
Master’s Thesis

SigViewer: An Improved Version with
New Features

Christoph Eibel

Graz University of Technology

Institute for Knowledge Discovery

Krenngasse 37

A-8010 Graz

Supervisor
Dipl.-Ing. Dr.techn. Clemens Brunner

Graz, September 2010

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere

als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen

wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am 28. 9. 2010

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

Graz, 28th September 2010

ii

Abstract

SigViewer is a software application to view, annotate and process multi-channel sig-

nals. The main field of application is BCI (brain-computer interface) research, where

SigViewer is used to display and process biosignals like electroencephalogram (EEG).

However, SigViewer 0.2.6 (the latest version before the beginning of this thesis) lacks

some important features such as undo/redo functionality and basic signal processing

tools. Furthermore, some parts of the source code depend on the deprecated Qt 3

library.

Therefore, the aim of this master’s thesis was to further develop SigViewer. This com-

prises: refactoring the source code; improving the usability by revising all dialogs and

context menus, and by introducing a new zooming approach; and adding undo/redo

functionality, signal processing tools, and a Debian package.

The latest version of SigViewer, which has been released within the time frame of this

master’s thesis, provides a more user-friendly interface with many new features. Addi-

tionally, the improved code structure allows adapting SigViewer to the user needs and

adding new features more easily in the future. Upcoming work could comprise adding

more signal processing tools, further improving the graphical user interface, and contin-

uing source code refactorings.

iii

Kurzfassung

SigViewer ist eine Software zum Darstellen, Annotieren und Verarbeiten von Signalen.

Das primäre Anwendungsgebiet ist die BCI-Forschung (brain-computer interface), in

der SigViewer benutzt wird, um Biosignale wie das Elektroenzephalogramm (EEG) zu

betrachten und zu verarbeiten. Der Version 0.2.6 (die letzte vor Beginn dieser Masterar-

beit) fehlen jedoch einige wichtige Funktionen, wie etwa die Rückgängig/Wiederherstellen-

Funktion und grundlegende Signalverarbeitungs-Werkzeuge. Weiters hängen ein paar

Teile des Quelltextes von der veralteten (und nicht weiter gewarteten) Qt 3 Bibliothek

ab.

Aufgrunddessen war das Ziel dieser Masterarbeit die Weiterentwicklung von SigViewer.

Diese umfasste: Refaktorisierung des Quelltexts; Verbesserungen der Benutzerfreund-

lichkeit durch Überarbeitung aller Dialoge und Kontextmenüs, sowie Einführung eines

neuen Zoom-Ansatzes; Hinzufügen einer Rückgängig/Wiederherstellen-Funktion und

Hilfswerkzeugen zur Signalverarbeitung und Erstellen eines Debian-Pakets.

Die letzte Version von SigViewer, die im Zeitrahmen dieser Masterarbeit veröffentlicht

wurde, bietet eine benutzerfreundlichere Bedienoberfläche mit vielen neuen Funktionen.

Weiters erlaubt die verbesserte Quelltext-Struktur SigViewer in Zukunft leichter an neue

Bedürfnisse der Benutzer anzupassen und neue Funktionen einzubauen. Künftige Ar-

beiten könnten sein: Hinzufügen von weiteren Signalverarbeitungswerkzeugen, weitere

Verbesserung der Bedienoberfläche und stetige Quelltext-Refaktorisierungen.

iv

Acknowledgements

First of all, I would like to thank my supervisor Clemens Brunner.

Furthermore, I would like to thank my colleagues at the BCI Lab (Institute for Knowl-

edge Discovery) at Graz University of Technology for their feedback and efforts for

testing SigViewer.

Finally, very special thanks go to Gabi, Alois and Elfriede.

v

Contents

Abstract iii

Kurzfassung iv

Acknowledgements v

1 Introduction 1

1.1 Motivation . 1

1.2 Aim and Overview . 2

1.3 Approach . 3

2 Framework 4

2.1 Biosignals and Events . 4

2.2 Fourier Transform . 4

2.3 Used Software . 5

2.3.1 SigViewer 0.2.6 . 5

2.3.2 Qt 4 . 7

2.3.3 BioSig . 7

2.3.4 FFTW . 8

3 Extension of Functionality 9

3.1 Undo and Redo . 9

3.1.1 Implementation . 10

3.2 Signal Processing . 13

3.2.1 Mean and Standard Deviation . 14

3.2.2 Power Spectrum . 14

3.2.3 Other . 15

3.3 Event Features . 17

3.3.1 Event Browsing . 17

vi

3.3.2 Event Inserting . 17

3.3.3 Fit View to Selected Event . 17

3.3.4 Hide Events of Other Type . 18

3.3.5 Show All Events . 18

3.4 Other New Features . 19

3.4.1 File Opening and File Dropping 19

3.4.2 Read User-Defined Event Types 19

3.4.3 Channel Colors . 19

3.4.4 Export to PNG . 19

4 Graphical User Interface Improvements 21

4.1 Zooming . 21

4.2 Context Menus . 23

4.3 Mode-specific Widgets . 24

4.4 Enhanced Dialogs . 26

4.5 Small Improvements . 29

4.5.1 Animations . 29

4.5.2 Tool- and Statusbar . 29

4.5.3 X-Position Highlighting . 29

5 Restructuring and Refactoring 30

5.1 Porting to Qt 4 . 31

5.2 New Module Structure . 32

5.3 MainWindowModel Refactoring . 35

5.4 Automated Tests . 36

5.5 Qt Designer . 38

6 Deployment 40

6.1 Building SigViewer from Source . 40

6.2 Installation Packages . 41

6.2.1 Debian Package . 41

6.2.2 Windows . 43

6.2.3 Mac OS X . 43

7 Outlook 44

7.1 Further Features . 44

7.1.1 Undo View Setting . 44

vii

7.1.2 ERD/ERS Maps . 44

7.1.3 EOG Artifact Correction . 44

7.2 Further Improvement of GUI . 45

7.2.1 Info Widget . 45

7.2.2 Event Table . 45

7.2.3 Animations . 45

7.3 Further Refactoring . 45

7.3.1 Improved File Support . 45

7.4 Deployment . 46

7.4.1 User Guide . 46

7.4.2 Further Linux Packages . 46

8 Concluding Remarks 47

Bibliography 48

viii

List of Figures

2.1 Screenshot SigViewer 0.2.6 . 6

3.1 Undo/Redo Class Diagram . 11

3.2 Event Time Channel Dialog . 13

3.3 Approach for Calculating Mean . 14

3.4 Screenshot of SigViewer displaying the Mean of an Event Type 16

3.5 Screenshot of SigViewer displaying a Power Spectrum 16

3.6 Fit View to Event . 18

3.7 Channel Color Dialog . 20

4.1 Screenshot new Zooming . 22

4.2 Class Diagram of New Zooming Implementation 22

4.3 Event Context Menus . 23

4.4 Edit Event Widget . 25

4.5 View Options Widget . 25

4.6 Channel Selection Dialogs compared . 26

4.7 Select-Event-Types-Dialog Comparing 27

4.8 Event Table Dialog . 28

5.1 New Module Structure . 32

5.2 MainWindowModel Refactoring . 36

5.3 Tests Dialog . 37

5.4 Screenshot of Test Data . 38

5.5 Screenshot of Qt Designer . 39

6.1 Debian Package Directory Structure . 42

ix

List of Tables

6.1 Debian package control file entries. 42

6.2 Desktop file entries. 42

x

1 Introduction

1.1 Motivation

SigViewer, introduced in [1] and [2], is a software application to view multi-channel

biosignals and corresponding annotations. It can read various file formats (such as GDF

[3], EDF [4], EDF+ [5], and BCI2000 [6]), provides an intuitive user interface, and is

available for different operating systems such as Windows (XP, Vista, 7), Linux or Mac

OS X.

One application area of SigViewer is the analysis of electroencephalographic signals

(EEG) and other biosignals, which is particularly important for the development of

brain-computer interfaces (BCIs). BCIs are systems which allow a person to control a

computer only by thinking of, for example, moving a hand or foot, without relying on

activity of peripheral nerves or muscles [7]. These mental activities can be measured

with EEG electrodes which are applied on the scalp; they register excitatory and in-

hibitory post-synaptic potentials of neurons in the cortex. The acquired EEG signals

are forwarded to a computer where a software analyzes and interprets the signal and

triggers actions depending on special events in the signal.

