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Abstract

This thesis is devoted to the investigation of how bilinear pairings can be used in cryp-
tography with a special focus on cryptographic schemes that can be build using bilinear
pairings.

First we describe the basic concepts of elliptic and hyperelliptic curves over finite fields,
as well as rational functions and divisors on these curves. Then we introduce the Weil
and Tate pairing on these curves. After that we investigate the applications of pairings
in cryptography, by first investigating how pairings can be used to attack elliptic curve
cryptography. Then we describe how pairings can be used to construct mathematical
problems, which then serve as a basis for some interesting cryptographic schemes and
protocols, which are described as well. Since the computation of a pairing is usually a
costly operation, we investigate methods to optimise the pairing calculation and we pro-
vide detailed information for the most important optimisations. Finally, a pairing based
cryptographic library is implemented in Java, which includes the implementation of bi-
linear pairings on elliptic curves, as well as the optimisations chosen from our detailed
investigation. Furthermore the library provides a key agreement scheme, several encryp-
tion schemes and a signature scheme.

Keywords: elliptic curves, cryptography, public key cryptography, pairings, pairing based
cryptography, PBC, identity based encryption, IBE, Bilinear Diffie-Hellman, BDH.
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Kurzfassung

Bilineare Paarungen werden nicht mehr nur für Angriff auf elliptischen Kurven eingesetzt,
sondern können auch verwendet werden um einige neuartige Verschlüsselungsverfahren zu
konstruieren, für welche es bisher keine bekannten Konstruktionen gab. Daher ist diese
Thesis der Untersuchung gewidmet, wie man bilineare Paarungen im Allgemeinen in der
Kryptographie anwenden kann.

In dieser Arbeit werden als erstes die grundlegenden Konzepte von elliptischen und
hyperelliptischen Kurven über endlichen Körpern beschrieben, sowie rationale Funktionen
und Divisoren gefolgt von den Weil und Tate Paarungen auf diesen Kurven. Dann wird un-
tersucht wie man Paarungen in der Kryptographie anwenden kann, z.B um Kryptographie
mit elliptischen Kurven zu attackieren. Es wird beschrieben, wie Paarungen verwendet
werden können um mathematische Probleme zu konstruieren, die als Grundlage für einige
interessante kryptographische Systeme und Protokolle dienen welche auch gut beschrieben
werden. Weil die Berechnung von Paarungen in der Regel eine kostspielige Operation ist,
werden Methoden zur Optimierung und dieser Berechnungen untersucht und es werden
detaillierte Informationen für die wichtigsten Optimierungen beschrieben. Schließlich wird
eine Java Bibliothek für Kryptographische Paarungen implementiert, welches die Umset-
zung von bilinearen Paarungen auf elliptischen Kurven beinhaltet, sowie deren Optimie-
rungen die aus unserer detaillierten Untersuchung hervor gegangen sind. Des Weiteren
stellt die Bibliothek ein Schlüsselvereinbarungs-Schema, mehrere Verschlüsselungsverfah-
ren und Signaturverfahren.

Stichwörter: elliptische Kurven, Kryptographie, Asymmetrisches Kryptographie, Bili-
neare Paarungen, Kryptographische Paarungen, PBC, Identitätbasierte Verschlüsselung,
IBE, Bilineare Diffie-Hellman, BDH.
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Chapter 1

Introduction

Since ancient times people continuously have been trying to keep information secret from
others. Usually the main goal was to make some information not understandable for any
one except for the parties which priory have agreed on some scheme.

Nowadays, modern cryptography is present in every aspect of our life. Its job is
to design cryptographic algorithms around computational hardness assumptions, such
that making it infeasible for any adversary to break those algorithms. When speaking
of cryptography, one should differ between symmetric key cryptography and public key
cryptography. In the case of symmetric key cryptography all communicating parties share
the same secret which enables them to encrypt and decrypt the information. All parties
can securely communicate as long as they all possess the used secret and they are the only
ones to possess it. The main practical problem with symmetric key cryptography is the
distribution of the secret between parties, which is known as key exchange.

When there was no public key cryptography, the key exchange was done by either
physical delivery (such as face-to-face meetings, use of a trusted courier) or by sending the
key through an existing encrypted channel. The problem with physical delivery is that it
is very unpractical, usually expensive, mostly unsafe and one should plan communication
ahead. In the case of using an existing encrypted channel the security depends on the
security of a previous key exchange, because the parties should a priori have a shared
secret. The solution to those problems is the is the use of public key cryptography. In
public key cryptography, each entity has a public and a private key and there is no need for
prior key exchange in order to securely communicate, since one makes the public key public
and anyone can use it to encrypt data. Then, only the person that has the corresponding
private key is able to decrypt the encrypted data. A practical problem with such public
key cryptosystems is the distribution of public keys. The question is how to verify the
authenticity of a public key? How to be sure that the public key really belongs to the
person we think it does?

Usually, in order to solve this problem, digital certificates are used. In 1985 Shamir
came with another, better idea how to solve this problem. The idea was to use the
identity of a user as public key (or to derive the public key directly from public key)
[57]. By directly using the identity of the user as public key, the question of the public
key authenticity is no longer an issue and there is no need for certificates. However, he
provided only a signature scheme and for years there was no known solution for an identity
based encryption scheme. Here is the point where pairings come into play.

Basically, a pairing on an curve is, a function which takes two points of a specific order
and outputs a element of a finite field. In 1991, Menezes, Okamoto, and Vanstone made
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CHAPTER 1. INTRODUCTION 2

use of pairings in cryptography for the first time. They used the Weil pairing to transform
the Elliptic Curve Discrete Logarithm Problem to the Discrete Logarithm Problem in a
finite field, where efficient algorithms exist. In 1994, the same attack was constructed by
Frey and Rück using Tate pairing [22]. For years, pairings were known as good tool to
constructs attacks on both, elliptic and hyperelliptic curves.

This reputation changed in 2000, when Joux used pairings to construct a tripartite
Diffie-Hellman key agreement protocol, by demonstrating that the pairings can be also
used to construct cryptosystems rather than only for attacking purposes. Since then there
have been many cryptographic schemes constructed using pairings. One of the first ones
and the most popular one is the identity based encryption scheme constructed by Boneh-
Franklin in 2001, which gave the first fully provable secure identity based encryption
scheme, almost after 2 decades after the concept was introduced by Shamir. Besides the
identity based encryption, there are many other applications of pairing based cryptography
such as: short signatures, group signatures, etc.



Chapter 2

Preliminaries

2.1 Abstract Algebra

In this section, we will give some basic definitions and concepts of groups, rings and fields.
Extended explanations can be found in [49].

Definition 2.1.1. (group). A group denoted as G is a set with some binary operation,
which satisfies closure, associativity, identity and invertibility condition, also known
as group axioms.

The group can have a finite number of elements or an infinite number of them and this
number is an important feature of the group.

Definition 2.1.2. (order). The order of a group denoted as |G| is called the number of
elements in G. If |G| is finite then the group is ”finite”.

Definition 2.1.3. (cyclic group, generator of a group). A group G is cyclic if there is
an element g ∈ G such that for each a ∈ G there is an integer i with a = gi = g · g · . . . · g︸ ︷︷ ︸

i−times

.

Such an element g is called a generator of G.

Definition 2.1.4. (ring, commutative ting). A ring denoted R is a set with two
binary operations + and · (usually called addition and multiplication), which satisfies ad-
ditive associativity, additive commutativity, additive identity, additive inverse,
distributivity and multiplicative associativity condition.

The ring is a commutative ring if it satisfies the multiplicative commutativity
condition.

Finally, we come to the most important definition of this section, which is the field.

Definition 2.1.5. (field). A field, denoted as F, is a commutative ring in which all
non-zero elements have multiplicative inverses. F denotes the algebraic closure of F.

Since the field has the closure property with some binary operation, it means that
whenever we perform a binary operation, let us say addition, between two elements of
the field, the result is always another element of the field. So, one can navigate through
elements of the group by initially getting one element of the field and performing addition
with the multiplicative identity, which results in the another element and then adding
this result element again with the multiplicative identity by gaining yet another element

3



CHAPTER 2. PRELIMINARIES 4

and so on. If one keeps performing this addition and if the fields finite, then after finite
n number of steps the result would be the initial element. This property (n) is called
characteristic of the field. The formal definition is given below.

Definition 2.1.6. (field characteristic). The characteristic of a field is the smallest
number of times one must add the multiplicative identity element (1) to itself in order
to gain the additive identity element (0).

Example 2.1.1. Zp is a field with addition and multiplication modulo p where p is a
prime. In this case the characteristic of Zp is p.

Definition 2.1.7. (subfield, extension field) Let F be a field. If K is a subset of the
underlying set of F which is closed with respect to the field operations and inverses in F,
then K is said to be a subfield of F, and F is an extension field of K. In this case F/K
(”F over K”) is said to be a field extension.

Later we will deal a lot with extension fields Fq, where q = pn and p is prime. In order
to represent Fpn , one finds an irreducible polynomial m(X) ∈ Fp[X] of degree n and then
uses the isomorphism Fpn ' Fp[X]/(m(X)).

2.2 Elliptic Curves

In this section we will give a brief introduction to elliptic curves. The aim of this section
is to introduce elliptic curves, point representation and group arithmetic of points in an
elliptic curve. Most of the concepts you see in this section are taken from [31].

Definition 2.2.1. (elliptic curve over field). An elliptic curve E over the field F is
described as a smooth curve in the so called long Weierstrass form:

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 (2.1)

where a1, a2, a3, a4, a6 ∈ F.

The elliptic curve E(F) is the set of points (x, y) ∈ F × F that satisfy this equation,
along with the point at infinity, which is denoted by O (sometimes simply by ∞).

We use the expression ’the elliptic curve E over the field F’, since the coefficients ai (for
1 ≤ i ≤ 6) that are used to define the equation, are elements of the field F. The definition
also states that the curve should be smooth. In order for a curve to be smooth, it must
not have any singular points, which means that there must not exist a point of E(F) where
both partial derivatives vanish. So, for any point P (x, y) ∈ E(F) the conditions:

a1y − 3x2 − 2a2x− a4 = 0 (2.2)

and
2y + a1x+ a3 = 0 (2.3)

must not be satisfied simultaneously.
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This could be easily achieved by ensuring that ∆ 6= 0, where ∆ is the discriminant of
E, which is defined as follows:

∆ = −d22d8 − 8d34 − 27d26 + 9d2d4d6

d2 = a21 + 4a2

d4 = 2a4 + a1a3

d6 = a23 + 4a6

d8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24

2.2.1 Group Law

The most interesting part of elliptic curves is that the points of an elliptic curve form an
abelian additive group where the addition is performed using the chord and tangent rule
and O is used as identity element. In the following theorem [33, Theorem 5.5] we will give
the group properties of points of the elliptic curve.

Theorem 2.2.1. Let E be an elliptic curve. Then the addition law on E has the following
properties:

• Identity:
P +O = O + P ∀ P ∈ E

• Inverse element:
P + (−P ) = O ∀ P ∈ E

• Associativity:
P + (Q+R) = (P +Q) +R ∀ P,Q,R ∈ E

• Commutativity:
P +Q = Q+ P ∀ P,Q ∈ E

The chord and tangent rule is explained geometrically. For any given two points
P = (x1, y2) and Q = (x2, y2) of an elliptic curve, in order to add them, first one should
draw a straight line through P and Q. Based on the Bezout’s theorem, this line always
intersects the curve at a third point R which represents −(P +Q). In order to get P +Q
we need to obtain −R, which is the third intersection point of the line through R and O.

If P = Q then the line through P and Q represents the tangent to the curve at P .
This line intersects at the second point R. By reflecting the point R across x-axes we get
−R = P +Q = P + P = 2P , which represents the double of P (see Figure 2.1).

2.2.2 Elliptic Curves over Finite Fields

We defined earlier the Elliptic curve over a field given in long Weierstrass form. Here we
will define the elliptic curve over finite fields Fq = Fpn with p > 3. The equation which it
is used to describe the elliptic curves in these fields gets simplified and it is called short
Weierstrass form.
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(a) Point addition P +Q = R (b) Point doubling P + P = R

Figure 2.1: Geometric addition and doubling of elliptic curve (y2 = x3 − x+ 2) points

Definition 2.2.2. (elliptic curve over finite fields). An elliptic curve E over the finite
field Fpn with p > 3 is given through an equation of the form:

Y 2 = X3 + aX + b

where
a, b ∈ Fq and − (4a3 + 27b2) 6= 0.

Definition 2.2.3. (supersingular curves). An elliptic curve E defined over a finite
field Fq of characteristic p is supersingular if t|p, where t = q + 1−#E(Fq). Otherwise
the curve is ordinary.

The chord-tangent rule for point addition can be also used for finite fields. In fact using
geometry one can derive the explicit formulas for adding and doubling points. So, let E
be a elliptic curve defined over a finite field Fq and let P (x1, y1), Q(x2, y2) and R(x3, y3)
be three points of the curve E. In Table 2.1 the explicit formulas for inversion, addition
and doubling of points P,Q and R in Fq are given.

Table 2.1: Explicit formulas for point inversion, addition and doubling in Fq

R = (−P ) x3 = x1 y3 = −y1
R = P +Q x3 = ( y2−y1x2−x1 )2 − x1 − x2

y3 = ( y2−y1x2−x1 )(x1 − x3)− y1

R = 2P x3 = (
3x21+a
2y1

)2 − 2x1

y3 = (
3x21+a
2y1

)(x1 − x3)− y1

Note that here a
b means a · b−1 in Fq.
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The following example will show the point addition, using the formulas in table 2.1,
for the elliptic curve defined over prime finite filed.

Example 2.2.1. Let us pick an elliptic curve y2 = x3 − x+ 2 and a prime finite field F7.
First we need to make sure that the discriminant is not zero.

−(4a3 + 27b2) = −(4(−1)3 + 27 · 22) = −(−4 + 108) =

= −104 = −104 mod (7) = 1 6= 0

Here we pick a random point P = (2, 1). Now we compute point Q(x2, y2) where
Q = 2P .

x2 = (
3x21 + a

2y1
)2 − 2x1 = (

3 · 22 − 1

2 · 1
)2 − 2 · 2 = (

11

2
)2 − 4 =

= (11 · 2−1)2 − 4 = (11 · 4)2 − 4 = 1932 mod (7) = 0

y2 = (
3x21 + a

2y1
)(x1 − x3)− y1 = (

3 · 22 − 1

2 · 1
)(2− 0)− 1 = (

11

2
) · 2− 1 =

= (11 · 2−1) · 2− 1 = 11 · 4 · 2− 1 = 87 mod (7) = 3

So, now we have point Q = (0, 3) which is the double of point P = (2, 1). Now, let us
try to add P and Q. So R = (x3, y3) = P + Q, which means x1 = 2, y1 = 1, x2 = 0 and
y2 = 3

x3 = (
y2 − y1
x2 − x1

)2 − x1 − x2 = (
3− 1

0− 2
)2 − 2− 0 = (

2

−2
)2 − 2 =

= (2 · (−2)−1)2 − 2 = (2 · 3)2 − 2 = 36− 2 = 34 mod(7) = 6

y3 = (
y2 − y1
x2 − x1

)(x1 − x3)− y1 = (
3− 1

0− 2
)(2− 6)− 1 = (

2

−2
)(−4)− 1 =

(2 · (−2)−1)(−4)− 1 = (2 · 3)(−4)− 1 = −24− 1 = −25 mod(7) = 3

This elliptic curve has 9 points (including O), which are:
P1 = (0, 3) P2 = (0, 4) P3 = (1, 3) P4 = (1, 4) P5 = (2, 1)
P6 = (2, 6) P7 = (6, 3) P8 = (6, 4) P9 = O

2.3 Hyperelliptic curves

This section will give information about mathematical aspects of hyperelliptic curves (see
[20, 48, 41]).

In the previous section we introduced some concepts of elliptic curves, which in fact
are a special class of algebraic curves. Now we will introduce the hyperelliptic curves,
which are another special class of algebraic curves and can be considered as generalisation
of elliptic curves.
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An important feature is the genus of the curve which is determined from the degree of
the polynomial of the curve. A polynomial of degree 2g+1 or 2g+2 gives a curve of genus
g. There do exit hyperelliptic curves of every genus g ≥ 1. An elliptic curve represents a
hyperelliptic curve of genus g = 1.

Definition 2.3.1. (hyperelliptic curve) A hyperelliptic curve C of genus g (g ≥ 1)
defined over F is given by equation

fC : y2 + h(x)y = f(x) (2.4)

where h(x) ∈ F is a polynomial of degree at most g, f(x) ∈ F is a monic polynomial
of degree 2g + 1 and there are no solutions (u, v) ∈ F × F which simultaneously satisfy
the equation v2 + h(u)v = f(u) and partial derivative equations 2v + h(u) = 0 and
h′(u)v − f ′(u) = 0.

A point of the elliptic curve is any solution (x, y) ∈ F × F that satisfies the Equation
(2.4). The set of points is denoted by C. The set of F - rational points of the curve is
denoted by C(F). Similar to the elliptic curves there exists the point of infinity denoted
by O.

A singular point on C is a point P = (x, x) ∈ F × F, in which the equation y2 +
h(x)v = f(x) and partial derivative equations 2y + h(x) = 0 and h′(x)y − f ′(x) = 0 are
simultaneously satisfied. From the definition of a hyperelliptic curve and the definition of
a singular point, it is easy to see that hyperelliptic curves have no singular points.

For some P = (x, y) ∈ C, the opposite point is the point P̃ = (x,−y− h(x)) ∈ C. The
opposite point of the point at infinity is defined to be the point at infinity itself (Õ = O).
Finite points that satisfy (P̃ = P ) are called special points. Points that are not special,
are called ordinary points.

Example 2.3.1. Consider the hyperelliptic curve C given by equation:

y2 + x2y = x5 − 4x3 + 3x

over R. It is easy to see that h(x) = x2, f(x) = x5 − 4x3 + 3x and g = 2. The plot is
displayed in Figure 2.2.

Example 2.3.2. Now consider the same curve used in Example 2.3.1 (y2 + x2y = x5 −
4x3 + 3x), but now over the finite field Z11. We can find the Z11-rational points that lie
on the curve:

P1 = (0, 0) P2 = (1, 0) P3 = (1, 10) P4 = (5, 0) P5 = (5, 8)
P6 = (6, 0) P7 = (6, 8) P8 = (8, 1) P9 = (9, 1) P10 = (9, 6)
P11 = (10, 0) P12 = (10, 10) P13 = O

The points P1 and P11 are special points.

In the case of elliptic curves we could build a group by adding points, where addition is
meant to be the reflection over x-axis of the third point which is intersected, when drawing
a line through two points that are being added. We cannot build a group by applying
chord-and tangent rule in a hyperelliptic curve, since the line through two given points
can intersect at more than a point (other than these two given points). Fortunately there
is another way of building a group, by using so called divisors. Before we continue to
explain the divisors we need to give some definitions regarding polynomial functions and
some other related concepts.
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Figure 2.2: Hypereliptic curve (y2 + x2y = x5 − 4x3 + 3x) over R

Definition 2.3.2. (coordinate ring, polynomial function). The coordinate ring of
C over Fq, denoted Fq[C] is the quotient ring

Fq[C] = Fq[x, y]/(y2 + h(x)y − f(x))

where (y2 + h(x)y − f(x)) := {p(x, y) · (y2 + h(x)y − f(x)) : p(x, y) ∈ Fq[x, y]}. This
definition can be extended to Fq. An element of Fq[C] is called polynomial function on
C.

