the outer and inner ring has
exactly the same e�ect. Both actions will apply rotation around the aeroplane's
X axis (roll). This situation is referred to as gimbal lock. In systems that
rely on cardan suspension, be it mechanical or purely mathematical systems, a
gimbal lock can never be prevented, only avoided. Possible solutions are

• Choosing the rotation order that (for a certain application) would be the
least likely to yield a gimbal lock

• Early detection of gimbal locks and dynamic change of rotation order (and
rotation angles).

• Manually avoiding gimbal locks2

For a mathematical representation of gimbal lock, consider the three rotation
matrices mentioned before. By combining them to one rotation matrix in an
order that corresponds to the aeroplane's example (Rx(α) · Rz(γ) · Ry(β)), as
shown below, we receive a matrix that can be used solely for the rotation order
α, γ, β. Please note that due to a convention in computer graphics, we have
added a fourth, but in this case neutral dimension.

R(α,γ,β) = Rx(α) ·Rz(γ) ·Ry(β) =
cosβ · cosγ −sinγ sinβ · cosγ 0

cosα · cosβ · sinγ + sinα · sinβ cosα · cosγ cosα · sinγ · sinβ − sinα · cosβ 0
sinα · sinγ · cosβ − cosα · sinβ sinα · cosγ sinα · sinβ · sinγ + cosα · cosβ 0

0 0 0 1

Now let's set the center rotation (γ) to 90◦. Considering the example of the
aeroplane, when starting from a neutral position, this would lead exactly to
a situation where the outer and inner axes are aligned. As sin90◦ = 1 and
cos90◦ = 0, our rotation matrix results in ([Koc08])

R(α,90◦,β) =

0 −1 0 0

cosα · cosβ + sinα · sinβ 0 cosα · sinβ − sinα · cosβ 0
sinα · cosβ − cosα · sinβ 0 sinα · sinβ + cosα · cosβ 0

0 0 0 1

and can be further simpli�ed to become

R(α,90◦,β) =

0 −1 0 0

cos(α− β) 0 −sin(α− β) 0
sin(α− β) 0 cos(α− β) 0

0 0 0 1

2During the Apollo 11 Mission, maneuvers that would have led to gimbal lock were avoided

[Koc08]

7

2.1. Transformations Chapter 2. Theoretical Part

Notice how the γ has disappeared (one degree of freedom is lost) and how the
resulting rotation depends solely on the di�erence of α and β (two axis apply
the same rotation).

As stated before, when using rotation matrices, gimbal lock is impossible
to prevent. In search of a solution for rotation in space that doesn't su�er of
this drawback, we therefore have the leave the world of matrices and dive into
Quaternion Algebra.

2.1.2 Quaternions

This section describes how Quaternions are de�ned and treated. The informa-
tion provided here comes from [Koc08]. Let's start with how Quaternions are
de�ned:

q = w + xi+ yj + zk|w, x, y, z ∈ R

In this case, i, j and k are imaginary units that follow Hamilton's rule:

i2 = j2 = k2 = i · j · k = −1

A Quaternion can be seen as an object with a scalar component (w) and a
vectorial component (xi+ yj + zk). Applied to rotations in space, the vectorial
component corresponds to a rotation axis, whereas the scalar component de�nes
the amount of rotation around that axis. Using this approach, there's no need
for three prede�ned axes that can end up in gimbal lock. Instead, we de�ne one
�tailor-made� axis for each rotation.

Quaternion Algebra

This section presents essential mathematical operations as they're de�ned on
Quaternions.

Magnitude. A Quaternion's magnitude |q| is de�ned as ([Koc08], [ROS02])

|q| =
√
q · q∗ =

√
w2 + x2 + y2 + z2

Unit Quaternion. Quaternions that have the value 1 as their magnitude.

|qunit| = 1

Conjugate. Quaternions are conjugated by inverting the sign of their vecto-
rial component.

q∗ = w − xi− yj − zk

8

2.1. Transformations Chapter 2. Theoretical Part

Inverse. A Quaternion's inverse is de�ned by the equation

q−1 =
q∗

N(q)

N(q) is the Quaternion's norm (N(q) = |q|). The inverse of a unit quaternion
equals its conjugate [ROS02].

Sum and Di�erence. Adding or subtracting two Quaternions q1 = w1 +
x1i+ y1j+ z1k and q2 = w2 +x2i+ y2j+ z2k eventually boils down to adding/-
subtracting their scalar and vectorial parts, respectively [Koc08].

q1 ± q2 = w1 + x1i+ y1j + z1k ± (w2 + x2i+ y2j + z2k)

= w1 ± w2 + (x1 ± x2)i+ (y1 ± y2)j + (z1 ± z2)k

= [w1 ± w2, ~v1 ± ~v2]

Multiplication. Multiplication is done by multiplying the Quaternions' com-
ponents bit by bit, while at the same time respecting Hamilton's law, formally
[Koc08]:

q1 · q2 = (w1 + x1i+ y1j + z1k) · (w2 + x2i+ y2j + z2k)

= w1 · w2 − (x1 · x2 + y1 · y2 + z1 · z2)

+ (w1 · x2 + w2 · x1 + y1 · z2 − y2 · z1)i

+ (w1 · y2 + w2 · y1 + z1 · x2 − z2 · x1)j

+ (w1 · z2 + w2 · z1 + x1 · y2 − x2 · y1)k

= [w1 · w2 − ~v1 · ~v2, ~v1 × ~v2 + w1 · ~v2 + w2 · ~v1]

Multiplication of Quaternions is especially important for our purposes, as this
operation is used when applying rotation. In practice, Quaternions are often
interpreted and written as vectors: (x, y, z, w)T . When sticking to this interpre-
tation, we may as well rewrite the equation above to a form that can be directly
applied in program code. In the following equation, the necessary operations for
dot and cross products of vectors have been resolved, leaving us with nothing
more than additions, subtractions and multiplications of scalars [Koc08]:

qa · qb =

wa · xb − yb · za + ya · zb + wb · xa
za · xb + wa · yb − zb · xa + wb · ya
−xb · ya + xa · yb + wa · zb + wb · za
−xa · xb − ya · yb − za · zb + wa · wb

1. Quaternion multiplication is not commutative, thus q1 · q2 6= q2 · q1.

However, it is true that q · q−1 = q−1 · q, as both terms yield the result 1,
which is the neutral element in multiplication.

2. Products of Quaternions are associative. Therefore the equation (q1 · q2) ·
q3 = q1 · (q2 · q3) holds

9

2.1. Transformations Chapter 2. Theoretical Part

3. Quaternion multiplication is distributive, leading to the equations q1 ·(q2+
q3) = q1 · q2 + q1 · q3 and (q2 + q3) · q1 = q2 · q1 + q3 · q1

Polar Coordinate Form

By setting w = r · cosϕ, x = r · sinϕ, y = r · sinϕ and z = r · sinϕ, Quaternions
can be written in polar coordinate form:

q = r · cosϕ+ r · i · sinϕ+ r · j · sinϕ+ r · k · sinϕ
= r(cosϕ+ i · sinϕ+ j · sinϕ+ k · sinϕ)

This is the type of notation that we use to convert from axis-angle representation
to Quaternions. In the equation above, r = |q| and ϕ is the Quaternion's angle.
Given that q is of unit length and a vector ~n with |~n| = 1 we can write:

q = [cosϕ, ~n · sinϕ]

Application to Rotation in Space

Here comes the interesting part of applying the above knowledge to rotations in
three-dimensional space. To alter orientations by a certain rotation de�ned as
a Quaternion, we simply have to multiply the two Quaternions. Given that the
original orientation is qo and the requested rotation is qr, the new orientation
after performing the rotation is de�ned as

qn = qr · qo
Rotating 3D vectors is slightly di�erent. First of all we have to write the vector
to be rotated, (x, y, z)T , in Quaternion form [Koc08]:

[0,

xy
z

]

Next, we need to convert the rotation axis ~v and the angle θ to Quaternion
form:

[cos
θ

2
, ~v · sinθ

2
] = [cos

θ

2
,

xy
z

 · sinθ
2

]

Alternatively, we can rewrite our Quaternions to (x, y, z, w)T , as mentioned
above. Given that p is the vector to be rotated (in Quaternion notation), q the
requested rotation and q−1 its inverse, we use to following operation to carry
out the rotation:

p′ = q · p · q−1

If q is a unit quaternion, q−1 = q∗, and we can write

10

2.1. Transformations Chapter 2. Theoretical Part

p′ = q · p · q∗

The rotated vector is contained in the (x, y, z) part of the resulting quaternion
p′.

Multiple Rotations. Consider the following situation in which two rotations,
q1 and q2 have to be performed in sequence, with P being the vector to be
rotated (already in Quaternion rotation). This is done by nesting the rotations
(as described in [ROS02]):

q2 · (q1 · P · q−11) · q−12

Due to Quaternion multiplications being associative, this can be rewritten to

(q2 · q1) · P · (q−11 · q
−1
2) = (q2 · q1) · P · (q2 · q1)−1

Thus, to combine multiple rotations, all we need to do is multiply all Quater-
nions and use the result to calculate the total rotation.

Conversion to Rotation Matrix

The operation described above can easily be converted to a Rotation Matrix.
This is still required for some applications, such as OpenGL [Koc08]. The
Rotation Matrix R corresponding to the rotation described by a quaternion
(x, y, z, w)T is de�ned as follows [Koc08]:

R =

1− 2 · (y2 + z2) 2 · (x · y − w · z) 2 · (x · z + w · y) 0
2 · (x · y + w · z) 1− 2 · (x2 + z2) 2 · (y · z − w · x) 0
2 · (x · z − w · y) 2 · (y · z + w · x) 1− 2 · (x2 + y2) 0

0 0 0 1

The fourth dimension has already been added due to conventions in computer
graphics.

2.1.3 Coordinate Transformations

In a world model, usually multiple coordinate systems exist simultaneously. In
ROS (described later on in section 2.5) and in several other applications and
documents these systems are called frames. Examples for frames in a virtual
world are the map, the robot base, the robot laser, an object that's been recog-
nized by the robot, the camera frame (when rendering the world), each of which
represent a di�erent view of the world. Every pose can be represented in any of
the available coordinate frames, given the correct transformations between these
frames. Thus we need a framework that holds the necessary transformations and
is able to apply them to poses. Transformations contain, just like poses, a 3D
vector to describe a translation and a Quaternion to describe rotation. To carry

11

2.2. Mapping Chapter 2. Theoretical Part

out the transformation of pose P given the transformation T , we could convert
the rotation described as Quaternion to a rotation matrix, and combine it with
the required translation. The formula for the conversion from a Quaternion to
a rotation matrix is shown in the following equation [Koc08]:

M =

1− 2 · (y2 + z2) 2 · (x · y − w · z) 2 · (x · z + w · y)
2 · (x · y + w · z) 1− 2 · (x2 + z2) 2 · (y · z − w · x)
2 · (x · z − w · y) 2 · (y · z + w · x) 1− 2 · (x2 + y2)

2.2 Mapping

A robot requires some form of representation of the real world (a map), for ex-
ample to allow for localization. There are various types of map representations,
with their advantages and drawbacks.

2.2.1 Map Representation

Clearly, it would be the simplest solution to store any spatial information we
retrieve in an exact high-�delity map. However, this would result in high compu-
tational e�ort for tasks such as localization and path planning. Thus, strategies
are required that reduce the necessary storage space and computation time.
The environment has to be simpli�ed and abstracted. According to [SN04],
map representation strategies can be divided into the following groups:

• Continuous representation

• Map decomposition

� Exact decomposition

� Fixed decomposition

• Topological representation

Continuous representation

Typically, o�ce environments will be �lled with walls and furniture, thus with
simple geometric structures. From a top view, a simpli�ed representation would
often manage with nothing more than horizontal and vertical lines. A map of
such an environment could be stored as a set of lines that approximate the real
world. The danger of this approach is high computational cost in case the rep-
resentation becomes too exact, thus the key behind its successful application is
abstraction [SN04]. An appropriate balance between the amount of information
and e�ciency has to be determined.

12

2.2. Mapping Chapter 2. Theoretical Part

Map decomposition

Another map representation strategy is map decomposition. We di�erentiate
between exact and �xed decompisition, however both approaches have the same
underlying mechanism, which is dividing the environment into cells and storing
spatial connections between these cells in a connectivity graph.

Exact cell decomposition. This method splits free space into distinct cells,
depending on obstacle positions. For example, vertical lines can be drawn
through each corner of an object, the combination of the lines and the ob-
ject borders being the cell border. Unfortunately this approach is complex to
implement and the computational complexity depends on the number of objects
and their structure [SN04].

Fixed cell decomposition. As opposed to exact cell decomposition, this ap-
proach is independent of the environment's density and is easy to implement.
Instead of decomposing the environment based on obstacle positions, a grid di-
vides it into cells of equal size. What's left to do is to specify whether cells are
occupied or not. This representation allows to apply search methods yielding
low computational costs, such as wavefront expansion [SN04]. Fixed cell decom-
position is one of the most popular map representation methods. For instance,
ROS (described in section 2.5 below) uses cell-based occupancy grids to store
spatial information. An occupancy grid associates an integer with each grid
cell, increasing its value once a range measurement system detects an obstacle
within the cell's borders. Above a certain threshold, the cell is considered to be
an obstacle [SN04].

Topological representation

Instead of measuring the geometric structure of the environment, topological
representations concentrate on those features that are relevant for localization
[SN04]. The environment is �lled with interconnected nodes, that are associated
with features that can be observed at each of these nodes' positions. Two
mechanisms are thus required:

• Localization, meaning that the robot must be able to associate its current
position with one of the nodes

• Navigation from one node to another

Topological representations can be applied to environments in which geometric
structures are not the most salient features [SN04]. Also, they allow for a cost-
e�ective belief storage. A drawback, however, is information loss. For instance,
exact localization is only possible when the robot reaches nodes.

13

2.3. Localization Chapter 2. Theoretical Part

2.2.2 Map Creation

While it would be possible to create maps manually, this can obviously be a
tedious task for large maps. Instead, we would like to have the robot create
a map on its own, either by autonomously exploring its environment or with
a human operator guiding it. A popular approach, that can be applied to
occupancy grids, is SLAM (Simultaneous Localization and Mapping). SLAM
approaches all have the same underlying chicken-and-egg problem that they're
designed to solve. On the one hand, the robot's position is required in order to
know where to add new sensor readings to the occupancy grid. On the other
hand, the information in the occupancy grid is used to calculate the robot's
position [Hop10]. In ROS, the gmapping package, that relies on sensory input
from laser range measurement systems, is responsible for mapping tasks. The
underlying method is described in [GSB07]. Vision-based solutions are discussed
in [Hop10].

2.3 Localization

Mobile robot localization is the problem of determining a robot's pose from sen-
sor data [TFBD01]. Such sensor data can for example be retrieved using laser
scanners (as in the case of our mobile robot described in the practical part of this
document). The scan results re�ect the current view of the world surrounding
the robot, that has to be matched with the robot's belief about the structure
of the world, which is usually saved as a map of the environment. This means
that based on partial information about the environment, the robot must be
able to decide which part of the map is most similar to the snapshot it's facing.
Not only the current sensor data will be used to estimate the robot's position,
but also its odometry readings. These two sources of information have to be
optimally merged to yield good position estimates. [SN04] mentions three essen-
tial problems that accompany the localization task, namely sensor noise, sensor
aliasing3 and e�ector noise (odometric error). Two solutions to this problem
shall be mentioned here, namely Kalman �lter and Markov localization.

2.3.1 Kalman Filter Localization

A Kalman Filter can be used for a wide range of problems, where Gaussian
probability densities with known variances have to be merged. One such problem
happens to be robot localization, which usually involves the combination of
sensor readings and odometry. To demonstrate this method, let's assume a static
robot performing multiple measurements. Given a prior position estimate x̂k
with the corresponding variance σk, as well as a new measurement zk+1, again
with a corresponding variance σz, we can write (according to [SN04])

3Not even an absolutely noise-free sensor is su�cient to localize the robot with one snap-
shot, due to its limited resolution and range

14

2.3. Localization Chapter 2. Theoretical Part

x̂k+1 = x̂k +Kk+1(zk+1 − x̂k)

Kk+1 =
σ2
k

σ2
k + σ2

z

This means that each measurement will contribute to the overall estimate to
a certain amount depending on its variance. What's left to do is calculate the
new estimate's variance, which can be done in the following step:

σ2
k+1 = σ2

k −Kk+1σ
2
k

When applied to a dynamic system, e.g. a moving robot, the position will change
between sensor readings, so an e�ector model is required that can propagate the
position from one timestep to the other. Of course by doing this, the estimate's
uncertainty will be growing, an e�ect that has to be modeled as well.

An application of a Kalman Filter based localization method is described
in [SN04]. This method relies on the extraction of line features and matching
them to a known map to estimate the robot's position within the map.

2.3.2 Markov Localization

Another approach to the localization problem, that can work with arbitrary
types of probability distributions, as opposed to Kalman Filters, is Markov
localization. This method is based on Bayes' formula for calculating the condi-
tional probability of A, given B [SN04]:

p(A|B) =
p(B|A)p(A)

p(B)

This can be applied to robot localization by replacing A with the robot's actual
location l and B with the sensor input i, resulting in the following equation:

p(l|i) =
p(i|l)p(l)
p(i)

Thus, by modeling the sensor input given a speci�c location, the sensor model
being represented as p(i|l) and multiplying it with the robot's prior position
estimate p(l), we can estimate the probability for each discrete position. The
denominator p(i) is usually omitted and the resulting probabilities normalized
instead. Further details about this method are provided in [SN04].

This and other approaches relying on the Markov assumption are becoming
increasingly popular in the �eld of mobile autonomous robotics [SN04]. The
Markov assumption states that a system's state only depends on its previous
state and the actions performed since then. This is in general a false assumption
[SN04], however it's a good approximation for many systems and dramatically
simpli�es further calculations, as there's no history to be taken into account.

The following method, that is used for localization tasks in ROS (amcl pack-
age, described in section 3.4.2 on page 94), also relies on the Markov assumption
and applies a particle �lter to estimate the robot's position.

15

2.3. Localization Chapter 2. Theoretical Part

2.3.3 Monte Carlo Localization

This approach is based on a particle �lter that represents the robot's belief as
a set of weighted samples. This belief is repeatedly updated, by performing the
following steps at each discrete time step [Fox01]:

1. Samples are randomly fetched from the previous belief according to their
importance weights. The probability of a particle being fetched depends
on its weight.

2. Each of the particles chosen in the previous step will be used to sample
new particles, based on the last control information, which in a robot's
case might be derived from odometry.

3. Finally, the particles are weighted using the new measurements. Those
that align well with the values received from the measurement are weighted
higher.

The particle �lter's advantage is that it can represent various types of proba-
bility densities, not only Gaussians. A challenge that it presents is to �nd the
optimal amount of samples or particles to get good results without wasting sys-
tem resources. To illustrate the optimization potential behind this parameter,
imagine a situation in which the robot is already well localized and only needs
to track its position, as opposed to a situation in which it has no clue about its
location (in early stages of operation, with no position estimate provided). In
the latter situation a signi�cantly higher amount of particles is required than in
the former, as the possible positions are initially distributed all over the map.
Obviously a naïve approach would be to stick to a �xed amount of particles
that seems to be a good trade-o� for the given environment. However, there are
more sophisticated solutions.

Likelihood-based sampling

According to [Fox01], the sum of the non-normalized importance weights of
particles reveals the position estimate's quality and thus the amount of neces-
sary particles. This becomes clear, considering the two situations mentioned in
the previous section. When the robot is well-localized, a moderate amount of
particles will already yield a high accumulated importance weight, whereas a
delocalized robot will issue many �guesses� that don't align with sensor infor-
mation, thus yielding low likelihood values for a higher amount of particles. As
promising as this approach seems to be, it has di�culties dealing with symmetric
environments, e.g. environments that feature several similar spots (rectangular
hallways for example). In these cases, based on the measure presented here, the
agent might issue a low amount of particles, thinking that it's well-localized,
but the particles will be located at various spots in the map that resemble each
other.

16

2.3. Localization Chapter 2. Theoretical Part

Figure 2.3: Monte Carlo Localization - Particles representing hypotheses

KLD-Sampling

This method for estimating the necessary amount of particles is applied in the
amcl package that comes with ROS. The basic idea behind this approach is to
have the K-L distance (Kullback-Leibler distance) between the true posterior
and the maximum likelihood estimate go below a certain threshold. In other
words, the error between reality and the agent's belief is measured and the
number of particles adapted accordingly. Unfortunately the true posterior isn't
directly available, as the particle �lter is responsible for approximating it in the
�rst place. However, it su�ces to interpret the distribution as a Multinomial (n
samples drawn from k bins) and specify the maximum number of samples per
bin before it counts as supported (one sample is used in [Fox01]). The number
of necessary samples n depends solely on the number of supported bins k, as
shown in the following equation:

n <
1

2ε
χ2
k−1,1−δ

For further details on how this equation is derived, please refer to [Fox01], where
you will �nd an exact description of the approach. The δ and ε variables can be
seen as parameters to this mechanism, as they allow to con�gure the required
con�dence. The essential di�erence between this approach and Likelihood-based
sampling is that it takes the diversity of samples into account. Thus, in the
previous example of a rectangular hallway with similar spots, it will notice
that not only is the robot's belief well aligned with sensor readings, but that
particles are still being placed at various spots in the map, therefore increasing
the number of particles.

17

2.4. Navigation Chapter 2. Theoretical Part

2.3.4 Challenges in Localization

In [TFBD01], two challenging problems in the �eld of localization are mentioned,
namely the global localization problem and the kidnapped robot problem. To
explain these, let's consider a third problem, which is keeping track of the robot's
position. In this case, there's already a relatively reliable pose estimate available,
which is only progressed to further timesteps and adjusted based on sensor
input. So the robot's position is known and the robot is also con�dent about
the estimate's quality. In a situation where a pose estimate is not available and
the robot's perfectly aware of the fact that it's delocalized, we face the global
localization problem. This is for example the case shortly after startup. On
the other hand, if a robot is delocalized, but not aware of this fact, we face the
kidnapped robot problem. Imagine the robot being teleported from one spot
to another4. Consider that given that the robot had been traveling for some
time, the measurements before the unanticipated event will be accompanied
with high con�dence values, so it will be hard to incorporate a dramatic change
of position. While a Kalman �lter is highly sensitive to the global localization
and kidnapped robot problems, these two are solved in a robust way by the
Monte Carlo Approach [TFBD01].

2.4 Navigation

An autonomous mobile robot must feature skills that enable it to navigate be-
tween speci�c spots in the world, in order to be able to ful�ll its daily tasks, such
as surveillance or transportation. Some of the (often con�icting) requirements
that accompany these navigation tasks shall be mentioned below ([SN04]).

• E�ectiveness. It's often required that an agent reach its goal within a
certain amount of time, or sticking to the shortest path.

• Completeness. If a path to the goal is available, the robot is expected
to �nd this path and traverse it [SN04].

• Obstacle avoidance. Obviously the robot is not supposed to hit any
obstacles on its way to the goal.

• Optimization of sensor readings. For short-ranged sensors, it's often
sensible to navigate close to interesting feature points in order to maintain
a good localization [SN04].