In BCI research and development, easy-to-use software applications like SigViewer are

needed to view recorded and annotated EEG data and other biosignals, and to edit or

add annotations. Annotations mark special regions in the signals, for example, events of

a BCI experiment. Therefore, it is possible to see what and when something like stimuli,

motor imagery, etc. have occured during such an experiment.

The annotations can also be used to mark noise artifacts, or to calculate evoked poten-

tials.

One of the main advantages of SigViewer compared to similar applications is that it is a

stand-alone program. No mathematical software package like Matlab [8] or GNU Octave

[9] is needed to run SigViewer. Furthermore, its graphical user interface is specifically

1

1 Introduction

designed to view biosignals and edit annotations. It allows fast navigation through the

data, scaling, and zooming. In addition, SigViewer is open source software and licenced

under the GPL [10], which guarantees that it will stay free.

1.2 Aim and Overview

The aim of this master’s thesis is the further development of SigViewer. It comprises

the following core aspects:

1. Extension of SigViewer with new functionality

2. Improvement and revision of the user interface

3. Restructuring and refactoring of the source code

4. Deployment of SigViewer

Each aspect is discussed in a separate chapter in this thesis. Chapter 2 gives an intro-

duction of the theoretical background and the framework of SigViewer.

The extension of functionality is discussed in Chapter 3, which mainly comprises adding

undo and redo functions, event-related signal processing tools, and several functions to

make the annotation process easier.

Improvement of the user interface (Chapter 4) comprises the introduction of a new

animated zooming approach, revision of all dialogs and context menus, new mode-specific

widgets, and some further small adaptations.

Refactorings of the source code have been done continuously in small iterations. How-

ever, some big restructurings had to be made to guarantee the expandability and testa-

bility of the source code. These restructurings are discussed in Chapter 5.

Chapter 6 deals with the deployment of SigViewer. It rounds up this work and describes

how binary packages are built with the aim to provide easy-to-install routines for different

operating systems.

Finally, ideas for further work regarding each of the core aspects are discussed in Chap-

ter 7.

2

1 Introduction

1.3 Approach

The starting point of this master’s thesis is SigViewer version 0.2.6. SigViewer is lo-

cated as a project on SourceForge.net and is available at http://sigviewer.sf.net.

SourceForge.net is a platform for the development of open source software. It provides

free webspace, servers for version control, a bug tracking and feature request system,

and many more features.

As programming environment, Qt Creator was chosen. This integrated development

environment (IDE) is part of the Qt software development kit (SDK). This SDK also

contains Qt Designer (a tool to layout dialogs, widgets, etc.), build tools (qmake), a

comprehensive documentation of the SDK, and the Qt libraries. Chapter 2.3 describes

the used libraries in more detail.

During the development, some interim releases have been made to show results and get

user feedback. The interim releases comprise SigViewer version 0.3.0 and 0.4.0. The

latest version released within the time scope of this master’s thesis is SigViewer 0.4.1.

3

2 Framework

2.1 Biosignals and Events

The term biosignal generally comprises any measurable signal from biological origin.

In this work, the term is used in a more specific sense namely for electrical signals

which can be measured from human beings (ExG signals). That mainly comprises

the electroencephalogram (EEG), the electrocardiogram (ECG), the electromyogram

(EMG), and the electrooculogram (EOG).

During BCI experiments, special events may occur, for example when a cue is displayed

on a screen. The file format GDF [3], which can be used to store biosignals, supports

storing these events in the same file as the recorded data. Therefore, SigViewer is able

to read events and integrate them into the visualization of the signal data.

As the type of an event marker is adjustable in SigViewer, these markers can be used

to tag artifacts as well. Artifacts are regions in the EEG where, for example, another

signal significantly contaminates the EEG signal. One source of such noise is the elec-

trooculographic (EOG) artifact [11].

Of course, the annotations can be used to mark any area of interest for user-specific

purposes.

In SigViewer, and consequently in this thesis, “annotations” are generally called “events”.

2.2 Fourier Transform

The Fourier transform is a method to transform a signal from the time domain into

the frequency domain. Any signal can be seen as the sum of sine waves in different

frequencies, phases and amplitudes. The Fourier transform allows to disclose these

frequencies of a given signal. Furthermore, the inverse Fourier transform allows to

recreate the original time signal or a bandpass-filtered version of it.

4

2 Framework

The elements of a discrete Fourier transform X of a discrete signal x can be calculated

with formula 2.1 as described in [12].

X[k] =
N−1∑
n=0

x[n] · e−j(2π
N

)·kn (2.1)

x is a sequence of N real numbers x[0], ..., x[N − 1] which are transformed into the

sequence of N complex numbers X[0], ..., X[N − 1] by the discrete Fourier transform.

N is the number of elements in the analyzed period of signal x. n is the index of the

current element of signal x, k is the index of the current element of the result X and j

is the imaginary unit.

Formula 2.2 [12] shows the inverse discrete Fourier transform to recreate the signal.

x[n] =
1

N
·
N−1∑
k=0

X[k] · ej(
2π
N

)·kn (2.2)

The complexity of the direct approach is O(N2) [13]. However, more efficient algorithms

exist which reduce the complexity to O(N · log(N)) by utilizing the divide and conquer

paradigm [14]. These algorithms are called Fast Fourier Transform [15].

The visualization of the frequency domain is an important part of signal analysis. For

example, the analysis of event-related synchronisation (ERS) and event-related desyn-

chronisation (ERD) requires the investigation of diverse frequency bands [16].

Within this work the creation of an event-related power spectrum has been implemented

as described in Chapter 3.2.2. The Fast Fourier Transform was not newly implemented

because stable and freely (licenced under the GPL) available implementations already

exist. The library fftw3 [17], used by SigViewer, is introduced in Section 2.3.4.

2.3 Used Software

This section describes the source code basis and the used libraries for SigViewer.

2.3.1 SigViewer 0.2.6

The source code of SigViewer version 0.2.6 can be seen as the starting point of this

work as a whole. It uses the biosig4c++ library for reading signal data and reading and

5

2 Framework

writing event data. Therefore many different data formats are supported.

The main features of SigViewer 0.2.6 (as described in [2]) are:

• Load multi-channel signals

• Display them in various scales and show events (annotations)

• Graphical editing of events

• View basic information about the opened file

• The table-based widget “event table” to view and delete events in addition to

graphical editing

Figure 2.1: Screenshot of SigViewer 0.2.6 on Kubuntu Linux.

As mentioned in the introduction, the aim of this master’s thesis is to fix bugs, to

add new features (Chapter 3 and 4) and to improve the structure of the source code

(Chapter 5) while keeping the existing features of SigViewer 0.2.6.

6

2 Framework

2.3.2 Qt 4

Qt 4 is a GUI development framework mainly for the C++ programming language.

Currently it is developed and hosted by Nokia Corporation at http://qt.nokia.com.

The libraries are available under different licences. For the development of SigViewer,

the open source licence has been chosen to provide SigViewer as open source software.

Qt is cross-platform on the source code level. This means that the same source code

can be compiled on different platforms such as Windows, Linux or Mac OS X. The

look and feel of the resulting application is adapted to the target platform. Therefore,

binary packages of SigViewer for different platforms have been created (more details in

Chapter 6).

The main arguments for using the Qt framework (besides beeing cross-platform) are that

the Qt libraries ship with a comprehensive documentation and an easy-to-use framework

and of course that SigViewer 0.2.6 is based on Qt.

Signals, Slots and QActions

Qt provides a powerful signals and slots concept. Any object of a class which is derived

from QObject may emit signals. Other objects, which have methods that are marked

as slots, are able to connect to such signals. Consequently, these slots are executed

any time the signal is emitted. This approach allows the decoupling of classes, because

sender and receiver do not have to know from each other.

QAction is a central class within Qt GUI software applications. Objects of this class

can be put into main menus, context menus or toolbars. There they appear as an entry

or button which can be triggered by the user. The “trigger” signals can be connected

to slots of other implemented classes where the processing of the triggered user action

is done.

More details are described in the documentation of Qt at http://doc.qt.nokia.com.

2.3.3 BioSig

BioSig is a project which provides several tools for reading, writing and processing

biosignals like EEG. It is located on SourceForge.net at http://biosig.sf.net.