For each polynomial function G(x, y) ∈ Fq[C], each occurrence of y2 can be replaced
by f(x)− h(x)y, in order to get the representation

G(x, y) = a(x)− b(x)y

where a(x), b(x) ∈ Fq[x] and G(x, y) is unique.

Definition 2.3.3. (conjugate). Let G(x, y) = a(x) − b(x)y be a polynomial function
in Fq[C]. The conjugate of G(x, y) is defined to be the polynomial function G(x, y) =
a(x) + b(x)(h(x) + y).

Definition 2.3.4. (norm). Let G(x, y) = a(x)−b(x)y be a polynomial function in Fq[C].
The norm of G(x, y) is the polynomial function N(G) = GG.

The norm of a function G(x, y) has these properties:

1. N(G) is a polynomial in Fq[x]

2. N(G) = N(G)



CHAPTER 2. PRELIMINARIES 10

3. N(GH) = N(G)N(H)

Proofs for these properties can be found at [48].

Definition 2.3.5. (function field, rational functions). The function field Fq(C) of
C over Fq is the field of fractions of Fq[C]. This definition is valid also for Fq. In the case
of Fq, the elements of Fq are called rational functions of C.

Definition 2.3.6. (degree of a polynomial function). Let G(x, y) = a(x)− b(x)y be
a non-zero polynomial function in Fq[C]. The degree of G is defined to be

deg(G) = max[2degx(a), 2g + 1 + 2degx(b)]

Definition 2.3.7. (order) Let G = a(x) − b(x)y ∈ Fq[C] be a non-zero polynomial
function and let P = (u, v) ∈ C. The order of G at P , denoted as ordP (G), is defined as
follows:

1. If P = (u, v) is a finite point, then let r be the highest power of (x− u) that divides
both a(x) and b(x). In this case we can write G(x, y) = (x− u)r(a0(x)− b0(x)y).

• If (a0(u)− b0(u)y) 6= 0 let s = 0

• Otherwise, let s be the highest power of (x−u) that divides N(a0(x)−b0(x)y) =
a22 + a0b0h− b20f .

• If P is an ordinary point, then define:

ordP (G) = r + s

• If P is a special point, then define:

ordP (G) = 2r + s

2. If P = O then define:

ordP (G) = −max[2degx(a), 2g + 1 + 2degx(b)]

Definition 2.3.8. (zero, pole). Let G ∈ Fq[C]∗ and let P = (u, v) ∈ C. If G(P ) = 0 the
G is said to have a zero at P . If G is not defined at P then G is said to have a pole at
P , denoted as G(P ) =∞.

Definition 2.3.9. (number of zeros and poles). Let G ∈ Fq[C]∗. Then G has finite
number of zeros and poles. Moreover,

∑
P∈C ordPG = 0. Proof can be found in [48].

2.3.1 Divisors

Definition 2.3.10. (divisor, degree, order). A divisor D is a formal sum of points on
C

D =
∑
P∈C

mPP, mP ∈ Z,

where only a finite number of the integers mP are non-zero. The degree of D, denoted
degD, is the integer

∑
P∈C mP . The order of D af P , denoted ordP (D), is the integer

mP .
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The set of all divisors, denoted DivC , forms an additive group under the addition rule:∑
P∈C

mPP +
∑
P∈C

nPP =
∑
P∈C

(mP + nP )P

and the set of all divisors of degree 0, denoted Div0C , is a subgroup of DivC .

Definition 2.3.11. (GCD of divisors). Let D1 =
∑

P∈C mPP and D2 =
∑

P∈C nPP
be two divisors. The greatest common divisor of D1 and D2 is defined as

gcd(D1, D2) =
∑
P∈C

min(mP , nP )P − (
∑
P∈C

min(mP , nP ))O

Definition 2.3.12. (divisor of a rational function). Let R(x, y) 6= 0 ∈ Fq(C) be a
rational function. The divisor of R is

div(R) =
∑
P∈C

(ordP (R))P

Definition 2.3.13. (principal divisor). A divisor D ∈ Div0C is called a principal
divisor if D = div(R) for some rational function R ∈ Fq(C). The set of all principal
divisors, denoted P(C), is a subgroup of Div0C .

For a divisor D =
∑

P∈C(ordP (R))P , one can check if it is a principal divisor by
checking whether

∑
P∈C aPP = 0 and

∑
P∈C aP = 0. Furthermore, for a principal divisor

D there exists a unique function R such that D = div(R).

Definition 2.3.14. (jacobian). The jacobian of the curve C is called the quotient
JC = Div0C/P(C). If C is a curve over Fq, then JC is finite.

We write D1 ∼ D2 if D1, D2 ∈ Div0C and D1 −D2 ∈ P(C). In this case it it said that
D1 and D2 are equivalent divisors and they belong to the same divisors class group.

Definition 2.3.15. (support of a divisor). Let D =
∑

P∈C mPP be a divisor. The
the support of D is the set supp(D) = {P ∈ C|mP 6= 0}.

Definition 2.3.16. (semi-reduced divisor). A semi-reduced divisor is a divisor of
the form D =

∑
miPi − (

∑
mi)O, where each mi ≥ 0 and the P ′is are finite points such

that when Pi ∈ supp(D), one has P̃i /∈ supp(D), unless Pi = P̃i, in which case mi = 1.

Lemma 2.3.1. For each divisor D ∈ Div0C there exists a semi-reduced divisor D1 ∈ Div0C
with the property D ∼ D1. For a proof, see [41].

We mentioned earlier that the set of all divisors form a group. So we can add two
divisors, which would result in a third divisor. For adding two divisors, the Cantor’s Algo-
rithm is used, which was introduced by Cantor [19] and later generalised by Koblitz [39].
The input of this algorithm is 2 reduced divisors in the so called Mumford representation,
which is usually a very convenient way of representing divisors.

Definition 2.3.17. (Mumford representation). A divisor D in Mumford representa-
tion is a pair [u(x), v(x)] of polynomials in Fq[x] such that:

1. u(x) is monic
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2. u(x) divides f(x)− h(x)v(x)− v(x)2

3. deg(v(x)) < deg(u(x)) ≤ g

In order to show the relation between Mumford representation and reduced divisor,
u(x) and v(x) will be represented as:

u(x) =

d∏
i=1

(x− xi)

over Fq[x] where Pi = (xi, yi) are the points of the divisor D and d is the degree of D.
Property 2. of Definition 2.3.17 makes sure that the point (xi, v(xi)) is on the curve. The
divisor

d∑
i=1

([(xi, v(xi))]−O)

is a reduced divisor in Div0C(Fq). Observe, that Condition 3. of Definition 2.3.17 makes
sure that the corresponding divisor in Mumford representation is a reduced divisor [55].
If this condition would not be required than we would have a semi reduced divisor in
Mumford representation. Now, let us explain Cantor’s Algorithm.

Algorithm 2.3.1. Cantor’s Algorithm (Part 1)

Input: Reduced divisors D1 = [a1, b1] and D2 = [a2, b2] both defined over Fq.
Output: A semi-reduced divisor D = [a, b] defined over Fq such that D ∼ D1 +D2.

1: Use the extended Euclidean algorithm to compute the polynomials d1, e1, e2 such that
d1 = gcd(a1, a2) and d1 = e1a1 + e2a2.

2: Again with the use of the extended Euclidean algorithm compute the polynomials
d, c1, c2 ∈ Fq[u] with d = gcd(d1, b1 + b2 + h) and d = c1d1 + c2(b1 + b2 + h).

3: Let s1 = c1e1, s2 = c1e2 and s3 = c2, which gives d = s1a1 + s2a2 + s3(b1 + b2 + h).
4: Set a = a1a2

d2

5: Set b = s1a1b2+s2a2b1+s3(b1b2+f)
d mod a

6: return [a, b]

This was the first part of algorithm. As you can see this algorithm takes two reduced
divisor and produces a semi-reduced divisor and we are interested on getting a reduced
divisor. In order to achieve the goal the output of the algorithm should be reduced using
the second part of the algorithm:

Algorithm 2.3.2. Cantor’s Algorithm (Part 2)

Input: A semi-reduced divisor D = [a, b] defined over Fq.
Output: The (unique) reduced divisor D′ = [a′, b′] such that D′ ∼ D

1: Set a′ = f−bh−b2
a

2: Set b′ = (−h− b) mod a′
3: if degua

′ > g then
4: Set a = a′

5: Set b = b′

6: Start from the beginning the newly generated [a, b]
7: end if
8: Let c be the leading coefficient of a′.
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9: Set a′ = c−1a′

10: return [a′, b′]

The proofs for both algorithms can be found in [48].
So once again, for two given reduced divisors, one first should transform them into

the Mumford representation, then using the first part of Cantor’s algorithm the addition
is performed. However, since the result is a semi-reduced divisor, the second part of
algorithm should be performed to the result of first algorithm, resulting in a reduced
divisor.



Chapter 3

Pairings

3.1 The General Bilinear Pairing

In this chapter we will describe the basic pairings such as Weil and Tate pairings and also
describe the algorithms used to calculate these pairings. We will start this section with
the definition as given in [60, 35].

Definition 3.1.1. A bilinear pairing is a map of form

e : G1 × G2 → GT ,

where G1, G2 are additive groups and GT is multiplicative group, with the following
properties:

1. e is bilinear, which means for all g1 ∈ G1 and g2 ∈ G2, e(g
a
1 , g

b
2) = e(g1, g2)

ab holds
for each a, b ∈ Z.

2. e is non-degenerate, which means ∀g 6= 1 ∈ G1 ∃ x ∈ G2 : e(g, x) 6= 1 and
∀h 6= 1 ∈ G2 ∃ x ∈ G1 : e(x, h) 6= 1

3. e is efficiently computable.

The last property is very important. In order to be able to build an application on
top of a pairing, this pairing should be efficiently computable. Sometimes, the bilinear
pairings that are efficiently computable are referred to as admissible bilinear pairings.

Example 3.1.1. An example of a bilinear mapping is the scalar product on euclidean
space:

〈x, y〉 =

n∑
i

xiyi,

which maps from (Rn,+)× (Rn,+)→ (R, ·).

In the following part we will introduce the Weil and Tate pairings, but before that we
will give some definitions about some basic concepts.

Definition 3.1.2. (m-torsions subgroup of E). Le E be an elliptic curve defined
over Fq and let m be a positive integer coprime to characteristic of Fq. The m-torsion
subgroup of E is the set of all points on E which have the order m and it is denoted by
E[m] [59]. So:

E[m] = {P ∈ E | mP = O}

14
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Definition 3.1.3. (m-th root of unity, primitive m-th root of unity). Let Fq be a
finite field. An element a is called an m-th root of unity if am = 1. If a is an m-th root
of unity and there exists no n < m such that an = 1, then a is called a primitive m-th
root of unity. The set of all m-th roots of unity is denoted as µm.

3.2 Weil Pairing

The Weil pairing was first introduced by André Weil in 1940 [51], and it has been useful
tool in the in the theoretical study of the arithmetic of elliptic curves and Abelian varieties,
especially when it comes to cryptologic constructions related to those objects.

Let E be an elliptic curve over a field Fq. Let m be a positive integer which is coprime
to the characteristic of the field Fq. The Weil pairing on E is a map function em, which
maps a pair of points from E[m] to the mth root of unity. So:

em : E[m]× E[m] −→ µm

where µm ⊂ F∗q [51, 47].
Now, let us define the Weil pairing for two m-torsion points P , Q. Let DP be some

zero degree divisor such that
DP ∼ (P )− (O)

and similarly DQ be a zero degree divisor such that

DQ ∼ (Q)− (O)

Since mP = mQ = O → mDP = m(P ) − m(O) and also mDQ = m(Q) − m(O) are
principal divisors. There exist functions fP and fQ such that div(fP ) = mDP and
div(fQ) = mDQ. Then, the Weil pairing of P and Q is defined as:

e(P,Q) = fP (DQ)/fQ(DP ) (3.1)

for choices of fP and fQ such that this ratio is well-defined. Here f(D) denotes the function
f of divisor D. For a divisor D =

∑
P∈EmPP , f(D) is defined to be

∏
P∈E f(P )mP .

The Weil pairing has following properties:

1. It is billinear : If P,Q,R ∈ E[m], then

em(P +Q,R) = em(P,R)em(Q,R),

em(P,Q+R) = em(P,Q)em(P,R)

2. It is alternating : If P ∈ E[m], then

em(P, P ) = 1.

Therefore,
em(P,Q) = em(Q,P )−1.

3. It is nondegenerate: If em(P,Q) = 1 for all P ∈ E[m], then Q = O.

4. It is compatible:
emn(P,Q) = em(nP,Q)

for any P ∈ E[mn] and Q ∈ E[m]

The proofs for each of these properties can be found in [59].
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3.2.1 Computing the Weil pairing

In this section we will show how to compute Weil pairing for two points. In order to
calculate the Weil pairing, Miller’s algorithm is used [50, 51].

Let E be an elliptic curve, defined over the field Fp and let there be two points P,Q ∈
E[m], for some m coprime to characteristic of field. From (3.1) we can see that we need
two divisors DP and DQ such that DP ∼ (P )− (O) and DQ ∼ (Q)− (O). In order to get
them, we pick two random points T,U ∈ E, such that P +T 6= U , P +T 6= Q+U , T 6= U
and T 6= Q+ U . We set DP = (P + T )− (T ) which is equivalent to (P )− (O) since:

DP − (P ) + (O) = (P + T )− (T )− (P ) + (O) ∈ P

Same way we set DQ = (Q+U)− (U), so DQ ∼ (Q)− (O). Now, we can use DP and DQ

and (3.1) to compute Weil pairing:

em(P,Q) =
fP (DQ)

fQ(DP )
=
fP ((Q+ U)− (U))

fQ((P + T )− (T ))
=
fP (Q+ U)fQ(T )

fP (U)fQ(P + T )

The above expression is well defined by the choice of T and U . If a division by zero
occurs, than one should choose two other points T and U and repeat the process. Anyway,
the chances that this can occur are very low, with a probability at most O( log(p)p ) [16].
Now, the main problem remains to find functions fP and fQ such that div(fP ) = nDP

and div(fQ) = nDQ. To construct such functions the repeated doubling method is used.
First, for an integer i, we define the divisor:

DPi = i(P + T )− i(T )− (iP ) + (O)

Since DPi is a principal divisor, there exists a function fi such that div(fi) = DPi . Now,
it is not hard to see that for i = m:

div(fm) = DPm = m(P + T )−m(T )− (mP ) + (O)

= m(P + T )−m(T ) + (O) = mDP

which means that fm(DQ) = fP (DQ).
Now, let us show how to iteratively build fi. Any zero degree divisor D ∈ Dic0E can

be written as:
D = (P )− (O) + div(f)

for a unique P ∈ E and some f ∈ Fp(E), which is determined up to multiplication by a
non-zero element of Fp. This form is called canonical form of D [47].

Now let us have two zero degree divisors:

D1 = (P1)− (O) + div(f1)

D2 = (P2)− (O) + div(f2)

where P1, P2 ∈ E and f1, f2 ∈ Fp(E). Let l be the line that will intersect the curve at
points P1, P2. From the add chord and tangent rule we know that the line will intersect at
a third point −P3 = −(P1 +P2) and if we draw a vertical line v through −P3, v intersects
at the fourth point P3 = P1 + P2. Since line l intersects at points P1, P2 and −P3, and
line v intersects at points P3 and −P3 then:

div(l) = (P1) + (P2) + (−P3)− 3(O)
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and
div(v) = (P3) + (−P3)− 2(O)

Now, knowing that div(ab) = div(a) + div(b) and div(ab ) = div(a) − div(b) for div( lv ) we
get:

div(
l

v
) = div(l)− div(v)

= (P1) + (P2) + (−P3)− 3(O)− (P3)− (−P3) + 2(O)

= (P1) + (P2)− (P3)− (O)

We can express (P1) + (P2) as:

(P1) + (P2) = (P3) + (O) + div(
l

v
)

Now, the addition of D1 and D2 is going to be:

D1 +D2 = (P1)− (O) + div(f1) + (P2)− (O) + div(f2)

= (P1) + (P2)− 2(O) + div(f1f2)

= (P3) + (O) + div(
l

v
) + (P3)− 2(O) + div(f1f2)

= (P3)− (O) + div(f1f2
l

v
)

We illustrate the construction of such a function with an example.

Example 3.2.1. Consider the elliptic curve y2 = x3 − x + 2 over F31. Let m = 2. The
points of E[2] are:

P0 = O, P7 = (4, 0), P14 = (10, 0) and P23 = (17, 0)

We will calculate the Weil pairing for the points P = P7 = (4, 0) andQ = P14 = (10, 0). We
pick two points T = P3 = (1, 8), U = P5 = (2, 15) ∈ E and compute P + T = P12 = (9, 3)
and Q+ U = P18 = (13, 27). First we need to find functions such that:

div(fPT ) = 2(P + T )− 2(O)

div(fQU ) = 2(Q+ U)− 2(O)

div(fT ) = 2(T )− 2(O)

div(fU ) = 2(U)− 2(O)

Let us start by expressing 2(P + T )− 2(O) (be aware that P + T = P12) in canonical
form:

2(P + T ) = ((P + T )− (O)) + ((P + T )− (O))

(P12)− (O) + div(1) + (P12)− (O) + div(1) = (2P12)− (O)− div(1 · 1 · l
v

)

Since we compute 2(P + T ), the line l is the tangent on P12 which happens to be:

l : y + x− 12 = 0
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Now we need the vertical v through P12 + P12 = 2P12 = P19 = (14, 2) which is:

v : x− 14 = 0

Which gives us:

2(P + T )− 2(O) = (P19)− (O)− div(
y + x− 12

x− 14
)

which means that

fPT =
y + x− 12

x− 14

same way we proceed with the divisor 2(T )− 2(O). From = 2T = P19 = (14, 2). We find
the equations for l and v

l : y − 4x− 4 = 0

v : x− 14 = 0

so

2(T )− 2(O) = (P19)− (O)− div(
y − 4x− 4

x− 14
)

which means that

fT =
y − 4x− 4

x− 14

Now, we proceed with divisor 2(Q+U)−2(O) where Q+U = P18 and 2(Q+U) = 2P18 =
P30 = (24, 10). So:

l : y − 22x− 20 = 0

v : x− 24 = 0

giving us the divisor in canonical form:

2(Q+ U)− 2(O) = (P30)− (O)− div(
y − 24x− 20

x− 24
)

which means that

fQU =
y + x− 12

x− 14

Finally, the last divisor 2(U)− 2(O), where 2U = P30 = (24, 10). The equations of l and
v are given by:

l : y − 20x− 6 = 0

v : x− 24 = 0

so

2(U)− 2(O) = (P30)− (O)− div(
y − 20x− 6

x− 24
)

which means that

fU =
y − 20x− 6

x− 24

Now knowing that:
div(fP ) = 2(P + T )− (T )

and
div(fQ) = 2(Q+ U)− (U)
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we get

fP =
fPT
fT

=
y + x− 12

y − 4x− 4

fQ =
fQU
fU

=
y − 22x− 20

y − 20x− 6

Having fP and fQ lets us compute e2(P,Q)

e2(P,Q) =
fP (Q+ U)fQ(T )

fP (U)fQ(P + T )
=

14 · 26

12 · 11
= 30 ≡ −1 (31)

and -1 is indeed a 2-nd root of unity, since (−1)2 = 1.