Navigation is usually divided into two subproblems, namely (global) path plan-
ning and obstacle avoidance. The global planner uses a simpli�ed model of the
world and the robot to e�ciently calculate a way between the robot's position
and the goal, whereas the local planner navigates to the goal, while trying to
stick to the global plan as strictly as possible (or as requested).

4A more credible image is disabling the robot while saving its current state, then moving
and �nally reactivating it at a new spot

18

2.4. Navigation Chapter 2. Theoretical Part

2.4.1 Global Path Planning

A navigation task usually starts with the search of a global plan from the robot's
position to the goal. Sticking only to local in�uences and short-term local plans,
the robot might end up in local minima. With the global planner recommending
a path, this can be avoided. Also this is the �rst instance that decides whether
a traversable path exists or not. There are several approaches to global path
planning, some of which shall be mentioned here. What's common to these
approaches is the problem of representing a sensed, continuous environment
or a map as a set of discrete spots, lines or cells, thus allowing to model the
environment as a connectivity graph. Such a representation is necessary in order
to be able to apply traditional path planning algorithms [SN04].

Road Maps

The idea behind this approach is to de�ne a set of paths in the environment,
similarly to roads on a map. This can be achieved through a visibility graph or
a Voronoi diagram [SN04].

Visibility graph. This method draws direct lines between obstacle edges,
wherever possible without intersecting other obstacles. The drawback hereof
is that the resulting path will always take the robot close to obstacles. On
the other hand, this approach could be advantageous for short-range sensors,
providing them with richer input [SN04].

Voronoi diagram. As opposed to the visibility graph, this approach tries to
maximize the distance to the obstacles in the environment. One of its advantages
is that it's executable: sensor readings can directly be used to correct the robot's
position. The major drawback of this method is that the calculated path is often
far from optimal [SN04].

Cell Decomposition

Another approach is to discretize the world around the robot by dividing it into
cells, either depending on obstacles (exact cell decomposition) or independently
(approximate cell decomposition). The cells can then be connected to form a
graph that can serve as in input to path planning algorithms. Both methods
are discussed in section 2.2.1 above.

Potential Field

The potential �eld approach creates a virtual �eld of attracting and repulsing
forces, guiding the agent to its goal. The environment can then be seen as a
mountainous landscape, with the goal being a valley, obstacles being mountains
and the agent a ball rolling towards the valley. The major drawback of this
approach is that the robot might get caught in local minima or start oscillating
between obstacles.

19

2.4. Navigation Chapter 2. Theoretical Part

2.4.2 Local Planning and Obstacle Avoidance

The local planner is responsible for calculating paths around obstacles, while
at the same time sticking to the path recommended by the global planner. A
simple approach to obstacle avoidance is the so-called Bug algorithm [SN04].
This method issues a path around an obstacle in the robot's way, along the
obstacle's contour. In the �rst version of the algorithm, the robot circles the
obstacle once and subsequently �leaves its orbit� at the point that's closest to
the goal, while a second version is implemented in a way that it will continue
on a direct path to the goal whenever possible. Another, more sophisticated
solution is the dynamic window approach, that's part of the ROS navigation
stack (section 3.4.3).

Dynamic Window Approach

This method takes the robot's rotational and translational velocities and accel-
eration capabilities into account. Based on this information, the set of possible
velocities (rotational as well as translational) is calculated for the next timestep.
As depicted in Figure 2.4, this yields a rectangular �eld in the 2D velocity search
space, called the dynamic window, hence the name of this technique5 [FBT97]
[SN04].

Figure 2.4: Dynamic window in the 2D velocity search space [FBT97]

In a second step, all those velocity combinations that might lead to collisions,
are eliminated. The following objective function is then applied to the cropped
search space:

O = a · heading(v, ω) + b · velocity(v, ω) + c · dist(v, ω)

In this equation (from [SN04]), heading measures the robot's orientation toward
the goal and thus its progress, dist tries to maximize the distance to the closest
obstacle and velocity prioritizes fast movements [SN04].

5The original view of the environment is depicted in Figure 2.5

20

2.4. Navigation Chapter 2. Theoretical Part

Figure 2.5: Environment corresponding to the DWA example, from [FBT97]

Trajectory Rollout

Another method that is available out-of-the-box in the ROS navigation stack
is trajectory rollout, which is quite similar to dynamic window, except that
the lookahead time is con�gurable. Thus trajectory rollout will produce more
samples, which makes it computationally more expensive than the dynamic
window approach, but might be advantageous for robots with low acceleration
limits [ROS11e].

Costmap

Any module that performs local path planning and obstacle avoidance needs
some form of information about the current state of the world around the agent,
in order to be informed about obstacles that might a�ect the robot's operation.
This information can be retrieved from sensor input, be it laser scan data or
point clouds coming from 3D sensors. The data received is stored and managed
in a so-called costmap, which is a discrete grid representing the environment.
The 3D version of a costmap is called octomap6, but shall not be treated here.
The essential operations that can be performed on this data structure are mark-
ing and clearing, as described below. A visualized costmap is displayed in Figure
3.16 on page 96.

Marking cells. Obstacles detected by the robot's sensors are added to the
costmap by simply marking grid cells that are at least partly occupied by the
obstacle. The maximum distance at which obstacles should be interpreted as
such and thus added to the costmap, can be con�gured.

Clearing cells. Heuristics are required that de�ne how the costmap can be
cleared of obstacles that are no longer present or relevant to the robot. A
straightforward approach is to remove ostacles that are �far enough� behind
the robot. This mechanism is one reason for penalizing reverse motion in nav-
igation tasks. The aforementioned approach is coexistent with a second, more

6http://www.ros.org/wiki/octomap

21

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

sophisticated one that is absolutely required in dynamic environments. Imagine
someone crossing the robot's way, thus obstructing its originally foreseen path
for a splitsecond. Consider that this is enough time for a sensor to detect the
moving obstacle and, as we've only de�ned a marking operation so far, virtually
�ooding the map with obstacles. Thus we have to use sensor information not
only to �ll, but also to clear the costmap. In the previous example, after the
subject has passed by the robot, a laser sensor will now probably sense a wall
or another obstacle, for example a chair in the distance. For each reading that
provides information on an obstacle (regardless of whether it must be added
to the costmap), a ray is projected from the sensor to the obstacle, and all
previous obstacles in the costmap that are hit by this ray are removed. This
guarantees that both �meanings� of a sensor reading are taken into account,
namely the information that on obstacle has been detected and the one that the
space between the sensor and an obstacle must be unoccupied.

Recovery

With all the well-thought out heuristics and their correct con�gurations, there
might still be situations in which the agent seems to be lost due to being sur-
rounded by obstacles. Sensors don't convey perfect information and might miss
important events due to limited operating rates. Also, the world state might
change rapidly and dramatically, requiring the robot to completely discard its
previous plans and recalculate a solution. For those situations, recovery strate-
gies must be implemented that (often aggressively) try to repair the robot's
view of the world (on a quantitative, execution level). Two such methods that
are available in the ROS navigation stack shall be mentioned here.

Turning around. In bad times it's a good idea to take a look around. In the
end, keen observation might reveal that there's a solution after all.

Forced clearance of costmap. Sarcastically said, problems can be solved
by simply ignoring them. This mechanism clears all obstacles from the costmap,
regardless of what side e�ects this may cause. Obviously, this is not a procedure
that should be applied in everyday operation, rather for exceptional situations.
The ROS navigation stack o�ers an interface that allows to manually call this
procedure (the caller being either the user or other nodes).

2.5 The Robot Operating System (ROS)

To start with, the following quotation taken from ROS.org [ROS11c] should give
a rough �rst impression of what's hiding behind the name ROS:

ROS (Robot Operating System) provides libraries and tools to help
software developers create robot applications. It provides hardware
abstraction, device drivers, libraries, visualizers, message-passing,
package management, and more.

22

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

Despite its name, ROS, the Robot Operating System, is not what is usually
meant by this term [QCG+09]. Instead of building on top of a hardware ar-
chitecture and taking care of memory management, scheduling and of other
typical OS tasks, it is based on an existing installation of a regular operating
system (preferably Ubuntu, according to [ROS11z]) and adds functionality that
facilitates development and execution of software for robots. The two most im-
portant features of ROS are its communication framework and the rich toolkit
it comes with.

A running ROS system usually consists of numerous independent, rather
small software modules (called nodes), each of them written in one of the sup-
ported languages (C++, Python, Java and others). These nodes can commu-
nicate with each other by passing strictly typed messages, either via a pub-
lisher/subscriber mechanism or by calling services. The former allows for the
de�nition of communication channels (called topics), that carry one speci�c type
of message.

The basic idea behind ROS was to o�er robotics researchers all over the
world a platform to facilitate collaboration on a vast set of libraries solving
several problems in the �eld of robotics. Instead of having teams of researchers
implement complete robotics systems, they can now focus on selected �elds of
research, contribute their progress to the ROS community and on the other
hand bene�t from others' work. Libraries that are made compatible with ROS
can, at the same time, remain independent of it, as the only required step is the
implementation of a lightweight wrapper module that communicates with the
library and forwards requests and results to the ROS communication framework.
This thin architecture is one of the main philosophical goals of ROS [QCG+09].
Another was to make ROS absolutely free and open-source.

As many developers and institutes are currently carrying out research in the
�eld of robotics, the ROS community is thriving, o�ering numerous bene�ts:

• Rapid implementation and integration of drivers for new hardware

• New useful software libraries are constantly added

• Modules can be checked out from version control, ensuring up-to-dateness

• A rich Wiki with tutorials and documentation for almost any software
module

• Amailing list and an answers-portal helping out troubled fellow developers

2.5.1 Languages Supported by ROS

ROS nodes can be implemented in various languages, including C++, Python,
Lisp, Java and Octave. Support for others is constantly being worked on. Ac-
cording to ROS philosophy, instead of building on a C-based stub, language
support is natively implemented [QCG+09]. Exceptions to this ideology are
currently (at least) Java and Octave. Nodes written in rosjava for example

23

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

communicate with the underlying node implementation using JNI. This, how-
ever, is only a temporary solution that is subject to change in future releases.

The reason for supporting multiple languages is twofold. On the one hand,
we have to face the fact that every programming language has its enthusiasts,
as well as its sworn enemies. Thus, in a collaborative environment with possibly
thousands of developers at work, hailing from various �elds of computer science,
there is no one language that will be unanimously accepted. On the other
hand, the coexistence of programming languages can be justi�ed by objective
argumentation. Some are more e�cient than the others, result in cleaner and
more structured code or allow for rapid prototyping, just to name a few distinct
properties. In the project described in the second part of this document, three
of the available programming languages were used. To sum it up in one concise
sentence: C++ is fast, Python is �exible and Java is pretty.

2.5.2 ROS File System

A ROS installation is organized in a tree of stacks and packages, where a stack
contains a set of interrelated packages. These can be located virtually anywhere
in the �le system, as long as they are referenced by an environment variable7.
This variable will point to the folders containing ROS stacks or packages, that
will then automatically be made available in build processes, or when browsing
code. A sample set of paths pointing to ROS packages, that served our purposes
well, is described in our Wiki [ROS11x]. This con�guration consists of separate
paths for

• the ROS base installation with all its built-in packages

• stacks and packages coming from external sources

• a local copy of the ist-ros-pkg folder (checked out from our SVN repository)

• an additional folder serving as �sandbox�

Our institute's repository hosting ROS projects is inspired by the structure used
at WillowGarage8 and is thus considered good practice for organizing ROS code
[ROS11y]:

* ist-ros-pkg/

o stacks/

+ stackname1/

branches/

tags/

trunk/

* packagename1/

o manifest.xml

7ROS_PACKAGE_PATH
8http://www.willowgarage.com/

24

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

o etc.

* packagename2/

* stack.xml

* Makefile

* CMakeLists.txt

+ stackname2/

branches/

tags/

trunk/

* stack contents...

ROS comes with several tools that facilitate manipulation of and navigation in
the ROS �le system. These are described in further detail in section 2.5.13.

Stacks

A stack is a collection of interrelated software modules, that in combination
and as a whole, perform a useful task. From the underlying operating system's
point of view, it's nothing more than a folder containing an XML �le (the stack
manifest, in a �le called stack.xml) along with a set of packages. The presence
of a stack.xml �le indicates that the folder contains a stack. An example a ROS
developer might stumble upon is the navigation stack, providing robots with
navigational abilities.

According to [ROS11u], stacks serve several purposes, including simplifying
the process of code sharing and keeping track of versions and dependencies.
When releasing a stack, it's good practice to provide it with a CMakeLists.txt
(described in 2.5.2) and a Make�le, located in the stack's root folder. These
�les facilitate build processes of the stack as a whole.

Helpful tools. The roscreate-stack tool described in section 2.5.13 should be
used to auto-generate common �les in a stack.

The Stack Manifest. As mentioned before, each stack contains a stack.xml
�le serving as the stack's manifest. This �le holds various types of information,
including licensing information, dependencies to other stacks, information on
the author and the release version [ROS11t]. A stub of the stack manifest is
auto-generated when using the roscreate-stack tool.

Packages

Packages are the basic organizational units of software in ROS. They con-
tain nodes, con�gurations, message and service de�nitions, as well as libraries
[ROS11h]. Just like stacks, packages contain manifests that specify author, li-
censing, as well as dependencies, however in this case they are contained in a
manifest.xml �le. This di�erence in the �le names allows for quick discrimina-
tion between stacks and packages.

25

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

Package Manifest. The package manifest is very similar to the stack manifest
(described above). It's contained in an XML �le called manifest.xml.

Package Make�le. In addition to the package manifest, packages contain
a CMakeLists.txt �le, similarly to a regular Make�le, specifying the way the
package should be built. This �le includes information on

• nodes contained in the package

• source �les corresponding to nodes

• whether messages/services should be generated

• and other information, depending on the package's purpose (action servers
and �les required for features such as dynamic recon�gure)

Helpful tools. The roscreate-pkg tool described in section 2.5.13 o�ers a func-
tionality similar to the roscreate-stack tool, but applied to packages instead of
stacks. Some notable di�erences are that dependencies can be de�ned on the
command line and are consequently added to the manifest, and that the folder
containing the package doesn't have to be created by hand before invoking the
tool. Navigational tools such as roscd and rosls, as well as the build tool rosmake
use an index of package names and their locations and can therefore instantly
reference any package in the ROS_PACKAGE_PATH, without requiring the
developer to specify a path manually.

2.5.3 Nodes

Nodes are processes that perform computation [QCG+09]. In the context of
ROS, a node is the equivalent of a software module. It's convenient to visualize
a running ROS system as a graph, due to its peer-to-peer structure. In this
graph, software modules can be depicted as nodes, whereas topics, the commu-
nication channels between these nodes, are, intuitively, displayed as edges. This
visualisation style led to the term �node� [QCG+09]. These software modules
can be implemented in various languages, as described in section 2.5.1. The com-
munication between nodes is carried out via messages (see section 2.5.5), that
are sent and received on certain topics (described in section 2.5.6). Nodes are
designed to be lightweight modules, either wrapping around large libs to make
them accessible to the rest of the ROS framework or hosting self-implemented
logic.

2.5.4 Master

The Master is a central naming and registration service that negotiates com-
munication between nodes using an XML-RPC mechanism, but does not carry
out the tedious task of forwarding communication payload [ROS11f]. This is
an especially important property, as it corresponds to the peer-to-peer topology

26

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

ROS was intended to exhibit [QCG+09]. This mechanism yields the following
course of events, when establishing a communication channel between two nodes
(example depicted in Figure 2.6 [ROS11f]):

1. Node Camera advertises topic images. Advertising in this case means
notifying the master of the availability of this topic. The topic which we
interpret as a communication channel is nothing more than a string.

2. Node Image Viewer subscribes to the aforementioned topic images. To
this end, it queries the master for the set of nodes that publish messages
on the requested topic. The master responds to this query by returning
Camera's address.

3. Finally, Image Viewer establishes a direct connection to Camera, on
the images topic.

(a) Topic advertisement (b) Topic subscription (c) Connection estab-
lished

Figure 2.6: ROS Master establishing communication channel, courtesy of
[ROS11f]

This publish/subscribe mechanism grants nodes to

1. advertise N topics

2. subscribe to M topics

3. advertise topics that have been previously advertised by other nodes

4. subscribe to topics other nodes are already subscribed to

In case 3, messages from all the nodes publishing on the same topic are merged
together, whereas in case 4, the messages are delivered to all nodes that are
listening.

Helpful tools

The Master is usually launched by invoking roscore [ROS11f], along with a
Parameter Server, that's described in section 2.5.9.

27

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

2.5.5 Messages

ROS Messages are packets of structured and strictly typed data that are sent
between ROS nodes, either on ROS topics or as service requests and responses.
They are de�ned in message de�nition �les9, written in a language-independent
interface de�nition language [QCG+09]. For each programming language sup-
ported by ROS, message handler objects are auto-generated when building pack-
ages containing message de�nitions. From the node developer's point of view,
incoming and outgoing messages feel like native objects [QCG+09], with object
�elds corresponding to message entries. The generated LOC outnumbers the
message de�nition's LOC by far, as demonstrated in Table 2.1. In this case, the
world model's message and service structure (discussed in section 3.2.4 on page
74) and the resulting auto-generated code served as an example.

Set IDL C++ Python Java
Messages 55 2182 2620 845
Services 61 7126 6706 3095

Table 2.1: LOC for generated messages and services

Please note that in IDL, a shallow view of the message de�nition was used to
calculate the LOC. For example, instead of decomposing a PoseWithCovari-
anceStamped �eld into its header, covariance etc., it was counted as one line.
On the other hand, the world model message �les are nicely formatted and
verbosely commented, adding a signi�cant amount of lines to the total LOC.

Sample message de�nition �le

A typical message de�nition �le, shown in the following listing, usually contains
several entries that hold strictly typed information, message constants and com-
ments:�
Message header
Header header

Object ID
ObjectID ob j e c t i d

The header t ha t can be found in pose w i l l be
used to t r an spo r t frame_id and stamp
geometry_msgs/PoseWithCovarianceStamped pose

only f o r output
string ob j ec t type

9identi�ed by the *.msg extension

28

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

� �
Listing 2.1: WMObject.msg

Message entry

Each message entry contains a type, e.g. ObjectID in the example above, and an
entry name, objectid. When translated to language-native objects, each entry
is exposed as a �eld (cutting out accessor methods). The following example in
Java shall demonstrate this functionality:�
// crea t e a new WMObject
WMObject wmobject = new WMObject () ;

// crea t e an ObjectID fo r the WMObject
ObjectID ob j e c t i d = new ObjectID () ;
ob j e c t i d . type = " i n t e r n a l " ;
ob j e c t i d . name = "book" ;

// as s i gn the ObjectID to the WMObject
wmobject . o b j e c t i d = ob j e c t i d ;

System . out . p r i n t l n (wmobject . o b j e c t i d . name) ;
� �
Listing 2.2: WMObject Usage in Java

When integrated into an executable Java class, the above code will yield the
string book as output.

Message constant

Message constants are similar to regular message entries. They are de�ned by
directly specifying the entry's value, as can be seen in the following example:�
string ENTRYNAME=value
� �

Listing 2.3: Example for a message constant

In the example above, string describes the entry type, the constant name EN-
TRYNAME is by convention written in capitals and the constant value is
de�ned in-line, using no quotation marks whatsoever.

Comments

Comments are added by pre�xing a line with a sharp (#), as in :�
This i s a comment
� �

Listing 2.4: Example for a comment

29

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

Primitive C++ Python Java
bool uint8_t bool boolean
int8 int8_t int byte
uint8 uint8_t int short
int16 int16_t int short
uint16 uint16_t int int
int32 int32_t int int
uint32 uint32_t int long
int64 int64_t long long
uint64 uint64_t long long
�oat32 �oat �oat �oat
�oat64 double �oat double
string std::string string java.lang.String
time ros::Time rospy.Time ros.communication.Time
duration ros::Duration rospy.Duration ros.communication.Duration

Table 2.2: Built-in types

Message Header

The message header contains the coordinate frame id the data is associated with,
a time stamp (ROS time) and an automatically generated sequence number.

Message Hierarchy

Message de�nitions are allowed to contain other message de�nitions. If they are
located in di�erent packages, the containing package has to be speci�ed, as in

package_name/MessageName

The nesting of message de�nitions can be arbitrarily deep according to [QCG+09].

Object Orientation

Unfortunately, message de�nitions don't allow for OO features such as object
extension and polymorphism, which is de�nitely a drawback for designing com-
plex systems. Of course, the mere fact that ROS messages can contain strings
enables the developer to use object serialization or marshalling to regain object
orientation, however losing the system's out-of-the-box language independence.

Primitives

Table 2.2 (courtesy of ROS.org [ROS11g] and [ROS11k]) shows a set of primi-
tives that can be de�ned in messages their corresponding types in C++, Python
and Java.

30

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

2.5.6 Topics

As mentioned before, ROS uses a publisher/subscriber mechanism to trans-
port message packets from one node to another. The channels on which these
messages are transported are called topics. Any node can advertise topics by
choosing a topic name and a message type it is supposed to carry. On the
other hand, nodes can subscribe to these topics and thus receive messages sent
on them. Section 2.5.4 explains how topic subscriptions and advertisements
are used to establish strictly typed communication channels between nodes.
In general publishers and subscribers are not aware of each others' existence
[QCG+09]. To avoid collisions between topic names (for example when using
multiple cameras, the topic name camera_rgb might appear more than once),
they can be added to namespaces. In our previous example, we could pre�x the
topic name by the camera node's name, as in LeftCam/camera_rgb.

Helpful tools

There are several tools that help monitoring the communication channels in a
ROS system. The topology can be displayed as a graph using the rxgraph tool
(section 2.5.13), while messages sent on speci�c topics can be listened to using
rostopic, with the echo parameter supplied. The very same tool is capable of
measuring the rate at which messages are sent.

2.5.7 Services

ROS also allows for a service-based communication between nodes, in addition
to the publisher/subscriber model that's been discussed so far. Nodes can o�er
services, that can on the other hand be called by other nodes. Unlike with
publishers and subscribers, a service with a certain name can only be o�ered
by one node. Service protocols are described in service de�nition �les (*.srv
ending), reusing, however, regular message de�nitions. A ROS service de�nition
looks very similar to a message de�nition:�
ObjectID ob j e c t i d
− − −
WMObject wmobject
� �

Listing 2.5: GetWMObjectByID.msg

Like message de�nitions, the content of a service de�nition is strictly typed.
Nesting of service de�nitions is not possible, however the nesting capabilities
of messages can be exploited. ObjectID and WMObject are both de�ned in
the world model (section 3.2 on page 72). The most obvious di�erence to a
message de�nition are the three horizontal lines that separate the request and
response de�nitions from one another. Accordingly, in the above service de�ni-
tion the service request will contain an ObjectID, to which the response will be
a WMObject.

31

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

2.5.8 ROS Time

In ROS, time is represented as a tuple of seconds and nanoseconds. This format
is contained in message headers and will be displayed by default when print-
ing time information. As these values alone are rather inconvenient to handle,
ROS o�ers time management mechanisms in many languages. Timing values
are usually handled in a type-safe manner, with Time corresponding to a cer-
tain moment, Duration to the di�erence between two points in time and Rate
to the frequency at which certain events shall occur. Each of these elements
exhibit convenience methods for creation and manipulation (e.g. adding time,
conversions to a di�erent format). Rates are usually used in loops to postpone
execution in order to keep up a certain looping frequency. For more informa-
tion on how ROS handles time in C++, please refer to the corresponding ROS
tutorial10.