7

2 Framework

In [2] BioSig is introduced as followed:

“The open source software project BioSig was founded with the aim to

provide a software library for biomedical signal processing.”

BioSig comprises several subprojects like “BioSig for Octave and Matlab” or “BioSig

for C/C++”. The latter, which is also known as “biosig4c++”, is of main interest for

SigViewer. This library provides functions to read many different biosignal file formats

like GDF, EDF or BCI2000 [3, 4, 6] and to write event data into GDF files. Additionally,

it should be possible to convert any supported file format that can be read into GDF.

Biosig4c++ is statically linked to SigViewer. This means the library is only required

during the building process.

2.3.4 FFTW

FFTW is a free (GPL) library for calculating the Fast Fourier Transform of a discrete

signal [18]. It is written in the C programming language. FFTW is the abbreviation

for Fastest Fourier Transform in the West. This library is used to calculate the power

spectrum (see Chapter 3.2.2). It can be easily installed on Linux because binary packages

already exist. For Windows and Mac OS X, precompiled libraries are available for

download at the SigViewer project website http://sigviewer.sf.net.

In SigViewer, a small C++ wrapper for FFTW is used which is called FFTW++ [19]. It

is also licenced under the GPL. This wrapper is well documented and it avoids increasing

complexity of the SigViewer source code.

8

3 Extension of Functionality

In this chapter, the features of SigViewer 0.4.1 are described which have been imple-

mented in the scope of this master’s thesis.

3.1 Undo and Redo

Implementing undo and redo has been one of the first contributions of this work as

SigViewer 0.2.6 does not provide this functionality. Undo and redo are very important

features of any software application with a focus on user interaction.

In SigViewer, the following editing actions can change an open file. Therefore, they have

been made undoable:

• Creating a new event

• Removing an existing event

• Changing the type of an event

• Changing the channel of an event

• Changing the position or duration of an event

These actions may be triggered by the user via the context menu of an event, the editing

mode widget (Chapter 4.3), the event table (Chapter 4.4) or by graphical editing of

events. Of course, undoing an editing action is independent from where it has been

triggered. The number of actions that could be undone is not limited.

Undo and redo buttons are located in the toolbar and in the “Edit” menu. Furthermore,

they are assigned to platform-dependent standard keyboard shortcuts. For example,

undo is assigned to Ctrl+Z on Windows.

9

3 Extension of Functionality

Undo and redo is supported since the interim release SigViewer 0.3.0. However, only

editing actions are undoable. To further increase the usability, view setting changes

could also be undoable as described in Chapter 7.1.1.

3.1.1 Implementation

Qt provides the Undo Framework [20] to implement undo commands. The approach

follows the idea of the Command design pattern [21]. Each editing action has to be

implemented in a class which is derived from QUndoCommand and override the virtual

methods redo and undo. An object of the class QUndoStack manages execution, redo,

and undo calls of these commands.

In SigViewer the classes which implement undoable actions are located in the editing

commands module (more about the modules in Chapter 5.2). Furthermore, the ab-

stract base class CommandExecuter provides an interface to handle execution of these

commands. The TabContext implements the CommandExecuter interface. Figure 3.1

outlines the approach in a class diagram.

Any object that needs to do something that should be undoable (e.g. an object of

EventEditingGuiCommand which handles the triggers to change the type of an event)

needs a reference to an EventManager and to an Command-Executer. Then it has to

create an instance of the desired UndoCommand and pass it to the CommandExecuter.

The implementation of the CommandExecuter will internally put the UndoCommand

on the QUndoStack which will call the redo method of the command and store it for

possible future undo calls.

NewEventUndoCommand

This class is responsible for adding new events to the EventManager. The constructor

requests an object of the class SignalEvent which contains all parameters needed for

creating an event and a reference (in this case a QSharedPointer) to an EventManager.

Calling undo on this command removes the event from the EventManager.

ChangeTypeUndoCommand

This class is responsible for changing the type of an existing event. Its constructor

requires the ID of the event, a QSharedPointer to an EventManager and the new type.

An undo call sets the type of the event back to the old type.

10

3 Extension of Functionality

QUndoCommand NewEventUndoCommand

ChangeTypeUndoCommand

EventManager

EventManager Imp l
ChangeChannelUndoCommand

Dele teEventUndoCommand

ResizeEventUndoCommand

MacroUndoCommand

CommandExecuter QUndoStackTabContext

Figure 3.1: Class diagram of the undo/redo implementation. Each event editing
action is implemented in its own class which is derived from QUndo-
Command.

ChangeChannelUndoCommand

This command changes the channel of an event. The constructor of this command

requires the ID of the event, a QSharedPointer to an EventManager and the ID of the

new channel.

DeleteEventUndoCommand

This command deletes the event with the given ID from the given EventManager. Calling

undo recreates the event with the same ID. Therefore the IDs stay in a consistent state

independent from creation and deletion.

ResizeEventUndoCommand

This command comprises resizing and repositioning. The constructor requests the new

position (in samples) and new duration (in samples) beside the event ID and a QShared-

Pointer of an EventManager.

11

3 Extension of Functionality

MacroUndoCommand

The macro command makes it possible to execute multiple commands. For example, it

is used if several events are selected in the event table and deleted at once. Triggering

undo without using MacroUndoCommand would restore only the last event (e.g. if 100

events were deleted at once 100 undo calls would be necessary to restore all of them).

However, by using MacroUndoCommand, all events are restored at once and therefore

a more intuitive behavior is provided.

The constructor just requires a QList with QSharedPointers of QUndoCommands.

12

3 Extension of Functionality

3.2 Signal Processing

Another main goal of this work was to provide SigViewer with event-based signal pro-

cessing functionality. “Event-based” means that only parts of a signal are processed

which are covered by a predefined type of event marker instead of the whole data of a

signal.

The operations to calculate the Mean and Standard Deviation and to create a Power

Spectrum have been implemented. In SigViewer 0.4, they are available via the “Tools”

main menu.

After triggering these actions and before the actual processing starts, a dialog is shown

which allows the user to select the channels and the event type of interest. The duration

is calculated automatically from the events, but for including data before and after the

events it can be adapted manually too. The dialog is shown in Figure 3.2.

For displaying the result of the processed data, a new tab is added to the main window

of SigViewer. The same widgets as for browsing the original signal data are used.

Therefore, the same operations like zooming, hiding channels, shifting, etc. are possible.

Figure 3.4 shows a screenshot of SigViewer displaying the mean of an event type in a

separate tab, and Figure 3.5 shows a power spectrum.

Figure 3.2: Event Time Channel Dialog. This dialog is used to select channels and
events for different kinds of signal processing. Only channels and event
types are selectable which are not hidden in the signal data view. This
approach avoids a bloated interface.

13

3 Extension of Functionality

3.2.1 Mean and Standard Deviation

Mean and standard deviation of an event is calculated in the following way: The first

sample of the first event in one channel is summed up with the first sample of the other

events of the same type in the same channel. Afterwards, the sum is divided by the

number of events of that type. Doing this for every sample which is covered by the

event, a new signal is generated, which has the same length as one event of that type.

The approach is illustrated in Figure 3.3.

Figure 3.3: Approach for caculating the mean of an event. The events are high-
lighted in blue. The first samples of the events of same type and chan-
nel are used to calculate the first samples of the mean. The mean is
calculated for each channel. In the figure, two regions of the events are
highlighted (red and green) to show which region of the signal data is
used for the result.

The calculation of the mean of events can be used, for example, to detect event-related

potentials in the ongoing EEG [22].

3.2.2 Power Spectrum

To get an overview of the occuring frequencies in the signal during an event, the event-

based power spectrum can be generated. It displays the result of the Fourier transform.

14

3 Extension of Functionality

The power spectrum is the mean squared value of the Fourier transform of the part of

the signal which is covered by the event.

The event-based power spectrum is computed through calculating the power spectrum

of each event and channel, and then calculating the mean within each channel. The

calculation is similar to that of the mean described in Section 3.2.1, with the difference

that the power spectrum of an event is averaged and not the signal data in the time

domain. Figure 3.5 shows a screenshot of SigViewer displaying the result of a power

spectrum calculation.

Implementation

For generating the power spectrum, a C++ wrapper of the FFTW library (described in

Section 2.3.4) is used to calculate the Fourier transform. By using this wrapper, only a

few lines of code are needed to generate the power spectrum of a DataBlock.