Constructing fm as described above is not efficient for large m, because the function
will become very complex. But, instead of calculating fm we can evaluate the value at
each step and store the value for the next round, where in each round one value of fi
is calculated. In [50] an efficient algorithm was introduced for calculating fm. First a
random R, is chosen and then DP = (P + R) − (R). Now for each integer k, there is a
rational function fk such that div(fk) = k(P +R)− k(R)− (kP ) + (∞). Since mR =∞,
then fm = fP . Let us denote by lP1,P2 the line intersecting the curve at points P1 and P2

and vP1 the vertical line passing through P1 for any point P1 and P2. Then it holds:

fk1+k2 = fk1fk2
lk1P,k2P
v(k1+k2)P

and f0 = 1, f1 =
vP+R

lP,R
. The proof can be found in [36].

Before we continue with the algorithm, we will give another way of presenting Weil
pairing, which was defined and proved in [51].

Definition 3.2.1. Let E be an elliptic curve defined over Fq and let P,Q ∈ E(Fq)[m]
where P 6= Q, then

em(P,Q) = (−1)m
fP (Q)

fQ(P )

Here the functions fP (P ) and fP (Q) should be normalised so that fP (O)/fQ(O) = 1
[40].

Now let us give the algorithm for evaluation of fP (Q) = fm,P (Q)

Algorithm 3.2.1. Miller’s Algorithm

Input: : Integer m =
∑t−1

i=0 b12
i with bi ∈ {0, 1}, bm−1 = 1 and points P,Q ∈ E

Output: : fm(Q) = fP (Q)
1: f ← f1, Z ← P ;
2: for i← t− 2 . . . 0 do
3: f = f2

lZ,Z(Q)
v2Z(Q)

4: Z = 2Z
5: if bi = 1 then
6: f = f1f

lZ,P (Q)
vZ+P (Q)

7: Z = Z + P
8: end if
9: end for

10: return f



CHAPTER 3. PAIRINGS 20

Example 3.2.2. Let us try Example 3.2.1 using Algorithm 3.2.1 and Definition 3.2.1. So,
we have the elliptic curve y2 = x3 − x+ 2 over F31 and we want to calculate Weil pairing
for two point of E[2]: P = P7 = (4, 0) and Q = P14 = (10, 0). If we apply the algorithm
3.2.1 to points P,Q then we get fP (Q) = 13 and fQ(P ) = 18. So,

en(P,Q) = (−1)n
fP (Q)

fQ(P )
= (−1)2

13

18
= 30

3.3 Tate Pairing

In this section we will introduce the Tate pairing. Most of the concepts and definitions
for the Tate pairing are taken from [10, 56, 49, 59].

3.3.1 Definition

Let E be an elliptic curve over a field Fq. Let m be a positive integer which is coprime
to the characteristic of the field Fq. Let also k be the smallest positive number such as
m|qk − 1, which is also called embedding degree or security multiplier [10]. Let us first
define:

mE(Fq) = {mP | P ∈ E(Fq)}
The quotient group E(Fq)/mE(Fq) is the set of equivalence classes of points in E(Fq),
where two points P1, P2 ∈ E(Fq) are considered to be equivalent if and only if (P1−P2) ∈
mE(Fq). Similarly, we define

(F∗q)m = {um|u ∈ F∗q}
The quotient group F∗q/(F∗q)m represents the set of equivalence classes of elements in F∗q
where two elements a, b ∈ F∗q are considered to be equivalent if and only if ab−1 ∈ (F∗q)m.
This quotient group is isomorphic to the group of m-th roots of unity µm [10].

Let P ∈ E(Fqk)[m] and let Q ∈ E(Fqk). Since mP = O, m(P )−m(∞) is a principal
divisor so there is a function f such that div(f) = m(P ) −m(O). Let D be any degree
zero divisor such that D ∼ (Q) − (O) the support of D is disjoint from the support of
div(f). Now, the Tate pairing of points P and Q is a map [10]:

〈., .〉m : E(Fqk)[m]× E(Fqk)/mE(Fqk) −→ F∗qk/(F
∗
qk)m

defined to be
〈P,Q〉m = f(D)

Similar to the Weil pairing, Tate pairing has the following properties:

1. It is billinear : For all P, P1, P2 ∈ E(Fqk)[m] and Q,Q1, Q2 ∈ E(Fqk)/mE(Fqk):

〈P1 + P2, Q〉m = 〈P1, Q〉m〈P2, Q〉m,

〈P,Q1 +Q2〉m = 〈P,Q1〉m〈P,Q2〉m

2. It is nondegenerate: For all P ∈ E(Fqk)[m] for all P 6= O, there is aQ ∈ E(Fqk)/mE(Fqk)
such that 〈P,Q〉m 6= 1. The same holds for the other way around, For all Q ∈
E(Fqk)/m ∈ E(Fqk), Q /∈ mE(Fqk) there is some P ∈ E(Fqk)[m] such that 〈P,Q〉m 6=
1.

The proofs can be found in [10]. The Tate pairing is not necessarily alternating but if
P ∈ E(Fq) and k > 1 then 〈P, P 〉m = 1 [26].
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3.3.2 Reduced Tate pairing

The value of the Tate pairing is a representative element of F∗
qk
/(F∗

qk
)m (See Definition

3.3.1). However, in order to be able to use Tate pairing for cryptographic protocols, we
need a unique element of F∗

qk
instead of a whole coset in the quotient group F∗

qk
/(F∗

qk
)m

[29]. So, we need to raise the result to the power (qk − 1)/m, in order to achieve our goal.
Now, let us present the new form of Tate pairing [37] which is also known as reduced
Tate pairing:

tm(P,Q) = 〈P,Q〉(qk−1)/mm = f(D)(q
k−1)/m

If k > 1, then we can directly use the point Q instead of the divisor D in Miller’s algorithm.
[37, 32]. In that case:

tm(P,Q) = f(Q)(q
k−1)/m

3.3.3 Calculation

Similar to the Weil pairing, Miller’s algorithm is used to calculate the also Tate pairing.
This algorithm can compute Tate pairing in polynomial time. Let us define fi for i > 0

(fi) = i(P )− (iP )− (i− 1)(O)

Observe that for i = m we have:

(fm) = m(P )− (mP )− (m− 1)(O) = m(P )− (O)− (m− 1)(O) = m(P )−m(O) = f

and for i = 1 we have:

(f1) = (P )− (P )− (1− 1)(O) = (P )− (P ) = 0

For a given fi and fj for i, j < m, then:

fi+j = fifj
l

v

where l is the line which intersects at points iP and jP and v is the vertical line through
(i+ j)P (and O).

However in order to calculate Tate pairing we need also a divisor DQ. Such a divisor
can be constructed by choosing a point S 6∈ {O, P,−Q,P −Q} and letting

DQ = (Q+ S)− (S)

Having such DQ and f allows us to calculate Tate pairing

〈P,Q〉m = fm(DQ)

Now let us show Miller’s algorithm [10] which is used to evaluate f(DQ) which actually
represents the value of Tate pairing for points P,Q.

Algorithm 3.3.1. Miller’s algorithm for Tate pairing

Input: m =
∑t−1

i=0 bi2
i with bi ∈ {0, 1} and bt−1 = 1, P ∈ E(Fq)[m], Q ∈ E(Fqk).

Output: f(D) = 〈P,Q〉m
1: Choose a suitable point S ∈ E(Fqk).
2: Q′ ← Q+ S, T ← P , f ← 1
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3: for i← t− 2 . . . 0 do
4: f ← f2

lT,T (Q
′)v2T (S)

v2T (Q′)lT,T (S)

5: T ← 2T
6: if bi = 1 then

7: f ← f
lT,P (Q

′)vT+P (S)
vT+P (Q′)lT,P (S)

.

8: T ← T + P .
9: end if

10: end for
11: return f

If k > 1 and we use directly the point Q instead of the divisor D, then we do not need
the point S at all. So, the algorithm gets simplified: [32]:

Algorithm 3.3.2. Miller’s algorithm for Tate pairing (working directly with point Q)

Input: m =
∑t−1

i=0 bi2
i with bi ∈ {0, 1} and bt−1 = 1, P ∈ E(Fqk), Q ∈ E(Fqk) where P

has order m.
Output: f(Q) = 〈P,Q〉m

1: T ← P , f ← 1
2: for i← t− 2 . . . 0 do
3: f ← f2

lT,T (Q)
v2T (Q)

4: T ← 2T
5: if bi = 1 then
6: f ← f

lT,P (Q)
vT+P (Q) .

7: T ← T + P .
8: end if
9: end for

10: return f

3.4 Distortion Maps

When we defined the Weil and Tate pairing, we explained that for two points P , Q ∈ E(Fq)
where P = Q the output of Weil/Tate pairing 1 would be 1. They are also bilinear, so
even if P 6= Q but they are linearly dependent then the output would be still 1. So, let us
assume that Q = kP for some integer k then:

em(P,Q) = e(P, kP ) = e(P, P )k = 1k = 1,

where m is the order of both points P and Q. Hence, these points need to be linearly
independent in order to be useful for applications of pairings in cryptography. Otherwise
the output would be predictable.

In order to outcome this problem, one can use the so called distortion maps. A dis-
tortion map φ with respect to the point P ∈ E(Fq) is a computable endomorphism that
maps P to φ(P ) ∈ E(Fqk) for some k where the output φ(P ) is linearly independent from
P [52].

When using the a distortion map, instead of calculating em(P,Q), one calculates
em(P, φ(Q)). Because, of this modification usually the pairing is called modified pair-
ing (modified Weil pairing or modified Tate pairing).

1For Tate pairing only if k > 1.
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If k > 1 then such maps always exist for supersingular curves but never for ordinary
curves [61].

3.5 Pairings on hyperelliptic curves

Above we described the Weil and Tate pairing, but all our definitions are given for elliptic
curves. However, both, the Weil and Tate pairing can be defined using hyperelliptic curve
as well. Moreover, the Miller’s algorithm can be adopted to be used in hyperelliptic curves.
Since the concepts the are same as in the case of the elliptic curves and also the focus of
this thesis is on parings on the elliptic curves, we will not cover pairings on hyperelliptic
curves but detailed explanation can be found in [30, 7].



Chapter 4

Public Key Cryptography

In this chapter we will talk about public key cryptography. First we will give some short
description about public key cryptography in general. Then later we will describe some
Discrete Logarithm (DL) problems and some cryptosystems based on these problems. At
the end of the chapter, we will introduce the use of pairings to attack the Elliptic Curve
Discrete Logarithm Problem.

4.1 Public Key Cryptography

The basic concept of public key cryptography is using a pair of keys instead of a single
shared key. The key pair consists of private key d and public key e.

The public and private key are generated using asymmetric key algorithms, which
means that the keys are related to each other. However, the relationship is in such a way,
that knowing the public key will not help to get any knowledge about private key. So, it
should be mathematically impossible to extract the private key from the public key.

The public key is distributed and published along with the users identity and the
private key is possessed only by the owner and is kept secret. Unlike in symmetric cryp-
tography, there is no need for secure key exchange, since the public key is public for
everyone.

Suppose that Alice wants to send a message m to Bob. Then, Alice takes the public
key of Bob eb, encrypts m with eb and sends the encrypted message c to Bob. When Bob
receives the encrypted message, decrypts it using his own private key db.

In this scheme, since the public key of Bob eb is public and anyone can get access to
it, anyone can encrypt messages with this key but only Bob, as owner of the private key
db, can decrypt these messages.

A more abstract and general definition of public key cryptosystems, is usually given
through the so called trapdoor one way functions. In public key cryptography it is essential
having so called one way functions Fe (or families of these functions), such that there is
an efficient algorithm for calculating these functions, but it is computationally infeasible
to calculate the inverse F−1e .

However, in order for such a function to be useful, there should be a piece of information
d, which is usually called trapdoor information, which makes it possible to efficiently
compute the inverse of Fe. Without having this secret information, it is very hard to get
the inverse and usually it is equivalent to solving a hard mathematical problem (See: 4.2).
These one way functions, which have the property to calculate the inverse using a secret

24
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(a) Encryption

(b) Decryption

Figure 4.1: Asymmetric cipher model

are called trapdoor one way functions.
If you compare with the encrypted system explained above, you can see that there is

the same concept, where the calculation of these function can be viewed as encryption, the
calculation of inverse function can be viewed as decryption, and the trapdoor information
would be the private key in this case.

4.1.1 Digital Signature

Another application of public key cryptography, which is not less popular and useful than
encryption, is the digital signature. Consider the case when Bob wants to send some data
to Alice and Alice wants to prove the authenticity of this data. Here the main idea is to
have a system analogous to a handwritten signature, which would allow Bob to sign some
data and any other party (e.g Alice) to read the signature and verify the validity of this
signature. On the other hand, it should be computationally infeasible for anyone else, to
create Bob’s signature on some data.

The whole digital signature concept is very similar to the encryption process, where
each entity posses a private and public key. The signer uses the private key to sign the
data and the verifier uses the public key of the signer to verify the signature (see figure
4.2).

Since Bob’s private key is possessed only by Bob, then no one else can generate Bob’s
signature on some data. In the other hand, since the public key of Bob is available to
others too, then anyone who receives any signature of Bob can verify the validity of this
signature using Bob’s public key.
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Figure 4.2: Digital signature process in general

4.1.2 Digital Certificate

We explained the basic concept of public key cryptography and till now we said that the
public key is made public and distributed to all. However, the key distribution may not
be as simple as it sounds. Consider the case where Alice retrieves the public key of Bob.
How is she going to verify, that the public key really belongs to Bob? What if some third
person, called Malice, sends her public key to Alice and convinces her that this is Bob’s
public key?

In practice, in order to solve this problem, digital certificates are used. The main
task of a digital certificate is to bind a public key to an identity. In addition to identity
information and the public key, a certificate contains other information, such as: issuer’s
name, expiration date, etc [43]. The whole data are signed by a trusted third party called
Certification Authority CA. Now, any entity retrieving a digital certificate, can be sure
that the public key belongs to the identity as long as this entity trusts the issuer (CA)
and of course as long as the digital certificate is valid.

PKI and Models of Trust

We explained how the digital certificates are used to securely distribute public keys. So,
there is a need to create, manage, distribute, use, store, and revoke digital certificates,
which are performed by the so called Public Key Infrastructure PKI. Hence, there are
models of trust defining which entity is allowed to issue trusted certificates. Models of
trust usually contain CAs and end users which retrieve the certificates from CAs. In most
of the systems, it is much more practical to have more CAs instead of only one. Depending
on the number of CAs and the relationship between them, there exists several models:

• Hierarchical model. In this model there is only one root CA, which delegates the
right to issue certificates to other CAs. Depending on the implementations, these
CAs either can act as root CAs for other CAs down in the hierarchy or they could
issue certificates to the end users. If Alice retrieves Bob’s certificate and she wants
to check whether it is valid, she has to build the so called certificate chain, meaning
that she has to verify the certificates of every CA between Bob and the root CA in
hierarchy. If any of these certificates is invalid or she never reaches the root CA then
the certificate of Bob is considered to be not trusted. The main problem with this
model is the single root CA, which on the one hand leads to a single point of failure,
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on the other hand it is a complicated and a political issue who should control the
root CA.

In reality there are many root CAs and each of them work in similar way to hierar-
chical model. But since the end users may not belong to the same root CA, there
should be a way to deliver the root certificates to the end users, so that they would
be able to verify the certificates of the users that belong to other root CAs. The
web model is implemented by X.509 which is the common Internet standard for PKI
[43].

Certificate Revocation

Each certificate has an expiration date. Hoverer, there may be cases when the certificate is
not valid, even when the expiration date is not over. Such an example is when the private
key is compromised or simply when the person changes the working place. In this case, the
CA is responsible for making this revocation information public for other users. Basically,
there are two ways for publishing these information: periodic publication mechanisms and
on-line query mechanisms. We will not go into the details but more information can be
found in [43, 6].

4.2 Discrete Logarithm Problems

We mentioned earlier that inverting a trapdoor one way function is hard and it is usually
related to some well known hard mathematical problem, for which there is no known
efficient algorithm to solve (under properly chosen parameters).

One such problem, is the Discrete Logarithm Problem which is defined as follows:

Definition 4.2.1. (Discrete Logarithm (DL) Problem). Given a group G, a generator g
and an element h of G, find the smallest positive integer x, such that h = gx.

Another closely related problem, is the so called Computational Diffie-Hellman Prob-
lem, defined as follows:

Definition 4.2.2. (Computational Diffie-Hellman (CDH) Problem). Given a group G, a
generator g, elements h1 = ga and h2 = gb of this group, find the third element h3, such
that h3 = gab.

An easier version of CDH Problem is the Decisional Diffie-Hellman (DDH) Problem
defined as:

Definition 4.2.3. (Decisional Diffie-Hellman (DDH) Problem). Given a group G, a
generator g and elements h1 = ga, h2 = gb and h3 of this group, determine whether
h3 = gab.

A closely related to the DDH Problem is the so the called Decision Linear Diffie-
Hellman Problem defined as [15]:

Definition 4.2.4. Decision Linear Diffie-Hellman (DLDH) Problem. Given a group G
and elements g, h, k, ga, hb, kc of this group determine whether a+ b = c.

Another problem which we will use later is the Strong Diffie-Hellman Problem, defined
as follows [13]:
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Definition 4.2.5. Strong Diffie-Hellman (q-SDH) Problem. Given two groups G1 and G2

of order p with two generators g1 ∈ G1, g2 ∈ G2 and (q+3)-tuple (g1, g
x
1 , g

x2
1 , . . . , g

xq
1 , g2, g

x
2 ) ∈

Gq+1
1 ×G2

2, output a pair (c, g
1/(x+c)
1 ) for a freely chosen value c ∈ Zp, c 6= −x.

Be aware that here the multiplicative notation is used which is usually used for generic
groups. But, if the group G is an elliptic curve, the math expression gx would mean x · P
where P is a point (generator) of the curve. The later notation is called additive notation.

4.3 Diffie-Hellman Protocol

The Diffie-Hellman key exchange protocol was the first step to asymmetric cryptosystems.
Even though this is just a key exchange protocol and not a public key encryption scheme,
it is very important in public key cryptography because it was the first protocol based on
the asymmetric-key system, which was made public 1.

When using symmetric encryption, the same key is used by both parties which brings
the problem of key distribution, because the key should be transferred to both parties in
order to begin the secure communication. When the cryptographic methods like Diffie-
Hellman did not exist, the establishment of such shared key was not that easy, since it
needed a secure channel, which often led to exchanging the keys physically by a special
courier. The advantage of using an asymmetric key exchange protocol is that there is no
need for a secure channel in order to remotely exchange a secret key between communica-
tion parties.