2.5.9 Parameter Server

The Parameter Server is a globally accessible data base designed to store and
retrieve parameters while a ROS system is up and running. The advantages
of such a system are the easier inspectability and manageability of the system
con�guration. The Parameter Server runs inside the ROS Master (section 2.5.4)
and communicates with nodes via an XML-RPC mechanism [ROS11i]. Param-
eters are de�ned as tuples of parameter name and parameter value. Just like
topic names, parameter names can belong to a certain namespace.

2.5.10 Networking

The ROS communication framework allows to launch nodes on di�erent ma-
chines and have them interact in a way that's transparent to the developer.
The only requirement is to choose a machine that's assigned the task of running
the ROS Master (section 2.5.4). Other machines on the network must know
where the Master is running, clearly, to have a unique point of reference when
negotiating connections to other nodes. These machines are informed about
the Master's URI by setting the ROS_MASTER_URI accordingly. A sample
command to do so looks as follows:

export ROS_MASTER_URI=http://my-ros-laptop.local:11311

Optionally, this command can be added to .bashrc in order to be loaded when
a new console is opened. As can be seen, the ROS Master is located on my-
ros-laptop11 and is accessible via port 11311, which is the default port. Conse-
quently, when a node is started on this machine, it will look for the ROS Master
on my-ros-laptop instead of trying to locate it on localhost. Alternatively, the
target machine's IP can be speci�ed, as in

10http://www.ros.org/wiki/roscpp/Overview/Time
11the local-su�x is required by the avahi naming service12

32

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

export ROS_MASTER_URI=http://192.168.5.33:11311

ROS was designed for networks with a functioning naming service, however
it's also possible to use purely IP-based addressing. If this is the case, every
machine on the network has to know its own �ROS_IP�, which is basically
the machine's IP. This has to be manually speci�ed using another environment
variable, as can be seen in the following command:

export ROS_IP=129.27.12.232

As ROS was intended to distribute computation tasks over several machines,
without a central bottleneck, the communication between nodes follows a peer-
to-peer concept. The machine running the ROS Master is not responsible for
forwarding all messages traversing the network. Instead, it will manage the ne-
gotiation process between two nodes and then have them communicate directly
with each other. This mechanism is described in richer detail in [ROS11f]. Con-
sider the following scenario (as described in [QCG+09]): An autonomous, mobile
service robot is equipped with a set of compact and not so powerful controller
laptops that will perform tasks that go easy on the CPU but are highly I/O-
intensive instead (I/O meaning sending and reception of ROS messages). A set
of powerful external machines, capable of e�ciently performing computationally
intensive tasks, is available on the network. To ensure the robot's mobility, it's
connected to the o�board computers via a wireless link, whereas o�board as
well as onboard computers are among each other connected via LAN. Most of
the communication payload circulates among the o�board and among the on-
board computers, keeping the required communication on the slow wireless link
to a minimum. This is exactly where we can observe the main advantage of the
system's peer-to-peer topology. With a central server forwarding the complete
communication payload, we'd have to send a high amount of information over
the slow wireless link, completely unnecessarily. ROS allows nodes to commu-
nicate directly, therefore relieving the wireless link and avoiding the emergence
of a bottleneck. The contrast between a star-like topology and the peer to peer
topology of ROS is depicted in �gures 2.7 and 2.8.

Figure 2.7: Star-Like Communication Topology. The wireless link between the
robot and the central server is overloaded with messages.

33

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

Figure 2.8: Peer to Peer Communication Topology. The wireless link between
the robot and the central server is only used for communication negotiation and
to transport a limited amount of data. This is the topology used in ROS.

2.5.11 Transformation Framework

One essential concept that must be mentioned in ROS is how it copes with
multiple coordinate frames and their transformations. Keeping track of trans-
formations is a tedious task, as well as performing calculations between frames,
especially if multiple transformations are involved on the �path� from one frame
to another. Thus it's sensible to implement a framework that o�ers two essential
functionalities:

• Providing information on transformations

• Performing coordinate frame conversions

ROS di�erentiates between Poses and Transforms. The latter are used to con-
vert Poses from one coordinate frame to another, however, they both contain
the same type of (essential) information, a 3D coordinate corresponding to a
translation and a Quaternion corresponding to a rotation. Poses, as well as
Transforms, can thus be converted to a transformation matrix. In the Pose's
case, this can be interpreted as the transformation from the coordinate frame's
center to the actual pose, whereas in the Transform's case, this is the neces-
sary translation and rotation to convert any Pose from a source frame to a
target frame. The Transformation Framework stores and returns Transforms,
a message type that contains the source and target frame in addition to the
translation and rotation information.

Transformation Framework as a database

The transformation framework stores transformations in a dynamic tree. It can
be supplied with and queried for transforms. One of the main advantages of
having a dedicated framework handle transformation information is that it's
capable to compute composite transformations across several joints. Consider
for example a robot that's located somewhere in an indoor o�ce environment,
carrying a camera that has just detected a known object. In this setting, the
camera has published transformation information between the detected object

34

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

and its own frame. At the same time, the motorized rotating platform the cam-
era happens to be mounted on reads the motor's current state and thus derives
and publishes the transformation between the camera and the robot platform.
Thanks to the robot's ability to localize itself in the map, it can publish a trans-
formation between its own position and the center of the map. If the task is to
calculate the detected object's global position in the map, it's clearly necessary
to calculate three transformations. Fortunately, the transformation framework
helps us out here. When requesting the transformation between the object and
the map, it combines all the transforms it �nds on the �path� between the two
coordinate systems to one transformation matrix that it returns as a Transform
object. What's left to do is applying this transformation to the object's pose.

Transformation Tree The following block shows an exemplary transforma-
tion tree:

Tree

/map

/odom

/base_footprint

/base_link

/laser

/camera

/marker

Both laser and camera are mounted on the robot's base, so there must be
a transformation from base_link to these two frames. The camera detects a
marker and publishes a transformation between its own coordinate system and
the marker's frame to the transformation framework. The robot's localization
system regularly updates the transformation between the map and the robot's
odometry measurement, thus de�ning the robot's position relative to the map.

Sometimes it's interesting to have transformation information from the past,
therefore the transformation framework o�ers the additional feature of keeping
a short history (a couple of seconds) of transformations that can be explicitly
requested. This mechanism is described in further detail in [ROS11v].

In ROS, Transforms are usually distributed in a geometry_msgs/TransformStamped
message. This message reveals the frame of origin, as well as the target frame
of the transformation. Furthermore, it contains a 3D-vector corresponding to
the translational part and a Quaternion corresponding to the rotational part.

Publishing Transformations

The following C++ code demonstrates how transformations are published to
the transformation tree. To do so, a transform broadcaster, an object that
communicates with the transformation framework, is required.�
t f : : TransformBroadcaster t f b r o ad ca s t e r ;
t f b r o ad ca s t e r . sendTransform (

35

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

t f : : StampedTransform (
t f : : Transform{ t f : : Quaternion (rot_qx ,

rot_qy ,
rot_qz ,
rot_qw) ,

t f : : Vector3 (trans_x ,
trans_y ,
trans_z)) ,

stamp ,
src_frame ,
tgt_frame)) ;
� �

Listing 2.6: Publishing Transformations to the Transformation Framework

Additionally, a timestamp can be set in the StampedTransform object, thus
specifying at which point in time the transformation was considered valid.

Requesting Transformations

In a similar manner, transformations can be requested from the transformation
tree. To this end, a transform listener has to be created (instead of a transform
broadcaster, as in the example above). The following listing shows how this
object is used to retrieve transforms.�
t f : : Trans formListener t f l i s t e n e r ;
t f l i s t e n e r −>waitForTransform (

target_frame , // s t d : : s t r i n g
source_frame , // s t d : : s t r i n g
ro s : : Time : : now() ,
ro s : : Duration (1 . 0)) ;

i f (t f l i s t e n e r −>frameExis t s (target_frame) &&
t f l i s t e n e r −>frameExis t s (source_frame)

{
t f l i s t e n e r −>lookupTransform (

target_frame ,
source_frame ,
ro s : : Time (0) ,
returned_transform) ; // t f : : StampedTransform

}
� �
Listing 2.7: Requesting Transformations from the Transformation Framework

This example shows several methods the transform listener class o�ers. The
waitForTransform method holds execution (for a maximum duration of one
second in this case) until the fresh transform becomes available. This is of-
ten necessary as there's usually a brief delay before all nodes publish the re-
quested transformations. Using the frameExists method, we can make sure

36

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

that the frames we've been awaiting are already available. In that case, the
lookupTransform method can be invoked to retrieve the actual transform, in a
StampedTransform object.

Applying Transformations

When working with poses and transformations, it's important to distinguish
between ROS messages and internal classes that are used for calculations. The
naming conventions might be confusing from time to time, for example consider-
ing the similarity between StampedTransform (the internal representation in the
tf library) and TransformStamped (the ROS message). In C++, static conve-
nience methods that take care of conversions between these types are available,
such as

• tf::poseStampedMsgToTF

• tf::poseStampedTFToMsg

• tf::transformStampedMsgToTF

• tf::quaternionTFToMsg

When applying transforms to poses, both have to be available in the internal
representation. Consider the following code sample, in which the transformation
is represented as a StampedTransform object and the pose to be transformed as
a ROS message.�
t f : : Stamped<t f : : Pose> pose_in , pose_out ;
t f : : poseStampedMsgToTF(source_pose_msg , pose_in) ;
pose_out . setData (trans form ∗ pose_in) ;
t f : : poseStampedTFToMsg (pose_out , target_pose_msg) ;
� �

Listing 2.8: Transforming Poses using previously fetched Transforms

First of all the source pose is transformed from its message representation to
the internal class. Additionally, a variable for the resulting pose (after transfor-
mation) is prepared. The actual calculation happens in the third line, where we
can observe that coordinate transformation in ROS boils down to applying the
*-operator. Finally the class holding the internal representation of the target
pose is converted to a ROS message.

Monitoring the Transformation Tree

ROS o�ers several command-line tools that support developers in monitoring
the transformation tree. To get a complete picture of the tree, the view_frames
node in the tf package can be invoked. This node will listen to transforma-
tion publications for a while and draft the resulting tree in a PDF �le. The
tf_monitor and tf_echo tools provide live text-based information on transfor-
mation publications. These tools are described in further detail in section 2.5.13
on page 42.

37

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

Visualizing Transformations

The visualization tool RViz features a plugin dedicated to displaying information
coming from the transformation framework. Each combination of three lines
(red, green and blue) corresponds to the three axes of a coordinate system or
frame. In RViz, red corresponds to the X axis (straight forward), green to the Y
axis (to the left) and blue to the Z axis (straight up). Figure 2.9 shows a set of
transformations as displayed in RViz, when using a mobile robot with a camera
mounted (in this case a Microsoft Kinect, described in section 3.1.5 on page 69).
The robot base's coordinate frame is shown on ground level, while the robot's
laser scanner and vision systems have frames that are located in an elevated
position. Arrows between frames denote that they are directly connected in the
transformation tree. Clearly, there is a direct connection between the object
(bottom left sector) and the robot's object recognition module, as the latter
publishes a transformation whenever it recognizes an object.

Figure 2.9: Transformation Visualization in RViz

Transformation Framework in Java

At the time when the project described in the practical part of this document
was implemented, there was no Java support for the ROS transformation frame-
work available, so Java nodes were unable to communicate directly with the
transformation framework. Also, there was no Java library o�ering convenience
methods for applying transformations. Therefore, in the latest implementation
of the aforementioned project, a dedicated C++ node handles transformations
and o�ers them to other nodes via service calls. This node is called tf_adaptor
(section 3.2.7 on page 82) and is located in the wmstorage package.

38

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

Static Transform Publisher

Nodes might hold transformation information that they regularly publish to the
transformation tree, but often this information is static (for example position
and orientation of a statically mounted camera) as opposed to dynamic informa-
tion (for example position and orientation of the robot relatively to the map).
In practice, the former case will appear quite frequently, therefore it's useful to
have a mechanism that allows to specify the transformation in a concise for-
mat and takes care of regularly publishing it to the transformation tree. This
mechanism comes with ROS and is called static_transform_publisher, a node
contained in the tf package. It takes the required static transform as a startup
parameter and can therefore easily be added to a launch �le, as shown in the
following listing:�
<launch>
<node pkg=" t f "

type=" stat i c_trans fo rm_publ i sher "
name="base_link_to_cam"
args=" 0.085 0 .105 0 .30 4 .71 0 4 .458

base_l ink usb_cam 100" />
</ launch
� �

Listing 2.9: Launch �le containing a static transform publisher entry

The transformation is de�ned in the args attribute. The �rst three �oats cor-
respond to a 3D translation, whereas the last three �oats denote the rotation,
speci�ed as roll, pitch and yaw. Furthermore, source and target frame are de-
�ned, as well as the rate at which the transformation should be published.

2.5.12 Point Cloud Library

A point cloud is a convenient and versatile way for representing multi-dimensional
data. As the name predicts, a point cloud is a collection of points, theoretically
with an arbitrary number of dimensions, practically mostly applied to 3D-space,
where they are used to represent spatial information of the environment. The
points may contain additional data, such as RGB, intensity values, segmentation
results etc. [Ste]

Consider �gures 2.10a and 2.10b for example, where an o�ce chair was
captured by a 3D measurement device. The data collected is represented in a
point cloud and visualized using RViz (described in section 2.5.15).

When stored and processed PCL-internally, point clouds are represented as
objects of type PointCloud. ROS users, however, will often stumble upon the
name PointCloud2, which is the name of the corresponding ROS message [Ste].

Sources of Point Cloud Data

There are various ways of collecting spatial information, including Time-of-
Flight Cameras, Structured-light 3D scanners, Stereo Vision, tilting laser mea-

39

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

(a) As Point Cloud (b) Real world view

Figure 2.10: O�ce chair displayed as Point Cloud, next to it the corresponding
real world view

surement devices and simulation [Ste]. An example of a Structured-light 3D
scanner is the Microsoft Kinect, that was mounted on the robot described in
the practical part of this document. Laser measurement devices provide high-
quality scans, but are rather expensive and often have a low update rate, due
to the mechanical limitations imposed by the tilting device. Stereo Vision is a
passive solution, meaning that there's no need for projecting additional light,
however this is exactly the reason why this solution is highly dependent on the
availability of a texture that o�ers a su�cient amount of feature points and
of proper lighting of course. Time-of-�ight cameras are fast, but the resulting
resolution is lower (between 64x48 and 176x144 [KBK08]) [Ste].

According to [Ste], the data contained in point clouds is used for three major
purposes, namely representation of

1. Scenes

2. Maps

3. Object Models

Scene Representation

3D information of scenes is particularly important for reliable navigation and
obstacle avoidance. A mechanism that carries out these tasks in two dimensions
is easier to implement, but might be insu�cient, especially for large robots or for
use in cluttered o�ce environments, where autonomous agents have to exploit
any free space they can get in order to achieve their task, including navigating
under tables and maneuvering through areas that are �lled with obstacles of
various heights.

40

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

Maps

For robots that don't have an operating space con�ned to a certain �oor of a
building, maps containing an additional dimension are sensible. Such robots
are unmanned aerial vehicles (usually quadcopters) or ground robots capable of
using stairs or an elevator. A three-dimensional map enables these agents to
represent the third dimension, which corresponds to height information.

Object Models

Instead of representing an object as a set of areas that correspond to its surface,
a �nite set of points that are �contained� in the object can be used to model it.
The advantage of point clouds is that they can be retrieved directly from sensors
providing spatial information (as discussed above). This purely quantitative
object information can then be abstracted (object recognition, estimation of
object pose, surface normals, etc.) and used for high-level tasks, such as locating,
classifying or grasping an object.

Point Cloud Library and ROS

The Point Cloud Library is a collection of modules for 3D point cloud processing.
It used to be part of ROS, but was eventually made independent [Ste] [ROS11j],
thus following the ROS philosophy of having large libraries thrive independently
and integrating them through wrappers [QCG+09].

Processing Point Clouds

There are several algorithms that can be applied to point clouds, including
downsampling, �ltering, segmentation, removal of outliers, calculation of surface
normals etc. [Ste]

Downsampling. Reduces the point cloud's resolution. For many applica-
tions, the detail provided by some sensors is higher than necessary, thus wasting
resources. Especially visualization tools (such as RViz) often have trouble draw-
ing a large amount of points in space, resulting in slow and laggy performance.
By downsampling the point cloud, we can achieve much better performance
while not sacri�cing too much detail.

Filtering. Some regions of a point cloud might not be relevant for the tasks a
robot is given. For these cases, the point cloud library o�ers mechanisms to �lter
point clouds (remove points) that are not within certain geometric thresholds,
e.g. they are at a height that's not of interest to the robot or they are too far
away. An example that demonstrates that less is often more, is when using point
clouds for obstacle avoidance. In this case, if the sensor is mounted accordingly,
the ground in front of the robot would be added to the point cloud and thus
interpreted as an obstacle. This problem can be solved by simply removing all
points under a certain height threshold (usually a couple of centimetres).

41

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

VoxelGrid Filter. The point cloud library o�ers a module called VoxelGrid
Filter that takes care of the two aforementioned tasks. The following launch
�le demonstrates how it's applied.�
<launch>

<node pkg=" node l e t "
type=" node l e t "
name="pcl_manager"
args="manager"
output=" sc r e en " />

<!−− Run the VoxelGrid F i l t e r −−>
<node pkg=" node l e t "

type=" node l e t "
name="voxel_grid "
args=" load pc l /VoxelGrid pcl_manager"
output=" sc r e en ">
<remap from="~input "

to="/camera/depth/ po in t s " />
<rosparam>

f i l t e r_ f i e l d_name : z
f i l t e r_ l im i t_min : 0 .07
f i l t e r_ l im i t_max : 0 .75
f i l t e r_ l im i t_n e g a t i v e : Fa l se
l e a f_ s i z e : 0 .03
input_frame: / base_l ink
output_frame: / base_l ink

</rosparam>
</node>

</ launch>
� �
Listing 2.10: downsample_pointcloud.launch

What's interesting here are the parameters enclosed by the <rosparam> tags.
The �lter_�eld_name de�nes which �eld of the point data (in this case the
value on the Z axis) to �lter. The two lines after that de�ne the thresholds. The
leaf_size parameter speci�es the target resolution in meters. Consequently, the
setting above will result in a granularity of 3cm.

2.5.13 Tools

ROS o�ers a set of convenient tools to aid and speed up development in and
usage of a ROS installation. These tools are either ROS nodes themselves,
or regular executables. This microkernel design is in accord with the ROS
philosophy of o�ering a thin and tool-based framework [QCG+09].

42

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

File System Tools

File system tools aid navigation within and manipulation of the ROS �le system,
consisting of trees of stacks and packages, usually spread over various folders.
To avoid confusion, these tools keep track of package locations and can instantly
locate them or use them for build processes. ROS tools usually feel like native
Linux commands and therefore o�er auto-completion.

rospack. Rospack is the main tool for retrieving information about packages.
Its capabilities include locating packages and calculating their dependency trees.

roscd. This is probably one of the most frequently-used tools, when working
with ROS. Its purpose is simply to change the working directory to a speci�c
package. It works just like the well-known command cd, except that the path
leading to the required package does not have to be speci�ed. It's even possible
to supply a path after the package's root folder.

rosls. This command lists the directory contents of a ROS package, analo-
gously to the ls command. Similarly to roscd, the path leading to the package
does not have to speci�ed.

roscp. When copying �les from one package to another, it's convenient to
have a tool that takes care of supplying the path to the remote package. The
following line shows the sample usage of roscp, as described in [ROS11w]

roscp [package_name] [file_to_copy_path] [copy_path]

roscreate-stack. This tool generates default versions of �les required for ROS
stacks, including the stack manifest and a CMakeLists.txt, facilitating the stack's
distribution process.

roscreate-pkg. Analogously to roscreate-stack, this tool generates package
contents, along with a folder containing the package. Some command line pa-
rameters such as package dependencies can be de�ned to in�uence the contents
of generated �les.

make eclipse-project. For Eclipse developers, this is an invaluable tool that
turns any ROS package into an Eclipse project. The only thing left to do after
invoking this tool is importing the project into Eclipse.

Installation and Compilation

rosdep. This tool manages external dependencies (system libraries) of ROS.
It's capable of calculating dependencies and installs them on demand. The
command

43

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

rosdep install [package]

installs all dependencies of the speci�ed package.

rosmake. One of the primarily used tools when working with ROS. The fairly
simple usage is demonstrated in the following line:

rosmake [package1] [package2] ... [packageN]

Cross-package dependencies are resolved automatically, provided the packages
are available somewhere on the ROS_PACKAGE_PATH. When supplying the
�rosdep-install parameter, rosdep will be used to resolve and install ROS-
external dependencies before building the packages.

Execution and Diagnosis.

rosbag. In the �eld of robotics, it's a common problem that execution results
and thus errors are often hard to reproduce, due to the non-determinism caused
by various factors. Rosbag13 supports the debugging process by listening to
previously speci�ed topics and dumping the message stream received on these
topics to disk. The data is stored in so-called bag�les. The information gath-
ered can be replayed later, meaning that the messages will be republished with
(nearly) the same timing as when they were recorded.

rosbag record [topic1] [topic2] ... [topicN]

records messages from the speci�ed topics (1 to N), whereas

rosbag play bagfile.bag

plays back the contents of a previously recorded bag�le.

rxbag. Allows for visualizing a bag�le's contents. The corresponding screen-
shot (Figure 2.11 is courtesy of ROS.org [ROS11q]).

roscore. As this tool starts the ROS Master, along with the Parameter Server,
it should be invoked before starting ROS nodes. Shortly after invocation it will
print out the ROS Master's URI which can then be used by remote nodes to
access the Master.

rosnode. A tool that monitors the nodes currently running in a ROS envi-
ronment. Using the list parameter, the user will receive a list of running nodes,
whereas when typing info and the node identi�er, detailed information on a
speci�c node will be provided.