3.2.3 Other

Adding further event-based signal processing funcionality to SigViewer such as the cre-

ation of ERD/ERS maps as described in [16] has been requested too. However, due to

the limited time frame of this master’s thesis, this feature has not been implemented

yet.

15

3 Extension of Functionality

Figure 3.4: Screenshot of SigViewer displaying the mean of an event type.

Figure 3.5: Screenshot of SigViewer displaying a Power Spectrum. The unit of the

x-axis is Hz. The unit of the y-axis is µV2

Hz .

16

3 Extension of Functionality

3.3 Event Features

3.3.1 Event Browsing

This feature has been introduced to support fast navigation between events of the same

type. After selecting an event, the shortcut Ctrl+Left (Cmd+Left on Mac OS X) sets

the viewing position to the previous event of the same type and the shortcut Ctrl+Right

(Cmd+Right on Mac OS X) to the next event of the same type. After the viewing position

has been changed, the newly visible event is selected automatically and editing is possible

subsequently. Besides the keyboard shortcuts, these action may also be triggered via

the event context menu, or the “View” main menu.

Implementation

The implementation of the EventManager stores the events in two different maps. The

first uses the ID of the events as key. The other one uses the position of the events as

key and the ID as value. The position map allows fast look up of next and previous

events. The interface of the EventManager provides methods to get the next/previous

ID of the event, which is of the same type as of the event with the given ID. The

code which triggers and interprets the result of these methods is located in the class

AdaptEventViewGuiCommand.

3.3.2 Event Inserting

This feature allows fast creation of events which have the same position and duration

as the currently selected event. It is called “Insert Over” and can be triggered via

the context menu of an event, via the “Edit” main menu, and by the keyboard shortcut

Ctrl+I. The type of the newly inserted event is the same as that for graphically creating

new events in the “New Event” mode and can be set in that mode.

This feature can be used to additionally mark the section of an event, for example to

mark it with an artifact event type.

3.3.3 Fit View to Selected Event

The “Fit View to Selected Event” action automatically scales and scrolls the viewport

along the x-axis so that the currently selected event is fully shown. The action can be

17

3 Extension of Functionality

triggered via the event context menu or the “View” main menu. Figure 3.6 illustrates

this feature.

(a) Standard View (b) Fitted View to Event

Figure 3.6: Calling “Fit View to Selected Event” in the event context menu auto-
matically adapts the viewport to the event.

3.3.4 Hide Events of Other Type

As the name suggests, this features allows to hide all events which are of different type

as the currently selected one.

The command is located in the event context menu and the “View” main menu.

3.3.5 Show All Events

As a complement to “Hide Events of Other Type”, the feature “Show All Events” has

been introduced. It allows to set the visibility of all event types to true with one click.

It is located in the “View” main menu and in the event context menu. It only appears

in the context menu if “Hide Events of Other Type” has been triggered just before.

18

3 Extension of Functionality

3.4 Other New Features

This section summarizes some features of smaller extent or complexity.

3.4.1 File Opening and File Dropping

Since version 0.3, SigViewer supports opening a file via command line parameter. This

furthermore implies that SigViewer can be associated with special file types. For ex-

ample, it is possible that “.gdf” files are opened automatically with SigViewer when

double-clicking such files within Windows Explorer (or any other file manager).

Additionally, SigViewer opens supported files if they are dragged and dropped into the

SigViewer window.

3.4.2 Read User-Defined Event Types

The GDF file format supports many predefined different types of events. Additionally,

the first 255 event types are reserved for user-specific purposes. In SigViewer 0.2.6,

these types are displayed with the names “condition 1”, “condition 2”, etc. However,

the current biosig4c++ library can read user-defined names of these reserved types from

a GDF file.

SigViewer 0.4 supports reading and displaying these names.

3.4.3 Channel Colors

SigViewer 0.3 draws each channel with the same color. With SigViewer 0.4, color settings

for signal channels have been introduced. Comparable to setting the colors of event

types, the dialog for choosing the visible channels can now be enhanced with a column

for setting colors. Figure 3.7 shows a screenshot of the dialog. Additionally, it is possible

to set the color of a channel via the context menu and to set the default color.

3.4.4 Export to PNG

This is an extension to demonstrate how exporting the current viewport to a graphic

file format can look like. For this demonstration, the lossless graphic file format PNG

(portable network graphic) has been chosen, which is often used for storing screenshots.

19

3 Extension of Functionality

Figure 3.7: Channel Color Dialog. The color for a single channel can be set by
clicking on the colored field. Then the operating system dependent
color selection dialog is opened. Furthermore, all colors can be reset to
the default color by clicking “Reset All Colors”. This default color can
be set by clicking “Set Default Color”.

20

4 Graphical User Interface

Improvements

This chapter describes the improvements of the graphical user interface of SigViewer.

4.1 Zooming

In SigViewer 0.2.6, the Navigation toolbar provides five different widgets, namely two

editable comboboxes to set seconds per page and channels per page (a page in this sense

is the viewport) and three tool buttons which display magnifiers to increase, decrease

and automatically adapt the scaling of all channels along the y-axis.

With SigViewer 0.4, a new approach for zooming has been introduced. The Navigation

and the Options toolbars have been integrated to a new View Options toolbar. The

comboboxes for setting seconds per page and channels per page are not available any

more. Instead, the magnifiers provide a new look and a new behavior to allow more

intuitive types of zooming:

• Zoom In/Out Vertically changes the height of a channel (zoom in decreases

the amount of channels per page, zoom out increases the amount of channels per

page), shown in Figure 4.1(a).

• Zoom In/Out Horizontally changes the scaling along the x-axis, shown in

Figure 4.1(c).

Furthermore, the actions are also located in the “View” main menu and operating system

dependent standard keyboard shortcuts are provided for vertical zooming. On most

operating systems, these shortcuts are Ctrl++ to zoom in and Ctrl+- to zoom out.

However, it is still possible to explicitly set the channels per page via the context menu

of the y-axis and to set the seconds per page via the context menu of the x-axis.

21

4 Graphical User Interface Improvements

(a) Vertical Zoom In (b) Standard View (c) Horizontal Zoom In

Figure 4.1: Screenshot of new zooming approach.

Implementation

The SignalVisualisationModel interface provides methods to set the height of one channel

to influence the vertical size and methods to set the pixels used per sample to influence

the horizontal zooming. These methods are called by the ZoomGuiCommand if the

corresponding private slots of this command are triggered.

Figure 4.2 shows a diagram of the involved classes.

SignalVisual isat ionModel

+setSignalHeight()

+getSignalHeight()

+setPixelPerSample()

+getPixelPerSample()

ZoomGuiCommand

-zoomInHorizontal()

-zoomOutHorizontal()

-zoomInVertical()

-zoomOutVertical()

SignalBrowserModel

GuiAct ionCommand

Figure 4.2: Class diagram of the new zooming implementation. The architecture of
GuiActionCommands is described in more detail in Chapter 5.3

22

4 Graphical User Interface Improvements

4.2 Context Menus

The event context menu has been completely revised. In SigViewer 0.2.6, this menu

allows editing of the already selected event only, even if several events are overlapping

each other. In SigViewer 0.3, the new context menu approach was introduced. Right

clicking on overlapping events opens a context menu which lists all events and provides a

submenu for each event. No preceeding selection is necessary. Furthermore, any actions

that are not triggerable are hidden. For example the action “To All Channels” is not

shown if the event is already assigned to all channels. Figure 4.3 compares the context

menus of SigViewer 0.2.6 and 0.4.1.

(a) SigViewer 0.2.6 (b) SigViewer 0.4.1

Figure 4.3: Event context menus. SigViewer 0.4.1 instantly allows editing of all
events beneath the mouse cursor.

Further context menus have been implemented for

• Channels: to hide the channel, to set the color of the channel and to scale it

• Y-Axis and Labels: to set the vertical zooming (number of channels per page)

and to hide these widgets.

• X-Axis to set the horizontal zooming (seconds per page) and to hide the x-axis

widget.

23

4 Graphical User Interface Improvements

4.3 Mode-specific Widgets

SigViewer 0.2.6 supports five different mouse modes. Each mode leads to different

behavior of the mouse in the signal view widget (e.g. scrolling the viewport, editing an

event, etc.)