In order to explain the protocol we will use Alice and Bob again. Suppose Alice and
Bob want to exchange a shared secret key. First, they have to agree on a group G and a
generator (or a generator of subgroup) g ∈ G. Now this information can be sent over the
Internet in an open channel without caring if a third person called Malice could intercept
these information. Moreover, Alice and Bob, each choose a natural number x and y,
respectively, such that x and y are less than the order of G, and keep these numbers
secret. The protocol follows:

• Alice calculates the number a = gx ∈ G and sends it to Bob

• Bob calculates the number b = gy ∈ G and sends it to Alice

• Now Alice calculates k1 := bx ∈ G

• Bob also calculates k2 := ay ∈ G

• They both have the shared key k = k1 = k2 ∈ G

Any malicious person called Malice, who could be eavesdropping, cannot get access to
key k nor can she calculate it even why she could have intercepted the values of g, p, a, b. In
order to get access to it, she should solve the discrete logarithm in G, which is not feasible
if the parameters are chosen properly. So, even when this key is used for symmetric key
encryption by Alice and Bob, the Diffie-Hellman key exchange is a public key cryptosystem
since the both Alice and Bob have private keys (x, y), which are kept secret and public
keys (a, b), which are transmitted to the each other in an open channel and the public
keys depend mathematically on the private keys.

1According to [3] and [4] the same algorithm and also a special case of RSA was developed by James H.
Ellis, Clifford Cocks, and Malcolm Williamson at the Government Communications Headquarters (GCHQ)
in the UK in 1973 but it was kept secret till 1997
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Figure 4.3: Diffie-Hellman key agreement protocol

Let us show an example of Diffie-Hellman key exchange protocol where we use the
group of points of E(Fp).

Example 4.3.1. Let Alice and Bob agree to use the group of points of the elliptic curve
y2 = x3−x+2 over the finite field F7. Moreover, let they agree on the generator P = (2, 1).
Now the protocol would go as follows:

• Let Alice choose a random x = 5, calculate the point PA = xP = (1, 4) and send PA
to Bob.

• Similarly let Bob choose a random y = 3, compute the point PB = yP = (6, 3) and
send PB to Alice.

• Now, Alice can compute the shared key k = xPB = (6, 4)

• Similarly, Bob computes the shared key as well k = yPA = (6, 4)

4.4 ElGamal - DSA

Another interesting scheme based on the DL Problem is the ElGamal scheme, which can
be used as encryption system and as digital signature system as well. Same as in the case
of Diffie-Hellman key exchange protocol, the security of Elgamal scheme is based on the
difficulty of calculation of discrete logarithms in groups that this protocol operates on.
Below we will describe the ElGamal encryption scheme and a digital signature scheme
called DSA, which in fact is a variant of the Schnorr and ElGamal signature algorithm.

4.4.1 Basic ElGamal Encryption System

Suppose that Alice wants to encrypt the message m using ElGamal encryption scheme
send it to Bob. First Bob has to generate public and private keys. Key pair generation
phase goes as follows:

• Bob chooses a group G and a random generator of a subgroup (of G) g of order n.

• Then he chooses a random positive number x, such that x < n

• He computes y = gx ∈ G

• Finally he publishes (n, g, y) as public key and keeps x as private key.

After Bob has gone through the key generation and has published the public key, Alice
can encrypt the message m using the public key of Bob. The encryption goes as follows:
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• Alice verifies that that m is a valid element of G.

• She chooses a random positive number k, such that k < n.

• Finally she computes the ciphertext pair (c1, c2) as:

c1 = gk ∈ G

c2 = myk ∈ G

Alice sends ciphertext pair (c1, c2) to Bob, which decrypts is using his private key:

m = c2/c
x
1 ∈ G

4.4.2 Digital Signature Algorithm - DSA

The Digital Signature Algorithm (DSA) was proposed by the National Institute of Stan-
dards and Technology (NIST) in 1991, it was adopted in 1994 [54, 53] and since then it is a
United States Federal Government Standard or FIPS for digital signature. In this section
we will describe only the basic algorithm over generic groups but an extended description
of DSA (using Zp) and ECDSA, including the parameters requirements, can be found in
[10].

In order Bob to sign some message and send to Alice, he first should generate private
and public key pair. Key pair generation phase goes as follows:

• Bob chooses a group G and a random generator of a subgroup (of G) g of a random
prime order p. Let us say that the bitlength of p is l.

• Moreover, he picks a hash function H, which outputs a bit-string of length l bits
and a map function f which maps an element of G to an element of Fp.

• Then he chooses a random positive number x, such that x < p.

• He computes y = gx ∈ G.

• Finally he publishes (p, g, y) as public key and keeps x as private key.

Now, Bob can create the signature on message m as follows:

• He generates a random k, such that k < p.

• He then calculates
t = gk ∈ G

• Now he maps t to Fp
r = f(t) ∈ Fp

• Finally he computes
s = ((H(m) + xr)/k) mod (p)

• If either r = or s = 0, he starts the signature over again. Otherwise he has computed
the signature (r, s) on message m.



CHAPTER 4. PUBLIC KEY CRYPTOGRAPHY 31

Now, Bob can send the signature (r, s) and the message m to Alice and she can verify
the signature as follows:

• First she checks whether s < p and r < p (if r is an element of Fp). If not, she rejects
the signature.

• Then she computes values

u1 = (H(m)/s) mod (p)

u2 = (r/s) mod (p)

• Finally she computes
v = gu1yu2

• She accepts the signature if r = f(v). Otherwise she rejects.

4.5 Definition of DL Problems in Pairings

A generalisation of CDH Problem to groups with pairings gives us the Bilinear Diffie-
Hellman Problem. Here we describe the problem shortly but an extended description can
be found in [44]. Now let G1 be an additive cyclic group, GT be a multiplicative cyclic
group and e : G1 × G1 → GT a bilinear pairing such that it is non-degenerate and not
alternating.

Definition 4.5.1. Bilinear Diffie-Hellman (BDH) Problem. Given g, ga, gb, and gc ∈ G1,
calculate e(g, g)abc ∈ GT .

If there exists a map e as described above, then solving the BDH Problem is not harder
than solving the discrete logarithms in either G1 or GT , because if we can find the value
of c by solving discrete logarithm of e(g, gc) = e(g, g)c in GT or gc in G1, then we also
calculate e(g, g)abc = e(ga, gb)c.

Now, let fg : G1 → GT and define a pairing by e(g, h) = fg(h). In this case the BDH
Problem could be calculated easily if one could invert fg : f−1g (e(g, h)) = h. First one needs

to calculate v = e(ga, gb) = e(g, gab), then f−1g (v) = gab and finally e(gab, gc) = e(g, g)abc.

In order to prevent an adversary from gaining any information about e(g, g)abc from
g, ga, gb and gc, the Decisional Bilinear Diffie-Hellman (DBDH) Problem is defined.

Definition 4.5.2. Decisional Bilinear Diffie-Hellman Problem. Given g, ga, gb, gc ∈ G1

and h ∈ GT , determine if h = e(g, g)abc

In order for DBDH Problem to be hard, one should not be able to distinguish between
e(g, g)abc and any other random element in GT .

Another problem which we will use later is the Decisional Bilinear Diffie-Hellman
Inversion Problem, defined as follows:

Definition 4.5.3. Decisional Bilinear Diffie-Hellman Inversion Problem. Given a gen-

erator g and (q + 1)-tuple (g, gx, gx
2
, . . . , gx

q
) ∈ G(q+1)

1 and h ∈ GT , determine whether
h = e(g, g)1/x.
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4.6 Use of pairings to attack ECC and HECC Cryptography

Since for the Discrete Logarithm Problem in finite fields, there exist more efficient methods
to solve (index calculus in sub-exponential time) than for the Elliptic Curve Discrete
Logarithm Problem, one possible attack for the ECDL Problem, would be to transform it
to the DL Problem in a finite field and then solve using methods for finite fields. Such a
reduction was first introduced by Menezes, Okamoto, and Vanstone [46]. They used the
Weil pairing to convert the DL in E(Fq) to one in Fqk and they called it MOV Attack. The
same approach was introduced by Frey and Rück using Tate pairing [24]. Let P ∈ E(Fq)
be of prime order r, coprime to q, and let Q = lP for some l. Then:

e(Q,S) = e(lP, S) = e(P, S)l

which is the main principle of this attack, sine if one possesses e(P,Q) and e(P,Q)l, then
by solving the DLP one would get l, which in this case would be the solution to ECDLP.

Here we present the MOV/Frey-Rück algorithm goes as follows [10]:

Algorithm 4.6.1. MOV/Frey-Rück

Input: : P,Q ∈ E(Fq), of prime order r, such that Q = lP .
Output: : Discrete logarithm l of Q to the base P .

1: Construct the field Fqk such that r divides (qk − 1).
2: Find a point S ∈ E(Fqk) such that e(P, S) 6= 1 (Usually a random point would satisfy

our needs with overwhelming probability).
3: ς1 ← e(P, S)
4: ς2 ← e(Q,S)
5: Find l such that ς l1 = ς1 in Fqk using index calculus method.
6: return l

One should be aware that, even that there is a sub-exponential algorithm for solving
Discrete Logarithm Problem in Fqk , it does not mean that this problem is easier than in
E(Fq). The problem is easier only when the field Fqk is not much larger than E(Fq), which
means that k should be small.



Chapter 5

Pairing Based Cryptography

5.1 Three party key agreement

5.1.1 Three party two-round key agreement protocol

In Chapter 4 we described the Diffie-Hellman Protocol (Protocol 4.3), which is a key
agreement protocol between two parties. This concept can be extended and used for more
than two parties as well.

Figure 5.1 shows such a key agreement between three parties. As you can see there are
two rounds instead of one. First all participants agree on a group G with a generator g.
Then each generates a private number a, b, c and calculates ga, gb, gc respectively. Since
the procedure is the same for all parties we will be focused on Alice only.

In the first round, Alice sends ga to Chris and receives gb from Bob. In the second
round, Alice computes gab from gb and a and sends it to the Chris again and revives gbc.
Having gbc and a, Alice computes the shared secret K = gabc.

The protocol is secure against against eavesdroppers as long as from a given g, ga, gb,
gc, gab, gbc, gac the value of gabc can not be computed, which presumably is not easier
than DHP [45].

5.1.2 Three party one-round key agreement protocol

An interesting variant of the three party key agreement protocol where only one round is
needed in order to share the secret between three parties, was described by Joux [38]. This

Figure 5.1: Three party two-round key agreement protocol

33
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Figure 5.2: Three party one-round key agreement protocol

protocol employs bilinear pairings (G1, GT ) and the users broadcast the parameters to all
other parties instead of communicating with a single one. The protocol flow is shown in
Figure 5.2.

Algorithm 5.1.1. Three party one-round key agreement protocol

1. Alice, Bob and Chris agree on groups G1, GT , generator g ∈ G1 and bilinear pairing
e : G1 ×G1 → GT .

2. Alice generates a secret integer a and computes ga and broadcasts it to Bob and
Chris (similarly, Bob and Chris broadcast gb and gc).

3. Having gb, gc and her secret a, Alice can compute the shared secret K = e(gb, gc)a =
e(g, g)abc. 1

An eavesdropper who wants to find the secret K has to solve BDH Problem, since any
eavesdropper monitoring the channels has only g, ga, gb, gc.

This protocol can be generalised to an n-party one-round protocol [45]. However in
order to use it one should find a computable multilinear map e : Gn−1

1 → GT , such that
from a given g, ga1 , ga2 ... gan one would compute

K = e(ga2 , ga3 , ..., gan)a1 = e(g, g, ..., g)a1a2...an .

1Note, that in order for this scheme to work, the pairing e should not be alternate, which means
e(g, g) 6= 1, otherwise K = e(g, g)abc = 1abc = 1, which could be easily guessed by an adversary.
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5.2 Identity Based Encryption (IBE)

The concept of identity based cryptography was introduced by Shamir [57]. The goal was
to simplify the certificate management in e-mail related systems, and he introduced only
a digital signature scheme but no solution which would allow the user to encrypt data.
Generally, the idea for an identity based cryptosystem is to use the identity of the user as
the public key. The identity could be anything that uniquely identifies the user such as
his email address, social security number, telephone number, etc. Sometimes it is good to
make the key a composite of such an identity and some other parameters such as validity
period for this key, so the key would be valid only for a certain period.

If you compare this with the traditional public key (PKI) systems where usually the
private key is generated randomly and then the public key is calculated from the generated
private key by applying some algorithms, here the public key is not calculated but is any
string (usually identity of user). So, if the owner of public key could calculate the private
key from the public one, everyone else can. Therefore one needs a Trusted Third Party
(TTP) which would generate the private key from the public and which is known only
by the TTP. In an IBE system such a TTP is called private key generator (PKG). The
private key generation involves also a secret which is usually called master secret and is
possessed only by PKG.

The first fully functional identity-based encryption system scheme was introduced by
Boneh and Franklin [16] in 2001 where it was defined as follows:

Definition 5.2.1. Identity-Based Encryption. An identity-based encryption (IBE)
scheme is specified by four randomised algorithms: Setup, Extract, Encrypt, Decrypt:

• Setup: takes a security parameter k and returns params (system parameters) and
master−key. The system parameters include a finite message spaceM and a finite
ciphertext space C. The system parameters will be made public and the master−key
is kept secret by PKG.

• Extract: takes as input params, master−key, and an ID ∈ {0, 1}∗, which actually
is the public key and returns the corresponding private private key d.

• Encrypt: takes as input params, ID, M ∈M and it returns a ciphertext C ∈ C.

• Decrypt: takes as input params, C ∈ C, a private key d and it return M ∈M.

This algorithm should also fulfill the constrain:

∀ M ∈M : Decrypt(params,C, d) = M where C = Encrypt(params, ID,M)

Applications for Identity-Based Encryption

First, the motivation for identity based encryption was to make the deployment of a
public key infrastructure easier, especially for systems that manage a large number of keys.
Instead of storing the whole set of keys, one can derive them from usernames. In this case,
since the public key of any user it is known (it is its identity or directly derived from its
identity), there is no public key distribution mechanism necessary anymore, therefore no
digital certification are needed to prove that the users public key is authentic, because it
always is. And so it reduces much organisational and management overhead.
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Below are given some other scenarios how some problems are resolved by identity based
encryption and how it can be applied in some special cases:

Revocation of Public Keys[16]. An important property of public key cryptography
is the expiration of credentials and the key revocation. Providing an IBE system with
ability to support the key expiration can be easily accomplished by including also the
validity period (usually a time span such as year, month or date) in the public key. E.g.
if Alice encrypts an email under the public key bob@company.com‖current-year and sends
it to Bob, he can use the current key only in the current year. In this way we get the
effect of annual key expiration. Here Bob needs to obtain a new private key every year,
however Alice does not need to get the certificate (like in PKI systems) of Bob every time
Bob renews his private key, she uses the identity of Bob without caring about Bob’s key
generation process. She can even encrypt data to Bob before he even has a private key
at all, since the same identity will be used. On the other hand, PKI systems provide
revocation systems, such that a certificate can be revoked and made invalid even that
the expiration date is still not over. The reasons for that could be: a person leaving
the company (quits working), so he should not be able to use the certificate issued by
company, or simply the key gets compromised and the person needs another certificate.
Unfortunately, such revocation is not possible in IBE systems but there is a solution to
the problem. Instead issuing the credentials for a long period of time and revoking it if
necessary, one could use the keys with shorter validity period. E.g Alice can use the key
bob@company.com‖current-date. This means that the Bob’s private key corresponding
to the public key that Alice used is valid only one day. With this approach when Bob
leaves the company and his key needs to be revoked, the PKG simply does not issue more
keys to Bob. Even more interesting is that the Alice can use a public key that contains
not the current date but a date into the future instead, which allows her to encrypt a
message to Bob where Bob is able to decrypt it only in the future specified day. Anyway,
the disadvantage of using daily keys is that Bob needs to obtain the private key every
day which would require the PKG to be highly available but still feasible if the PKG is
maintained by corporation.

Delegation of Decryption Keys [16]. Delegation of decryption capabilities is an-
other example of IBE usage. Below are given two examples in both cases Bob plays the
role of PKG also. He first generates public key params and is able to generate any private
key for himself.

• Delegation to a laptop. Consider the case described above, when Alice uses the
current date to encrypt emails to Bob. Suppose that Bob goes on a trip for seven
days and takes his laptop with him. In the PKI systems Bob would take his private
key which would be valid for a long time probably. However, since he can generate
his keys, he generates 7 keys, one for each day. In this case if his laptop is stolen,
then only the keys which are valid for these seven days are compromised.

• Delegation of duties. Suppose that Alice uses subject line to encrypt messages for
Bob and Bob can decrypt the mail using master key. Even more, suppose that Bob
has several assistants, each responsible for certain duties. In this case, Bob generates
a private key for each assistant corresponding to his responsibilities such that each
assistant can decrypt only messages whose subject line falls into his responsibilities
but not the messages for which the subject belongs to other assistants responsibilities.
In this case Alice needs not to care about many keys, she only obtains the public
key of Bob and encrypts the message with the subject line that she needs to.
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5.2.1 Hierarchical Identity Based Encryption Scheme

Besides the mentioned differences between public key infrastructure and identity based
cryptography, there is also an organisational difference. A public key infrastructure in-
volves a hierarchy of certification authorities, where there is a root certification authority
which issues certificates to other certification authorities and then these certification au-
thorities can issue certificates to the users in their domain. As we saw in the identity
based encryption such a hierarchy was not possible. We had only a private key generator,
which was used for all users in a certain IBE system.

Anyway sometimes it is practical to have some hierarchy. The reason for that is to
reduce the workload on the main server and also to provide easier management for the
companies and institutions. E.g it is completely natural for a corporation to be able to
generate the private key for its own employees because it would be more practical for users
to make private key requests in the corporation rather than in the top level private key
generator.

This concept (for identity based encryption of course) was first introduced by Horwitz
and Lyn [34] and was called Hierarchical Identity Based Encryption (HIBE). The example
above was a 3-HIBE scheme where there is a root PKG which is in the possession of
master key and also many domain PKGs (each for a domain), which request their domain
key from the root PKG. The users request their key from the their domain PKG which
corresponds to their domain. Users and domains have a primitive ID (PID) which
could be an arbitrary string corresponding to the identities. E.g if Alice works for the
company Company.com and her email address is alice@company.com, a way to set the
PID of both would be to set the PID of Alice to be alice and the PID of the Company to
be company.com. In this case the public key of the user would be a tuple containing PID
of user and PID of company e.g (alice, company.com). Same as in the simple IBE system
here as well the user is able to construct the public key of any user offline, without having
the need to contact domain PKG or any trusted third party.

Now, let us give some definitions before we define a HIBE system.

Definition 5.2.2. Address. An address is an l-tuple of PIDs and fully specifies the
public key of the user.

Definition 5.2.3. Prefix. A prefix address (or prefix) in an l-HIBE system, is an i-tuple
of PIDs for some 0 ≤ i ≤ h. A prefix address 〈S1, ..., Si〉 is said to be a prefix of the
another prefix address 〈T1, ..., Tj〉 if i ≤ j and Sk = Tk for 1 ≤ k ≤ i.

Definition 5.2.4. For a non-negative integer l, an l-level hierarchical identity based en-
cryption scheme (l-HIBE) is specified by l + 3 randomised algorithms: Setup, Extracti
(for 1 ≤ i ≤ l), Encrypt, and Decrypt as follows [34]:

• Setup. Given a security parameter k ∈ Z as input, generates and return the system
parameters params and the master key mk (also called level-0 key).

• Extracti (for 1 ≤ i ≤ l). Given system parameters params, a level-(i − 1) key
mk〈S1,...,Si−1〉 and an i-tuple of PIDs, generate and return the level-i key mk〈S1,...,Si〉.

• Encrypt. Given system parameters params, an address and a message M ∈ M
return the ciphertext C ∈ C corresponding to message M .