13http://www.ros.org/wiki/rosbag

44

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

Figure 2.11: Screenshot of the rxbag tool, provided by [ROS11q]

rosservice. Monitors available services in a running ROS system. The list
parameter yields a list of all services. When using the type parameter and
adding the identi�er of a service, the type of service (namely its service de�ni-
tion name) is returned. The call parameter allows to invoke services from the
command line. The following line

rosservice call /service_name service-args

will invoke the service called /service_name, passing service-args as parameters,
and print the service response on the console output. More information on
services is available via [ROS11s], whereas documentation of this speci�c tool
can be found at [ROS11n]. The rosservice command is not to be confused with
rossrv (described in the following paragraph).

rossrv. While rosservice handles service instances, this tool manages service
types. Thus, the relation between these two tools is similar to that between
rostopic and rosmsg. As rossrv has exactly the same functionality as rosmsg,
please refer to the corresponding paragraph for a more detailed description.

rostopic. This is, similarly to rosservice, a tool for monitoring active topics
in a running ROS environment. The list parameter returns a list of advertised
topics, whereas the echo parameter, with a topic name supplied, will subscribe

45

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

to this topic and print its contents to the console output. The hzmechanism also
listens on a speci�ed topic, but instead of printing the message contents measures
the rate at which they are published. It's also possible to publish to a topic
directly from the command line, by typing the pub parameter and specifying
the message details. Please refer to the ROS Wiki for more information on this
tool14.

rosmsg. As described in [ROS11l], this tool provides information on ROS
message types. The show parameter is probably the most frequently used
functionality. It displays a speci�c message's de�nition. The rossrv tool o�ers
exactly the same functionality as rosmsg, but applied to services.

rxgraph. Using command-line tools for system monitoring can be a tedious
task in large systems, hence ROS comes along with a set of graphical monitoring
tools, such as rxbag, at which we've already had a glance, and rxgraph. Using
this tool, the user is provided with a graph depicting the ROS environment,
where graph nodes (intuitively) stand for ROS nodes and edges are topics. At
one glance, missing connections and thus possible con�guration errors can be
identi�ed. The graph is automatically updated on the �y. Figure 2.12 shows a
simple graph of a running system, with three nodes that are depicted as ellipses.
The rectangular elements correspond to topics.

Figure 2.12: Graph of a running ROS system, as visualized in rxgraph. The
three running nodes are depicted as ellipses, while the rectangular elements
correspond to topics.

rxplot. is a virtual oscilloscope that plots information it reads from certain
topic.

rxplot /topic1/field1 /topic2/field2

for example will plot the data of �eld1 in topic1 15 and the data from �eld2
in topic2 in two separate views. For further documentation, please refer to
[ROS11r]. Figure 2.13 shows a screenshot of rxplot.

14http://www.ros.org/wiki/rostopic
15meaning that topic1 transports messages that contain a �eld called �eld1

46

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

Figure 2.13: Screenshot of the rxplot tool, provided by [ROS11r]

rosrun. Runs a ROS node that was previously built. The ROS node to run
is located by passing the package it's contained in and the node name that is
unique to the package. Sample call:

rosrun [package_name] [node_name]

roslaunch. Runs a roslaunch16 script, that itself will usually launch a list of
ROS nodes. The launch script is located by passing the package it's contained
in and the �le name. Sample call:

roslaunch [package] [filename.launch]

Unlike with ROS nodes, launch �les aren't registered in the package's CMake-
Lists.txt �le. However, they are usually located in the launch folder. Launch
�les are coded in an XML format17. The following sample shall demonstrate
how launch entries are de�ned.�
<launch>

<node pkg=" joy " type="joy_node" respawn=" f a l s e " name="
joy_node" output=" log ">

</node>

<node pkg="ROSARIA" type=" teleop_with_gripper " respawn=
" f a l s e " name=" teleop_with_gripper " output=" log ">

16http://www.ros.org/wiki/roslaunch
17http://www.ros.org/wiki/roslaunch/XML

47

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

</node>
</ launch>
� �

Listing 2.11: teleop.launch - an exemplary launch �le

A node entry de�nes a new node to be launched. To be able to locate the
corresponding node, the containing package has to be speci�ed using the pkg
attribute. The type attribute corresponds to the node's type (for example the
name it was assigned in CMakeLists.txt), whereas name de�nes a name for the
node instance.

rosparam. Grants command-line control over the Parameter Server (described
in section 2.5.9). Amongst the available functionality is getting and setting pa-
rameters using the get and set options, retrieving a list of available parameters
using list as well as dumping and loading the whole database. Further docu-
mentation is available at [ROS11m].

rxloggerlevel. A graphical tool that allows to change the loglevel for each
node independently.

rxconsole. A GUI that listens on /rosout and displays all incoming messages
in a structured way. The messages can be �ltered by regex, based on their
loglevel etc.

roswtf. A tool that looks for inconsistencies in the node graph and elsewhere,
for example in launch �les. According to [ROS11o], it checksmany, many things,
and the list is always growing.

Transformation Framework Tools

These tools are designed to convey information of the transformation tree's
state. They make it possible to monitor which nodes publish transformations,
how they are interrelated and what their parameters are.

tf_monitor. Keeps printing a list of nodes that publish transformations and
includes information such as source and target frame, as well as the rate at
which the transformations are published.

tf_echo. Listens to one or more speci�c transformations and keeps printing
their internal parameters (translation, rotation, source and target frame) when-
ever they are published.

view_frames. Listens to the state of the transformation tree for a couple of
seconds, creates a graph-like representation of the tree and exports this repre-
sentation in a PDF �le.

48

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

2.5.14 Debugging with ROS

Several tools have been presented, many of which support the debugging process.
One of the most powerful features ROS o�ers when it comes to debugging, is
the capability to modify the node graph on the �y, i.e. to stop and restart single
nodes while the rest of the software ecosystem is still running [QCG+09]. This
is particularly useful in large, complex systems, where frequent restarts would
be time-consuming due to long startup times.

According to [QCG+09], the scope of investigation, be it for debugging or
enhancement, is often limited to a well-de�ned area of the system (a couple of
software modules or tools). This theory was also con�rmed during the project
that shall be described in the practical part of this document. Thus, being able
to restart single nodes or sets of nodes is a permanently used, invaluable addition
that de�nitely saves development time. It is also important to have nodes under
construction run alongside well-tested software modules, as in many cases, they
will be dependent on each other's feedback. With ROS, this is also possible. The
ecosystem around nodes can even be simulated by recording certain messages
and replaying them using rosbag. This tool was already mentioned in section
2.5.13 on page 44.

2.5.15 RViz

It's often convenient to have all information that's circulating in a ROS ecosys-
tem visualized and combined to one comprehensive view. Therefore ROS comes
with a visualization tool called RViz, that takes care of collecting information
from various sources, such as the robot's footprint, coordinate frames and their
transformations, occupancy grids, costmaps, laser scans, point clouds etc. and
aligning them to �t in one well-arranged 3D-view of the world. RViz features a
plugin-based architecture, meaning that speci�c modules (called Display Types)
can be implemented for interpreting message types and displaying them in the
application's viewport. So, for instance, to visualize a map and laser scans in
RViz, the user would need to add two displays, one for each message type, and
connect them to the appropriate topics. Figure 2.14 conveys a screenshot of
RViz, with numerous displays activated.

For a complete list of available display types please refer to [ROS11p]. RViz
requires up-to-date transformation data to be able to align displays. Consider
the use case mentioned above. For the correct alignment of laser scan data
and the map, the robot must be localized, hence the localization module must
publish transformation data between the robot's base and the map. Addition-
ally, the transformation between the robot's base and the laser scanner must
be known. Only with complete transformation data between these two frames
can the visualized data be placed in one viewport. What happens if this data
is incorrect can for example be observed in cases when the robot is delocalized.
RViz requires the user to specify two coordinate frames that serve as reference
frames for the 3D viewport. One of them is the �xed frame, which usually
corresponds to �world� or �map�, the other is the target frame, the one that the

49

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

Figure 2.14: Screenshot of RViz in action. The center view shows the aligned
view of displays, featuring visualizations of the robot footprint, laser scans,
costmap, point clouds coming from a Microsoft Kinect and the map(ground
plane). The panel to the left lists displays that have been added to the current
con�guration.

camera is focused on. For instance, by setting the robot's base as target frame,
the camera will �follow� the robot around the map, while setting it to the same
as the �xed frame will leave the camera static instead [ROS11p].

2.5.16 Advanced Concepts

This section contains ROS modules that go beyond basic knowledge of the
system but are nevertheless frequently used and recommended to have heard of.

Action Library

The ROS Action Library actionlib is a system for standardized communication
of tasks and their results between certain nodes, based on ROS messages. The
basic principle is to have an Action Server running, that o�ers a certain type
of action, which is de�ned in an action speci�cation �le (similarly to service
de�nitions). This server is running within a regular ROS node, that itself has
the capability to carry out certain tasks. For example the ROS navigation
stack o�ers Action Servers that listen for navigation commands coming from
external nodes. These Action Servers can be triggered using Action Clients.
They accept goal-speci�c parameters and regularly respond to the caller with a

50

2.5. The Robot Operating System (ROS) Chapter 2. Theoretical Part

progress feedback. After executing the requested action, a message containing
the execution result is returned.

ROS actionlib is an excellent construct for use in combination with smach
(described in the next section). For further documentation and tutorials, please
refer to [ROS11d] or to the Action Server examples in our project, starting in
section 3.3.1 on page 89.

Smach

Smach is a framework that integrates with ROS and allows to de�ne �nite state
machines (hence the name) in Python. Its purpose is to provide a �exible and
powerful execution module on an abstract level. The states of the state machine
are capable of executing certain tasks, either implemented locally or using an
Action Client to connect to an Action Server.

Two types of information are transported across Smach state machines, con-
trol information and user data, where control information corresponds to the
traditional connections between states in a state machine and user data is ad-
ditional data that can serve as input parameters to states. For example, if a
state is responsible for having the robot navigate to a certain spot, it would
be impracticable to create another state for another spot and so on. Instead,
coordinates can be passed as user data when entering the navigation state. Such
information can be collected by other states that, for example, query a ROS ser-
vice. Smach o�ers several pre-implemented state types, for querying services,
calling Action Servers etc. State machines can be nested, and can themselves
be wrapped to form Action Servers. The task of the resulting server is then to
execute to state machine within.

ROSJava

As mentioned in an earlier section, ROS supports nodes written in Java, however
this is not natively implemented but based on a C++ node API that's called
via JNI. According to [ROS11k], rosjava is still in early alpha state, and the
API is subject to change, however it's well-supported.

Getting started with rosjava development is not as straightforward as with
other languages, but [ROS11k] describes the steps to a successful con�guration
in su�cient detail. Message handling in rosjava used to be an issue in earlier
stages of the project, as there were di�erences in how message de�nitions were
interpreted in Java and other ROS-supported languages. Also, as rosjava is not
yet ROS-native, basic system messages that come with ROS aren't translated to
Java by default. The rosjava package remedies this problem by translating not
only the package-speci�c messages, but also messages in related packages. The
Java implementation of these messages are then stored in the package under
construction. Furthermore, the API is not yet complete and many convenient
libraries such as the point cloud library are not translated, but as the rosjava
package is actively being extended, it can be used without hesitation.

51

2.6. Situation Calculus Chapter 2. Theoretical Part

2.6 Situation Calculus

The Situation Calculus, proposed by John McCarthy in 1963 [McC63] and fur-
ther developed by Raymond Reiter and others, is a methodology for reasoning
about actions and change. It allows the de�nition of possible actions and their
consequences in a logic-based language and thus o�ers elegant ways of proving
and testing properties. Some fundamental problems in AI, such as the frame
problem, can be solved using Situation Calculus. However, it also su�ers sev-
eral drawbacks, namely the high complexity of domain models and the errors
resulting thereof, as well as its computational complexity and the fact that it's
based on second order logic [FS10].

Before we continue with details about the Situation Calculus, two problems
in AI shall be mentioned here.

2.6.1 The Quali�cation Problem

For this we'll leave the action domain for a while and dive into the world of
biology. We have the task of de�ning which animals can �y, which we solve in
the following term [Rei01]:

flies(x)→ bird(x) ∧ ¬penguin(x) ∧ ¬ostrich(x) ∧ ¬pekingDuck(x).

This is absolutely true, but the problem is that we can never infer that an animal
�ies, just the other way around. So let's �ip our term [Rei01]:

bird(x) ∧ ¬penguin(x) ∧ ¬ostrich(x) ∧ ¬pekingDuck(x) ∧ . . .→ flies(x).

Clearly, for this term to be correct, we have to enumerate all factors that are
relevant to whether an animal can �y or not. Once we have exhaustively listed
all factors, imagine we don't have the information whether the animal we have
found is a pekingDuck or not, but we know that it's a bird and so on. Then
the result will be false, although we're �pretty sure� it's true. This is why, to
solve this problem, we distinguish between important and minor quali�cations.
Information on important quali�cations must be available and the requirements
must be met. Minor quali�cations must still meet the required conditions, but
if they are unknown, we can ignore them.

2.6.2 The Frame Problem

The Frame Problem concerns the relation between actions and their e�ects. It's
the problem of completely de�ning which actions can cause which e�ects, which
becomes impracticable with a growing number of actions and e�ects, if this is
done manually. This issue is addressed in section 2.6.4 below, and is described
in great detail in [Rei01].

52

2.6. Situation Calculus Chapter 2. Theoretical Part

2.6.3 Basic Elements

The basic elements of the Situation Calculus are Actions, Situations and Fluents.
These shall be explained here.

Actions

In terms of Situation Calculus, performing Actions is the only way to impose
changes on the world state. This becomes logical if we imagine that the expres-
sion �an action has been performed� is equivalent to �something has happened�.
Each Action has its unique name that distinguishes it from other Actions. It is
guaranteed that Actions with di�erent names perform di�erent things [FS10].
Situations in terms of Situation Calculus will be mentioned later on, nevertheless
it's important to anticipate that carrying out an Action a in a certain Situation
s leads to a new Situation s′, which is an essential principle of Situation Calculus
[FS10]:

s′ = do(a, s)

The do function signals that Action a is executed in Situation s. This is only
possible if all the preconditions, that can be de�ned for Actions, hold. As
Actions can have an arbitrary number of parameters, we could rewrite the above
statement as:

s′ = do(a(p1, p2, . . . , pn), s)

Situations

Situations in terms of Situation Calculus can be seen as sequences of Actions,
or as the history of executed Actions. As described above, Situations can only
change as Actions are performed. Each execution starts in situation S0, the
initial situation in which nothing has happened so far. Each Action that is
performed is then added to the latest situation. A typical situation can be
written as follows [DGLLS09]:

do(put(A,B), do(put(B,C), S0))

In this example, we can see how calls of the function do are nested to build a
history of executed Actions, yielding the current situation. Suppose an agent is
performing the Actions in the example, then he'd have started in situation S0,
then put block B on block C and �nally block A on block B. Please note that
the situation in terms of Situation Calculus is more than just the arrangement
of the blocks after executing these Actions. Consider the example

do(turn360, do(put(A,B), do(put(B,C), S0)))

and suppose the agent has performed an additional 360 degree turn. Notice
how performing a new Action corresponds to its concatenation to the sequence

53

2.6. Situation Calculus Chapter 2. Theoretical Part

of previous Actions. The block arrangement and even the agent's position and
orientation are the same as before, however, this is still a new Situation, because
an Action has been performed.

Fluents

Fluents describe properties of the world, such as an object's position or whether
a ball is yellow. The former example corresponds to functional Fluents, the latter
is an example of a relational Fluent. We could state that the set of Fluents
describes the current world state. However, it does NOT de�ne the current
Situation. Several distinct Situations might hold the same set of Fluents.

Relational Fluents. Simply explained, relational Fluents provide informa-
tion on world properties in boolean form. These can be relations between
objects or properties of objects. The formal notation of relational Fluents is
([FS10])

F : (objects ∪ actions)n × situation 7→ True, False

They are represented by a predicate symbol with arity n+1 (n parameters and
a Situation), and can be written as F (x1, . . . , xn, s) [FS10]. To stick to the
example above, we could query whether a ball b is yellow in Situation s using
the expression yellow(b, s).

Functional Fluents. As opposed to relational Fluents, functional ones map
to the set of Objects and Actions ([FS10]):

F : (objects ∪ actions)n × situation 7→ (objects ∪ actions)
Thus, they can answer questions such as �given a certain Situation, what's the
distance between the box and the desk?�. Functional Fluents are represented
by a function symbol with n+1 parameters and can be formally written as
f(x1, . . . , xn, s) [FS10]. To answer the previously asked question, we could write
distance(b, d, s).

2.6.4 Basic Action Theories

Basic Action Theories model available Actions, their consequences to the world
and other rules that apply. They hold the following types of axioms [DGLLS09]
[FS10]:

• Initial State axioms DS0

• Precondition axioms Dap (represented by the special predicate Poss(a, s))

• Successor State axioms Dssa (described below)

• Unique Name axioms Duna
• Foundational axioms for Situations

∑
54

2.6. Situation Calculus Chapter 2. Theoretical Part

Successor State Axioms

Successor State Axioms de�ne how the world changes when Actions are carried
out. In a world without exogenous events, only Actions can change the values
of Fluents, thus by correctly specifying all Successor State Axioms, we have
completely modeled the e�ects of our Actions. Unfortunately, due to the frame
problem, we have to describe all possible e�ects, leaving us with 2 × |F | ×
|A| axioms [FS10]. This number is practically unmanageable in a real-world
application. E�ect axioms can be noted as follows [FS10]:

ε+F (x, y, s)→ F (x, do(a(y), s))

ε−F (x, y, s)→ ¬F (x, do(a(y), s))

The �rst type of e�ect axioms described above are the ones that alter a relational
Fluent's value to become true, while the second type has the opposite e�ect.
Sample e�ect axioms taken from [FS10]:

fragile(x, s)→ broken(x, do(drop(x), s))

false→ broken(x, do(paint(x), s))

The aforementioned notation can be altered to become [FS10]:

F (x, do(a, s)) ≡ γ+F (x, a, s) ∨ (F (x, s) ∧ ¬γ−F (x, a, s))

f(x, do(a, s)) = y ≡ γf (x, y, a, s) ∨ (f(x, s) = y ∧ ¬(∃y′)γf (x, y′, a, s))

Consider the following sample axiom that's based on the notation above:

ison(x, do(a, s))↔ a = (flipswitch(x) ∧ isoff (x, s)) ∨ (ison(x, s) ∧ a 6= flipswitch(x))

In natural language, this means that a Fluent will be true after performing an
Action a in Situation s, if and only if something has happened to make it true
or in case it was already true in Situation s and nothing has happened to make
it false. This notation reduces the number of required axioms to |F |, but at the
same time lets them become more complicated than before. We have to make
sure they remain short and simple by assuming that Fluents are altered by a
very limited set of Actions [FS10].

2.6.5 Golog

Based on the Situation Calculus a program language for dynamic systems, Golog
(alGol for Log ic), was created. As opposed to Situation Calculus being a purely
theoretical construct, Golog is a practically applicable programming language
built on top of Situation Calculus, that can be interpreted using Prolog [FS10].

55

2.6. Situation Calculus Chapter 2. Theoretical Part

Reasoning about Action

Before diving into Golog, two essential tasks of reasoning over action have to be
mentioned, namely the

• Temporal Projection Task

• Legality Task

The former describes the problem of telling whether a sentence will hold in a
certain future situation, while the latter revolves around the question whether a
sequence of Actions is executable at all, starting from some initial state. The Le-
gality Task can easily be reduced to a Temporal Projection Task, provided that
Action preconditions are de�ned. All we need to do is prove that the last Ac-
tion's preconditions are satis�ed one Situation before the �nal one [DGLLS09].
The Projection Task can be written formally as the problem of determining
whether the following equation holds (D being a basic action theory, and a1 to
an being Actions) [DGLLS09]:

D |= φ[do([a1, . . . , a2], S0)]

The Temporal Projection Task can be solved using regression [DGLLS09].

Regression. To prove whether a sentence holds in a future Situation, we can
roll the sentence (or query) back in time, until we reach the initial situation
and prove that the altered sentence holds there. This procedure is referred to
as regression. Given a sentence W , a regression operator R and a basic action
theory D, we can write formally [FS10]:

D |= W ↔ DS0
∪Duna |= R[W]

The Clark theorem states that a Prolog interpreter can solve this problem
[FAU10].

Semantics of Golog. Golog is based on Situation Calculus and extends it to
be applicable to the world of programming. The macro Do(δ, s, s′) states that
s′ is reachable from s by executing the Golog program δ [FS10].

The following list taken from [FS10] describes the set of mechanisms Golog
o�ers to the developer:

• Primitive Action a

• Test Action φ?

• Sequence: δ1; δ2

• Non-deterministic choice of Actions: δ1|δ2

• Non-deterministic choice of arguments: (πx)δ(x)

56

2.6. Situation Calculus Chapter 2. Theoretical Part

• Non-deterministic iteration: δ∗

• Conditionals: if φ then δ1 else δ2 endif

• Loops: while φ do δ endwhile

• Procedures: proc P (x) δ(x) endproc

Unfortunately Golog is not a good solution for agents operating in the real
world, as it requires complete knowledge and absolute determinism, which usu-
ally isn't available or realistic. Performance becomes an issue, as Golog simulates
the whole program trace before executing the �rst action (o�-line semantics).
The step to an executable implementation (in Prolog) requires us to leave the
pure clean world of Situation Calculus, and we suddenly have to worry about
implementation details and run-time issues [FS10].

Successors. Several extensions to Golog have followed, including ConGolog
[DLL00], DTGolog [BRST00] and IndiGolog, the latter of which should be dis-
cussed in further detail here.

2.6.6 IndiGolog

IndiGolog (Incremental Deterministic Golog) is a successor of Golog and intro-
duces several features that make it applicable to real-time agents. Such features
are (as listed in [FS10]):

• on-line execution semantics

• concurrent execution

• sensing and exogenous events

• interrupts

It o�ers the following set of constructs, in addition to those provided by Golog
[FS10]:

• Concurrency (equally prioritized): δ1 ‖ δ2

• Concurrency (δ1 prioritized higher): δ1〉〉δ2

• Concurrent iteration: δ‖

• Interrupt: 〈Φ→ δ〉

• Search Operator:
∑

(δ)

IndiGolog's on-line semantics allows it to choose the best-seeming action and
execute it, without simulating the whole program trace in advance. However,
there are situations that require a certain lookahead, before initiating execution.

57

2.6. Situation Calculus Chapter 2. Theoretical Part

As by default, IndiGolog will use on-line semantics, it provides the search op-
erator

∑
that allows the developer to explicitly request o�-line simulation for

certain parts of a program. In these cases, sensing information is derived from
successor state axioms and, to guarantee completion, non-deterministic choices
are made [FS10].

Thus, an IndiGolog program δ will be executed on-line, except if it's written
as
∑

(δ), whereas Golog programs are always executed o�-line, as if they were
surrounded by a search operator.

As already stated in section 2.6.5, the Projection Task can be solved using
regression. However, during long runs, this procedure can become computa-
tionally expensive due to the increasing history of Actions. To remedy this
problem, we can roll the initial Situation forward using the progression oper-
ator P ([FS10]).

D |= Φ(do(a, S0))↔ D′0 ∪ Duna |= Φ[S0],D′0 = P(DS0
, a)

This way we can keep the history short, but on the other hand forget all Actions
before the new initial Situation. In practice, the right balance between regression
and progression has to be found [FS10].

IndiGolog features two new predicates, namely Trans and Final.
Trans(δ, s, δ′, s′) denotes that by executing program δ in Situation s, the re-
sulting Situation will be s′ and we'll be left with the rest of the program, δ′,
whereas Final(δ, s) states that program δ can terminate in Situation s [FS10].

Sensing

For real world applications, it is important not only to have an e�ect on the
environment but to receive sensing information that can subsequently be related
to Fluent states. Sensing is always related to actions, it's the programmer's
choice to either de�ne dedicated sensing actions or relate sensing information
to primitive actions [FS10].