In SigViewer 0.3, the Event Toolbar has been introduced to show information about

the currently selected event. In SigViewer 0.4, the idea of this special widget has been

expanded. Depending on the current mode, a special widget is shown.

Edit Event Widget

The Edit Event Widget is shown if the Edit Event mode is active. The mode allows

graphical resizing of events. The widget shows navigation tool buttons and information

about the currently selected event.

The following information about the events is displayed in editable widgets (as shown

in Figure 4.4):

• The type of the event is displayed in a combobox (a drop-down list) which allows

to change the type.

• The starting position is shown in a spinbox (an editable widget to enter numbers,

the number of decimal places is automatically adapted to the samplerate).

• The duration is also shown in a spinbox (the number of decimal places is also

automatically adapted).

The shown tool buttons comprise:

• Go to and select previous event

• Go to and select next event

• Fit view to selected event

The functionality of these buttons is described in the chapters 3.3.1 and 3.3.3.

View Options Widget

The View Options Widget is shown in the View Options mode. It comprises checkboxes

to switch the visibility of the labels widget, the x-axis and the y-axis and buttons to

set the auto scale behavior (if the zero line of a channel is centered or fitted to the

24

4 Graphical User Interface Improvements

minimum and maximum of the signal). In SigViewer 0.2.6, these options are settable in

the “Preferences” dialog. Due to the multitab view of SigViewer 0.4, the view options

(per tab) have been moved to this new View Options mode which has been introduced

in SigViewer 0.4.1 and replaces the Shift Signal mode.

New Event Widget

The widget which is shown in the New Event mode enables the user to set the type for the

new event. This setting is used for the “Insert Over” action (described in Chapter 3.3.2)

too.

Figure 4.4: Edit Event Widget. This widget shows information about the currently
selected event and enables the user to edit type, start position and
duration.

Figure 4.5: View Options Widget. This widget shows checkboxes to toggle the
visibility of the labels widget, the x-axis and the y-axis.

25

4 Graphical User Interface Improvements

4.4 Enhanced Dialogs

Many dialogs have been revised to provide a more compact interface at first and advanced

options on demand. Furthermore, mechanisms have been implemented to avoid invalid

inputs.

Channel Selection Dialog

The Channel Selection Dialog is shown during the process of opening a file. It allows the

end user to select the channels that should be shown. The same dialog is used to set the

shown channels of an already opened file. Figure 4.6 compares the dialog in SigViewer

version 0.2.6 and 0.4.1.

The following features have been added and following bugs have been removed:

• Cancelling the dialog during opening a file does not open the file any more.

• “Initial Min-Max Search” is always done and therefore the checkbox and spinboxes

have been removed.

• The “OK” and the “Unselect All” buttons are disabled if no channel is selected.

• The “Select All” button is disabled if all channels are selected already.

• The newly introduced channel color settings are switchable.

(a) SigViewer 0.2.6 (b) SigViewer 0.4.1 (c) SigViewer 0.4.1 including

Color Options

Figure 4.6: Channel Selection Dialogs compared.

26

4 Graphical User Interface Improvements

Event Types Selection

The dialog for selecting event types is used to set the visible event types and to select

event types for importing/exporting events.

SigViewer 0.4.1 ships with the following improvements compared to SigViewer 0.2.6:

• The color settings are not shown if the event types are selected for importing/ex-

porting.

• The list of event types can be shrinked to that types that are used in the currently

opened file.

• The tree item “All Events” has been removed as the buttons “Select All” and

“Unselect All” have been added.

Figure 4.7 shows screenshots of the dialog.

(a) SigViewer 0.2.6 (b) SigViewer 0.4.1 (c) SigViewer 0.4.1 including

Color Options

Figure 4.7: Select Event Types Dialog. SigViewer 0.4 optionally provides a compact
view which hides all event types that are not used in the currently
opened file.

Event Table Dialog

This dialog provides an overview of all existing events arranged in a table. Currently,

the dialog allows deletion of multiple events at once. Figure 4.8 shows screenshots of

this dialog.

27

4 Graphical User Interface Improvements

Compared to SigViewer 0.2.6, the following features have been added to this dialog:

• Show only visible events: All event types that are hidden are optionally hidden in

the table too.

• Undo / redo buttons to restore the deleted events.

• The “ID” column is not visible any more as it contains no information for the end

user.

(a) SigViewer 0.2.6 (b) SigViewer 0.4.1

Figure 4.8: Event Table Dialog

28

4 Graphical User Interface Improvements

4.5 Small Improvements

Beyond the already presented improvements, some further (small) improvements are

summarized in this section.

4.5.1 Animations

Some animations have been introduced to provide smooth transitions from one view

setting to another. This ensures that the end user can track the transition of the view

and does not have to reorient.

Currently, the zooming (Chapter 4.1) and the event browsing (Chapter 3.3.1) is ani-

mated. More ideas are described in Chapter 7.2.

The “View” main menu allows to set the duration of the animations and to deactivate

animations at all.

Implementation

Qt 4.6 provides a special Animation Framework which allows smooth transitions of

defined properties (member variables) by using the class QPropertyAnimation. After

setting the property of interest, the start value, the end value and the desired duration

of the animation, the framework automatically calls the according setter-methods.

4.5.2 Tool- and Statusbar

The visibility of the toolbars and the statusbar can be toggled via the “View” menu.

Hiding these bars enlarges the viewport for the signals. Furthermore, the statusbar has

been cleaned up and the Length and Channels labels are not shown if no file is open. The

Trials label has been removed on user request. The toolbar has been cleaned up too.

The buttons for editing events have been removed because the functionality is already

located in the “Edit” menu, the context menu of events and the new mode-specific

widgets (Chapter 4.3).

4.5.3 X-Position Highlighting

The current x-position of the mouse is highlighted in the x-axis during some special

actions (e.g. event resizing) and within some special modes.

29

5 Restructuring and Refactoring

The general aim of restructuring and refactoring is to improve the structure of the

source code. Software quality criteria like testability, modularity, expandability, etc. play

an essential role within these tasks. The implementation of new features moves into

the background (in a strict sense, implementing new features is not desirable at all

during refactoring sessions). [23] lists several indicators when the time has come to do

refactorings. This comprises, for example, that refactoring should be done before new

features are added or if the knowledge about the problem domain has increased and a

better fitting structure of the source code can be introduced.

In SigViewer 0.2.6, many features have been added within small projects and therefore

no big refactorings have been made so far. This has led to some so-called bad smells in

code (as described in [24]) and other problems in the source code:

• Code duplications and big switch-case statements occur. The class MainWindow-

Model is especially affected.

• Some classes are deeply coupled and cyclic dependencies exist, in particular around

the class SignalBrowserModel.

• Parts of the source code depend on Qt3Support.

• No automatic tests exist.

In this chapter, some of the main aspects of the restructurings and refactorings are

described, which will handle the listed issues. In Section 5.1, the porting of the source

code from Qt3Support to Qt 4 is described. Section 5.2 is about the new module

structure, which focuses on reducing the coupling between the classes. The problems

around the class MainWindowModel are handled in Section 5.3, and the new test mode

is presented in Section 5.4.

30

5 Restructuring and Refactoring

5.1 Porting to Qt 4

With the transition from Qt 3 to Qt 4, some parts of the SigViewer source code could not

be ported automatically. Therefore, SigViewer 0.2.6 contains some source code which

uses the Qt3Support module of Qt 4.

An important task of this master’s thesis has been to fully port SigViewer to Qt 4 and

to remove all source code and runtime dependencies on Qt3Support. This has mainly

included to reimplement the part of SigViewer which is responsible for signal drawing

as the Q3Canvas framework had to be replaced by the new Graphics View framework.

This new framework ships with more built-in functionality like event propagation, double

precision (instead of integer precision), zooming, etc. [25]. Using these new features leads

to less source code in SigViewer and therefore can contribute to reduce the complexity

of the code.

The following classes of SigViewer were mainly affected by the porting:

• SignalBrowserModel and SignalBrowserView have been revised

• SignalCanvasItem has been converted to SignalGraphicsItem

• EventCanvasItem has been converted to EventGraphicsItem

• NavigationCanvasItem, ChannelSeparatorCanvasItem and

XGridCanvasItem have been removed

• SmartCanvas, SmartCanvasRectangle and SmartCanvasView have been removed

An equivalent to the ChannelSeparatorCanvasItem seems not to be needed any more.