• Decrypt. Given system parameters params, an address, a ciphertext C ∈ C and a
private key mk〈S1,...,Si1〉 return the plaintext M ∈M corresponding to ciphertext C.
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The algorithms must satisfy the standard consistency constraint, which means given
a private key d generated by algorithm Extractl and an address N as public key, then:

∀M ∈M : Decrypt(params,N,C,mk〈S1,...,Sl〉) = M

where
C = Encrypt(params,N,M)

The definition of the Extract algorithm is sometimes too general, because two different
actions are performed: one is to generate the keys for domain PKGs and the other is to
generate the private keys for the end users. Sometimes these algorithms have different
implementation, that is why sometimes they are presented as two separated algorithms:

• Extract - To generate the end-user private keys.

• Derive - To generate the keys for domain PKGs. This process is also known as key
delegation.

5.2.2 Security Concepts and Definitions

In this section we will describe some concepts and security definitions which will be used
on IBE and HIBE. The extended descriptions and proofs can be found in the references
[14, 16, 11, 22, 34]

Let us first describe some notions of attacks for an encryption system in general. The
attack models that we will consider are: [43, 9]:

• Chosen plaintext attack (CPA). The attacker is allowed to encrypt arbitrary
messages of his choice.

• Chosen ciphertext attack (CCA1). The attacker is allowed to decrypt a limited
(polynomial) number of ciphertexts of his choice, before getting the ciphertext that
he should attack ( challenge ciphertext).

• Adaptive chosen ciphertext attack (CCA2). The attacker is allowed to decrypt
a limited (polynomial) number of ciphertexts of his choice even after he gets the
challenge ciphertext. In this way he may be able to use the analysis of the previous
decrypted ciphertext to choose the next ciphertext.

On the other hand indistinguishability (IND) is a property of an encryption sys-
tem, in which an adversary will be unable to distinguish pairs of ciphertexts based on the
message they encrypt. Usually, the indistinguishability under adaptive chosen ci-
phertext attack is the most desirable security notion in most asymmetric cryptographic
schemes. However, since the concept of IBE is different than other asymmetric crypto-
graphic schemes, the notions (of attacks) can be strengthened. The reason for that is that
there is one master key which is used to generate all private keys di from the public keys
IDi. So, the adversary, who tries to extract the private key d corresponding to identity
D, might already posses private keys for the identities ID1 ... IDn. So, the system should
allow the adversary to extract the private key corresponding to any identity IDi, except
the ID that is being attacked.

So, similarly to notions of attacks described above one can define identity chosen
plaintext attack (ID-CPA), identity chosen ciphertext attack (ID-CCA1) and
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identity adaptive chosen ciphertext attack (ID-CCA2), where in addition to defi-
nitions above, the attacker may already posses the private keys for some other identities
when attacking the private key of a particular identity.

Another notion of an attack that we will use later is the so called selective identity
chosen plaintext attack (IDs-CPA), which is very similar to IND-CPA but in addition
it requires from the attacker to announce ahead in time the target public key, before the
master public key is published.

In previous section we defined the Derive algorithm which takes as input an iden-
tity ID = (I1, ...., Il) at depth l, the private key dIDl−1

of the parent identity IDl−1 =
(I1, ..., Il−1) at depth l−1 > 0 and it returns the private key dID corresponding to identity
ID. It is important for the algorithm Derive to generate the private keys with the same
distribution as the algorithm Extract, so that the private key od an identity ID at a
depth i does not reveal any information about the process used to derive the key. This
property is called delegation history independence.

Random Oracle Model

A random oracle is a mathematical function mapping every possible query to a random
response chosen uniformly from its output domain H : X → Y . And of course if the
same query is performed more than once, it responds the same way every time. In simple
words, a random oracle has the properties what a perfect hash function should have. In a
random oracle model, one simply assumes that the hash function is a random oracle and
provides the security proofs based on this assumption. And so it separates the security
of the scheme by the security of the hash function. Hence it leads to simple and efficient
designs. However, one should be aware that if a scheme is proved to be secure in a random
oracle model, does not necessary mean that this scheme would be secure when the random
oracle is replaced with a real world hash function. Anyway, in cases when no proofs can
be made using a standard model it is more useful to provide proofs using random oracle
model than no proofs at all.

5.2.3 The Boneh-Franklin IBE Scheme

In this section we will describe the Boneh-Franklin IBE, which is the first practical and
secure IBE scheme [16]. The authors gave 2 schemes. The first one is called BasicIdent
which is simpler but only IND-ID-CPA secure. The second scheme is called FullIdent
and it is more complex but more secure as well (IND-ID-CCA2 secure).

BasicIdent Scheme

The BasicIdent scheme contains four algorithms:

• Setup. Let k be a security parameter and G be some BDH parameter generator.

– Use G on input k to generate a prime p, two groups G1 and G1 of order p, and
a pairing e : G1 ×G1 → G2.

– Pick a random generator g ∈ G1.

– Pick a random s ∈ Z∗p and let h = gs.

– Choose two cryptographic hash functions H1 : {0, 1}∗ → G∗1 and H2 : G2 →
{0, 1}n for some n.
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– Let M = {0, 1}n be the message space, C = G∗1 × {0, 1}n the ciphertext space,
s ∈ Z∗p the master-key and params = 〈p,G1,G2, e, n, g, h,H1, H2〉 the system
parameters.

• Extract. For a given ID ∈ {0, 1}∗ and a master-key s as input

– Compute qID = H1(ID) ∈ G∗1
– Compute private key dID = qsID

• Encrypt. For a given message M ∈M

– Compute qID = H1(ID) ∈ G∗1
– Pick a random r ∈ Z∗p
– Compute the ciphertext

C = (gr,M ⊕H2(t
r
ID))

where
tID = e(qID, h) ∈ G∗2

• Decrypt For a given ciphertext C = (u, v) ∈ C, identity ID with the private key
dID ∈ G1

1. Compute the message
M = v ⊕H2(e(dID, u))

As you can see in the encryption phase, the message M is bitwise exclusive-ored with
the hash of trID and during the decryption v is bitwise exclusive-ored with hash of e(dID, u),
so:

e(dID, u) = e(qsID, g
r) = e(qID, g)sr = e(qID, g

s)r = e(qID, h)r = trID

which means that the scheme is consistent.
Security. The authors prove [16, Theorem 4.1] that the BasicIdent scheme is se-

mantically secure identity based encryption scheme (IND-ID-CPA) assuming that BDH is
hard in groups generated by G.

FullIdent Scheme

As mentioned earlier the basic scheme is vulnerable to chosen-ciphertext attack. In order
to fix this vulnerability the Fujisaki-Okamoto transform [25] is used, where an additional
level of hashing is used, providing with a chosen-ciphertext secure scheme in a random
oracle model which more complex comparing to the basic scheme.

Same as BasicIdent, FullIdent scheme contains four algorithms:

• Setup

– Perform all steps and procedures as in the BasicIdent

– Choose two additional hash functions H3 : {0, 1}n × {0, 1}n → Z∗p and H4 :
{0, 1}n → {0, 1}n

• Extract. Same as in the BasicIdent scheme.
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• Encrypt. For a given message M ∈M

– Compute qID = H1(ID) ∈ G∗1
– Pick a random σ ∈ {0, 1}n

– Set r = H3(σ,M)

– Compute the ciphertext

C = (gr, σ ⊕H2(t
r
ID),M ⊕H4(σ))

where
gID = e(qID, h) ∈ G2

• Decrypt For a given ciphertext C = (u, v, w) ∈ C, identity ID with the private key
dID ∈ G1

– First check if u ∈ G∗1. If not then reject the ciphertext.

– Compute σ = v ⊕H2(e(dID, u))

– Compute M = w ⊕H4(σ)

– Compute r = H3(σ,M) and then test whether u = gr

1. If not than, reject the ciphertext

2. If yes then we have the message M as decryption of ciphertext C.

Security. The authors of the scheme, in the publication [16](Theorem 4.4), show that
the FullIdent scheme is a adaptive chosen ciphertext secure identity based encryption
scheme (IND-ID-CCA2) assuming that BDH is hard in groups generated by G. On the
other hand, Coron on his publication [22] pointed out that there is a security loss in both
Boneh-Franklin schemes, which is related to the number of issued private keys. Of course
this not a big threat since the security can be balanced by previously requiring bigger
security parameters, but that would have the disadvantage of hurting the performance.

5.2.4 A HIBE Scheme Based on the Boneh-Frankin Scheme

Gentry and Silverberg [27] introduced a hierarchical identity based encryption scheme
by extending the Boneh-Franklin identity based encryption scheme. The resulting scheme
provides chosen ciphertext security in the random oracle model, regardless of the number of
levels in the hierarchy, assuming the difficulty of the same Bilinear Diffie-Hellman (BDH).

The authors extended both BasicIdent and FullIdent schemes. However, in this
section we will describe only the FullIdent scheme.

In this scheme, the Derive and Extract algorithms do not differ from each other and
there is no difference on the private keys of an i-th domain PKG and the private keys of an
end user. However, in addition to end users, each domain PKG has a master key. Hence
there are two Setup algorithms, one for the root PKG and one for the domain PKGs.
Here we define the FullIdent scheme described by following algorithms:

• Root Setup Let k be a security parameter and G be some BDH parameter generator.

– Use G on input k to generate a prime p, two groups G1 and G2 of order p, and
a pairing e : G1 ×G1 → G2.
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– Pick a random generator g0 ∈ G1.

– Pick a random s0 ∈ Z∗p and let h0 = gs00 .

– Choose four cryptographic hash functions H1 : {0, 1}∗ → G∗1 and H2 : G2 →
{0, 1}n for some n, H3 : {0, 1}n × {0, 1}n → Z∗p and H4 : {0, 1}n → {0, 1}n

– Let M = {0, 1}n be the message space, C = Gt
1
∗ × {0, 1}n ciphertext space,

s0 ∈ Z∗p the master-key and params = 〈p,G1,G2, e, n, g0, h0, H1, H2, H3, H4〉
the system parameters, where t represents the level of the recipient.

• Lower-level Setup The setup for domain PKGs is simple. A domain PKG just
picks a random sj ∈ Z∗p and keeps it secret. So, in this case the master key of the
j-th level PKG is mkj = sj

• Extract. On given identity ID = (I1, ..., Ij) ∈ Zjp of depth j and master key mkj

as input:

– Compute gj = H1(I1, ..., Ij)

– Compute ŝt = ŝt−1g
st−1

t =
∏j
i=1 g

si−1

i
2.

– Set the private key dID = ŝt

– In addition one should calculate also the values of hi = gsi0 for 1 ≤ i ≤ j − 1

• Encrypt. On given identity ID = (I1, ..., Ij) ∈ (Z∗p)j , system parameters params
and a message M ∈M

– Compute gi = H1(I1, ..., Ii) for 1 ≤ i ≤ j
– Pick a random σ ∈ {0, 1}n

– Set r = H3(σ,M)

– Compute the ciphertext

C = (gr0, g
r
2, . . . g

r
j , σ ⊕H2(t

r
ID),M ⊕H4(σ))

where
tID = e(h0, g1) ∈ G2

• Decrypt For a given ciphertext C = (u0, u2, . . . uj , v, w) ∈ C, identity ID =
(I1, ..., Ij) with the private key dID

– First check if (u0, u2, . . . uj , v, w) ∈ Gt
1
∗
. If not then reject the ciphertext.

– Compute σ = v ⊕H2(
e(u0,dID)∏j
i=2 e(hi−1,ui)

)

– Compute M = w ⊕H4(σ)

– Compute r = H3(σ,M) and then test whether u = gr0 and ui = gri for 2 ≤ i ≤ j
1. If not than, reject the ciphertext

2. If yes then we have the message M as decryption of ciphertext C.

2Since ŝt−1 represents the private key of the domain PKG which runs the extract algorithm, this PKG
can compute ŝt by using both, private and master key (in this case st−1).
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It is not hard to see how similar this scheme is to Boneh-Frankin IBE scheme. Hence
the security properties are the same. Another property of this scheme is that the ciphertext
length and also the operations (especially decryption) depend on the depth l. For each
single depth there is one element of G1 more in ciphertext, one multiplication more in the
encryption and one multiplication and one pairing calculation in decryption.

5.2.5 The Boneh-Boyen IBE Scheme

We saw earlier the Boneh-Franklin scheme which provides IND-ID-CCA2 security based
on random oracle model, which means that the security proofs are made on the assumption
that we have oracle model available, meaning that the hash function that we use in scheme
should be perfect hash functions.

Here we will describe identity based encryption (IBE) and hierarchical identity based
encryption (HIBE) schemes without random oracle model which were developed by Boneh-
Boyen [14, 11]. The authors gave three constructed schemes, but here we will describe
only two of them:

• BB1: Efficient IBE/HIBE From BDH Without Random Oracles

• BB2: Efficient IBE From BDHI Without Random Oracles

5.2.6 BB1 : Efficient IBE/HIBE From BDH Without Random Oracles

This construction gives an efficient HIBE system that is selective-identity chosen-plaintext
secure without random oracles based on the Decision-BDH assumption.

Let e : G × Ĝ → Gt be a pairing over a billienar group pair (G, Ĝ) of prime order p
with respective generators g ∈ G and ĝ ∈ Ĝ and lets us simplify the problem by assuming
that public keys (IDs) at depth k are vectors of elements in Z∗p and that the messages that
should be encrypted are encoded as elements of Gt. The BB1 HIBE scheme is defined by
following algorithms:

• Setup. On given HIBE system maximum depth l:

– Pick a random α ∈ Zp and set g1 = gα and ĝ1 = ĝα

– Pick l random numbers δ1, ..., δl ∈ Zp and set hi = gδi and ĥi = ĝδi for (1 ≤ i ≤
l)

– Pick a random β ∈ Zp and set ĝ0 = ĝαβ

– Compute v = e(g, ĝ0) = e(g, ĝ)αβ

– Finally return the system parameters params and keep the master secret mk
secure, where:

params = (g, g1, h1, ..., hl, ĝ, ĝ1, ĥ1, ..., ĥl, v) ∈ G2+l × Ĝ2+l ×Gt

mk = (ĝ0) ∈ Ĝ

• Extract. On given identity ID = (I1, ..., Ij) ∈ (Z∗p)j of depth j ≤ l and master key
mk as input:

– Pick j random numbers r1, ..., rj ∈ Zp
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– Calculate and return the private key:

dID = (ĝ0

j∏
k=1

(ĝIk1 ĥk)
rk , ĝr1 , ..., ĝrj ) ∈ Ĝ1+j

• Derive. On a given identity ID = (I1, ..., Ij) ∈ (Z∗p)j and private key dIDj−1 =
(d0, ..., dj−1) ∈ Gj corresponding to the parent identity IDj−1 = (I1, ..., Ij−1) ∈
(Z∗p)j−1

– Pick j random numbers r1, ..., rj ∈ Zp
– Calculate and return the private key:

dID = (d0

j∏
k=1

(ĝIk1 ĥk)
rk , d1ĝ

r1 , ..., dj−1ĝ
rj−1 , ĝrj ) ∈ Ĝ1+j

• Encrypt. On given identity ID = (I1, ..., Ij) ∈ (Z∗p)j , system parameters params
and a message M ∈ Gt

– Pick a random s ∈ Zp
– Calculate and return ciphertext:

C = (Mvs, gs, (gI11 h1)
s, ..., (g

Ij
1 hj)

s) ∈ Gt ×G1+j

• Decrypt. On a given private key dID = (d0, ..., dj) ∈ G1+j and a ciphertext C =
(A,B,C1, ..., Cj) ∈ Gt ×G1+j , calculate and return the message:

M = A

j∏
k=1

e(Ck, dk)

e(B, d0)
∈ Gt

In the Derive algorithm, one can see that using random numbers r1, ..., rj−1 ensures
that the distribution of keys is the same as the distribution of keys generated by Extract
algorithm. The scheme is constant since:

A

∏j
k=1 e(Ck, dk)

e(B, d0)
= A

∏j
k=1 e(g

Ik
1 hk, ĝ)srk

e(g, ĝ0)s
∏j
k=1 e(g, ĝ

Ik
1 ĥk)

srk
= A

1

vs
= M

Security. The BB1 HIBE scheme is selective chosen paintext secure identity based en-
cryption scheme (IND-sID-CPA) assuming that Decisional-BDH is hard in groups (G, Ĝ).
See [14, Theorem 4.1] for proofs.

5.2.7 BB2: Efficient IBE From BDHI Without Random Oracles

This approach is very different in construction perspective from the BB1. It provides a
simpler decryption compared to the previous scheme by keeping the encryption efficiency
and ciphertext size nominally the same. There is also one parameter less in the system
parameters and it is selectively chosen plaintext secure without random oracles based on
q-Decisional-BDHI assumption but is a bit less flexible.

Let e : G×Ĝ→ Gt be a pairing over a billienar group pair (G, Ĝ) of prime order p with
respective generators g ∈ G and ĝ ∈ Ĝ and lets us simplify the problem by assuming that
public keys (IDs) are elements in Z∗p and that the messages that should be encrypted are
encoded as elements of Gt. The BB2 HIBE scheme is defined by the following algorithms:
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• Setup. On given HIBE system of maximum depth l:

– Pick a random generator ĥ of Ĝ
– Compute v = e(g, ĥ)

– Pick random numbers x, y ∈ Z∗p and set X = gx and Y = gy.

– Finally return the system parameters params and keep the master secret mk
secure, where:

params = (g,X, Y, v) ∈ G3 ×Gt

mk = (x, y, ĥ) ∈ (Z∗p)2 × Ĝ

• Extract. On given identity ID ∈ Z∗p and master key on input:

– Pick a random r ∈ Zp such that x+ ry + ID 6= 0(mod p)

– Compute K = ĥ
1

ID+x+ry

– Calculate and return the private key:

dID = (r,K) ∈ Zp × Ĝ

• Encrypt. On given identity ID ∈ Z∗p, system parameters params and a message
M ∈ Gt

– Pick a random s ∈ Zp
– Calculate and return ciphertext:

C = (Mvs, Y s, XsgsID) ∈ Gt ×G2

• Decrypt. On a given private key dID = (d0, d1) and a ciphertext C = (A,B,C1),
calculate and return the message:

M =
A

e(Bd0C1, d1)
∈ Gt

The scheme is consistent since:

A

e(Bd0C1, d1)
=

A

e(gs(ID+x+ry), ĥ
1

ID+x+ry )
=

A

e(g, ĥs)
=
A

vs
= M

Security. The BB2 IBE scheme is selective chosen paintext secure identity based en-
cryption scheme (IND-sID-CPA) assuming that Decision-BDHI is hard in groups (G, Ĝ).
See [14, Theorem 5.1] for proofs.

Full Security . The authors state that an selective-identity IBE scheme (without ran-
dom oracles) can be converted into an adaptively secure one in a random oracle model by
simply using a random oracle H to hash identities before using them. Furthermore they
give some mechanisms which could be applied to the above described schemes to turn
them into IND-ID-CCA2 secure in a random oracle model. For details see [14].
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5.3 Short Signatures

In applications where there are bandwidth constraints and the usage of signature is neces-
sary, it is required that the signature is as short as possible. Such an example are systems
where signatures are typed in by a human or are sent over a low-bandwidth channel [18].
In wireless devices such as smart phones, PDAs, cell phones, RFID chips and sensors, the
battery life is a big concern and usually the main limitation. Reducing the number of bits
in the signature scheme used by these devices, which results in reducing the number of
bits in communication can contribute in power saving and increasing the battery life of
these devices [58].