Sensing information µ is incorporated in the execution history σ, resulting
in the following structure [DGLLS09]:

σ = (a1, µ1) · . . . · (ak, µk)

Depending on the sensed information, the high-level program can either decide
to stop (in a �nal Situation), return the remainder of the program, or to perform
an Action and then return the remainder of the program. The following three
expressions correspond to the aforementioned choices [DGLLS09]:

1. Stop: D ∪ C ∪ {Sensed[σ]} |= Final(δ, end[σ]);18

2. Return δ′: D ∪ C ∪ {Sensed[σ]} |= Trans(δ, end[σ], δ′, end[σ])

3. Return action a and δ′: D∪C∪{Sensed[σ]} |= Trans(δ, end[σ], δ′, do(a, end[σ]))

18C is the set of axioms that de�nes Trans and Final [DGLLS09]

58

2.7. Object Recognition Chapter 2. Theoretical Part

An IndiGolog interpreter is available in Prolog. The main cycle is capable of
handling exogenous events by a posteriori adding them to the history, perform-
ing progression and regression and incorporating sensing results in the history
[FS10].

2.7 Object Recognition

To interact with the surrounding world, autonomous agents need mechanisms
that allow them to recognize objects they can manipulate. Object recognition
can be based on visual methods or rely on other sensory input, such as RFID.
This work is focused on the former, an expression comprising several approaches,
two of which shall be mentioned:

Untagged Object Recognition. Recognition of untagged objects means
�nding instances of previously de�ned models of objects in an input image. This
approach is beyond the scope of this work and therefore won't be treated in this
document. Having no limitations on the type of objects to recognize and their
textures yielded a rather pragmatic approach using AR (Augmented Reality)
Tags, promising high robustness in object classi�cation and pose estimation.

Visual Recognition of Tagged Objects. Another mechanism solving ob-
ject recognition involves application of tags to objects. These tags should have
properties that are favorable to computer vision methods, such as sharp, clear
edges and high contrasts. An example for such tags are AR (Augmented Real-
ity) tags, an example of which is shown in Figure 2.15.

Figure 2.15: An AR (Augmented Reality) Tag

They can be used in combination with computer vision mechanisms, to de-
termine the coordinate transformation between a tagged surface and the camera.
As the name predicts, a popular �eld of application is Augmented Reality, where
virtual objects can be overlaid with the view of the real world. An approach

59

2.7. Object Recognition Chapter 2. Theoretical Part

to and application of AR Tag Recognition and pose estimation is described in
[KB99] and depicted in Figure 2.16.

Figure 2.16: A sample application of AR Tag Recognition, as described in
[KB99]

Furthermore, tags can be di�erentiated between by storing information about
the pattern contained in each tag and either interpreting the content as a 2D-
barcode or assigning the tag to the matching class based on similarity measures.
The project described in [KB99] makes use of the latter method, while there are
also approaches based on the former [ROS11a].

2.7.1 AR Tag Recognition Basics

The underlying recognition mechanism shall be concisely explained here. In a
�rst step, the incoming image is thresholded, and the four lines that correspond
to the AR marker's thick edges (see Figure 2.15), are extracted. As the original
size of the AR marker is previously known, these lines can be used to calculate
a transformation from the slanted image to the frontal view of the marker. In
the case where a similarity-measure-based approch is applied, the sub-image
within the thick black edges of the marker is compared with all known patterns
to return the best match. This type of pattern recognition is prone to yield false
positives, but at the same time any kind of human-readable information can be
placed in the tag.

2.7.2 AR Recognition backed by Depth Information

Depth information (retrieved for example using stereo vision) can help to achieve
more precise estimation of AR Tag poses. During the ROS 3D Contest19, a
project was presented in which point cloud information coming from a Mi-
crosoft Kinect 3.1.5 in combination with the original AR recognition package

19http://www.ros.org/wiki/openni/Contests/ROS 3D

60

2.7. Object Recognition Chapter 2. Theoretical Part

ar_pose was used to improve the pose estimation process. Consequently, the
estimate became reliable enough to allow for robust localization inside an o�ce
environment20. This improvement was achieved following a two-step process:

1. Initially, the basic 2D AR recognition method would detect markers in an
image and return their respective centers.

2. In a second step, depth information that's aligned with the RGB image
was used to calculate a surface normal at the AR tag's position that was
collected in the �rst step. This new information was then used to correct
the tag's pose estimate.

When calculating surface normals, an increasing surface size improves the chances
of retrieving precise results, thus this method works best if tags are placed on
walls or other �at surfaces, this not being a drawback for the researchers at
the University of Albany, who came up with this method21, as their tags were
placed on o�ce walls, where the robot would recognize them and localize it-
self. Of course this mechanism can be turned around to detect manipulable
objects. Section 3.4.4 on page 99 shows how we applied this method for object
recognition purposes.

20http://www.ros.org/wiki/openni/Contests/ROS 3D/Improved AR Markers for Topologi-
cal Navigation

21ROS package: ar_kinect

61

Chapter 3

Practical Part

The theoretical part of this document presented essential knowledge for imple-
menting a dependable1, autonomous mobile delivery robot that can serve as a
basis for further experiments.

The remainder of this document describes the step from theory to practice.
The aim of the practical part of this project was twofold. On the one hand
a world model with main focus on storage of quantitative information had to
be implemented, on the other hand a fully functional delivery robot had to be
con�gured, featuring the newly implemented world model, as well as a connec-
tion to an IndiGolog Highlevel. This latter task required coding several ROS
nodes and numerous testruns on the live system to come up with a function-
ing con�guration for complex modules such as the navigation stack or the AR
recognition tool. The world model, on the other hand, evolved into a system
supporting storage of qualitative object information (attributes and relations),
thus allowing for reasoning. The aims of this project can be summarized as
follows:

• Implementation of a world model

� Focus on quantitative information

� Extendable to storage of qualitative information

� Central Point of Reference

� Long-term memory

• Build an experiment-ready, autonomous delivery robot, based
on the Pioneer P3-DX platform

� Equip robot with necessary hardware (laptop, cameras, 2D gripper)

� Enable robust navigation with obstacle detection beyond the laser
scanner's limitations

1dependable ≡ failsafe, reliable

62

3.1. Hardware Chapter 3. Practical Part

� Object recognition using AR Tags

� Integration of execution frameworks (smach, IndiGolog)

• Carrying out experiments

• Management (and partly creation) of institute-internal infrastructure (Sub-
version Repository, Wiki, Hardware management)

3.1 Hardware

As mentioned above, the aim of this project was not only the implementation
of software modules but also their application to a real robot. We opted for
a Pioneer P3-DX robot platform, as it was already available at our institute,
along with valuable know-how concerning communication with the robot and
installation of new hardware, and because of its advantageous features, such as
a compact footprint and expandability.

The robot platform was equipped with several extensions, including a 2D
gripping device, a SICK laser measurement unit and a Microsoft Kinect. Instead
of using the robot's onboard computer, we connected it to a controller laptop,
small enough to be carried by the robot and robust enough to withstand minor
collisions.

3.1.1 Robot Base

The robot platform in use is a Pioneer P3-DX with onboard computer, a sonar
array and an optional 2D gripping device. According to ActivMedia Robotics,
LLC2, the robot can already function as a fully autonomous agent without
any supplemental equipment, however, we required additional hardware for our
purposes. Technical speci�cations in the following sections have been derived
from the Pioneer Manual published by ActivMedia Robotics, LLC [Act03].

The P3-DX o�ers a serial port (RS-232 compatible 9-PIN DSUB) for con-
nections with external computers. To link the controller laptop with the robot
platform, we used a Digiport Serial to USB (4 to 1) converter. The Pioneer
P3-DX is communicated with using a package called ROSARIA. It's respon-
sible for robot and gripper control, as well as feedback. The original package
comes from the University of Zagreb, however we have an altered version in our
local repository, as a few changes were required. The RosAriaWithGripper is
the latest version, including (as the name predicts) gripper support.

Robot Drive

Two high-speed, high-torque reversible-DC motors enable the robot to perform
rotational as well as translational movements. The two motorized wheels can
be triggered individually. To allow for high-quality odometry measurements

2http://www.mobilerobots.com/

63

3.1. Hardware Chapter 3. Practical Part

(precise position and speed sensing), the robot features high-resolution optical
quadrature shaft encoders. The P3-DX performs position integration, saving its
current location (x, y, θ) in its internal coordinate system. This value can be
manually reset at any time.

In total, the robot platform is standing on three wheels, the aforementioned
motorized wheels and a smaller, stabilizing swivel castor wheel on the rear side
of the robot body. When mounting additional equipment, it is recommended to
keep the center of gravity over the drive wheels. Figure 3.1 shows how heavy
instruments, such as the SICK laser measurement system, are mounted on the
robot platform.

As mentioned before, the robot can perform translational and rotational
movements. This can be done by either controlling each wheel independently
or by sending more abstract commands for straight motion or rotation. In
the latter case, the robot takes care of precisely maintaining a direction and
balancing interferences caused by rough paths, hence this is the recommended
way of controlling the robot.

Figure 3.1: Pioneer P3-DX platform with equipment at the Institute for Soft-
ware Technology, Graz University of Technology

Batteries

The P3-DX is powered by up to three hotswappable, 7 ampere-hour, 12V DC
sealed lead-acid batteries, with the actual output voltage varying from 12,5V
(in fully charged state) to 11,5V (charge state considered low) or less. Fresh
batteries o�er approximately 6 hours of runtime with active motors and no
supplemental equipment, and approximately 4 hours when using the onboard
computer. With its motors deactivated, the robot lasts several days.

To increase the robot's stability, it's good practice to operate it with three

64

3.1. Hardware Chapter 3. Practical Part

batteries. If less than three batteries are inserted, it is important not to leave
the robot unbalanced, thus when using one battery, it should be placed in the
middle slot, two batteries on the other hand should be located at the outer slots.

Batteries can be charged either externally using additional lead-acid charg-
ers, with a charger that connects directly to the 12V power plug on the robot's
left side, or with a docking/charging station, if the robot is equipped with the
required current collector. A docking platform is particularly useful in longterm
experiments, as it o�ers a way for the robot to autonomously recharge itself.

3.1.2 Sonar

The Pioneer P3-DX is equipped with a sonar array on the front, consisting of
8 individual sonars, two on each side and 6 facing outwards, o�ering a sensing
radius of approximately 180 degrees altogether. The range information they
provide can be used for feature recognition, localization and navigation. Figure
3.2 shows the arrangement of sonars on the Pioneer P3-DX. Due to the availabil-
ity of other sensors (such as a Microsoft Kinect and a SICK Laser Measurement
Unit), the robot's sonar array wasn't applied in this project.

(a) Schematic view [Act03] (b) Placement on robot

Figure 3.2: Sonar Array

3.1.3 Gripper

To enable the robot to manipulate objects in its environment, a compatible
2D gripping device was mounted on the front of the robot's body. This device
allows for motion in 2 directions, one is the closing or opening motion of gripper
paddles, the other is upwards or downwards motion of the gripper lift. The
gripper paddles are equipped with two types of sensors:

• pressure sensors on the inside of each paddle

65

3.1. Hardware Chapter 3. Practical Part

• two light barriers monitoring the gripping area, one on the gripper's nose,
one farther behind, closer to the robot

Figure 3.3: Components of the 2D Gripping Device

Int16 Value E�ect
1 Close gripper paddles
2 Open gripper paddles
3 Move lift up
4 Move lift down
0 Stop

Table 3.1: Gripper Commands

When receiving a command requesting a motion, the appropriate gripper motor
will remain activated until reception of a new command.

Gripper Feedback

Several modules, such as action servers, require feedback from the gripper sen-
sors, to know when to cease execution of a gripping task for example. This
information is provided by the robot platform, but has to be made available to
ROS nodes. The RosAriaWithGripper node therefore queries the gripper state
at a rate of 10hz and publishes the result in a message called Gripper.msg on
the gripperinfo topic. The following listing shows the aforementioned message's
de�nition.

66

3.1. Hardware Chapter 3. Practical Part

�
Header header

cons tan t s used f o r f i e l d " g r i p_s ta t e "
int32 GRIP_STATE_INBETWEEN = 0
int32 GRIP_STATE_OPEN = 1
int32 GRIP_STATE_CLOSED = 2

breakbeams (l i g h t b a r r i e r s)
bool outer_breakbeam_broken
bool inner_breakbeam_broken

padd l e s
bool l e f t_padd l e_tr igge red
bool r ight_paddle_tr iggered

0 i f g r i ppe r padd l e s between open and c l o s ed
1 i f g r i ppe r padd l e s are open
2 i f g r i ppe r padd l e s are c l o s ed
int32 gr ip_state

l i f t p o s i t i o n /motion
bool l i ft_maxed
bool l i f t_moving

gr ippe r motion
bool grip_moving
� �

Listing 3.1: Gripper.msg

3.1.4 Laser Measurement Unit

Our Pioneer P3-DX is equipped with a SICK Laser Measurement System (SICK
LMS200), a device suiting industrial needs in the �elds of

• object measurement

• determining positions

• area monitoring

Information in this section was retrieved from [SICa] and [SICb], both being
SICK LMS manuals. The SICK laser scanner provides arrays of range measure-
ments in a �eld with a radius of 180 degrees and a maximum distance of 80m,
at various rates depending on the chosen resolution. The technology applied
is optical measurement using an infra-red class 1 laser and an infra-red sensor.
As the time of �ight of laser light pulses is directly proportional to the distance

67

3.1. Hardware Chapter 3. Practical Part

of objects re�ecting the pulses, this value can be used for precise (±15mm)
measurement of object distances. By directing the laser beam onto a rotating
mirror3 inside the device and repeating the measurement at a high rate, a hor-
izontal �slice� of the environment can be obtained. Diagrams of the mechanism
are shown in Figure 3.4 [SICa] [SICb].

Figure 3.4: Laser Measurement Mechanism

Connecting the Laser Scanner

The SICK LMS200 connects to other devices through an RS-232 compatible
serial port. In our case it's connected to a Digiport Serial to USB (4 to 1)
converter, just like the robot base. This is particularly convenient, as one USB
plug su�ces to connect both devices to a laptop computer. The laser scanner
can be accessed using the sicktoolbox library. The sicktoolbox_wrapper package
takes care of integrating this library into the rest of our ROS installation, and
publishes laser scan results as messages of type sensor_msgs/LaserScan. It also
allows to specify parameters concerning laser operation such as the baud rate,
which should be one of 9600, 19200, 38400 and 500000, as well as the scan
resolution. Table 3.2 shows the available scan resolutions and the consequential
response times.

Resolution Response Time
0,25◦ 53,33ms
0,5◦ 26,66ms
1◦ 13,33ms

Table 3.2: Laser Scan Resolutions and Response Times

3Rotating at a rate of 75hz

68

3.1. Hardware Chapter 3. Practical Part

RViz is capable of visualizing scan results, and given a correct transformation
between the laser's frame and the world frame, align them with other views, as
can be seen in Figure 3.5 (with white points corresponding to scan results).

Figure 3.5: Laser Scans displayed in RViz

Power Supply

The SICK LMS200 requires a stable 24V DC power supply and consumes ap-
proximately 20W without output load. According to the technical speci�cations
this value rises to approximately 1,8A (hence 43,2W) with output load.

3.1.5 Kinect

The Microsoft Kinect is a device based on computer vision technology from
PrimeSense and designed as a controllerless user interface for the Microsoft
Xbox 360. It consists of

• A standard 640x480 RGB CMOS image sensor

• A 320x240 monochrome CMOS image sensor

• A class 1 infrared laser projector

Light Coding Mechanism

A pattern of spots (structured light [SS03]) is projected using the device's in-
frared laser projector. When hitting a surface, the resulting distortions in the
pattern are used to reconstruct the surface's 3D structure. This mechanism is

69

3.1. Hardware Chapter 3. Practical Part

called Light Coding. The device having its own light source, it's independent
of lighting conditions, which might be unfavorable to traditional stereo vision
approaches, for example in dark rooms. As the projected light is within the
infrared spectrum, it's invisible to the human eye.

Figure 3.6: Microsoft Kinect, image courtesy of [ROS11b]

Connecting the Kinect

The Microsoft Kinect connects to a PC via USB, but needs an additional
power source, as mentioned below. Open-Source drivers are available, as well as
ROS packages. The ROS stack openni_kinect contains nodes that exploit the
Kinect's functionalities, such as

• 3D depth mapping

• Human skeleton tracking (nite package)

The Kinect is a tool that's highly attractive for applications in robotics, being
a cheap and e�ective way of retrieving 3D depth maps. The ROS 3D contest4

has proven the versatility of the Kinect. One of the applications featured in
this competition, namely �Improved AR Markers for Topological Navigation�5,
proved especially useful for our purposes, as it helps improving pose estimation
of AR tags (as described in section 3.4.4).

Power Supply

The Kinect requires an external, stable 12V DC power supply (additionally to
USB power). To connect it to our robot's power circuitry, an additional voltage

4http://www.ros.org/wiki/openni/Contests/ROS 3D
5http://www.ros.org/wiki/openni/Contests/ROS 3D/Improved AR Markers for Topologi-

cal Navigation

70

3.1. Hardware Chapter 3. Practical Part

converter was required to be on the safe side, as the voltage coming from the
robot's batteries might rise up to 12,5V.

3.1.6 High-De�nition Webcam

In earlier project stages, a Microsoft R©LifeCam Cinema
TM

high-de�nition web-
cam provided us with the necessary imagery for object recognition. Due to the
camera's high resolution (1280x720 at a rate of 15hz)6 [Mic09], we achieved a
highly satisfying recall in marker detection, however pose estimation was less ac-
curate than in applications using a depth-information-backed method. A lower
resolution would have yielded a higher frame rate (30hz), but also signi�cantly
poorer recall, especially at high distances (approximately 4m and more). The
camera is equipped with an autofocus feature, again increasing the performance
of object detection, however also having the robot miss markers from time to
time, due to di�culties in �nding the correct focus. This was the case in narrow
corridors, where the robot performed a rotation in search for an object. The
camera would focus on the nearby walls, when in the next moment, facing the
long corridor, the focus would have to be drastically changed.

Connecting to the Webcam

The webcam is connected via USB and communicates with ROS through the
usb_cam package. The messages it publishes are of type sensor_msgs/Image.
When carrying out object recognition using AR tags, the ar_pose package sub-
scribes to the camera's image topic to receive data to operate on.

Mounting the Webcam

Originally, the webcam was mounted in a slanted position on the same platform
as the laser measurement unit, to the left of it. The required transformation from
the camera's frame (usb_cam) and the robot (base_link) can be interpreted as
the combination of two separate transformations.

• The marker information we receive is associated with the camera image's
frame, meaning that the X and Y axes de�ne the image plane, while
the Z coordinate points away from the camera (≡ depth, or distance).
However, when interpreting the camera as a world object like the robot,
the coordinate system should rather be de�ned as follows: the X axis
pointing away from the camera, Y axis pointing to the left and Z axis
pointing up.

• Additionally, the camera isn't located exactly at the robot's base link
(obviously), but, as mentioned before, next to the laser scanner, in a
slanted position. So we have to specify the appropriate translation as well
as a rotation on the pitch axis of about -15 degrees.

6Diagonal �eld of view is 73 degrees

71

3.2. World Model Chapter 3. Practical Part

Combining these two transformations we came up with the following resulting
transformation from the camera image's to the robot's frame:

translation7 =

0.085
0.105
0.30

rotation8 =

 4.71
0

4.458

3.1.7 Controller Laptop

The Pioneer P3-DX was supplied with a Lenovo X201 portable computer, equipped
with a 9-cell Lithium-Ion battery pack to withstand long periods of elevated
computational load. The Lenovo X201's 12,1 inch screen allows for a compact
design that �ts on the robot platform (located behind the laser). There are
smaller laptops (for example netbooks) available, however they don't o�er the
performance that's required for our purposes. The Lenovo X201 features an
Intel Core i5-540M 64bit CPU (2,53 GHz, 3MB L3, 1066 FSB), 4GB of system
memory (DDR3, 1067Mhz), as well as a half-terabyte hard drive operating at
7200rpm.

Operating System

A 64bit Ubuntu Maverick is installed on the controller laptop, currently hosting
a ROS diamondback installation.

Power Supply

The controller laptop requires a 12V DC power supply for operation and recharch-
ing. The included adaptor is powered by line current. A supplemental adaptor,
that connects to a 12V car power plug can optionally be used to connect the
laptop to the robot's power supply, this being especially helpful once the robot's
able to recharge itself autonomously.

3.2 World Model

This section refers to the ROS package wmstorage9, located in the worldmodel
stack. The central aim of this project was the implementation of a module to
enable the robot to memorize quantitative and qualitative information. The
world model is responsible for the following set of tasks.

1. Storage Tasks

7in meters
8Noted in RPY (roll, pitch, yaw), radians
9in the remainder of this document simply referred to as world model

72

3.2. World Model Chapter 3. Practical Part

• object poses (in various coordinate frames)

• attributes

• relations

• aliases

2. Reasoning Tasks

• abstractions

• update objects based on their relations

The world model holds a set of objects (called WMObjects) and their corre-
sponding poses in the real world. World objects may contain attributes and
relations and are addressed by one of their registered aliases (section 3.2.1). To
interact with other modules, the world model listens on several topics (section
3.2.5 on page 78) for world state updates. On the other hand, it o�ers several
services (section 3.2.6 on page 78) that allow other modules to query the current
world state.

3.2.1 Aliases

Aliases are alternate names or IDs for objects in the world model. A mechanism
supporting multiple names was necessary, as object information is expected to
be retrieved from various sources, all using di�erent naming systems for object
identi�cation. A vision-based object recognition mechanism might for example
issue numerical IDs, while a human agent will prefer to add and retrieve objects
using an intuitively-sounding object name encoded in a string, such as �calcu-
lator� or �robot�. As it's already acting as a central storage system, the world
model was chosen to keep track of object aliases. These are registered whenever
the world model receives a message of type WMObjectDiscovery (section 3.2.4
on page 78), holding a list of ObjectIDs (section 3.2.4 on page 75). ObjectIDs
hold a tuple of strings (alias type and alias name) and are used for address-
ing objects in the world model. Every object in the world model must have a
unique internal ID speci�ed, acting as an unquestionable reference of identity.
A WMObjectDiscovery message, for example, must hold exactly one ObjectID
entry specifying the internal ID.

3.2.2 Attributes

Attributes are tuples of string (attribute name and value) holding any kind
of information that can be associated with the object owning the attribute.
Object attributes are communicated via messages of type WMObjectAttributes
(section 3.2.4 on page 77), holding a list of AttributeEntries (section 3.2.4 on
page 76). They can be dynamically set and cleared and are in general not
compulsory. Frequently used attribute names are available as constants in the
AttributeEntry message de�nition.

Sample applications in the current system are memorizing an object's
frame identi�er or the type of marker to use when visualizing the object.

73

3.2. World Model Chapter 3. Practical Part

3.2.3 Relations

Relations are tuples of predicate and object, the former speci�ed in a string,
extended by optional relation properties, the latter speci�ed using an Objec-
tID. This corresponds to an RDF10-like Subject-Predicate-Object representa-
tion, where the subject is the relation's owner.

Relation properties are represented in a string, imposing no limitations what-
soever on its contents. Currently, the self-tailored stringformat encoding is used
as a simple and straightforward way to encode poses and transformations in a
string. This is implemented in Java and would have to be ported to other lan-
guages to enable other nodes to bene�t from the contents of the relation prop-
erties �eld. A future alternative would be to integrate a wide-spread, preferably
language-indepent standard for object encoding, such as XML.