Drawing the grid for the signals has moved into the new class SignalGraphicsItem.

Therefore, no new implementation for XGridCanvasItem is needed. Additionally, the

NavigationCanvasItem has been removed because the new framework of Qt provides the

features for scrolling. The SmartCanvas classes have been removed as their functionality

is already provided by the new Graphics View framework.

In the first step, the existing source code was adapted to the new framework to keep

as many already implemented functionality as possible. However, due to other restruc-

turings which are described in the following sections, many code parts were changed

afterwards.

31

5 Restructuring and Refactoring

5.2 New Module Structure

As mentioned before, some classes in SigViewer 0.2.6 are deeply coupled. Before adding

new features, it was necessary to group classes in different modules to avoid increasing

coupling.

The classes of SigViewer 0.4 are therefore divided into several modules shown in Fig-

ure 5.1.

Figure 5.1: New module structure. The classes in the grey modules are external
libraries. Modules only depend on subjacent modules. E.g. FileHan-
dling does not depend on GUIImpl, but the Editing Commands module
depends on FileHandling, Base and Qt 4.

Base

This module already existed in SigViewer 0.2.6. Due to the introduction of further

modules, some parts of this module have been moved to other modules. Therefore,

it now focuses on providing classes which represent basic data types like DataBlock,

SignalEvent and user types. The module only depends on the Qt 4 and the FFTW

libraries.

The DataBlock class has been newly introduced to store and handle different kinds and

sections of signal data. It provides index-based access and static methods to calculate

the mean of a list of DataBlocks. Furthermore, it has a method to create a power

spectrum of the data it contains by using the FFTW library (Chapter 2.3.4).

File Handling

In this module, classes are located which provide interfaces to the file handling. This

comprises the abstract base classes BasicHeader, FileSignalReader and FileSignalWriter

32

5 Restructuring and Refactoring

for basic access to the data of a file and ChannelManager and EventManager which

provide higher level access to that data.

Editing Commands

This module contains all classes which are responsible for editing events. It only depends

on the base and the file handling module as shown in Figure 5.1. Each class is derived

from QUndoCommand.

The implementation details about the undo-framework including these classes is de-

scribed in Chapter 3.1.1.

File Handling Impl

The implementations of different FileSignalReaders and -Writers are located in this

module. At the moment, it basically contains the BioSigReader and -Writer, which

depend on the biosig4c++ library.

For testing purposes, a dummy implementation of FileSignalReader has been imple-

mented which generates simple sine waves. More about this is described in Chapter 5.4.

GUI

Abstract interface classes for user interaction and signal drawing which are needed by

other modules are located in this module. This comprises an interface for the MainWin-

dow and SignalVisualisationModel, a progress bar dialog (which visualizes the progress

of the file loading) and the GuiActionFactory. The latter is the central place to get

QActions for nearly any kind of user action which may be directly put into toolbars or

context menus. These QActions are initialized in the GUI Impl module in subclasses of

GuiActionCommand.

GUI Impl

This module is a larger one as it contains the implementations of the GUI module

which includes the drawing parts, user input and user dialog handling. Therefore, it is

subdivided into further modules.

The Commands Submodule contains the implementations of the GuiActionCom-

mand. Each GuiActionCommand creates several QActions, connects to their trigger

signals and registers the QActions in the GuiActionFactory. In succession the factory

33

5 Restructuring and Refactoring

provides these QActions to other parts so that these QActions can be put into menus

or toolbars.

In SigViewer 0.4.1, the following implementations of GuiActionCommand exist which

provide the listed actions:

AdaptChannelViewGuiCommand: Setting displayed channels, setting the color of one

channel, scaling channels, hide one channel, auto scale all channels, setting auto

scale mode (zero line centered/fitted)

AdaptEventViewGuiCommand: Set shown event types, fit view to selected event, hide

events of other type, show all events, goto and select next/previous event (Chap-

ter 3.3)

CloseFileGuiCommand: Close file, exit application

EventEditingGuiCommand: Delete, change type, change channel, to all channels, copy

to channels, show event table, insert over (Chapter 3.3)

HelpGuiCommand: Show “About SigViewer” dialog, run tests (Chapter 5.4)

MouseModeGuiCommand: Switch between the following modes: View options, scroll,

edit event, new event

OpenFileGuiCommand: Open, import events, show file info

SaveGuiCommand: Save, save as, export events, export to GDF, export to PNG (Chap-

ter 3.4)

SignalProcessingGuiCommand: Calculate mean, create power spectrum (Chapter 3.2)

UndoRedoGuiCommand: Undo and redo (Chapter 3.1)

ZoomGuiCommand: Zoom in/out vertical/horizontal (Chapter 4.1)

Figure 5.2 shows how the implementation moved from the class MainWindowModel in

SigViewer 0.2.6 to the new classes in SigViewer 0.4.

34

5 Restructuring and Refactoring

The Dialogs Submodule comprises the more complex dialogs for user input. The

dialogs are created with Qt Designer (Chapter 5.5). The dialogs are:

• ChannelDialog for setting the shown channels and channel colors

• EventTableDialog for providing a table-based overview of all events

• EventTimeSelectionDialog for setting the parameters for event-related signal pro-

cessing (Chapter 3.2)

• EventTypeSelectionDialog for setting the shown events and event colors

• ScaleChannelDialog for setting the upper and lower boundary of the y-axis of one

or all channels

The Signal Browser Submodule contains the implementations of SignalVisualisation-

Model and SignalVisualisationView. The latter is the central widget of SigViewer. It

uses the Graphics View framework of Qt for drawing signals and events.

Furthermore, the implementation of the mode-specific widgets, which are described in

Chapter 4.3, are located in this submodule.

5.3 MainWindowModel Refactoring

In SigViewer 0.2.6, the MainWindowModel has become a very problematic class. The

public interface of this class consists of 45 methods. Almost all user input handling and

user dialog is implemented in these methods. Each new entry in the menu or the toolbar

of the main window requires a new method. Therefore, a refactoring of this architecture

was necessary.

Figure 5.2 shows a class diagram that illustrates the main aspect of the refactoring which

follows the “Extract Class” approach in [24]. As shown in the figure, the implementa-

tion moved from public methods into private methods of subclasses of GuiActionCom-

mand. In SigViewer 0.2.6, the class MainWindow constructs QActions which have been

connected to public slots of MainWindowModel. In SigViewer 0.4, the subclasses of

GuiActionCommand request their base class to automatically construct QActions and

then connect these actions to their private slots. Therefore, much more compact public

interfaces exist which counters the formation of a “Blob” [26] (a class that monopolizes

the processing).

35

5 Restructuring and Refactoring

MainWindowMode l

+fileOpenAction()

+fileSaveAction()

+FileSaveAsAction()

+fileExportEventsAction()

+fileCloseAction()

+fileExitAction()

+editToAllChannelsAction()

+editCopyToChannelsAction()

+editDeleteAction()

+editChangeChannelAction()

+editChangeTypeAction()

+editEventTableAction()

+mouseModeNewAction()

+mouseModePointerAction()

+mouseModeHandAction()

+mouseModeShiftSignalAction()

+viewZoomInAction()

+viewZoomOutAction()

+viewAutoSCaleAction()

+viewGoToAction()

+secsPerPageChanged()

+signalsPerPageChanged()

+optionsChannelsAction()

+optionsShowEventsAction()

+optionsShowSettingsAction()

+helpAboutAction()

GuiAct ionCommand

GuiActionFactory

EventEdi t ingGuiCommand

-deleteSelectedEvent()

-changeTypeSelectedEvent()

-changeChannelSelectedEvent()

-toAllChannelsSelectedEvent()

-copyToChannelsSelectedEvent()

-showEventTableDialog()

MouseModeGuiCommand

+trigger(in mode_name:QString)

AdaptChannelV iewGuiCommand

-selectShownChannels()

-scale()

-autoScaleAll()

-setScaleModeZeroCentered()

-setScaleModeZeroFitted()

-changeColor()

-hide()

AdaptChannelV iewGuiCommand

-selectShownChannels()

-scale()

-autoScaleAll()

-setScaleModeZeroCentered()

-setScaleModeZeroFitted()

-changeColor()

-hide()

...