In this section we will describe two short signature schemes which are constructed
using pairings. Before we continue describing these schemes we will give some definitions
and concepts which are needed to properly understand these schemes.

Definition 5.3.1. Secure Signature Scheme. A signature scheme is defined by three
algorithms KeyGen, Sign, Verify. For a given message space M, these algorithms are
defined as follows [13]:

• KeyGen. For a given fixed security parameter, generates and outputs a key pair
(PK, SK).

• Sign. For a given private key SK and a message M ∈M, generates and returns the
signature σ.

• Verify. For a given public key PK and a signed message (M,σ), returns valid or
invalid.

The signature is said to be consistent if:

∀M ∈M,∀(PK,SK)→ KeyGen(), ∀σ ← Sign(SK,M) :

Pr[V erify(PK,M, σ) = valid] = 1

5.3.1 Message Recovery

In some signature schemes it is possible to encode the message or a part of the message
being signed in the signature. These type of signatures are called signatures with mes-
sage recovery. Signatures based on trapdoor permutations support very efficient message
recovery [13]. Even for the signatures that do not support such message encoding into
the signature an inefficient message recovery can be build. So, for a (message, signature)
pair (M,σ), instead of sending (M,σ) to the verifier, M is simply truncated by t bits and
the signer transmits (M̂, σ) to the verifier instead, where M̂ is the truncated message.
Now, the verifier concatenates 2t possible values to M̂ and then applies the verification
algorithm to all these gained messages. If for one message the verification succeeds then
the signature is valid. Otherwise, the signature is not valid. So, with this so called trivial
method, the signed message (M,σ) can be shortened by t bits by increasing the verification
time by a factor of 2t.
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5.3.2 Security Concepts and Definitions

In this section we will describe some security notions used in signature schemes. The
standard notion of security for a signature scheme is called existential unforgeability
under an adaptive chosen message attack [28, 13]. In adaptive chosen message
attack, the attacker has access to an oracle that computes signatures of the attacked
user (private key) for any message where the oracle queries can depend on the results
of previous oracle queries and the existential forgery means forging (creating by the
attacker) a signature for at least one message that has not been signed before, where the
attacker has no control over the message whose signature he obtains, so it may be random
or nonsensical.

A stronger notion of security is strong existential unforgeability under an adap-
tive chosen message attack which is the same as existential unforgeability under
an adaptive chosen message attack, but in addition it requires that the adversary
cannot generate a new signature even on a previously signed message [13].

Another notion which will be used later is so called existential unforgeability under
a weak chosen message attack. In this security model it is required from the adversary
to submit all signature queries before it can see the public key.

5.3.3 Boneh-Lynn-Shacham (BLS) Short Signature Scheme

In this section we will describe a short signature scheme which was constructed by Boneh,
Lynn and Shacham [17, 18]. This scheme is secure against existential forgery under a
chosen-message attack (in the random oracle model), assuming the Computational Diffie-
Hellman problem (CDH) is hard on certain elliptic curves over a finite field [18] and works
on the so called co-Gap Diffie-Hellman groups, which are the groups where the DDH
Problem is easy and the CDH Problem is hard. The length of the signature for common
security parameters is approximately 170 bits, providing the same level of security similar
to 320 bit DSA signatures.

Definition

Let (G1,G2) be co-Gap Diffie-Hellman group pair with generators g1 ∈ G1, g2 ∈ G2, such
that |G1| = |G2| = p, and let there be a full-domain hash function H : {0, 1}∗ → G1. The
output of signature σ is an element of G1 as well. The signature scheme contains three
algorithms: KeyGen, Sign, and Verify defined as follows:

• Key generation.

– Pick a random x ∈ Zp
– Compute v = gx2 ∈ G2.

– Publish the public key v and keep secret the privet key x.

• Sign. Given a private key x ∈ Zp and a message M ∈ {0, 1}∗

– Compute h = H(M) ∈ G1

– Compute σ = hx ∈ G1

– Output σ as signature of message M .

• Verify. Given a public key v ∈ G2, a message M ∈ {0, 1}∗ and the signature σ ∈ G1
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– Compute h = H(M) ∈ G1

– Check whether (g2, v, h, σ) is a valid co-Diffie-Hellman tuple. If yes output
valid, otherwise not valid.

Security. The above signature scheme is secure against existential forgery under
adaptive chosen message attacks in the random oracle model where the security is based
on the hardness of co-CDH on (G1,G2). In cases when G1 = G2, then the security is
based on the Computational Diffie-Hellman assumption in G1. The proofs can be found
in [18, Theorem 3.2].

5.3.4 Boneh-Boyen short signature scheme

Another short signature scheme similar to BLS was presented by Boneh and Boyen [12, 13]
which does not require random oracles but uses Strong Diffie-Hellman (SDH) assumption.
This scheme can be made as short as BLS and is more efficient on verification. If the same
signature is used with random oracle, than the resulting scheme is even shorter than BLS.

First we will describe the full signature scheme which is proven to be secure against
strong existential forgery under an adaptive chosen message attack without random oracles
using the SDH assumption and then later we will show two other variations, one secure
against existential forgery under a weak chosen message attack without random oracles
and the other using random oracles.

The Full Signature Scheme

Let (G1,G2) be bilinear groups where |G1| = |G2| = p, where p is prime and let us assume
that messages m are elements in Zp (this concepts can be extended to use messages in
{0, 1}∗ by using collision resistant hashing). As usual the scheme is defined by three
algorithms.

• Key generation.

– Pick two random generators g1 ∈ G1 and g2 ∈ G2

– Pick two random integers x, y ∈ Z∗p
– Compute u = gx2 ∈ G2 and v = gy2 ∈ G2

– Compute z = e(g1, g2) ∈ GT

– Publish the public key (g1, g2, u, v, z) and keep the private key (g1, x, y) secret.

• Sign. Given a private key (g1, x, y) and a message m ∈ Z∗p

– Pick a random r ∈ Zp\{−x+m
y }

– Compute σ = g
1

x+m+yr

1 ∈ G1 (The inverse 1
x+m+yr is computed modulo p).

– Output the signature pair (σ, r)

• Verify. Given a public key (g1, g2, u, v, z), a message m and a signature (σ, r) verify
that g1, g2, σ, g

m
2 v

ru) is a DDH tuple by checking whether e(σ, ugm2 v
r) = z holds. If

yes output valid, otherwise output invalid.
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Here is not hard to see that two elements of public key g1 and z are redundant. The
g1 is not needed to verify so there is no need to be included in the public key and z can
be computed. Anyway if z is included in the public key a fast verification is possible and
it is convenient to include both of them in public key.

Each element of the signature is approximately log2p bits long, making the whole
signature length approximately 2log2p which is approximately the same as DSA signature
providing the same security but proven to be secure without random oracles. Comparing
with BLS scheme this scheme is faster. When verifying, we need to compute only one
pairing and one multi-exponentiation, instead of two pairings and since exponentiation is
faster than pairing computation, verification is faster than in the BLS scheme.

Security.The scheme above is secure against strong existential forgery under an adap-
tive chosen message attack, provided that the SDH assumption holds in (G1,G2) [13,
Theorem 8].

A Weakly Secure Short Signature Scheme

Here we will show a scheme which is secure against existential forgery under a weak chosen
message attack without random oracle model using SDH as complexity assumption.

Again, let (G1,G2) be bilinear groups where |G1| = |G2| = p for some prime p and let
us assume that messages m are elements in Zp. The three algorithms work as follows:

• Key generation.

– Pick two random generators g1 ∈ G1 and g2 ∈ G2

– Pick a random integer x ∈ Z∗p
– Compute v = gx2 ∈ G2

– Compute z = e(g1, g2) ∈ GT

– Publish the public key (g1, g2, v, z) and keep the private key (g1, x) secret.

• Sign. Given a private key (g1, x) and a message m ∈ Z∗p

– Compute σ = g
1

x+m

1 ∈ G1 (The inverse 1
x+m is computed modulo p) 3.

– Output the signature σ

• Verify. Given a public key (g1, g2, v, z), a message m and a signature σ check
whether e(σ, vgm2 ) = z holds. If that holds or if σ = 1 and vgm2 = 1 output valid,
otherwise output invalid.

Security. The scheme above is secure against existential forgery under a weak chosen
message attack. The proofs can be found in [13, Lemma 9].

This scheme is less secure than the full one but it is shorter because the signature
contains only σ, which amounts to half the size of the full scheme. The importance of
this scheme is that using random the oracle model can be transformed into existentially
unforgeable signature scheme under an adaptive chosen message attack in the strong sense.
Alternatively, this weaker scheme can reduce the length by employing the mechanism called
limited message recovery which will be described later, resulting in a very short weakly
secure scheme.

3By convention if x+m = 0 then 1/(x+m) is defined to be 0, in that case σ = 1 ∈ G1
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Limited Message Recovery

Limited message recovery [13] is a more efficient method than trivial one for message
recovery. The signed message (M,σ) can be reduced in length by t-bits which will result
on the increasing the verification time by a factor 2t/2. This method applies to both the
fully secure scheme and the weakly secure one. Let (g1, g2, u, v, z) be a public key of the
fully secure scheme. Suppose that we get (σ, r) which represents the signature of message
m ∈ Zp and m̂ which is a truncation of the last t bits of m. So the message m can be
written as:

m = m̂2t + δ, 0 ≤ δ < 2t

In order to verify the signature and reconstruct the δ missing bits we start from the
verification equation:

e(g1, g2) = e(σ, uvr, gm2 )

= e(σ, uvr, gm̂2t+δ
2 )

= e(σ, uvr, gδ2g
m̂2t

2 )

= e(σ, uvr, gδ2)e(σ, uvr, gm̂2t

2 )

= e(σ, uvr, g2)
δe(σ, uvr, gm̂2t

2 )

which could be written in the form:

e(σ, uvr, g2)
δ =

e(g1, g2)

e(σ, uvr, gm̂2t
2 )

(5.1)

Now, if there exists an integer δ such that 0 ≤ δ < 2t and the Equation (5.1) is satisfied,
the signature (σ, r) is valid. The other problem is how to find such integer. Using Pollard’s
Lambda [49, 13] method for computing discrete logarithms such an integer can be found
in approximately 2t/2 steps.

Very Short Weakly Secure Signatures

One can apply the limited message recovery mechanism to the weakly secure scheme, in
order to further reduce the size of the signature overhead. So, if the message is truncated
for t-bits then the total signature overhead for common security parameters would be only
(160− t) bits at the cost of requiring 2t/2 arithmetic operations for signature verification.
The resulting signature would still be secure under week chosen message attack but it still
could be useful in cases when the bandwidth is extremely limited and the chosen message
attacks are not a concern.

Shorter Signatures With Random Oracles

We mentioned earlier that the existentially unforgeable signature scheme under a weak
chosen message attack described in Section 5.3.4 is used to build an existentially unforge-
able signature scheme under an adaptive chosen message attack (in the strong sense), in
the random oracle model, resulting in a efficient short signature scheme based on q-SDH in
random oracle model [13]. Since this scheme is based on the weakly secure short signature
scheme and we need to reuse algorithms defined for this scheme 5.3.4, let KeyGen, Sign,
Verify be three algorithms that define this scheme. It is assumed that the scheme signs
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messages in some finite field set
∑

and that private keys are in some set
∏

. Furthermore,
let also be two hash functions H1 :

∏
×{0, 1}∗ → {0, 1} and H2 : {0, 1}× {0, 1}∗ →

∑
(in

security analysis they will be viewed as random oracles). Then the scheme is defined as
follows:

• Key generation. Same as KeyGen. The public key is PK and the private key is
SK ∈

∏
• Sign. Given a private key SK and a message M ∈ {0, 1}∗

– Compute b = H(SK,M) ∈ {0, 1}
– Compute m = H2(b,M) ∈

∑
– Output the signature (b, Sign(m))

• Verify. Given a public key PK, a message M ∈ {0, 1}∗ and a signature (b, σ) check
whether V erify(PK,H2(b,M), σ) = valid. If that holds output valid, otherwise
output invalid.

5.4 Group signatures

Group signatures are used to provide anonymity for signer, in cases where there are defined
groups of users and each member of the group has its own private key, which is used to
sign. The verifier can verify the validity of signature meaning that can verify that the
signature was signed from a member of the group, but the verifier is unable to identify the
member who signed, keeping the identity of the signer secret. However, in some systems
some trusted third parties, can trace the signature or undo its anonymity using some
kind of special trapdoor. Some schemes even provide revocation mechanisms where group
membership can selectively be disabled without affecting the signing ability of the other
members of the group.

5.4.1 Boneh-Boyen-Shacham group signature

In this section we will describe a short signature scheme constructed by Boneh, Boyen
and Shacham [15] which approximately has the same size as the standard RSA signature
scheme and provides the same security. The security of this scheme is based on the Strong
Diffie-Hellman assumption and on the Decision Linear Diffie-Hellman assumption.

A Zero-Knowledge Protocol for SDH

Here it will be described the protocol which makes possible to prove possession of a solution
to a SDH problem, which in fact is underlying building block for this group signature
scheme.

In this protocol the public values are g1, u, v, h ∈ G1, g2, w ∈ G2, where u, v, g are
random and g2 is a random generator of G2, g1 = ψ(g2) and w = gγ2 for some γ ∈ Zp
which is kept secret. Here ψ is a computable isomorphism from G2 to G1. The goal of the
protocol is to prove possession of a pair (A, x), for some A ∈ G1 and x ∈ Zp, such that
Ax+γ = g1. The protocol between two parties, Alice (prover) and Bob (verifier), is defined
as follows:

Protocol 5.4.1. [15, Protocol 1]



CHAPTER 5. PAIRING BASED CRYPTOGRAPHY 52

• Alice selects exponents α, β ∈ Zp and computes a linear encryption of A:

T1 = uα T2 = vβ T3 = Ahα+β

• Then she computes two helper values:

δ1 = xα and δ2 = xβ ∈ Zp

• Alice and Bob then undertake a proof of knowledge of values (α, β, x, δ1, δ2) satisfying
the relations:

uα = T1 vβ = T2

e(T3, g2)
xe(h,w)−α−βe(h, g2)

−δ1−δ2 = e(g1, g2)/e(T3, w)

T x1 u
−δ1 = 1 T x2 v

−δ2 = 1

which is done by following these steps:

– First, Alice picks some random blinding values rα, rβ, rx, rδ1 , rδ2 ∈ Zp and com-
putes:

R1 = urα R2 = vrβ

R3 = e(T3, g2)
rxe(h,w)−rα−rβe(h, g2)

−rδ1−rδ2

R4 = T rx1 u−rδ1 R5 = T rx2 v−rδ2

– She sends (T1, T2, T3, R1, R2, R3, R4, R5) to Bob.

– Bob sends a random challenge c ∈ Zp to Alice.

– Now, Alice computes and sends back to Bob the values

sα = rα + cα sβ = rβ + cβ sx = rx + cx

sδ1 = rδ1 + cδ1 sδ2 = rδ2 + cδ2

– Finally, Bob verifies the equations

usα = T c1R1

vsβ = T c2R2

e(T3, g2)
sxe(h,w)−sα−sβe(h, g2)

−sδ1−sδ2 = (e(g1, g2)/e(T3, w))cR3

T sx1 u−sδ1 = R4

T sx2 v−sδ2 = R5

And accepts if each equation holds.
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Short Group Signatures from SDH

In this section we describe the signature scheme, which presents a scheme secure in the
random oracle model by applying the Fiat-Shamir heuristic. Let (G1,G2) be a bilinear
group pair with a computable isomorphism ψ. Furthermore let us assume that the SDH
assumption holds on (G1,G2), and the Linear assumption holds on G1. Let H : {0, 1}∗ →
Zp. The scheme is defined by the following algorithms:

• KeyGen. On a given number of group members n as input parameter:

– Pick a random generator g2 ∈ G2 and set g1 = ψ(g2)

– Select a random h ∈ G1\{1G1} and ξ1, ξ2 ∈ Z∗p
– Find u, v ∈ G1 such that uξ1 = vξ1 = h

– Pick a random γ ∈ Z∗p and set w = gγ2

– For each user pick randoms xi ∈ Z∗p and set Ai = g
1/(γ+xi)
1 ∈ G1 for 1 ≤ i ≤ n.

– Now, the group public key is gpk = (g1, g2, h, u, v, w), the private key of group
manager is gmsk = (ξ1, ξ2) and for i-th user the private key is gsk[i] = (Ai, xi).
γ should remain secret, so that no other party other than the issuer should
posses it.

• Sign. On a given group public key gpk = (g1, g2, h, u, v, w), private key (Ai, xi) of
i-th user and e message M ∈ {0, 1}∗:

– Compute T1, T2, T3, R1, R2, R3, R4, R5 as specified in Protocol 5.4.1.

– Compute the challenge

c = H(M,T1, T2, T3, R1, R2, R3, R4, R5) ∈ Zp

– Using challenge c, calculate values sα, sβ, sx, sδ1 , sδ2 as specified in Protocol
5.4.1

– Calculate and output the signature σ

σ ← (T1, T2, T3, c, sα, sβ, sx, sδ1 , sδ2)

• Verify. On a given group public key gpk = (g1, g2, h, u, v, w), a message M ∈ {0, 1}∗
and a group signature σ = (T1, T2, T3, c, sα, sβ, sx, sδ1 , sδ2)

– Compute values R′1, R
′
2, R

′
3, R

′
4 and R′5 as follows:

R′1 = usαT−c1 R′2 = vsβT−c2

R′4 = u−sδ1T sx1 R′5 = v−sδ2T sx2

R′3 = e(T3, g2)
sxe(h,w)−sα−sβe(h, g2)

−sδ1−sδ2 (e(T3, w)/e(g1, g2))
c

– Check whether
c = H(M,T1, T2, T3, R

′
1, R

′
2, R

′
3, R

′
4, R

′
5)

holds. If yes output valid, otherwise output invalid.
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• Open. On a given group public key gpk = (g1, g2, h, u, v, w), private key of group
manager gmsk = (ξ1, ξ2) a message M ∈ {0, 1}∗ and a group signature σ =
(T1, T2, T3, c, sα, sβ, sx, sδ1 , sδ2)

– Verify that σ is a valid signature on M .

– Calculate
A = T3/(T

ξ1
1 T ξ22 )

– If the group manager is given a list of Ai, from the private keys of users, then
it can compare these values with A and give the corresponding identity based
on the index of Ai.

This scheme is correct full-anonymous (full-anonymity experiment) and full-traceable.
The proofs can be found in [15].

Revocation

For this short signature scheme the authors also presented a revocation mechanism. Sup-
pose that we have n users and we would like to revoke users 1, . . . , r, such that the other
users would be still able to sign. In order to accomplish that, first, the Revocation Author-

ity (RA) publishes a Revocation List RL = (A∗1, x1), . . . , (A
∗
r , xr) where A∗i = g

1/(γ+xi)
2 .