A sample application of relations in the current system is storing informa-
tion on objects being �attached to� other objects. This mechanism is necessary,
as it enables us to have real-world objects with multiple AR tags attached, in-
stead of directly interpreting an AR tag as a real-world object. For instance, by
setting the directed �attached to� relation between an AR tag and a real-world
object and specifying the transformation between tag and object in the rela-
tion properties, the world model's reasoning engine can update the real-world
object's pose automatically when receiving information on the AR tag. Further
details on this method can be found in (section 3.4.4 on page 99).

The �attached to� relation type is available as a constant de�ned in the Rela-
tionEntry message (section 3.2.4 on page 76), along with constants for relation
types that are likely to be useful in the future, such as �in� and �close to�.

3.2.4 Messages

The following messages can be interpreted and generated by the world model.
They are used to communicate general information about objects in the world
model, as well as their identi�ers. Often, messages are used to store constants
that are applied across nodes. This is particularly useful when nodes are coded
in di�erent languages, as ROS takes care of translating them to all supported
languages. The world model's messages contain a Header at top level. Please
note that this Header contains information on the transmission of the message,
not on the contents itself. Headers in subordinate message elements contain
information such as timestamps, that corresponds to the elements in particular.
For example if an agent receives a message at timestep 4 holding information
on an object pose that was valid at timestep 1, then we're able to store both
timestamps. The former will be stored in the top level Header, while the latter
will accompany a nested message element.

10http://www.w3.org/RDF/

74

3.2. World Model Chapter 3. Practical Part

WMObject

World Model Objects (WMObjects) convey information about objects' pose and
object type. The pose information is encoded in a
geometry_msgs/PoseWithCovarianceStamped
message. Including complex types in message de�nition �les is possible, as
nesting of message de�nitions is supported. The reasons for using the afore-
mentioned type of message for pose information are

• allowing future implementations to include �ltering methods that rely on
covariance

• having information on the object's age

The Header de�ned in the WMObject message is only used to hold time and
frame information on the transmission of the message, not the contents itself.�
Header header

Object ID
ObjectID ob j e c t i d

The header t ha t can be found in pose w i l l be used
to t ran spor t frame_id and stamp
geometry_msgs/PoseWithCovarianceStamped pose

only f o r output
string ob j ec t type
� �

Listing 3.2: WMObject.msg

ObjectID

ObjectIDs are used to reference objects in the world model. Messages conveying
them must contain the object ID's type and its name, both encoded in primitive
strings. Additionally, ObjectIDs contain constants for frequently-used object ID
types and one constant for an object ID name, that is used to identify the agent
itself. ObjectIDs will never be transmitted as single entities, but wrapped in
message de�nitions that are designed for transmission.�
a l i a s cons tan t s (s u b j e c t to expansion)
string INTERNAL_ALIAS=i n t e r n a l
string ARTAG_ALIAS=artag
string RFIDTAG_ALIAS=r f i d t a g
string MARKER_ALIAS=marker
string MARKERTEXT_ALIAS=markertext

75

3.2. World Model Chapter 3. Practical Part

string SELF_OBJ = s e l f

string type
string name
� �

Listing 3.3: ObjectID.msg

AttributeEntry

Each attribute entry conveys exactly one attribute that belongs to a certain
object in the world model. To break down timing information to entry-level
each attribute entry holds a time �eld, containing a time stamp of the last
change to this entry. The semantics of not having any information on a certain
attribute can be represented by setting the attribute value to <not-set>, which
is also available as a constant. This mechanism can be used for several purposes,
including clearing attributes from the knowledge base. Similarly to ObjectIDs,
AttributeEntries de�ne frequently used attribute names as constants. A single
AttributeEntry message will never be communicated between modules. Instead,
several instances will be wrapped together in a WMObjectAttributes message,
as described in section 3.2.4 on page 77.�
string NOTSET=<not-set>

standard a t t r i b u t e names as cons tan t s
string OWN_FRAME_ATT=ownframe
string MARKER_TYPE=markertype

string name
string value
time l a s t e d i t e d
� �

Listing 3.4: AttributeEntry.msg

RelationEntry

RelationEntries convey information about object relations. For this purpose,
relevant �elds are predicate, target object, relation properties and time of last
change. In the World Model, relations are de�ned as triples of Subject, Predi-
cate and Object, where Predicates are additionally extended by a string holding
arbitrary information on the properties of the relation. In the RelationEntry
message, the subject �eld is missing, as the message is (similarly to Attribu-
teEntries) not expected to be transmitted as a single entity, but in a group of
RelationEntries wrapped together in a WMObjectRelations message, described
in section 3.2.4 on page 77. As can be derived from the WMObjectRelations
message's de�nition, an object that will �own� the passed RelationEntries is
speci�ed through an ObjectID. This object is by de�nition the relation subject.

76

3.2. World Model Chapter 3. Practical Part

Every RelationEntry speci�es a relation target using an ObjectID. The re-
lationproperties string contains any type of data structure encoded in a string,
containing information on the properties of the relation. Please refer to section
3.2.3 for more information on Relations and the encoding of relation properties.
Just like AttributeEntries, RelationEntries contain constants for frequently-used
names and for the special value <not-set>.�
string NOTSET=<not-set>

standard r e l a t i o n names as cons tan t s
string IN=in
string CLOSETO =c l o s e t o
string ATTACHEDTO =attachedto

string pr ed i c a t e
string r e l a t i o n p r o p e r t i e s
ObjectID ob j e c t
time l a s t e d i t e d
� �

Listing 3.5: RelationEntry.msg

WMObjectAttributes

WMObjectAttributes messages contain sets of AttributeEntries and provide
these with an appropriate header and an ObjectID specifying the message target.
These messages are thus compulsory wrappers around AttributeEntries.�
Header header
ObjectID ob j e c t i d

AttributeEntry [] a t t r i b u t e s
� �
Listing 3.6: WMObjectAttributes.msg

WMObjectRelations

Analogously to WMObjectAttributes messages (described above), a WMObjec-
tRelations message contains a set of RelationEntries, wrapping them for com-
munication between modules and adding ObjectID and Header.�
Header header
ObjectID ob j e c t i d

RelationEntry [] r e l a t i o n s
� �
Listing 3.7: WMObjectRelations.msg

77

3.2. World Model Chapter 3. Practical Part

WMObjectDiscovery

WMObjectDiscovery messages are used for the following tasks:

• initial registrations of objects in the world model

• adding aliases to existing objects

• changing aliases

WMObjectDiscovery messages must have an internal alias de�ned. Messages
not meeting this condition are rejected by the world model, as the object of
reference is unknown.�
Header header
string ob j ec t type

Al i a s e s − NOTE: e x a c t l y one i n t e r n a l a l i a s
(ObjectID .INTERNAL_ALIAS) has to be s p e c i f i e d
ObjectID [] a l i a s e s
� �

Listing 3.8: WMObjectDiscovery.msg

3.2.5 Topics

The World Model awaits information about changes of the world state by lis-
tening on several topics, brie�y summarized in Table 3.3.

Topic Name Message Type Purpose
reportwmobject WMObject retrieve object poses
reportwmobjectdiscovery WMObjectDiscovery register new wmobject, . . . (3.2.4)
reportwmobjectattributes WMObjectAttributes update/add object attributes
reportwmobjectrelations WMObjectRelations update/add object relations

Table 3.3: World Model Topics

3.2.6 Services

The World Model o�ers numerous services to allow users to retrieve information
on the current world state. All service calls, except when retrieving the complete
set of objects, are object-centered. The object under investigation is referenced
by passing any type of object ID[, that the world model will use to locate the
corresponding object.

78

3.2. World Model Chapter 3. Practical Part

GetWMObjectAliases�
ObjectID ob j e c t i d
− − −
ObjectID [] a l i a s e s
� �

Listing 3.9: GetWMObjectAliases.srv

Functionality. Returns all aliases (alternate IDs) that belong to the object
identi�ed by the passed object ID.

GetWMObjectAttributes�
ObjectID ob j e c t i d
− − −
WMObjectAttributes wmobjectat t r ibutes
� �

Listing 3.10: GetWMObjectAttributes.srv

Functionality. Returns a list of attributes that have been associated with the
object identi�ed by the passed object ID. Please refer to section 3.2.2 on page
73 for further information on object attributes.

GetWMObjectRelations�
ObjectID ob j e c t i d
− − −
WMObjectRelations wmobjec t re la t ions
� �

Listing 3.11: GetWMObjectRelations.srv

Functionality. Returns a list of relations that have been associated with the
object identi�ed by the passed object ID. Please refer to section 3.2.3 on page
74 for further information on object relations.

GetWMObjectByID�
ObjectID ob j e c t i d
− − −
WMObject wmobject
� �

Listing 3.12: GetWMObjectByID.srv

79

3.2. World Model Chapter 3. Practical Part

Functionality. Returns the object identi�ed by the passed object ID. The
object information provided by this service comprises object pose and object
type, as well as information on when the object was last reported.

GetWMObjects�
− − −
WMObject [] wmobjects
� �

Listing 3.13: GetWMObjects.srv

Functionality. Returns the complete list of objects available in the current
world state, taking no input parameters. The format used is a list ofWMObjects.

3.2.7 System Architecture

The world model architecture is designed to decorrelate the internal mechanism
for object handling and reasoning from the connection to ROS. The classes
WMStorage and WMLogic o�ering the main functionality are wrapped by the
WMStorageNode class, which is in turn derived from ROSNode, a class incorpo-
rating the implementation of a ROS node in Java. The architecture is depicted
in Figure 3.7.

WMStorage

The core of the world model, the WMStorage class, takes care of storing ob-
ject information, such as aliases, poses, attributes and relations. It additionally
holds and queries the WMLogic class (section 3.2.9), which is responsible for
reasoning on the current world state. WMStorage implements the interfaces
WMObjectListener and WMObjectProvider, thus enabling it to receive and be
queried for world state information. The internal architecture around WMStor-
age is depicted in Figure 3.8.

Internal Storage of Objects

WMStorage holds the set of registered WMObjects in objects of type InternalW-
MObject, which are placed in a map using the internal object ID as key. When
looking up objects using another object alias type, linear search has to be used
to �nd the corresponding object, however, additional lookup maps are planned
and can be easily integrated. However, considering the moderate amount of
objects, they weren't necessary so far.

An InternalWMObject holds all information on the object that can exist,
including its

• Poses (in various frames)

80

3.2. World Model Chapter 3. Practical Part

Figure 3.7: World Model: System Architecture

• Aliases

• Attributes

• Relations

MVCModel. WMStorage is designed to be part of a MVC-type architecture,
playing the role of the model and for that purpose extending the Observable
class. View and Controller are implemented and directly connected to WMStor-
age, bypassing ROS communication and thus o�ering faster responses from the
GUI. The world model can be launched in headless mode (without a GUI ex-
tension), however, a GUI is particularly convenient when it comes to debugging,
not necessarily the world model itself, but the system that's using it. Addition-
ally, it o�ers ways to manually specify object poses in collaboration with RViz
(section 2.5.15), as well as a mechanism to issue goals to the navigation stack,
which has the robot navigate to user-speci�ed poses.

ROSNode

ROSNode incorporates the implementation of a ROS node in Java. It's designed
as an abstract class, that has to be extended to gain access to common ROS
mechanisms. Implementing a new ROS node in Java thus boils down to

81

3.2. World Model Chapter 3. Practical Part

Figure 3.8: WMStorage internal design

1. Extending ROSNode

2. Implementing the executeLoop() method

3. Implementing the beforeShutdownNode() method

The executeLoop() method is called in every iteration of the underlying ROS
node and is supposed to contain the node's core functionality. The beforeShut-
downNode() method will be called after a shutdown has been requested11.

WMStorageNode is an example of a class derived from ROSNode, acting as
a wrapper for WMStorage. It holds all service servers and connectors to topics
that might o�er or query object information. Requests and object updates are
then routed to WMStorage through the WMObjectListener and WMObject-
Provider interfaces.

Tranformation Framework in ROSJava

As mentioned before, the world model is implemented in Java, therefore running
in ROS on top of a ROSJava node. At the time of implementation, there was no
support for the transformation framework in ROSJava, however, certain calcula-
tions performed in the world model require coordinate transformations. To o�er

11due to the ros.ok() property changing to false

82

3.2. World Model Chapter 3. Practical Part

this functionality to the world model, the TF Adaptor node was implemented in
C++. This node o�ers services that perform coordinate transformations, either
by passing pre-fetched transforms or by querying the tf tree.

Object Information Translators

To feed the world model with object updates it can interpret, object information
must arrive in a format that is comprehensible to the world model. When
routing sensory input to the world model, the messages originating from various
sensor nodes must �rst be translated to world model messages using object
information translators. For each type of sensor, a module is implemented that
intercepts sensory messages and republishes them in a format comprehensible
to world model. This module is then placed between the sensor node and the
world model. An example of such a translator is the AR Translator, converting
AR marker messages to WMObjects. The AR Translator's principle is best
explained in a sample use case, described in the following section.

3.2.8 Sample Use Case

The world model is initialized with a set of prede�ned objects and their positions,
attributes and relations. All objects have an internal object ID, a position and
an object type. The world model will then await additional object information
on one of the topics it's subscribed to. Every object handled by the world
model has to be registered using a WMObjectDiscovery (section 3.2.4) message.
Object discovery messages are also used to add additional or change existing
object aliases. Once an object is registered it can be addressed under any of its
aliases de�ned.

To provide the world model with new object information, the appropriate
message, one of

• WMObject (3.2.4)

• WMObjectDiscovery (3.2.4)

• WMObjectAttributes (3.2.4)

• WMObjectRelations (3.2.4)

has to be generated, �lled with the necessary information and published on one
of the topics the world model is listening on (Table 3.3). The world model will
test for each entry whether its timestamp is newer than the latest state of its
world model-internal equivalent. This procedure is broken down to entry level,
e.g. for a WMObjectAttributes message holding several AttributeEntries, each
element will be checked.

Example - Updating and Querying Object Poses. As stated before, the
world model can only interpret its own message types, so to integrate other
types of messages, we need additional modules. Let's suppose we have a visual

83

3.2. World Model Chapter 3. Practical Part

sensor conveying object information and an execution module that will request
object data from the world model from time to time. The visual sensor will, in
case it's already wrapped in a ROS node, publish sensor information on a ROS
topic, whenever relevant information on known objects is available (if objects
are in its line of sight for example). A good example of such a sensor is described
in section 3.4.4 on page 99. The example mentioned above is depicted in Figure
3.9.

Figure 3.9: Sensor pipeline (a), no translator connected

To forward object information to the world model, a translator (as described
in section 3.4.4 on page 99) has to be implemented, that will receive the sensor
messages, convert them to WM objects and republish them in a format that's
comprehensible to the world model. This setup is shown in Figure 3.10.

Figure 3.10: Sensor pipeline (b), translator between sensor and world model

At some point, the execution module is requested to issue commands that
are necessary to move the robot to a certain spot on the map, depending on an
object pose. The execution module will therefore query the GetWMObjectByID
service (section 3.2.6) to receive a WMObject message (section 3.2.4) containing
the requested object's pose (depicted in Figure 3.11). The world model will
provide the latest pose it has received. By default, the center of the default
frame (speci�ed in the world model), without any rotation applied, will be
returned if no information on the object's pose has ever been received.

The execution module can then calculate motion commands for the robot
base or decide that the requested task is unfeasible.

3.2.9 WMLogic

In addition to basic storage mechanisms, the world model o�ers ways to translate
quantitative into qualitative information and to automatically update the world

84

3.2. World Model Chapter 3. Practical Part

Figure 3.11: Sensor pipeline (c), querying the world model

state based on the latter. This functionality is included in the modules in and
around WMLogic. This part of the system is depicted in Figure 3.12, while for
further designs, please refer to section 3.2.7 starting on page 80.

Currently, the WMLogic module o�ers the following set of mechanisms:

• converting quantitative information into abstract statements

• updating object poses depending on object relations

• calculating speci�c poses depending on the world state

These mechanisms shall be explained in further detail in the following sections.

Abstractions

For the purpose of executing commands with abstract parameters, it is often
necessary to translate quantitative information to qualitative statements, such
as. . .

• the robot is �in� room A

• the box is �close to� a room's reference point

• the box is standing / lying on the �oor

The last of the four examples mentioned above shall serve as a basis for the
following scenario. Consider a robot that is supposed to pick up a box using a
2D-gripper, as described in 3.1.3 on page 65. Before the actual pick-up process,
the robot has to choose an approach position somewhere close to the object,
preferably facing it, so that only a straight motion is necessary before the object
can be grabbed.

This position is calculated by generating a pose, that, when seen from the
coordinate system of the target object, is lying on either the X or Z axis, a
certain distance away from and facing the target object. Depending on whether
the object is lying or not, the correct axis for the approach position has to be

85

3.2. World Model Chapter 3. Practical Part

Figure 3.12: WMLogic with surrounding modules

chosen. This will be the Z axis for lying objects and the X axis for objects
standing upright. The two situations are depicted in Figure 3.13 on page 87.
Further information on the calculation of approach poses can be found on page
87.

Object-Relation-triggered World State Updates

Certain object relations possess underlying semantics that allow the world model
to automatically draw conclusions over interdependencies of objects and there-
fore updating the world state accordingly. An example of such relations are
those holding the �attached to� predicate, signaling that an object is attached
to another and that pose updates of one object must yield updates of the other.
This mechanism is also described in section 3.4.4 on page 99.

An important property of such relations, that must be mentioned here, is
that they are directed, to avoid endless recursions due to two objects constantly
trying to update each other's poses. While the resulting graph of object con-
nections might still contain cycles, these are not checked for. A graph cycle
detector might be a future endeavour, especially if relations have to be updated
frequently.

86

3.2. World Model Chapter 3. Practical Part

Calculation of Speci�c Poses

Besides returning object poses, as previously received, the world model is ca-
pable to calculate additional poses that are useful to other modules. Approach
poses, for example, are required for object pick-up procedures.

Approach Pose Calculation. When grabbing an object, the robot has to
know where to stand before starting its gripping procedure. This module can
calculate the optimum position, by taking into account the object's orientation
and whether it's standing upright or lying on the ground. Figure 3.13 shows
how the approach position changes depending on the object's orientation. The
approach distance is variable.

Figure 3.13: Object upright and lying

3.2.10 World Model Visualization

A module has been implemented to o�er information about the world state,
that is comprehensible to visualisation tools such as RViz (section 2.5.15 on
page 49). World objects are translated to visualisation marker messages (visu-
alisation_msgs/Marker), that can be visualized by RViz's built-in display type
Markers. Markers are published in the default world frame and can thus be
overlaid with visualisation elements coming from the navigation stack, the map
server, the robot base etc. Please note that this feature comes in addition to the
World Model's built-in, tabular GUI. In a marker message, the following object
types are supported:

87

3.3. Execution Modules Chapter 3. Practical Part

�
byte ARROW=0
byte CUBE=1
byte SPHERE=2
byte CYLINDER=3
byte LINE_STRIP=4
byte LINE_LIST=5
byte CUBE_LIST=6
byte SPHERE_LIST=7
byte POINTS=8
byte TEXT_VIEW_FACING=9
byte MESH_RESOURCE=10
byte TRIANGLE_LIST=11
� �

Listing 3.14: Marker.msg snippet

Currently, arrows, cubes and labels (text view facing) are used to display the
world state in RVIZ. A sample of how objects are depicted can be seen in Figure
3.14. Objects the robot can manipulate, in our case milk boxes, correspond to
red cubes in the image. Every single object, be it the robot itself, a tangible
object or the reference point of a room, is shown by displaying its coordinate
system (red lines, one for each axis). Additionally, each object is provided with
a label. Green arrows signal optimal approach positions that the robot will
navigate to before trying to pick up an object.

Figure 3.14: World Objects displayed in RVIZ

3.3 Execution Modules

The execution package contains self-implemented action servers, an o�ine robot
control node (O�ine Robot Control) designed for testing purposes and rapid
prototyping, a node that waits for and handles incoming connections from In-
diGolog clients (IndiGolog Connection) and smach state machines, again for
testing as well as early demonstration of lowlevel capabilities.

88

3.3. Execution Modules Chapter 3. Practical Part

Figure 3.15: World Objects displayed in RVIZ - Closer Look

3.3.1 Action Servers

Action Servers await action goals and subsequently perform the requested ac-
tions, constantly o�ering feedback and a �nal state after �nishing execution. In
the current implementation of the execution package, two self-tailored action
servers are in use, namely

• Positioning Action Server

• Gripobject Action Server

These shall be described in detail here.

Positioning Action Server

The positioning action server's task is to have the robot perform simple transla-
tional and rotational movements. The navigation stack is cut out of this process,
movements are thus unchecked against collisions. This means that robot move-
ment is exactly predictable and purely under �our� control, which is convenient,
but on the other hand has to be handled with care, as collisions become possible
without the navigation stack watching every step.

The commands issued by the Positioning Action server are by default pub-
lished on the /cmd_vel topic. The format for actions is described in listing
3.15.�
#goa l d e f i n i t i o n
i n t32 NO_CONDITION = 0
int32 TILL_INNER_BREAKBEAM_BROKEN = 1
int32 TILL_OUTER_BREAKBEAM_BROKEN = 2
int32 TILL_INNER_PADDLES_TRIGGERED = 3

int32 cance l_cond i t ion
f l o a t 6 4 move_straight
f l o a t 6 4 yaw

89

3.3. Execution Modules Chapter 3. Practical Part

− − −
#r e s u l t d e f i n i t i o n
i n t32 NO_CONDITION = 0
int32 TILL_INNER_BREAKBEAM_BROKEN = 1
int32 TILL_OUTER_BREAKBEAM_BROKEN = 2
int32 TILL_INNER_PADDLES_TRIGGERED = 3

int32 cance l_cond i t ion
f l o a t 6 4 moved_straight
f l o a t 6 4 yaw
− − −
#feedback
f l o a t 6 4 moved_straight
f l o a t 6 4 yaw
� �

Listing 3.15: Positioning.action

As can be seen in the code sample, two types of movement are supported,
straight movement and yaw, the former of which is speci�ed in meters, while
the latter is given in radians.

Action timing. To make sure that requests can be processed correctly, the
commands for starting a movement and for stopping it have to be timed cor-
rectly. Thus the action server needs to know the robot's maximum translational
and angular speed. We could just de�ne a time parameter for translational and
rotational commands, however, in most cases it is much more useful to be able
to de�ne distances and angles. The action server issues motion commands at
the robot's maximum speed and measures the time consumed at a rate of 10hz.
The time necessary for the movement is calculated by the simple formulae:

execution_time =
distance

maximum_translational_speed

execution_time =
angle

maximum_rotational_speed

The iteration rate is an important factor here. We want to �nd a good trade-
o� to achieve su�cient precision, while keeping system load to a minimum. A
rate of 10hz has proven to convey action results of adequate quality, without an
unreasonable waste of system resources.

Cancel conditions. In several cases, an execution has to be stopped before
the initially requested goal is reached. This preemption of execution is often
foreseen or even expected, rather than the result of erroneous execution. An
example would be a robot receiving the task of driving up to a certain object
until it senses that the object is in its gripper's range. Cancel conditons are
responsible for the �until� part of this request.