Figure 5.2: Aspects of MainWindowModel Refactoring: In SigViewer 0.2.6, the
MainWindowModel implemented nearly all actions that could be trig-
gered by the user. In SigViewer 0.4, the implementation moved into
private methods of GuiActionCommand subclasses.

5.4 Automated Tests

Automated tests are very important for the software development process. However,

writing automated tests for a GUI based application like SigViewer is quite difficult.

Therefore, no tests existed for SigViewer 0.2.6.

However, due to the restructuring, which was already described in this chapter, the

testability of the non-GUI source code of SigViewer has increased and also writing some

automated GUI tests became possible.

A special test mode has been integrated to SigViewer. This mode is started with the

commandline parameter -test (the parameter changed to --test in version 0.4.2).

36

5 Restructuring and Refactoring

Within this mode a dialog (Figure 5.3) is provided which runs tests and displays the

results. The following tests are currently implemented:

• DataBlock tests

• EventManager tests

• Editing commands tests

• GUI commands tests

Figure 5.3: Tests Dialog: This dialog is shown if SigViewer is started in the test
mode (commandline parameter “-test”). Clicking the “Start” button
runs the tests and displays the results in the list. The “Open Dummy
Data” button closes the dialog and generates simple sine waves which
are shown in SigViewer (see Figure 5.4)

Additionally, the test data can be loaded into SigViewer. This data is generated during

runtime by the SinusDummyReader which is an implementation of the FileSignalReader.

However, instead of reading data from a file, it generates sine waves at different frequen-

cies. Figure 5.4 shows a screenshot.

37

5 Restructuring and Refactoring

Figure 5.4: Screenshot of test data which is generated during runtime by the Sinus-
DummyReader to test the functionality of SigViewer without the need
to open a real file.

5.5 Qt Designer

In SigViewer 0.2.6, the layouts of all dialogs are defined in the source code, which leads

to many lines of code that describe where a widget is positioned. However, Qt provides

Qt Designer, a special tool to design the layout of dialogs and widgets graphically.

Figure 5.5 shows a screenshot of Qt Designer. This tool is also integrated into Qt Creator.

Using Qt Designer leads to several benefits:

• Creating and changing of dialogs is simplified due to the WYSIWYG (what you

see is what you get) approach.

• Less source code is needed, the readability of the source code is improved and the

complexity is reduced.

The data of the layout and the widgets is stored in a so-called ui file. This file has

to be converted into a C++ class by the Qt user interface compiler, which is done

automatically by qmake if the ui-file is listed in the project file (in the case of SigViewer

that means in the file src.pro or in any .pri file in the subdirectories of the src directory).

The documentation of Qt 4.6 [27] lists several different ways to use the ui files in the

application. In SigViewer, the “Single Inheritance Approach” has been chosen. In

38

5 Restructuring and Refactoring

contrast to the other approaches the designed widget is only derived from QWidget. The

layout of the widget is applied afterwards via an Ui member object, which is initialized

in the constructor of the widget.

Figure 5.5: Screenshot of Qt Designer editing EventTypeSelectionDialog. The lay-
out of the dialog can be changed graphically, which simplifies creating
user-friendly dialogs a lot.

39

6 Deployment

Deployment is the way from the source code files of a software to the ready-to-use

application for the end user. The following sections describe how to build SigViewer

from the source code files and how to create packages for installing SigViewer on various

platforms.

6.1 Building SigViewer from Source

This is a short description for how to build SigViewer from the source code files.

1. Get the source files of SigViewer from the project website http://sigviewer.sf.

net and unzip them into a directory

2. Setup environment

a) Get and install the latest Qt 4 SDK including Qt Creator from http://qt.

nokia.com

b) Get the precompiled biosig4c++ library from the SigViewer project website

and unpack it into the extern directory of the SigViewer source directory

c) Windows and Mac only: Get the precompiled FFTW library from the Sig-

Viewer project website and unpack it into the extern directory of the Sig-

Viewer source directory.

d) Linux only: install the fftw3 development library (libfftw3-dev)

3. Start Qt Creator and open the file sigviewer.pro

4. Build the project sigviewer and run it

A more detailed description of how to build SigViewer on different platforms can be

found at http://sigviewer.sf.net/develop.html.

40

6 Deployment

6.2 Installation Packages

For users who are not involved in the development of SigViewer, it is important to

provide easy installation routines of SigViewer without using build tools like a compiler.

Therefore, binary packages to install the compiled SigViewer for multiple platforms are

provided.

Part of this master’s thesis has been to provide a Debian package [28] to simplify instal-

lation on Debian-based Linux distributions like Ubuntu.

All files are available on the SigViewer project website: http://sigviewer.sf.net.

6.2.1 Debian Package

The Debian package management system is used by many Linux distributions such as

Debian, Ubuntu, Kubuntu, etc. Therefore, it has been of interest to provide a Debian

package of SigViewer to support these platforms.

The Qt libraries are dynamically linked to SigViewer in Linux. Because Debian packages

support dependencies, the Qt libraries are not included in the package. The package

management systems automatically check the dependencies and will install missing li-

braries during the installation process of the SigViewer package.

For creating a Debian package, the dpkg tool is used. It requests a directory structure

which contains the binary and a special control file which describes the package.

Directory Structure

The directory structure (shown in Figure 6.1) reflects the locations where the files from

the package will be copied during the installation process. For example, the sigviewer

binary will be copied into the /usr/bin directory.

Debian Control File

The control file consists of several fields. The most important ones are listed in table

6.1. A complete description of the fields can be found in the manpages of deb-control

(for example at http://man.cx/deb-control(5)).

41

6 Deployment

usr bin

sigviewer

share

control

pixmaps

applications

sigviewer.desktop

sigviewer.png

sigviewer

DEBIAN

Figure 6.1: Directory structure of a Debian package.

Field Description

Package the name of the package
Version the version number of the application
Depends a list of other packages (which may contain libraries,

applications, etc.) that are needed (e.g. the Qt run-
time libraries)

Replaces name and version number of the packages which are
replaced (e.g. older versions of SigViewer)

Table 6.1: Debian package control file entries.

The Desktop File

The sigviewer.desktop file in the /usr/share/applications directory contains information

for the desktop entry [29] on many Linux desktops (for example GNOME or KDE).

Field Description

Name name of the application (SigViewer)
Exec path to the executable (/usr/bin/sigviewer)
Icon filename of the icon which should be located in /us-

r/share/pixmaps (sigviewer.png)
Categories the categories in which the application will be listed

in the desktop menu (e.g. Science, Education)

Table 6.2: Desktop file entries.

42

6 Deployment

Build Script

To simplify the creation of a Debian package, a shell script has been created. This script

automatically builds the directories and copies the necessary files to the right place.

Furthermore, it automatically extracts the build architecture and the file size. Then it

calls the dpkg tool for creating the package and afterwards deletes the directories.

6.2.2 Windows

The download statistics of SigViewer show that Windows seems to be one of the major

platforms on which SigViewer is used.

For building the Windows installer, the NSIS tool is used (Nullsoft Scriptable Install

System, http://nsis.sf.net). A configuration file for this tool already existed for

SigViewer 0.2.6. The Windows installation package additionally contains the runtime

libraries for Qt 4.

6.2.3 Mac OS X

SigViewer 0.4 has been also tested on Mac OS X 10.6. In contrast to SigViewer 0.2.6 and

0.3.0, a release has been possible, because compiler-related problems have been resolved.

The installation package is built with the Qt deployment tool for Mac which is named

macdeployqt. This tool bundles the executable into a so-called dmg package which also

contains the needed runtime libraries of Qt.

43

7 Outlook

This chapter summarizes some ideas for new features, improvements of the user interface

and refactorings of SigViewer.

7.1 Further Features

7.1.1 Undo View Setting

A core feature of SigViewer is to display biosignals and to allow the user to dynamically

adapt the view. Many possibilities exist for the end-user to change the settings of the

view like selecting the shown channels or fit the view to the selected event. However,

only editing actions which alter the opened file can be undone currently. Providing

menu entries and shortcuts to instantly restore the last view setting would increase the

usability of SigViewer.

7.1.2 ERD/ERS Maps

Event-related desynchronization (ERD) and event-related synchronization (ERS) are

characteristics of the brain, which are detectable in EEG [16].

The signal processing features of SigViewer could be expanded with the creation of

ERD/ERS maps as mentioned in Chapter 3.2.