So, in order to calculate A∗i one needs the SDH secret γ. 4 This list then is distributed to
all signers and verifiers on the system and it is used to update the group public key. Let

y =
∏r
i=1(γ+xi) ∈ Z∗p. First the values g′1 = g

1/y
1 , g′2 = g

1/y
2 and w′ = (g′2)

γ are calculated
and the new group public key is set to be (g′1, g

′
2, h, u, v, w

′).
So on a given revocation list anyone can compute the new public key and also any

unrevoked user can update its private key corresponding to the updated group public key.
Here it will be shown how to revoke one key at a time. In case of r keys this process can
be repeated r times. Let there be (A∗1, x1) the key we want to revoke. First the public key
values g′1, g

′
2 and w′ are calculated as follows:

g′1 = ψ(A∗1) g
′
2 = A∗1 and w

′ = g2(A
∗
1)
−x

This works because
g′1 = ψ(A∗1) = g

1/(γ+x1)
1

w′ = g2(A
∗
1)
−x1 = g

1− x1
γ+x1

2 = (A∗1)
γ = (g′2)

γ

Now, let (Ak, xk) be the private key of user k who wants to update the private key.

The user first computes A′k ← ψ(A∗1)
1/(xk−x1)/A

1/(xk−x1)
k and then he updates his private

key by setting it to (A′k, xk), which works because

(A′k)
γ+xk =

ψ(A∗1)
γ+xk
xk−x1

A
γ+xk
xk−x1
k

=
ψ(A∗1)

(γ+x1)+(xk−x1)
xk−x1

g
1

xk−x1
1

= ψ(A∗1) = g′1

4If G1 = G2 then Ai = A∗i
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5.5 Security of Pairing Based Cryptography

In Chapter 3 we explained the concept of pairing in general and how to construct and
calculate the Weil and Tate pairing. Then later in Chapter 4 we introduced Bilinear
Diffie-Hellman Problem which is closely related to the Diffie-Hellman Problem. Finally in
Chapter 5 we explained some pairing based cryptography schemes. Pairing based cryp-
tography schemes and protocols are mainly based on the Bilinear Diffie-Hellman Problem
(or related problems). So, one can attack those schemes by attacking the BDH Problem.
Hence, in this section we will discuss about the security of BDH Problem and pairing
based cryptography in general as well as the parameter and curve selection.

In order to explain the problems better, let us first define the BDH Problem in E(Fq),
once again. Let E be an elliptic curve defined over a finite field Fq and P a point of order
m, such that m | #E(Fq) and let k be the embedding degree with respect to m. Further
more, let e be a pairing which maps the points of E(Fq) to Fqk . Then, the BDH Problem

is to find e(P, P )abc on given P, aP, bP, cP for some a, b, c ∈ Zq.
We explained in Section 4.5 how by solving the DL problem in either in E(Fq) or in Fqk ,

one can easily solve the BDH Problem. In cases where the embedding degree is relatively
low, then the main concern is the DL Problem in Fqk , since for finite fields there exist
algorithms (such as index calculus) which can solve DL in sub-exponential time. Hence,
the size of Fqk should be the comparable to the RSA modulus providing the same security
level. On the other hand the the size of E(Fq) should be enough to prevent solving the
DL Problem in E(Fq) and m (prime subgroup) should be large enough to prevent from
solving DL Problem in the subgroup of E(Fq) generated by P using Pollard’s rho method.

However, the BDH Problem has not been widely studied. Currently, attacking the DL
Problem in either curve or in finite field is the only known way to attack the BDH Problem
and schemes that are proved to be secure under this assumption. But this does not mean
that there exists no other way to solve the BDH Problem, since there is no evidence of
an equivalence of BDH Problem with the DH Problem or DL Problem. However, despite
the absence of proofs it is usually assumed that the BDH Problem is equivalent to DH
problem.

So, let us stop worrying about BDH Problem for a moment and see which parameters
are suitable for pairing based cryptography and which curves should or can be used, based
on other security constraints mentioned above. Besides the security constraints one should
consider the performance as well. In order for operations in Fqk to be efficient k should be

sufficiently small. The minimum bitlengths of m and qk, for q = p (prime) as function of
the desired security level (the same security level provided by AES) are displayed in Table
5.1 [40].

Table 5.1: Minimum bit lengths of m and pk

security level bpk=length(pk) bm=length(m) γ = bpk/bm
80 1024 160 6.4

128 3072 256 12

192 8192 384 21.33

256 15360 512 30

Besides the security and performance constraints, there may be other constraints spe-
cific to the application. For instance, BLS short signature scheme 5.3.3 is designed with
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the bandwidth constraints in mind. In such cases one should choose m and pk, such that
the ratio ρ = log p/log n is close to 1 which results in k = γ/ρ being close to γ.

Another very important decision factor is the curve selection. Usually the curves which
are suitable for pairings are called paring friendly curves. A construction of pairing friendly
curves can be accomplished using supersingular and ordinary curves. When it comes to the
implementation of cryptographic schemes using pairings, supersingular curves seem to be
the most preferred and the most suitable class of elliptic curves. They have been suggested
in many papers [23, 40, 8] and even in some of the first initiatives of standard for identity
based encryption schemes using pairings such as [42, 5]. And there are many reasons for
that. First, all supersingular curves have the embedding degree at most 6, which is usually
small enough to perform the operations in Fqk efficiently. Another important fact is the
existence of distortion maps explained in Section 3.4. Many cryptographic application
require such distortion maps, usually because of the degenerate feature of pairings. But,
for some protocols the proofs of security rely on the existence of such maps. For an an
elliptic curve with k > 1, such distortion exists only if the curve is supersingular. Another
fact is that k = 2 is the only possible embedding degree for fields Fp with p > 5 [23] (which
seems to be the most suitable field since provide most flexibility on choices of m and p
which is an advantage over the curves with k > 2 5). Curves with k = 1 provide with
same flexibility but they have the disadvantage of having a large base field size where all
operations take place, which makes them less efficient than the ones with k > 1.

In case where there are bandwidth constraints, one may want to choose larger k. For
this purpose the curves over fields of characteristic 2 and 3 are more suitable. Supersingular
curves over fields with characteristic of 2 can have embedding degree up to 4 and some
curves (actually only two of them) with prime characteristic of 3 are the only ones that
can have embedding degree of 6 [23, 40]. One should be aware that, when using the elliptic
curves over fields of characteristic of 2 and 3 the size of of field should be larger than in
case of prime field (Table 5.1), because of the Coppersmith’s index calculus method for
discrete logarithm computation which applies to the fields of small characteristic [23, 21].

On the other hand, for pairing based cryptography it is possible to use also the ordinary
curves. But for protocols that require a distortion map one can use only the ordinary curves
with k = 1, which have the same disadvantage as the supersingular ones with k = 1. All
operations take place in a larger field which makes it inefficient. The detailed guide on
how to construct such pairing friendly elliptic curves can be found in [23, 40].

5Koblitz and Menezes [40] observed that as the parameters bm and bpk increase for better security, it
is hard to find appropriate choices of m and p for supersingular curves with k > 2



Chapter 6

Implementation

In this chapter we will describe the practical part of this thesis. Our goal is to implement
a pairing based cryptography library using the existing elliptic curve library provided by
IAIK (IAIK-ECC) [1]. The implementation part consist of:

1. Implementation of elliptic curve pairings

2. Implementation of identity based encryption (IBE and HIBE)

3. Implementation of a short signature scheme and

4. Implementation of tripartite Diffe-Hellman scheme

Fortunately, the IAIK-ECC library had already an implementation of the elliptic curves
including finite fields. However, in order to implement pairings we needed to implement
the extension fields Fp2 (where p is prime).

In the following part we will first describe what we implemented, some optimisation
that we applied in order to get better performance and also the selection of our parame-
ters. Then we will describe the architecture and the integration of the library with JAVA
JCA/JCE framework, followed by the implementation details. Finally, we will give the
timing tests which give an idea about the performance of our implementation.

57



CHAPTER 6. IMPLEMENTATION 58

6.1 Optimisations

6.1.1 Pairing Optimisations

In Chapter 3 we explained the Weil, Tate, reduced Tate and modified Tate pairing. For our
cryptographic applications we use the modified Tate pairing, where several optimisations
are performed in order to get a better performance. However, we have implemented the
Weil and reduced the Tate pairing as well.

Low Hamming Weight

In Chapter 3 we explained Miller’s algorithm which is used for calculation of both Tate
and Weil pairings. This algorithms contains a condition in the loop and in the i-th
iteration some operations are performed only if i-th bit of m is 1. So, using an m with
low Hamming weight would result on saving many calculations in second loop. A good
choice for m is m = 2a + s · 2b + c, where s, c ∈ −1, 1 and a > b (Solinas number). In
this case, for any s, if s > 0 the function fs,P can be computed using Miller’s algorithm
explained in Chapter 3. If s < 0 then one can use the formula fs,P = 1/(f−s,P vsP ) since
div(fs,P ) = −div(f−s,P )− div(vsP ), where vsP is the vertical line through sP . In cases k
is even, then this factor can be ignored due to the final powering operation [32].

So, here we will present the changes needed for (reduced) modified Tate pairings [42].

Algorithm 6.1.1. Millers Algorithm for Tate pairings using Solinas number

Input: n = 2a + s · 2b + c, P ∈ E(Fq)[n], Q ∈ E(Fqk).
Output: fn(Q) = en(P,Q)

1: V ← P , tn ← 1, td ← 1, fn ← 1, fd ← 1
2: for i← 0 . . . b− 1 do
3: tn ← t2n · lV,V (Q)
4: V ← 2V
5: td ← t2d · vV (Q)
6: end for
7: if s = 1 then
8: V1 = V
9: fn = fn · tn

10: fd = fd · td
11: else
12: V1 = −V
13: fn = fn · td
14: fd = fd · tn · vV (Q)
15: end if
16: for i← b . . . a− 1 do
17: tn ← t2n · lV,V (Q)
18: V ← 2V
19: td ← t2d · vV (Q)
20: end for
21: fn = fn · tn · lV,V1(Q)
22: fd = fd · td · lV+V1,V+V1(Q)
23: if c = −1 then
24: fd = fd · vP (Q)
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25: end if
26: η = (p2 − 1)/q
27: f = (fn/fd)

η

28: return f

Observe that we could use a variable f instead of fn and fd (t in case of temporary
value) and divide them each step, but instead we saved the numerator and denominator
separated and we divide them only at the end of function. This way save we an inversion
for each step.

Irrelevant denominators

We explained the necessity of using the distortion maps φ in Section 3.4. When using such
a map then the denominators in Miller’s algorithm can be discarded for the curve given
in Table 6.1. For more explanation see [8].

Table 6.1: Distortion maps

Curve Field Distortion Map Conditions

y2 = x2 + x Fp φ(x, y) = (−x, iy) p = 3 mod(4), p > 3

Now in the Algorithm 6.1.1, it is not needed to calculate denominators: td ← t2d ·vV (Q).
The performance gain is obvious in this case, since in every loop there was a denomi-

nator calculation.

6.1.2 Implementation of identity based encryption (IBE and HIBE)

The IBE seems to be the most popular and interesting application of pairing based cryp-
tography. Hence, we focused mostly on the implementation IBE schemes. We have imple-
mented three of them, where one is HIBE scheme:

1. Boneh-Franklin IBE (BF FullIdent) Scheme

2. Boneh-Boyen IBE (BB1 FullIdent) Scheme

3. Gentry-Silverberg (GS FullIdent) HIBE Scheme

Currently, there exist no standard about pairing based cryptography or identity based
encryption. However, there is a draft standard for ”Identity-based Public-key Cryptog-
raphy Using Pairings” [5] which recommends the three of (H)IBE schemes that we im-
plemented and also a community memo titled ”Identity-Based Cryptography Standard
(IBCS) #1: Supersingular Curve Implementations of the BF and BB1 Cryptosystems”
[42] which also recommends the first two schemes but has no recommendation for any
HIBE scheme. So, our implementations are based on these two recommendations.

IBE Scheme Parameters

For IBE schemes we used the curve listed in Table 6.1, which has been recommended
by the draft standard [5] and also many other papers [8, 23]. We also need a prime p
to determine the field Fp, a prime m which determines the order of points on which we
operate and also a digest function. These parameters are generated based on a security
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parameter s (which comparable to the bitlength of RSA modulus by providing the same
security) as input like specified in Table 6.2:

Other than that, we require m | #E(Fp), m | pk − 1 (where k is embedding degree)
and p = 11 mod (12).

Implementation of Other Pairing Based Cryptography Applications

Besides the IBE, we implemented also the Boneh-Lynn-Shacham (BLS) short signature
scheme and Tripartite Diffe-Hellman key agreement scheme. The parameters used are the
same as the ones given in Table 6.2.

Observe that since the output of the BLS scheme is an element of the field, with our
configuration the length of signature would be much more longer than it was described in
Chapter 5. In order to get a shorter signature one should use elliptic curves with higher
embedding degree. Since we are focused manly on the IBE schemes, we did not implement
the fields that match this criteria.

6.1.3 Map Functions

We explained in Chapter 5 many cryptographic applications of pairings. All these appli-
cations accept as input strings of bytes or numeric values. However most of our operations
deal with points of an elliptic curve. Hence, we need hash functions that map such prim-
itive data types to points on elliptic curve and the other way around.

Map To Point

Considering that we used the elliptic curve:

E(Fp) : y2 = x3 + x, p ≡ 11 mod (12)

we can map a string to a point of E(Fp) by first mapping it to an element of Fp and use
the mapped value as x-coordinate of the point Q ∈ E(Fp). Further, we need to calculate
the y-coordinate of Q:

y = (x3 + x)(1/2)

There is such a solution in Fp, only if the x3 +x is a quadratic nonresidue modulo p. Since
p ≡ 3 mod (4), then either x3 + x or −(x3 + x) is a quadratic nonresidue modulo p [44].
So let use say that y1 is the value of either x3 + x or −(x3 + x) (the one that is quadratic
residue modulo p). We can employ the Fermat’s little theorem to find the square root of
y1, So first:

yp−11 ≡ 1 mod(p)

Table 6.2: Parameters based on the security parameter s

s Length of p Length of m Digest function

1024 512 160 SHA− 1

2048 1024 224 SHA− 224

3072 1536 256 SHA− 256

7680 3480 384 SHA− 384

15360 7680 512 SHA− 512
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By multiplying both sides with y21 we get:

yp+1
1 ≡ y21 mod(p)

Since 4|p+ 1 we get:

y
(p+1)/4
1 ≡ y2/41 mod(p) ≡ y1/21 mod(p)

So here is the complete algorithm [5, PHF1-SHA]:

Algorithm 6.1.2. MapToPoint

Input: : a string s ∈ {0, 1}∗
Output: : Q ∈ E(Fp)

1: x←MapToRange(s, p)
2: x1 = x3 + x
3: if Jacobi symbol (x1p ) = +1 then

4: y = x
(p+1)/4
1

5: else
6: y = (−x1)(p+1)/4

7: end if
8: Q = (x, y)
9: return Q

Here, MapToRange is a transformation from a string to an integer in the range 0 to
p− 1.

Map To Point of Specific Order

In Algorithm 6.1.2 described how to map a string to a point on an elliptic curve. However,
we usually need to map the data to a point of specific order m in order to calculate
pairings.

A point of E(Fp) can be mapped to a point of E(Fp)[m] by multiplying it by
#E(Fp)
m =

p+1
m

1. So, to map a string to an point of E(Fp)[n], first we map to any point using

MapToPoint algorithm and then we multiply this point by p+1
q .

Map To Range

As we mentioned above we need another hash function, which allows us to map a string
to an integer in the range 0 to p − 1, which is accomplished by the following algorithm
[42, 5]:

Algorithm 6.1.3. MapToRange

Input: : a string s ∈ 0, 1∗, an integer n, H=SHA (SHA1 to SHA512 depending on
settings) hash function

Output: : v ∈ [0, n− 1]
1: hlen← the output length of H in bytes.
2: v = 0
3: h = 0× 00..00 a string of null bytes of length hlen
4: t = h||s

1Note that m|p+ 1
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5: h = H(t)
6: a← ToInt(h)
7: v = a
8: t = h||s
9: a← ToInt(h)

10: v = 256hlenv + a
11: v = v mod (n)
12: return v

Here, ToInt simply creates an integer from a byte array.

Pseudo-Random Bytes Generator

In some of our applications we need some keyed pseudo-random bytes generator, which
generates a b-octet pseudo-random string from a given number b and string s using a
given cryptographic hash function. The algorithm is given below [42]:

Algorithm 6.1.4. HashBytes

Input: : a string s ∈ 0, 1∗, an integer b, H=SHA (SHA1 to SHA512 depending on settings)
hash function

Output: : b-octet pseudo-random string
1: hlen← the output length of H in bytes.
2: l = ceil(b/hlen)
3: h = 0× 00..00 a string of null bytes of length hlen
4: k = H(s)
5: for i in 1 to l do
6: hi = H(hi−1)
7: ri = H(hi ‖ k)
8: end for
9: r = b ‖ r1 ‖ . . . ‖ rl

10: return the b-leftmost octets of r

Here, ‖ denotes the concatenation.

IBE-BF Hash Functions

Above we explained some algorithms for mapping data from a specific type to another.
On the other hand in Section 5.2.3 we explained the IBE-BF scheme where we used four
hash function H1 . . . H4. In the Table 6.3 we point out which of the algorithms above is
used to implement which IBE-BF hash function.

Table 6.3: Hash functions used in IBE-BF scheme

Hash function Algorithm

H1 Map to point of specific order. First the Algorithm 6.1.2 is used to
map data to a point on elliptic curve and then this point is mapped to
another point of a desired order as explained above.

H2 SHA1 - SHA512 depending on the security parameter (see Table 6.2).

H3 MapToRange (Algorithm 6.1.3)

H4 HashBytes (Algorithm 6.1.4)
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6.1.4 Other Implementation Specific Optimisation

Quadratic Field Extensions

For the prime fields Fp where embedding degree k = 2 (such is the case of our curve
in Table 6.1), we need to construct the extension field Fp2 . If p ≡ 3 mod (4) then the
polynomial (x2 + 1) is irreducible in Fp. So, we use the isomorphism Fp2 ' Fp[x]/(x2 + 1)
to represent Fp2 . The field elements of Fp2 can be represented as pairs (a, b) which is a
short and more convenient notation for a + αb, where α2 = −1, α ∈ Fp2 and a, b ∈ Fp.
Since α2 = −1, it is not hard to see the analogy of these elements with complex numbers
2. Hence, the arithmetic of complex numbers can be borrowed for this case. In the Table
6.4 are given the basic operations for the elements of Fp2 :

Table 6.4: The arithmetic

Addition (a, b) + (c, d) (a+ c, b+ d)

Subtraction (a, b)− (c, d) (a− c, b− d)

Multiplication (a, b) · (c, d) (ac− bd, bc+ ad)

Division (a,b)
(c,d) (ac+bd

c2+d2
, bc−ad
c2+d2

)

Another very interesting fact about the elements of Fp2 is that:

(a+ ib)p = ap + αpbp

Since ap−1 ≡ 1 mod (p) (same with b) and p is prime 3 we get:

(a+ ib)p = a− αb

Further more, for any integer n > p one can raise an element to the power of n by using
the following algorithm:

Algorithm 6.1.5. Power calculation

Input: e = (a, b) ∈ Fp2 , integer n
Output: pow(e, n) = en

1: e1 = (a,−b)
2: r = n mod (p)
3: d = n/p
4: return ered1

6.2 Architecture and Design

One of our goals was to make our library suitable for the JCA (JavaTM Cryptographic Ar-
chitecture) / JCE (JavaTM Cryptographic Extension) framework. JCE provides a frame-
work and implementations for encryption, key generation and key agreement, and Message
Authentication Code (MAC) algorithms, where support for encryption includes symmet-
ric, asymmetric, block and stream ciphers.