90

3.3. Execution Modules Chapter 3. Practical Part

The Positioning Action Server allows the user to de�ne cancel conditions
that depend on the state of the robot's gripper. To be able to o�er this fea-
ture, the server must be subscribed to the gripperinfo topic that is published by
the ROSARIA package (described earlier on in section 3.1.1 on page 63), thus
receiving gripper information directly from the node connected to the robot
platform. The aforementioned topic transports messages of type Gripper, spec-
i�ed in detail in section 3.1.3. The Positioning Action Server accepts changes
of both gripper paddle and gripper breakbeam12 states as cancel conditions.
These states are checked and updated in every iteration. Once a cancel condi-
tion is met, the current execution is stopped. The available options for cancel
conditions are speci�ed as constants in the action message.

As mentioned before, the action server publishes execution feedback, as well
as the �nal result of the requested action. As for processes wrapping the call
to the action server (e.g. a state machine) the information whether a cancel
condition has been met, might be relevant, this information is included in the
result message.

Simultaneous Requests. If multiple requests arrive in the same action goal
(both rotational and translational request), they are both executed simultane-
ously. Please note that in this case there is no guarantee for exact positioning,
as the movements are interdependent and no sophisticated trajectory planning
is used in addition to the simple equations mentioned above.

Gripobject Action Server

The Gripobject Action Server awaits GripObject Goal messages as speci�ed
in listing 3.16 and subsequently addresses the robot's gripper by publishing
commands (by default) on the /grip_cmd topic. The RosAriaWithGripper node
located in the ROSARIA package is subscribed to this topic (conveying primitive
integer data). The gripper's actual control capabilities are limited to:

• moving lift up

• moving lift down

• opening gripper

• closing gripper

• stopping lift

• stopping gripper�
#goa l d e f i n i t i o n
i n t32 NO_CONDITION = 0
int32 TILL_INNER_BREAKBEAM_BROKEN = 1

12breakbeam ≡ light barrier

91

3.3. Execution Modules Chapter 3. Practical Part

in t32 TILL_OUTER_BREAKBEAM_BROKEN = 2
int32 TILL_INNER_PADDLES_TRIGGERED = 3
int32 TILL_LIFT_MAXED = 4
int32 TILL_GRIPPER_OPEN = 5
int32 TILL_GRIPPER_CLOSED = 6
int32 TILL_GRIPPER_INBETWEEN = 7

int32 requ i r ed_cond i t ion
f l o a t 6 4 rel_width
f l o a t 6 4 re l_he ight
− − −
#r e s u l t d e f i n i t i o n
ROSARIA/Gripper gr ipper_state
f l o a t 6 4 rel_width
f l o a t 6 4 re l_he ight
− − −
#feedback
f l o a t 6 4 rel_width
f l o a t 6 4 re l_he ight
� �

Listing 3.16: Gripobject.action

Each command yields a permanent movement that will continue even after lift
or gripper paddles are maxed out. Therefore gripper control includes initiating
a motion and stopping it after a speci�ed amount of time, very similarly to
positioning (section 3.3.1). As shown in the Gripobject Action message de�ni-
tion (listing 3.16), gripper paddle width and lift height are speci�ed in �oat64
entries. These entries are to be interpreted as relative values, making it unnec-
essary to keep track of the gripper's state. A value of 1.0 stands for a motion
that corresponds to the actuator's maximum range, while -1.0 stands for the
same motion in the opposite direction and 0.0 for no motion.

Action timing. Similarly to the solution applied to the Positioning Action
Server, the Gripobject Action Server uses a simple equation to calculate the
time necessary for an execution.

execution_time = relative_distance ·maximum_travel_time

In this case maximum_travel_time is a constant that's roughly estimated (sep-
arately for lift and paddles). If, for example, for traveling from the lowest to
the highest position, the lift would consume 5 seconds, a value of 0.5 will yield
a motion time of 2.5 seconds, no matter what the starting state is. Of course,
as with the Positioning Action Server, the choice of an adequate iteration rate
is a relevant issue here.

92

3.3. Execution Modules Chapter 3. Practical Part

Required Condition. The concept of a required condition is very similar
to that of a cancel condition, as used in the Positioning Action Server. The
di�erence is that a required condition additionally a�ects the action's result
state. It is thus possible to signal that an action has failed if a required condition
hasn't been met.

Simultaneous Requests. If requests for both the gripper's lift and paddles
arrive in the same action goal, they are executed sequentially.

3.3.2 Simple State Machine

A simple smach (section 2.5.16 on page 51) state machine has been created to
test execution procedures in the early stages of development. Smach was an
attractive option, as it integrates seamlessly with ROS Action Servers, and is
easily modi�able. In addition to that, it comes with a visualization tool that
allows for intuitive monitoring of machine states.

If in any machine state an error occured, the robot would stop execution.
There are other ways to deal with errors, basically any state transition would
have been possible, depending on the action result, but this level of error han-
dling was su�cient for testing purposes, especially considering the fact that a
more sophisticated control system (IndiGolog, described below) was to be ap-
plied.

3.3.3 Indigolog Integration

IndiGolog acts as a high-level execution and belief management framework that
integrates with the robot's low-level capabilities implemented on top of ROS.
To enable a connection between IndiGolog and ROS, a node called IndiGolog
Connection has been implemented. This node communicates with an IndiGolog
program via a TCP/IP socket. It waits for an incoming command, executes it
and noti�es IndiGolog when the task is ful�lled. In certain prede�ned cases,
sensing information is sent to IndiGolog.

The robot o�ers execution and sensing capabilities to the IndiGolog program,
as described in the following two sections.

Execution

• Object Pickup: A set of subtasks enabling the robot to pick tagged
objects up using its 2D gripper device. The pickup procedure comprises
exact navigation to the object's approach position, subsequently approach-
ing the object and gripping it.

• Object Putdown: Includes navigating to a spot facing the desired put-
down location, moving forward, lowering and relasing the object and �-
nally moving back.

• Robust Navigation: To any point in the speci�ed map.

93

3.4. System Con�guration Chapter 3. Practical Part

Sensing

• Recognition of Tagged Objects: Objects supplied with AR tags are
recognized and stored in the world model. This information serves as a
basis for certain sensing information.

• Sensor Information from Gripper Device: Information on the states
of light barriers and gripper paddles.

History-Based Diagnosis

The underlying IndiGolog program is capable of detecting con�icts between its
internal belief and the actual world state. In these cases, the program does
not try to �nd out what the problem is, but rather what happened [WGRS11].
Hypotheses that might explain the current situation are generated and saved as
alternative histories. In further execution steps, those alternatives that prove
to be incorrect are discarded.

3.4 System Con�guration

Mechanisms that were presented in the theoretical part of the document and
are available as libraries in ROS, such as localization, navigation and object
recognition, were con�gured to be applicable to our delivery robot.

3.4.1 Mapping

The robot's belief of the environment is stored in an occupancy grid, that was
created using the gmapping package. During the mapping procedure, a tele-
operation node was applied to guide the robot manually. As RViz is capable
of displaying the map while it's being created, we had a way to supervise the
emerging map's quality. The SICK laser measurement system in combination
with the sicktoolbox package served as a source of laser scan data for the map-
ping process.

3.4.2 Localization

Just like for mapping, laser scans were used as the only information source
for localizing the robot. The ROS package amcl was responsible for matching
laser scans to map data, thus deriving the robot's position relative to the map
and publishing transformation data between the map and the robot's odometry
frame. While the localization process applied in amcl is highly dependable in
�normal� operation, it has di�culties recovering from exceptional situations.
The underlying problems are well-known in this research area and discussed in
[TFBD01].

94

3.4. System Con�guration Chapter 3. Practical Part

Global localization problem

With a relatively low amount of salient features, or even worse, with multiple
similar areas in a map, the robot had di�culties retrieving an initial pose esti-
mate. In general, however, the initial localization task was ful�lled successfully,
sometimes even with a very inaccurate initial estimate (for example with the
robot being located in a completely di�erent room).

Kidnapped robot problem

The kidnapped robot problem was experienced mostly when the robot's wheels
would stall and cause an unexpected and unnoticed rotational movement. Es-
pecially in a sparse o�ce environment, turns of 90, 180 and 270 degrees can
yield sensor input similar to previous readings. This of course is fatal, as the
robot believes that it's still well-localized and facing in the same direction as be-
fore. Manual re-localization is often the only way to recover from this situation,
without additional sensory input.

In summary, location tracking tasks are performed robustly at all times,
while recovery from the two aforementioned situations is dependent on the
robot's location and environment, and the type of error.

3.4.3 Navigation

ROS o�ers a complete stack dedicated to navigation, however it's still a tedious
task to get all necessary modules to work on a particular robot. This section
describes how the Pioneer P3-DX was enabled to safely navigate between spots
in a mapped o�ce environment, using a SICK laser scanner and a Microsoft
Kinect as sensors.

Costmap Con�guration

The costmap de�nes traversible and occupied spots in the robot's environment.
In navigation tasks, the local planner will query the costmap to �nd out about
obstacles, in order to avoid collisions. It is vital to have accurate and up-to-date
information here, a requirement yielding several di�culties:

1. Obstacles added too late: the robot hits an obstacle before it shows
up on the costmap

2. Obstacles missed by the robot's sensors: due to being outside of the
sensor's �eld of view

3. Sensors clearing the costmap by mistake: sensors may signal that
cells are free even though they are outside of the sensor's �eld of view

4. Overloaded costmaps: if too many obstacles are kept in the costmap
(due to errors or miscon�guration), the robot won't be able to calculate a
path to the goal

95

3.4. System Con�guration Chapter 3. Practical Part

5. Incorrect robot footprint: a footprint that exceeds the robot's size will
make it impossible to navigate through tight passages (such as doors),
while a too small footprint will lead to collisions

6. Sensor miscalibration: leads to confusing results, as the real world and
the robot's internal view of it aren't aligned any longer

7. Erroneous odometry: stalled wheels or collisions might lead to errors
in the robot's odometry, causing it to be misaligned with the costmap

A visualized costmap is depicted in Figure 3.16. Sensory data in this example
was retrieved from a laser range measurement system and a Microsoft Kinect.

Figure 3.16: Costmap visualized in RViz. Obstacles are signaled by green grid
cells. The red cells around the obstacles mark their in�ation radii.

Several parameters have to be set before a costmap can be applied e�ectively,
some of which are explained in the following paragraphs.

Robot footprint. To be able to avoid obstacles, the robot has to be aware of
its own perimeter. In a 2D application, the robot's body is simpli�ed to a 2D
polygon, called the robot footprint, which is de�ned as a set of points that are
used to calculate a convex hull. Alternatively, the robot's radius can be de�ned,
which is useful for robots with a circular footprint. The following code shows
how the footprint of our robot (including a gripper and additional space for the
controller laptop) is de�ned:

footprint: [[0.21, 0.21],

[0.27, 0.175],

96

3.4. System Con�guration Chapter 3. Practical Part

[0.37, 0.155],

[0.37, -0.155],

[0.27, -0.175],

[0.21, -0.21],

[-0.31, -0.21],

[-0.31, 0.21]]

Ranges. As not all sensor readings are relevant for the obstacle avoidance
task, the costmap allows to de�ne a maximum object distance, the maximum
length of rays (for clearing the costmap), as well as a minimum and maximum
height for obstacles:

obstacle_range: 2.5

raytrace_range: 3.0

min_obstacle_height: 0.07

max_obstacle_height: 0.75

Map type. It's possible to choose between a 3D octomap and a 2D costmap.
For our purposes, a 2D representation was su�cient, due to the self-contained
shape of our robot, the fact that it's not airborne and that it does not have
any moving parts that can reach beyond its prede�ned perimeters (e.g. robotic
arms).

map_type: costmap

Sensors. The costmap can retrieve input from two di�erent types of sensors,
point clouds and laser scans. Obviously, the applied input types have to be
speci�ed in the costmap con�guration. In our application, we used both point
cloud data from a Microsoft Kinect and laser scan data from the SICK laser
measurement system. Before integrating the point cloud data into the costmap,
it had to be resampled to a lower resolution and �ltered to exclude points that
are close to ground level (to avoid adding the �oor in front of the robot as
an obstacle). Hence the point cloud topic the costmap is subscribed to is not
the data coming directly from the Kinect, but rather the �ltered data that
has its source in a voxel grid �lter (described in section 2.5.12 on page 41). It's
important to note that it's possible to de�ne which costmap tasks certain sensor
data may trigger. We achieved the best results by allowing both marking and
clearing operations to both point cloud and laser scans.

observation_sources: kinect_point_cloud

laser_scan_sensor

kinect_point_cloud: {sensor_frame: base_link,

data_type: PointCloud2,

topic: /voxel_grid/output,

marking: true,

clearing: true}

97

3.4. System Con�guration Chapter 3. Practical Part

laser_scan_sensor: {sensor_frame: /laser,

data_type: LaserScan,

topic: scan,

marking: true,

clearing: true}

The code snippets above can be found in the costmap_common_params_kinect.yaml
con�guration �le.

Local Planner

For local path planning and obstacle avoidance we applied the trajectory rollout
method. The ROS navigation stack o�ers the dynamic window approach as an
alternative that saves computational cost, however trajectory rollout yielded
more promising results.

dwa: false

The following parameters specify the robot's characteristics, as well as weights
of the local planner's objective function13.

robot characteristics and constraints

max_vel_x: 0.50

min_vel_x: 0.10

max_rotational_vel: 1.0

min_in_place_rotational_vel: 0.1

acc_lim_th: 2.00

acc_lim_x: 1.50

acc_lim_y: 1.50

holonomic_robot: false

weights of objective function

default value 0.01 used for occdist_scale

goal_distance_bias: 0.8

path_distance_bias: 0.5

Several other parameters can be de�ned to alter path simulation character-
istics, goal tolerance etc. For a full list of parameters please refer to the
base_local_planner package's documentation.

The code snippets above can be found in the costmap_common_params_kinect.yaml
con�guration �le.

Accessing the Navigation Stack

The navigation stack o�ers action servers for accessing functionalities such as
navigation to a goal, costmap clearance, canceling navigation tasks or calcu-
lating a global path without moving the robot. When action feedback is not

13http://www.ros.org/wiki/base_local_planner

98

3.4. System Con�guration Chapter 3. Practical Part

required, navigation goals can also be published to the move_base_simple/goal
that contains messages of type PoseStamped.

3.4.4 Object Recognition

To let the robot interact with its environment, it must be able to recognize
manipulable objects in the world. In our case, the set of manipulable and
recognizable objects is limited to those that have been tagged with at least one
AR marker. The ar_pose or ar_kinect package can be used to detect these
tags, estimate their poses and publish this information on a ROS topic. They
both rely on the functionality of the artoolkit package.

AR Pose Package

The ar_pose package requires a device that publishes image information on a
ROS topic, such as a USB camera in combination with the appropriate ROS

node. In early stages of the project, a Microsoft R©LifeCam Cinema
TM

(described
in section 3.1.6 on page 71 and operated using the usb_cam node) was applied.
AR recognition using this camera already yielded good performance, meaning
that the robot was able to locate and pick up objects based on the pose infor-
mation coming from ar_pose.

AR Recognition with Kinect

In subsequent stages of the project, a Microsoft Kinect was mounted on the
robot, providing us with point cloud information of the environment. Besides
navigational purposes, the 3D view of the world was used (in combination with
the ar_kinect package) to yield more precise object pose estimation results. The
mechanism hereof is described in section 2.7.2 on page 60.

Tagging World Objects

In the �nal con�guration, four world objects were used for our experiments. We
opted for empty milkboxes, as they can be easily gripped by the gripping device,
are light and o�er enough �at surfaces for AR tags. To allow for object recog-
nition in any situation, all four sides of an empty milkbox (standing upright)
were tagged with di�erent AR tags, as can be seen in Figure 3.17.

Instead of having one tag correspond to one certain object in the world
model, they were saved as separate objects of type artag. Every artag that was
applied to a milkbox, had an attachedto-relation and the appropriate transfor-
mation speci�ed. Figure 3.18 depicts the relation between AR tags and real
world objects.

We had to de�ne four distinct transformations, for tags attached to each
of the milkbox's four sides. While retrieving the translational transformation
is straightforward, the more complicated rotational transformation is shown in
the following paragraphs, for each side respectively. The rotations are written
as Quaternions (x, y, z, w)T .

99

3.4. System Con�guration Chapter 3. Practical Part

Figure 3.17: Milkbox with AR Tags

Front Tag Rotation.

rotation =

−0.5
−0.5
−0.5
0.5

Left Tag Rotation.

rotation =

0.0

0.707106781
0.707106781

0.0

Right Tag Rotation.

rotation =

−0.707106781

0.0
0.0

0.707106781

100

3.4. System Con�guration Chapter 3. Practical Part

Figure 3.18: The attachedto relation type

Rear Tag Rotation.

rotation =

−0.5
0.5
0.5
0.5

The relation target of an attachedto relation is automatically updated together
with the relation subject, using the de�ned transformation between the two.
Thus, if any of the four markers attached to a real world object was detected,
the object itself was updated as well. Figure 3.19 shows the result, as seen in
RViz. The robot's footprint can be seen in the top left corner, while the object
to be recognized is located in the lower right sector of the image. Two of the
object's four AR tags have been recognized and are depicted as green boxes.

Figure 3.19: RViz View: Multiple tags attached to the same object

101

3.5. Experiments Chapter 3. Practical Part

3.5 Experiments

The hardware described in section 3.1, in combination with the aforementioned
world model and execution modules, was used to carry out two types of ex-
periments (both originally described in [GRSW11]) demonstrating the system's
capabilities and overall reliability. The experiments took place in an indoor of-
�ce environment, under everyday conditions (e.g. with chairs being moved and
people walking around). Reference points in rooms were de�ned to serve as a
quantitative abstraction, to be able to translate commands like �go to room C�
to actual navigation commands with real world coordinates. These reference co-
ordinates were previously de�ned in the world model, where they are handled as
regular world model objects of type �room�. The robot used in the experiments
is able to

• grasp objects that �t in its gripper (in our case empty milkboxes, tagged
with AR tags as described in section 3.4.4)

• release objects

• carry out navigation tasks

Its belief management module can handle several inconsistencies, namely

• execution failures

• sensing failures

• exogenous events

• incomplete / ambiguous knowledge

3.5.1 Belief Repair Demonstration

This experiment is of relatively short duration (approximately 12 minutes) and
is designed as a demonstration of the robot's belief management capabilites. A
map of the o�ce environment, with markers pointing to room coordinates can
be seen in Figure 3.20 on page 103. In this setting, 4 rooms are de�ned (kitchen,
goal, o�ce and seminarroom), along with 2 objects that can be manipulated by
the robot (calculator and letter). The robot has to ful�ll 2 delivery tasks:

1. deliver object calculator to room goal

2. deliver object letter to room o�ce

Initially, it's supplied with ambiguous information on the calculator's position,
by being told that its location is either seminarroom or o�ce. It's unaware of
letter's position, however, with its starting position located close to letter, this
object will be seen shortly after starting the experiment and thus added to the
knowledge base.

102

3.5. Experiments Chapter 3. Practical Part

Figure 3.20: O�ce Environment hosting Experiments

103

3.5. Experiments Chapter 3. Practical Part

Course of Events

The experiment conducted consisted of the following sequence of events. First
of all, let's have a look at the robot's starting knowledge:

Object Assumed Location Actual Location
Robot Kitchen Kitchen
Calculator {Seminarrom; O�ce} O�ce
Letter <unknown> Kitchen

Looking for Object Calculator. Due to ambiguous information on calcula-
tor's location, the robot has to choose one of the rooms (seminarroom or o�ce)
to investigate �rst, in search for calculator. In our example this is seminarroom,
to which the robot navigates.

Object Assumed Location Actual Location
Robot Seminarroom Seminarroom
Calculator {Seminarrom; O�ce} O�ce
Letter Kitchen Kitchen

Calculator is not located in Seminarroom. As the robot's AR recognition
module doesn't convey any fresh information on calculator's location, the robot
believes that it is not located in the current room. Therefore the previously
chosen theory is discarded, giving way to the next-best theory, stating that
calculator is located in o�ce. This demonstrates how ambiguous or incomplete
information is coped with. The robot navigates from seminarroom to o�ce to
look for the requested object.

Object Assumed Location Actual Location
Robot Seminarroom Traveling to O�ce
Calculator O�ce O�ce
Letter Kitchen Kitchen

An Exogenous Event. While traveling from seminarroom to o�ce, letter is
moved from its previous location to seminarroom. The robot is not aware of
this exogenous event, as it takes place outside of its �eld of vision.

Object Assumed Location Actual Location
Robot O�ce O�ce
Calculator O�ce O�ce
Letter Kitchen Seminarroom

Picking Up Calculator. After arriving in o�ce, the robot performs what
we like to call the pickup waltz, which is in fact a series of rotations and pose
corrections, followed by a pickup action. Subsequently, calculator is transported
to its designated destination, which in this case is goal.

104

3.5. Experiments Chapter 3. Practical Part

Object Assumed Location Actual Location
Robot Goal Goal
Calculator Goal Goal
Letter Kitchen Seminarroom

Putdown Failure. Having arrived at goal, the robot attempts to put down
the object it is holding. To demonstrate the handling of execution failures,
the gripper is manually blocked, thus keeping the robot from releasing the ob-
ject. Resulting from this circumstance, the gripper sensors signal that the robot
is still holding something, while at the same time the AR recogntion module
doesn't provide any fresh information on the object's location. Both observa-
tions suggest that there has been a failure during the putdown procedure, so
the robot attempts another putdown, succeeding this time.

Object Assumed Location Actual Location
Robot Goal Goal
Calculator Goal Goal
Letter Kitchen Seminarroom

Navigate to Letter. By successfully delivering calculator to goal, the robot
has successfully carried out the �rst task and may thus move on to task 2. To
start with, it must travel to kitchen, where it has last seen letter, to pick it up.

Object Assumed Location Actual Location
Robot Kitchen Kitchen
Calculator Goal Goal
Letter Kitchen Seminarroom

Letter Has Been Moved. As mentioned before, letter isn't located at kitchen
any longer, as it has previously been moved to seminarroom, without the robot
noticing. When the robot arrives at kitchen and (to its astonishment) doesn't
stumble across letter, it assumes an exogenous event. To resolve the inconsis-
tency in its belief, it starts inserting exogenous events, one hypothesis for each
room available.

Object Assumed Location Actual Location
Robot Kitchen Kitchen
Calculator Goal Goal
Letter {Goal; Seminarroom; O�ce} Seminarroom

Looking for Object Letter. Again, the robot has to deal with ambiguous
information, as in the previous step multiple hypotheses for letter's location
were added to the knowledge base. In search for letter, it will �rst travel to goal,
then to seminarraum, where it will �nally �nd the object and pick it up.

105

3.5. Experiments Chapter 3. Practical Part

Object Assumed Location Actual Location
Robot Seminarroom Seminarroom
Calculator Goal Goal
Letter Seminarroom Seminarroom

Delivery to O�ce. The only task left is to deliver letter to o�ce. To this
end, the robot navigates to o�ce and attempts a putdown. It succeeds, however,
a sensor failure is arti�cially introduced, by breaking the gripper's light barrier
after it has released the object. The robot realizes that object information
coming from the AR recognition module is now in con�ict with the gripper's
sensory data, as the object can be seen standing upright on the �oor while the
gripper still seems to be holding something. After approximately 80 seconds
of calculation time the inconsistency is resolved by assuming a sensor failure.
The robot can thus return to its startup position, as both tasks have been
successfully accomplished.