2The arithmetic is analogous with complex numbers but the concepts are entirely different. The
elements of F2

p have nothing to do with complex numbers
3So it is odd
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The Tripartite Diffie-Hellman key exchange protocol and the BLS signature scheme
are suited very well to the architecture provided by JCA/JCE framework since they have
a standard structure. IBE schemes have a different structure than other public key cryp-
tography schemes. The main difference comes in the key generation part. For most of the
asymmetric ciphers, the key generation algorithm takes some system parameters as input
and generates the public and private key. In an IBE scheme, the key generation algorithm
requires system parameters, the master secret and the public key (identity) in order to
generate only the private key. So, in order to be compatible with asymmetric interfaces
and classes provided JCA/JCE we created another extended parameters structure (one for
each IBE scheme) which acts as system parameters but it holds the system parameters,
public key and master secret.

In order to integrate with IAIK-JCE framework, we provided our main package iaik.pairing.
The sub packages of this package are:

• pairings

• crypto

• crypto.ibe.bf

• crypto.ibe.bb1

• crypto.hibe.gs

• crypto.ssig.bls

• crypto.tdh

• curve

• hash

• map

• utilities

6.2.1 Package pairings

This package provides the implementation of pairings explained in Chapter 3. The package
contains these classes:

• Pairing. This is an abstract class which serves as skeleton for the other classes
which provide an implementation of a specific pairing.

• WeilPairing. This class provides an implementation of the Weil pairing described
in 3.2.

• TatePairing. This class provides an implementation of reduced the Tate pairing
described in Section 3.3.2.

• ModifiedTatePairing. This class provides an implementation of the modified Tate
pairing described in Section 3.4.
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• ModifiedTatePairing. This class provides the same implementation as Modi-
fiedTatePairing but it is optimised for points of Solinas prime order as described
in Section 6.1.1.

All the above classes (except Pairing itself) extend the class Pairing. The Pairing
provides some abstract methods which then are implemented by its subclasses. These
methods are:

• calculate. This method should calculate the pairing using denominators 4.

• calculateShort. This method should calculate the pairing discarding denominators
4.

• ratio. This method should calculate the ratio of two pairings using denominators.
So it takes four points as input and returns the ration between the pairing value of
the first two points and the pairing value of the two last points.

• ratioShort. Same as the ratio function except that the denominators are discarded
when calculating pairing.

6.2.2 Package crypto

This package contains only the class PairingProvider, which servers as provider (Cryp-
tographic Service Providers) for all cryptographic schemes.

6.2.3 Package crypto.ibe.bf

This package provides an implementation of Boneh-Franklin (BF) IBE scheme explained
in Section 5.2.3 and it contains the following classes:

• BFMasterKey. This class represents the master secret of PKG.

• BFSystemParamters. This class represents and holds the system parameters.

• BFMasterKeyAndParamsGenerator. This runs the setup phase by generating
the master key and system parameters.

• BFPrivateKey. This class represents the private key of a user in the IBE-BF
scheme.

• BFPublicKey. This class represents the public key (identity) of a user.

• BFPrivateKeyGenerator. This class is used to generate the private key for a
given identity.

• BFSystemExtendetParameters. This class holds the master key, public key and
the master key and is used for deriving the private key.

• BFCipher. Provides the implementation of encryption and decryption functionality
of IBE-BF scheme.

4Irrelevant denominators section in 6.1.1 describes the difference in algorithm when using denominators
or discarding the denominators
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6.2.4 Package crypto.ibe.bb1

This package provides an implementation of Boneh-Boyen (BB1) IBE scheme explained
in Section 5.2.6 and it contains the following classes:

• BB1MasterKey. This class represents the master secret of PKG.

• BB1SystemParamters. This class represents and holds the system parameters.

• BB1MasterKeyAndParamsGenerator. This runs the setup phase by generat-
ing the master key and system parameters.

• BB1PrivateKey. This class represents the private key of a user in the IBE-BB1
scheme.

• BB1PublicKey. This class represents the public key (identity) of a user.

• BB1PrivateKeyGenerator. This class is used to generate the private key for a
given identity.

• BB1SystemExtendetParameters. This class holds the master key, public key
and the master key and is used for deriving the private key.

• BB1Cipher. Provides the implementation of encryption and decryption function-
ality of IBE-BB1 scheme.

6.2.5 Package crypto.hibe.gs

This package provides an implementation of Gentry-Silverberg (GS) HIBE scheme ex-
plained in Section 5.2.4 and it contains the following classes:

• GSMasterKey. This class represents the master secret of PKG.

• GSSystemParamters. This class represents and holds the system parameters.

• GSRootMasterKeyAndParamsGenerator. This runs the setup phase for the
root PKG by generating the master key and system parameters for root PKG only.

• GSMasterKeyAndParamsGenerator. This runs the setup phase for any domain
PKG by generating the master key and system parameters for the domain PKG.

• GSPrivateKey. This class represents the private key of a user or an domain PKG
in the HIBE-GS scheme.

• GSPublicKey. This class represents the public key (identity) of a user or domain
PKG.

• GSPrivateKeyGenerator. This class is used to generate the private key for a
given identity.

• GSSystemExtendetParameters. This class holds the master key, public key and
the master key and is used for deriving the private key.

• GSCipher. Provides the implementation of encryption and decryption functionality
of HIBE-GS scheme.
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6.2.6 Package crypto.ssig.bls

This package provides an implementation of Boneh-Lynn-Shacham (BLS) signature scheme
explained in Section 5.3.3 and it contains the following classes:

• BLSSystemParamters. This class represents and holds the system parameters.

• BLSSystemParamsGenerator. This runs the setup phase by generating the sys-
tem parameters.

• BLSPrivateKey. This class represents the private key of a user in the BLS signa-
ture scheme.

• BLSPublicKey. This class represents the public key of a user the BLS signature
scheme.

• BLSKeyPairGenerator. This class is used to generate the the private and public
keys.

• BLSSignature. Provides the implementation of signing and verifying functionality
of BLS signature scheme.

6.2.7 Package crypto.tdh

This package provides the implementation of tripartite Diffie-Hellman key exchange pro-
tocol described in Section 5.1 and it contains the following classes:

• TDHSystemParamters. This class represents and holds the system parameters.

• TDHSystemParamsGenerator. This runs the setup phase by generating the
system parameters.

• TDHKeyPairGenerator. This class is used to generate the the private and public
keys.

• TDHKeyAgreement. Provides the implementation of Tripartite Diffie-Hellman
key agreement protocol scheme.

6.2.8 Other Packages

For the other packages we will give only a short overview by explaining each package what
functionality provides but without giving the details about classes. So the packages left
are:

• curve. This package contains the factory for pairings and also the supported elliptic
curves.

• hash. This package contains the classes which implements the different hash func-
tions. These hash functions are used to map elements of a group to another.

• map. This package provides the distortion maps explained in Section 3.4

• utilities. This package provides some different helping functionality such as: gen-
erating random points of specific order, providing with binary operations, dealing
with Solinas primes, etc. . .
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6.3 Timing Results

In order to get an impression of how fast our implementation is and what is the influence
of the optimisations described in Section 6.1.1, we made some tests. We will give the
timing results for pairing calculation and for (H)IBE schemes that we implemented. The
details about environment we used are given in Table 6.5.

Table 6.5: Test environment

Processor Intel Core i5

RAM 4GB

OS Mac OS X 10.6.7

Java version 1.6

6.3.1 Pairing calculation

Here we will give the timing results for pairing calculations. We tested our modified Tate
pairing calculation in four forms:

1. Modified Tate pairing

2. Modified Tate pairing when discarding the denominators

3. Modified Tate pairing using Solinas primes

4. Modified Tate pairing using Solinas primes when discarding the denominators

In each test the same parameters are used for four cases and we applied the calculation
100 times. Be aware that the order of points is a Solinas prime in all four cases mentioned
above, because we wanted to perform tests using the same parameters, but only in the
two last cases (using Solinas primes) the algorithm described in Section 6.1.1 is used,
which is optimised for Solinas primes. The results (average time from 100 measurements
in milliseconds) are given for each of the algorithms mentioned above, depending on the
parameter size in the Tables 6.6, 6.7, 6.8 and 6.9.

Table 6.6: Timing results (in milliseconds) for calculation of Modified Tate pairing (1).

Length of p Length of m Time(ms)

512 160 92

1024 224 417.5

1536 256 1022

3480 384 9693

7680 512 81682.5

If we compare the first algorithm (see timings Table: 6.6) which is the non optimised
one with the last (see timings in Table 6.9) one which is the most optimised one, we see
that the last one is 20% - 40% faster. However, this may not always be the case, since
the performance gain of algorithms which are optimised for Solinas prime varies from the
structure of m. E.g if m has the form 2a+ 2b+ 1, then one does not benefit at all from the
algorithms optimised for Solinas primes, because the non optimised ones become faster.
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Table 6.7: Timing results (in milliseconds) for calculation of Modified Tate pairing when
discarding the denominators (2).

Length of p Length of m Time(ms)

512 160 84

1024 224 372

1536 256 928

3480 384 9069.5

7680 512 77746.5

Table 6.8: Timing results (in milliseconds) for calculation of Modified Tate pairing using
Solinas primes (3).

Length of p Length of m Time(ms)

512 160 79

1024 224 324

1536 256 838

3480 384 8267

7680 512 72220.5

Table 6.9: Timing results (in milliseconds) for calculation of Modified Tate pairing using
Solinas primes when discarding the denominators (4).

Length of p Length of m Time(ms)

512 160 53

1024 224 259

1536 256 702

3480 384 7314

7680 512 66635

6.3.2 Cryptographic operations

In the Tables 6.6, 6.7, 6.8 and 6.9 we presented the timings for pairing calculations. It is
natural that we used the most efficient algorithm (4 : optimised for Solinas primes and
discarding denominators) for implementation of the cryptgraphic applications. Here we
will present the timings for IBE encryption schemes. The results for each scheme are given
in tables below:

Table 6.10: Timing results (in milliseconds) for IBE-BF scheme depending on the security
parameter s

s Length of p Length of m Encryption Decryption

1024 512 160 87.5 82.5

2048 1024 224 391.5 361.5

3072 1536 256 980 948

From the results above, one can see that the IBE-BF scheme is less efficient than IBE-
BB1 scheme in encryption but much more efficient in decryption. But since the IBE-BF
manages to do both encryption and decryption for less than a second even when providing



CHAPTER 6. IMPLEMENTATION 70

Table 6.11: Timing results (in milliseconds) for IBE-BB1 scheme depending on the security
parameter s

s Length of p Length of m Encryption Decryption

1024 512 160 54.5 182.5

2048 1024 224 247 820

3072 1536 256 620 2395

Table 6.12: Timing results (in milliseconds) for 2-HIBE-GS (two level: one root PKG and
a domain PKG) scheme depending on the security parameter s

s Length of p Length of m Encryption Decryption

1024 512 160 91.5 156

2048 1024 224 463.5 754

3072 1536 256 1352.5 2278

3072 bit security, it probably would be a better choice when considering the performance.
On the other hand since the HIBE-GS scheme is an extension of IBE-BF, the results

more or less are as expected. The encryption takes a little more time, since there is one
point multiplication more (one for each depth in hierarchy) than in the IBE-BF. The
decryption takes almost double as in the IBE-BF and this is explained by the fact there
is an additional point multiplication and an additional pairing calculation in comparison
to the IBE-BF decryption scheme. The results above for HIBE-GS are calculated from a
HIBE hierarchy of depth 2, where there is one root PKG a domain PKG and finally the
user which receives the private key from its domain PKG and the performs decryption.
One should be aware that the deeper in the hierarchy an entity is, the more time it would
take to encrypt and decrypt, since for each single depth an additional point multiplication
should be calculated in the encryption and an additional point multiplication and a pairing
should be calculated in the decryption. So, the timing difference should increase linearly
with the depth in hierarchy.

Now, in order to give a better understanding of what these values mean, let us compare
those values with the values of a popular asymmetric encryption algorithm such as RSA.
We used RSA implementation of the IAIK JCA/JCE library [2] to perform measurements.
The results of encryption and decryption depending on the size of modulus are displayed
in Table 6.13.

Table 6.13: Timing results (in milliseconds) for RSA depending on the security parameter
size of modulus

Length of modulus (m) Encryption Decryption

1024 0.18 2.48

2048 0.35 11.83

3072 0.72 35.36

It is not hard to see that for the same security (s should be the same as the size of
m to provide the same security) RSA is much more faster that any of the IBE schemes
described above. This is justified by the fact that the operations in the described (H)IBE
schemes use points on an elliptic curve. Hence, they involve highly complex mathematics,
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which results in high computation costs. The operations in RSA are simple modular
exponentiations and multiplications.



Chapter 7

Conclusions

In the beginning of this thesis, we explained the basic concepts of elliptic and hyperelliptic
curves over finite fields. Furthermore, we showed how to build a group law and explained
the group arithmetic in details. After that, we explained the theory of bilinear pairings. We
explained the Weil and Tate pairing, which are efficiently computable pairings on elliptic
and hyperelliptic curves. We also explained Miller’s algorithm which is used to compute
both Weil and Tate pairing. Then, we gave an overview of public key cryptography,
where we also showed how to define the discrete logarithm problem in a group, which
then becomes the basis for many cryptographic schemes. If the group is the points of an
elliptic curves, then it is possible possible to use pairings to transform the Elliptic Curve
Discrete Logarithm Problem to a Discrete Logarithm Problem in a finite field, where there
are more efficient algorithms to solve the problem. However, in order for this attack to be
efficient the attacked curves should have low embedding degree.

Fortunately, pairings can be used for more constructive purposes other than attacking.
We showed that using pairings one can define some versions of the Diffie-Hellman Problem,
such as Bilinear Diffie-Hellman Problem, which then can serve as basis for some interesting
cryptographic schemes and protocols and we explained those schemes in details. Based
on the knowledge that we gained through this work, we implemented a Java pairing
based cryptography library, where we provided the implementation of pairings and several
cryptographic schemes based on pairings.

From all the work mentioned above, we can say that pairing based cryptography is
an very interesting and promising area. It makes possible to construct some novel cryp-
tographic schemes and protocols, such as identity based encryption, or one round three
party Diffie-Hellman agreement protocol, for which there was no any other known fully
secure construction before.

Nevertheless, pairing based cryptography has its own disadvantages. The mathematics
behind pairings is highly complex, which in practice results in relatively high computa-
tional cost. This sometimes can be reduced using some optimisations we explained Section
6, but unfortunately these optimisations are specific to the chosen curves. Furthermore,
currently there is no standard on pairing based cryptography. We have seen that in order
for a pairing (Tate or Weil) to be efficient the elliptic curves should have a small embed-
ded degree. One class of such curves, are the supersingular curves which always have the
embedding degree at most 6. Moreover, the supersingular curves have a special structure
which makes it possible to construct distortion maps, which usually are a precondition
for many cryptographic schemes and protocols. Hence, when it comes to pairings, su-
persingular curves seem to be the most preferred and the most suitable class of elliptic
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curves.
On the other hand the supersingular curves are the exactly ones that have been sug-

gested to be avoided, since they allow to construct MOV attack. So, the word supersingular
in curves is immediately associated with ’weak’ or ’unsecure’ and usually they are con-
sidered not desirable for cryptographic applications, even if that may not be the case in
pairing based cryptography. Regarding this issue we will cite Koblitz and Menezes [40]:
‘There is no known reason why a nonsupersingular curve with small embedding degree k
would have any security advantage over a supersingular curve with the same embedding
degree’.

Another issue that usually cause hesitation on using pairing based cryptography, is the
fact that the pairing based cryptosystems usually rely on BDH Problem, which neither
is a standard problem nor exists any proof of equivalence with well known problems such
as DH Problem or DL Problem. So, studying this problem and providing the proof of
equivalence would be very useful.

Under the assumption that in the future might bring proofs for hardness of the BDH
Problem, which will make the hesitations fade away, we consider that pairing based cryp-
tography will be used in the future in real applications in order to provide identity based
encryption and short signature in cases when the bandwidth is limited.



Appendix A

Definitions

A.1 Abbreviations

AES Advanced Encryption Standard
BDH Bilinear Diffie-Hellman
BDDH Bilinear Decisional Diffie-Hellman
BDHI Bilinear Diffie-Hellman Inversion
BLS a short signature scheme constructed by Boneh, Lynn and Shacham
CA Certification Authority
CCA1 chosen ciphertext attack
CCA2 adaptive chosen ciphertext attack
CPA chosen plaintext attack
CDH Computational Diffie-Hellman
DDH Decisional Diffie-Hellman
DH Diffie-Hellman
DL Discrete Logarithm
DLDH Decision Linear Diffie-Hellman
ECC elliptic curve cryptography
DSA Digital Signature Algorithm
ECDSA Elliptic Digital Signature Algorithm
FIPS Federal Information Processing Standards
GCD the greatest common divisor
HIBE Hierarchical Identity Based Encryption
HIBE-GS an IBE scheme constructed by Gentry and Silverberg
IAIK Institute for Applied Information Processing and Communications
IBE Identity Based Encryption
IBE-BF an IBE scheme constructed by Boneh an Franklin
IBE-BB1 an IBE scheme constructed by Boneh an Boyen
IBE-BB2 an IBE scheme constructed by Boneh an Boyen
ID identity
ID-CCA1 identity chosen ciphertext attack
IDs-CCA1 selective identity chosen ciphertext attack
ID-CCA2 identity adaptive chosen ciphertext attack
ID-CPA identity chosen plaintext attack
IND indistinguishability, indistinguishable
IND-ID-CCA1 indistinguishability on identity chosen ciphertext attack
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IND-IDs-CCA1 indistinguishability on selective identity chosen ciphertext attack
IND-ID-CCA2 indistinguishability on identity adaptive chosen ciphertext attack
IND-ID-CPA indistinguishability on identity chosen plaintext attack
JCA Java Cryptographic Architecture
JCE Java Cryptographic Extension
MOV Menezes-Okamoto-Vanstone (attack)
PDA personal digital assistant
PID primitive identity
PKG Private Key Generator
PKI Public Key Cryptography
RSA a very popular asymmetric encryption scheme
RFID radio frequency identification system
SDH Strong Diffie-Hellman
SHA a very popular hash function
TTP Trusted Third Party

A.2 Used Symbols

C ciphertext space
char(F) the characteristic of the field F
D a divisor
deg(G) the degree of the rational function G
div(G) a divisor of the rational function G
DivC(F) the set of divisors of C defined over F
Div0C(F) the set of zero degree divisors of C defined over F
e a general bilinear map (pairing)
em usually a general pairing for points m-th order, sometimes the Weil pairing
tm the reduced Tate pairing
e a bilinear map (pairing)
E(F) the set of F-rational points of curve
E[m] the m-torsions subgroup of E
F a field

F the algebraic closure of a field
Fq a finite field
Fp a prime field
H a hash function
JC the jacobian of C
M message space
ordP (G) the order of the rational function G at the point P
lP,Q the line that intersects a curve at points P and Q
O the point at infinity of an curve
P(C) the set of all principal divisors on C
vP the vertical line passing through point P
〈P,Q〉m the Tate pairing for points P and Q, which have the order m
µm the set of all m-th roots of unity
φ a distortion map
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