Object Assumed Location Actual Location
Robot Kitchen Kitchen
Calculator Goal Goal
Letter O�ce O�ce

3.5.2 Longterm Experiment

To demonstrate the system's reliability, an experiment was designed to let the
robot perform a (theoretically) endless set of delivery tasks14. To this end, the
following scenario was created:

• 5 reference points corresponding to rooms

• 4 manipulable objects

• the perpetual task of taking the next object and moving it to the free
room

The experiment was carried out in a large open space belonging to an indoor
o�ce environment, under everyday conditions. Figure 3.21a shows a map of the
experiment, while Figure 3.21b conveys a real world view of the o�ce.

A total of three longterm experiments has been carried out, two of which
lasted 8 hours and one of which even made it to 12 hours. Statistics
collected during the test runs are listed in Table 3.4.

No exogenous events or other arti�cially caused failures were introduced
during these runs.

14http://en.wikipedia.org/wiki/Sisyphus

106

3.5. Experiments Chapter 3. Practical Part

(a) Map (b) Environment

Figure 3.21: A photo and a map of the environment that hosted the longterm
experiment. In the background the robot can be seen while picking up one of
the milkboxes. The photo has been taken approximately from the center of the
map, facing to the left.

Property Value Comment
Average Belief Repairs 5.5 Mostly due to pickup failures
Total Executed Actions 627
Total Successful Tasks 147 Tasks are assumed to be successful if

the situation after executing them is
consistent

Table 3.4: Statistics collected during longterm experiment, as described in
[GRSW11]

Battery Time

During long runs, battery time obviously becomes an issue. Based on data col-
lected during our experiments, we can state that the P3-DX, in the con�guration
described in this document runs approximately 3 1

2 hours with a set of three 12V
lead-acid batteries, before signaling low battery state. As our robot didn't o�er
the feature of charging itself at a battery-charging station at the time when
the experiments were conducted, the laptop controlling the robot was left run-
ning on its built-in battery instead of connecting it to the robot's power supply.
The laptop's 9-cell Lithium-Ion battery usually lasted 1 1

2 hours before reaching
a charge state we considered critical15. Every time the IndiGolog Connection
node received amove command, it would check the battery state before forward-
ing the command to the navigation stack. This being a very frequent command,
we could state that the battery state was constantly being monitored. In case

15An explanation for this relatively short runtime is high computational e�ort

107

3.5. Experiments Chapter 3. Practical Part

the battery state fell below a certain threshold16, the IndiGolog Connection
would hold execution and start issuing audible signals. A human agent would
then have to manually hotswap the laptop battery and con�rm completion of
the battery change process by pressing Enter. This hotswapping mechanism
was necessary in order to keep the system up and running, thus avoiding loss of
its internal state.

As the robot's batteries lasted more than twice as long as the laptop's, chang-
ing them on every second laptop battery change seemed to be a straightforward
solution.

Figure 3.22: Hotswapping the robot's batteries

Autonomous Recharging. A future option is to enable the robot to au-
tonomously recharge itself, by supplying it with a current collector and con-
necting the controller laptop to the robot's power supply. Based on this setup,
the robot's battery state has to be monitored instead of the laptop's. In com-
bination with the ROSARIA package, the robot provides information on the
battery voltage, but does not estimate the relative charge state out-of-the-box.
An experiment has shown that a voltage of 11,5V can be considered low. This
value could thus be used as a threshold for holding execution and navigating to
the docking station.

16During this experiment this was set to 20% battery charge

108

Chapter 4

Conclusions & Future Work

The aims of this project were to build up know-how in various subtopics of the
robotics domain and to con�gure an autonomous mobile delivery robot that can
serve as a basis for experiments. To enable the robot to memorize objects and
their relations in the real world, a world model had to be implemented and inte-
grated with the rest of the underlying ROS ecosystem. Several libraries for tasks
such as localization, vision, mapping, navigation, teleoperation, point cloud cal-
culations and coordinate transformations had to be combined and con�gured to
form a complete, working system.

A high-level belief diagnosis and repair system was connected to the low-
level robot platform and tested in two di�erent settings, as described in section
3.5. These successful experiments show that the outcome of this project meets
the initial expectations. The resulting robot platform is capable of

• safely navigating in con�ned o�ce environments avoiding obstacles and
dynamically replanning its path,

• detecting tagged objects,

• picking these objects up and delivering them to any spot in the map and

• dealing with various kinds of errors and unexpected events.

The world model implemented during the project is extendable, as manifold
functionality can be added based on the underlying support of managing object
attributes and relations. In upcoming versions, the WMLogic module could be
enriched with new reasoning capabilities. Also, at some point untagged object
recognition would be a useful addition to the system. Besides new modules and
approaches, improving the old ones is always a relevant topic. For instance,
it would be an interesting challenge to speed navigation up while at the same
time maintaining the current execution safety. This might only be possible by
covering a larger �eld of view. The Pioneer P3-DX could be equipped with
various other actuators that would enable it to manipulate objects at others

109

Chapter 4. Conclusions & Future Work

than ground level. With more robot platforms available, its performance in
multi-agent systems could be tested and enhanced.

The implementation of a world model for a mobile robot requires under-
standing how positions and orientations are treated in 3D space and how they
can be calculated with. Background information on traditional problems such as
navigation, localization, mapping etc. is necessary even though the modules are
already available, to allow for their correct con�guration. This project was thus
an ideal way to build up hands-on knowledge in a broad set of robotics-speci�c
topics, and having a functioning robot platform as a result is a motivating and
approving factor.

110

Bibliography

[Act03] ActivMedia Robotics, LLC (Hrsg.): Pioneer 3 & Pioneer 2
H8-Series Operations Manual. version 3. ActivMedia Robotics,
LLC, August 2003

[BRST00] Boutilier, C. ; Reiter, R. ; Soutchanski, M. ; Thrun, S.:
Decision-Theoretic, High-Level Agent Programming in the Situa-
tion Calculus. In: Proceedings of the Seventeenth National Con-
ference on Arti�cial Intelligence (AAAI-00) and Twelfth Confer-
ence on Innovative Applications of Arti�cial Intelligence (IAAI-00),
AAAI Press, 2000, S. 355�362

[DGLLS09] De Giacomo, Giuseppe ; Lespérance, Yves ; Levesque,
Hector J. ; Sardina, Sebastian: IndiGolog: A High-Level
Programming Language for Embedded Reasoning Agents.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.

1.1.146.2722. Version: 2009

[DLL00] De Giacomo, G. ; Lésperance, Y. ; Levesque, H.: ConGolog,
A Concurrent Programming Language based on Situation Calculus.
In: Arti�cial Intelligence 121 (2000), Nr. 1�2, S. 109�169

[FAU10] Golog - Situationskalkuel in Logik erster Stufe. Lecture Slides -
Kognitive Systeme 1, 2010. � Lehrstuhl fuer Kuenstliche Intelligenz
- Friedrich-Alexander-Universitaet Erlangen-Nuernberg

[FBT97] Fox, D. ; Burgard, W. ; Thrun, S.: The dynamic window
approach to collision avoidance. In: Robotics & Automation Mag-
azine, IEEE 4 (1997), Nr. 1, 23�33. http://ieeexplore.ieee.

org/xpls/abs_all.jsp?arnumber=580977

[Fox01] Fox, Dieter: KLD-Sampling: Adaptive Particle Filters. In: In
Advances in Neural Information Processing Systems 14, MIT Press,
2001, S. 713�720

[FS10] Felfernig, Alexander ; Steinbauer, Gerald: Advanced Topics
in AI - Logic-Based Programming for Agents. Lecture Slides, 2010

111

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.146.2722
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.146.2722
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=580977
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=580977

BIBLIOGRAPHY BIBLIOGRAPHY

[GRSW11] Gspandl, Stephan ; Reip, Michael ; Steinbauer, Gerald ; Wol-

fram, Máté: A Dependable Decision-Execution Cycle for Au-
tonomous Robots. San Francisco, California, USA : Submitted for
publication at the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2011

[GSB07] Grisetti, Giorgio ; Stachniss, Cyrill ; Burgard, Wolfram: Im-
proved Techniques for Grid Mapping With Rao-Blackwellized Par-
ticle Filters. In: IEEE Transactions on Robotics 23 (2007), Februar,
Nr. 1, 34�46. http://dx.doi.org/10.1109/TRO.2006.889486. �
DOI 10.1109/TRO.2006.889486. � ISSN 1552�3098

[Hop10] Hoppe, Christof: Large-scale Robotic SLAM through Visual Map-
ping. Graz, Austria, Graz University of Technology - Institute for
Computer Graphics and Vision, Diplomarbeit, November 2010

[IB06] Iagnemma, K. ; Buehler, M.: Special Issue on the DARPA Grand
Challenge. In: Journal of Field Robotics 23 (2006), Nr. 8-9

[KB99] Kato, Hirokazu ; Billinghurst, Mark: Marker Tracking and
HMD Calibration for a Video-Based Augmented Reality Conferenc-
ing System. In: Augmented Reality, International Workshop on 0
(1999), 85�94. http://dx.doi.org/10.1109/IWAR.1999.803809.
� DOI 10.1109/IWAR.1999.803809. ISBN 0�7695�0359�4

[KBK08] Kolb, Andreas ; Barth, Erhardt ; Koch, Reinhard: ToF-Sensors:
New Dimensions for Realism and Interactivity. In: Computer Vi-
sion and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE
Computer Society Conference on, 2008

[Koc08] Koch, Thomas: Rotationen mit Quaternionen in der Comput-
ergra�k. Gelsenkirchen, Germany, Fachhochschule Gelsenkirchen,
Diplomarbeit, January 2008

[McC63] McCarthy, J.: Situations, Actions and Causal Laws / Stanford
University. 1963. � Forschungsbericht

[Mic09] Microsoft Corporation (Hrsg.): Microsoft(R) LifeCam Cin-
ema(TM) - Technical Data Sheet. Rev. 0909A. Microsoft Corpora-
tion, 2009. http://www.microsoft.com

[QCG+09] Quigley, Morgan ; Conley, Ken ; Gerkey, Brian P. ; Faust,
Josh ; Foote, Tully ; Leibs, Jeremy ; Wheeler, Rob ; Ng, An-
drew Y.: ROS: an open-source Robot Operating System. In: ICRA
Workshop on Open Source Software, 2009

[Rei01] Reiter, Raymond: Knowledge in Action: Logical
Foundations for Specifying and Implementing Dynami-
cal Systems. illustrated edition. The MIT Press, 2001

112

http://dx.doi.org/10.1109/TRO.2006.889486
http://dx.doi.org/10.1109/IWAR.1999.803809
http://www.microsoft.com

BIBLIOGRAPHY BIBLIOGRAPHY

http://www.amazon.com/exec/obidos/redirect?tag=

citeulike07-20&path=ASIN/0262182181. � ISBN 0262182181

[ROS02] genesis3d.com - Using Quaternions to Represent Ro-
tation. Online. http://www.genesis3d.com/~kdtop/

Quaternions-UsingToRepresentRotation.htm. Version: 2002. �
last visited 3 May 2011

[ROS08] NASA.gov - Aircraft Rotations. Online. http://www.grc.nasa.

gov/WWW/K-12/airplane/rotations.html. Version: 2008. � last
visited 3 May 2011

[ROS11a] ARToolkitPlus - Presentation. Online. http://studierstube.

icg.tu-graz.ac.at/handheld_ar/artoolkitplus.php.
Version: 2011. � last visited 3 May 2011

[ROS11b] Microsoft Kinect Teardown. Online. http://www.ros.org/wiki/

tf. Version: 2011. � last visited 5 May 2011

[ROS11c] ROS.org Wiki. Online. http://www.ros.org/wiki/.
Version: 2011. � last visited 12 April 2011

[ROS11d] ROS.org Wiki - Action Library. Online. http://www.ros.org/

wiki/actionlib. Version: 2011. � last visited 3 May 2011

[ROS11e] ROS.org Wiki - base local planner. Online. http://www.ros.org/
wiki/base_local_planner. Version: 2011. � last visited 3 May
2011

[ROS11f] ROS.org Wiki - Master. Online. http://www.ros.org/wiki/

Master. Version: 2011. � last visited 3 May 2011

[ROS11g] ROS.org Wiki - Messages. Online. http://www.ros.org/wiki/

msg. Version: 2011. � last visited 3 May 2011

[ROS11h] ROS.org Wiki - Packages. Online. http://www.ros.org/wiki/

Packages. Version: 2011. � last visited 3 May 2011

[ROS11i] ROS.org Wiki - Parameter Server. Online. http://www.ros.org/
wiki/ParameterServer. Version: 2011. � last visited 3 May 2011

[ROS11j] ROS.org Wiki - Point Cloud Library. Online. http://www.ros.

org/wiki/pcl. Version: 2011. � last visited 3 May 2011

[ROS11k] ROS.org Wiki - ROS nodes in Java. Online. http://www.ros.

org/wiki/rosjava. Version: 2011. � last visited 3 May 2011

[ROS11l] ROS.org Wiki - rosmsg tool. Online. http://www.ros.org/wiki/
rosmsg. Version: 2011. � last visited 3 May 2011

113

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0262182181
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0262182181
http://www.genesis3d.com/~kdtop/Quaternions-UsingToRepresentRotation.htm
http://www.genesis3d.com/~kdtop/Quaternions-UsingToRepresentRotation.htm
http://www.grc.nasa.gov/WWW/K-12/airplane/rotations.html
http://www.grc.nasa.gov/WWW/K-12/airplane/rotations.html
http://studierstube.icg.tu-graz.ac.at/handheld_ar/artoolkitplus.php
http://studierstube.icg.tu-graz.ac.at/handheld_ar/artoolkitplus.php
http://www.ros.org/wiki/tf
http://www.ros.org/wiki/tf
http://www.ros.org/wiki/
http://www.ros.org/wiki/actionlib
http://www.ros.org/wiki/actionlib
http://www.ros.org/wiki/base_local_planner
http://www.ros.org/wiki/base_local_planner
http://www.ros.org/wiki/Master
http://www.ros.org/wiki/Master
http://www.ros.org/wiki/msg
http://www.ros.org/wiki/msg
http://www.ros.org/wiki/Packages
http://www.ros.org/wiki/Packages
http://www.ros.org/wiki/Parameter Server
http://www.ros.org/wiki/Parameter Server
http://www.ros.org/wiki/pcl
http://www.ros.org/wiki/pcl
http://www.ros.org/wiki/rosjava
http://www.ros.org/wiki/rosjava
http://www.ros.org/wiki/rosmsg
http://www.ros.org/wiki/rosmsg

BIBLIOGRAPHY BIBLIOGRAPHY

[ROS11m] ROS.org Wiki - rosparam tool. Online. http://www.ros.org/

wiki/rosparam. Version: 2011. � last visited 3 May 2011

[ROS11n] ROS.org Wiki - rosservice tool. Online. http://www.ros.org/

wiki/rosservice. Version: 2011. � last visited 3 May 2011

[ROS11o] ROS.org Wiki - roswtf tool. Online. http://www.ros.org/wiki/

roswtf. Version: 2011. � last visited 3 May 2011

[ROS11p] ROS.org Wiki - RViz User Guide. Online. http://www.ros.org/
wiki/rviz/UserGuide. Version: 2011. � last visited 8 May 2011

[ROS11q] ROS.org Wiki - RXBag. Online. http://www.ros.org/wiki/

rxbag. Version: 2011. � last visited 3 May 2011

[ROS11r] ROS.org Wiki - RXPlot. Online. http://www.ros.org/wiki/

rxplot. Version: 2011. � last visited 3 May 2011

[ROS11s] ROS.org Wiki - Services. Online. http://www.ros.org/wiki/

Services. Version: 2011. � last visited 3 May 2011

[ROS11t] ROS.org Wiki - Stack Manifest. Online. http://www.ros.org/

wiki/StackManifest. Version: 2011. � last visited 3 May 2011

[ROS11u] ROS.org Wiki - Stacks. Online. http://www.ros.org/wiki/

Stacks. Version: 2011. � last visited 3 May 2011

[ROS11v] ROS.org Wiki - Transformation Framework. Online. http://www.
ros.org/wiki/tf. Version: 2011. � last visited 3 May 2011

[ROS11w] ROS.org Wiki - Tutorials - Creating Messages and Ser-
vices. Online. http://www.ros.org/wiki/ROS/Tutorials/

CreatingMsgAndSrv. Version: 2011. � last visited 3 May 2011

[ROS11x] TUG IST Wiki - Robotics. Online. http://www.ist.tugraz.at/

robotics/bin/view/Main/WebHome. Version: 2011. � last visited
3 May 2011

[ROS11y] TUG IST Wiki - SVN and Wiki Guidelines. Online.
http://www.ist.tugraz.at/robotics/bin/view/Main/

Guidelines_svn_wiki. Version: 2011. � last visited 3 May
2011

[ROS11z] ROS.org Wiki - Installation Instructions. Online. http://www.

ros.org/wiki/ROS/Installation. Version: 2011. � last visited 12
April 2011

[SICa] SICK AG (Hrsg.): Lasermeÿsystem LMS 200. Reute, Germany:
SICK AG, http://www.sick.de

114

http://www.ros.org/wiki/rosparam
http://www.ros.org/wiki/rosparam
http://www.ros.org/wiki/rosservice
http://www.ros.org/wiki/rosservice
http://www.ros.org/wiki/roswtf
http://www.ros.org/wiki/roswtf
http://www.ros.org/wiki/rviz/UserGuide
http://www.ros.org/wiki/rviz/UserGuide
http://www.ros.org/wiki/rxbag
http://www.ros.org/wiki/rxbag
http://www.ros.org/wiki/rxplot
http://www.ros.org/wiki/rxplot
http://www.ros.org/wiki/Services
http://www.ros.org/wiki/Services
http://www.ros.org/wiki/Stack Manifest
http://www.ros.org/wiki/Stack Manifest
http://www.ros.org/wiki/Stacks
http://www.ros.org/wiki/Stacks
http://www.ros.org/wiki/tf
http://www.ros.org/wiki/tf
http://www.ros.org/wiki/ROS/Tutorials/CreatingMsgAndSrv
http://www.ros.org/wiki/ROS/Tutorials/CreatingMsgAndSrv
http://www.ist.tugraz.at/robotics/bin/view/Main/WebHome
http://www.ist.tugraz.at/robotics/bin/view/Main/WebHome
http://www.ist.tugraz.at/robotics/bin/view/Main/Guidelines_svn_wiki
http://www.ist.tugraz.at/robotics/bin/view/Main/Guidelines_svn_wiki
http://www.ros.org/wiki/ROS/Installation
http://www.ros.org/wiki/ROS/Installation
http://www.sick.de

BIBLIOGRAPHY BIBLIOGRAPHY

[SICb] SICK AG (Hrsg.): LMS200/211/221/291 Laser Measurement
Systems - Technical Description. Reute, Germany: SICK AG,
http://www.sick.de

[SN04] Siegwart, Roland ; Nourbakhsh, Illah R.: Introduction to Au-
tonomous Mobile Robots. Bradford Book, 2004 http://portal.

acm.org/citation.cfm?id=983690. � ISBN 026219502X

[SS03] Scharstein, D. ; Szeliski, R.: High-accuracy stereo depth maps
using structured light. Los Alamitos, CA, USA : IEEE Computer
Society, 2003. � ISSN 1063�6919, I-195�I-202

[Ste] Steder, Bastian: The Point Cloud Library - PCL. Presentation
Slides. http://ais.informatik.uni-freiburg.de/teaching/

ws10/robotics2/pdfs/rob2-12-ros-pcl.pdf. � University of
Freiburg

[TB09] Tenorth, Moritz ; Beetz, Michael: KNOWROB: knowledge pro-
cessing for autonomous personal robots. In: IROS'09: Proceed-
ings of the 2009 IEEE/RSJ international conference on Intelligent
robots and systems. Piscataway, NJ, USA : IEEE Press, 2009. �
ISBN 978�1�4244�3803�7, 4261�4266

[TBB+99] Thrun, S. ; Bennewitz, M. ; Burgard, W. ; Cremers, A. B. ;
Dellaert, F. ; Fox, D. ; Hähnel, D. ; Rosenberg, C. ; Roy,
N. ; Schulte, J. ; Schulz, D.: MINERVA: A Second-Generation
Museum Tour-Guide Robot. In: IEEE International Conference on
Robotics and Automation, 1999

[Ten10] Tenorth, Moritz: Knowledge Processing for Autono mous Robots.
CoTeSys Presentation Slides, 2010

[TFBD01] Thrun, Sebastian ; Fox, Dieter ; Burgard, Wolfram ; Dellaert,
Frank: Robust Monte Carlo localization for mobile robots. In: Arti-
�cial Intelligence 128 (2001), Nr. 1-2, 99�141. http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.18.8488

[TO06] Trebi-Ollennu, A.: Special Issue on Robots on the Red Planet.
In: IEEE Robotics & Automation Magazine 13 (2006), Nr. 2

[WGRS11] Wolfram, Máté ; Gspandl, Stephan ; Reip, Michael ; Stein-
bauer, Gerald: Robust Robotics Using History-Based-Diagnosis in
IndiGolog. Hall in Tyrol, Austria : Austrian Robotics Workshop,
2011

115

http://www.sick.de
http://portal.acm.org/citation.cfm?id=983690
http://portal.acm.org/citation.cfm?id=983690
http://ais.informatik.uni-freiburg.de/teaching/ws10/robotics2/pdfs/rob2-12-ros-pcl.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws10/robotics2/pdfs/rob2-12-ros-pcl.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.8488
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.8488

	Introduction
	KnowRob

	Theoretical Part
	Transformations
	Rotation Matrices
	Quaternions
	Coordinate Transformations

	Mapping
	Map Representation
	Map Creation

	Localization
	Kalman Filter Localization
	Markov Localization
	Monte Carlo Localization
	Challenges in Localization

	Navigation
	Global Path Planning
	Local Planning and Obstacle Avoidance

	The Robot Operating System (ROS)
	Languages Supported by ROS
	ROS File System
	Nodes
	Master
	Messages
	Topics
	Services
	ROS Time
	Parameter Server
	Networking
	Transformation Framework
	Point Cloud Library
	Tools
	Debugging with ROS
	RViz
	Advanced Concepts

	Situation Calculus
	The Qualification Problem
	The Frame Problem
	Basic Elements
	Basic Action Theories
	Golog
	IndiGolog

	Object Recognition
	AR Tag Recognition Basics
	AR Recognition backed by Depth Information

	Practical Part
	Hardware
	Robot Base
	Sonar
	Gripper
	Laser Measurement Unit
	Kinect
	High-Definition Webcam
	Controller Laptop

	World Model
	Aliases
	Attributes
	Relations
	Messages
	Topics
	Services
	System Architecture
	Sample Use Case
	WMLogic
	World Model Visualization

	Execution Modules
	Action Servers
	Simple State Machine
	Indigolog Integration

	System Configuration
	Mapping
	Localization
	Navigation
	Object Recognition

	Experiments
	Belief Repair Demonstration
	Longterm Experiment

	Conclusions & Future Work