7.1.3 EOG Artifact Correction

One major noise source in EEG recordings is the so-called EOG artifact (which origins

in electrical eye activity). However, automatic methods exist to remove these artifacts

[11]. Such a method could be integrated in SigViewer to provide a filtered view on EEG

data.

44

7 Outlook

7.2 Further Improvement of GUI

7.2.1 Info Widget

Introduce an Info widget for the power spectrum and mean view. This widget can

display information about the event that has been processed and may provide buttons

to change the setting of the processing.

7.2.2 Event Table

The event table dialog could be integrated in the tab view. Beside the “Signal Data”

tab, there could always be an “Events” tab. This would decrease the number of windows

used by the application.

7.2.3 Animations

Smooth transitions are important for user-friendly interfaces. Some animations have

been already implemented (Chapter 4.5.1). The following list presents some ideas for

further work:

• Animate the “Fit View to Event” action.

• Fade out event markers that are deleted or hidden.

• Fade in event markers that are set to be visible.

• If a channel is hidden, shrink its height smoothly from its current value to zero.

• Roll out or shrink the x-axis, y-axis and label widget if their visibility changes.

7.3 Further Refactoring

7.3.1 Improved File Support

Currently, the library libgdf (http://libgdf.sf.net) is being developed at the Institute

for Knowledge Discovery. This library contains optimized reader and writer for the GDF

file format. SigViewer could use this library to improve its support for GDF.

Furthermore, converting other biosignal file formats into GDF could be realized.

45

7 Outlook

7.4 Deployment

7.4.1 User Guide

One of the most important tasks of the future will be to provide a comprehensive user

guide of all functions of SigViewer. This user guide should be written in a flexible format,

so that it is possible to provide it as a printable document, as a website, and also as

built-in help in the SigViewer program.

7.4.2 Further Linux Packages

SigViewer 0.4.1 has been deployed in binary Debian packages for Ubuntu 10.04 for 32

and 64bit platforms. Additionally, binary packages for other widely spread Linux distri-

butions like Fedora (http://fedoraproject.org), openSUSE (http://www.opensuse.

org), Debian (http://www.debian.org), etc. could be provided.

46

8 Concluding Remarks

Within the first two weeks after the release of SigViewer 0.4.0, it has been downloaded

more than 225 times from http://sigviewer.sf.net. As no advertisement has been

made, this shows some mentionable interest in this software application. Additionally,

one positive rating has been published on the project website (by someone not affiliated

with the project).

Compared to SigViewer 0.2.6, the latest version ships with lots of new features, bug fixes,

improvements of the user interface, and improvements in the source code structure.

Although cleaning up source code is an almost never-ending task, the restructurings

(described in Chapter 5) allow faster implementation of new features in the future.

The features which have been added in the scope of this master’s thesis comprise basic

functionalities like undo/redo, color settings and convenient methods for file opening.

Furthermore, some new features are adjusted to the application domain of BCI research

and comprise event-based signal processing, event browsing, etc. In addition, efforts

have been spent to increase the usability of SigViewer. A graphical user interface that

can be used easily is an important component for the success of a program.

However, considering all feature requests and wishes for SigViewer would have been

beyond the scope of this master’s thesis. Therefore, Chapter 7 gave an overview of

some ideas for further improvements and extensions which may build the basis of future

SigViewer releases.

47

Bibliography

[1] A. Schlögl and C. Brunner. BioSig: A Free and Open Source Software Library for

BCI Research. IEEE Computer, 41(10):44–50, 2008.

[2] A. Schlögl, C. Vidaurre, and E. Hofer. BioSig - Standardization and Quality Control

in Biomedical Signal Processing Using the BioSig Project. In BIOSTEC 2008, 2008.

[3] A. Schlögl. GDF - A General Dataformat for Biosignals, 2009. Available online at

http://arxiv.org/abs/cs.DB/0608052 (last visited: 28th September 2010).

[4] B. Kemp, A. Värri, A.C. Rosa, K.D. Nielsen, and J. Gade. A simple format for

exchange of digitized polygraphic recordings. Electroencephalography and Clinical

Neurophysiology, 82:391–393, 1992.

[5] B. Kemp and J. Olivan. European data format ’plus’ (EDF+), an EDF alike

standard format for the exchange of physiological data. Clinical Neurophysiology,

114:1755–1761, 2003.

[6] G. Schalk, D.J. McFarland, T. Hinterberger, N. Birbaumer, and J.R. Wolpaw.

BCI2000: A General-Purpose Brain-Computer Interface (BCI) System. IEEE

Transactions on Biomedical Engineering, 51(6):1034–1043, 2004.

[7] J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, and T.M. Vaughan.

Brain-Computer Interfaces for Communication and Control. Clinical Neurophysi-

ology, 113:767–791, 2002.

[8] R. Schreiber. MATLAB. Scholarpedia, 2(7):2929, 2007.

[9] J.W. Eaton. About Octave, 2006. Available online at http://www.gnu.org/

software/octave/about.html (last visited: 28th September 2010).

[10] Free Software Foundation. GNU General Public License, 2007. Available online

at http://www.gnu.org/licenses/gpl-3.0.html (last visited: 28th September

2010).

48

Bibliography

[11] A. Schlögl, C. Keinrath, D. Zimmermann, R. Scherer, R. Leeb, and G. Pfurtscheller.

A Fully Automated Correction Method of EOG Artifacts in EEG Recordings. Clin-

ical Neurophysiology, 118(1):98–104, 2007.

[12] M. Werner. Signale und Systeme. Lehr- und Arbeitsbuch mit MATLAB R©-Übungen.

Vieweg+Teubner, Wiesbaden, 3rd edition, 2008.

[13] P.E. Black. Big-O Notation. In P.E. Black, editor, Dictionary of Algorithms and

Data Structions [online]. U.S. National Institute of Standards and Technology,

2008. Available online at http://www.itl.nist.gov/div897/sqg/dads/HTML/

bigOnotation.html (last visited: 28th September 2010).

[14] P.E. Black. Divide and Conquer. In P.E. Black, editor, Dictionary of Algorithms

and Data Structions [online]. U.S. National Institute of Standards and Technology,

2010. Available online at http://www.itl.nist.gov/div897/sqg/dads/HTML/

divideAndConquer.html (last visited: 28th September 2010).

[15] P. Steffas. Fast Fourier Transform. In P.E. Black, editor, Dictionary of Algo-

rithms and Data Structions [online]. U.S. National Institute of Standards and Tech-

nology, 2007. Available online at http://www.itl.nist.gov/div897/sqg/dads/

HTML/fastFourierTransform.html (last visited: 28th September 2010).

[16] B. Graimann, J.E. Huggins, S.P. Levine, and G. Pfurtscheller. Visualization of

Significant ERD/ERS Patterns in Multichannel EEG and ECoG Data. Clinical

Neurophysiology, 113(1):43–47, 2002.

[17] M. Frigo and S.G. Johnson. The Design and Implementation of FFTW3. Pro-

ceedings of the IEEE, 93(2):216–231, 2005. Special issue on “Program Generation,

Optimization, and Platform Adaptation”.

[18] M. Frigo and S.G. Johnson. FFTW: An adaptive software architecture for the FFT.

In Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing, volume 3,

pages 1381–1384. IEEE, 1998.

[19] J.C. Bowman and M. Roberts. FFTW++: A Fast Fourier Transform C++

Header Class for the FFTW3 library, 2010. Available online at http://fftwpp.

sourceforge.net (last visited: 28th September 2010).

[20] Nokia Corporation. Overview of Qt’s Undo Framework, 2010. Available online at

http://doc.qt.nokia.com/4.6/qundo.html (last visited: 28th September 2010).

49

Bibliography

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison

Wesley, Reading, MA, 1995.

[22] M.G.H. Coles and M.D. Rugg. Event-Related Brain Potentials: An Introduction.

In M.G.H. Coles and M.D. Rugg, editors, Electrophysiology of Mind: Event-Related

Brain Potentials and Cognition, pages 1–27. Oxford University Press, 1996.

[23] A. Hunt and D. Thomas. The Pragmatic Programmer: From Journeyman to Mas-

ter. Addison-Wesley, Harlow, England, 1999.

[24] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving

the Design of Existing Code. Addison-Wesley, Reading, MA, USA, 1999.

[25] Nokia Corporation. The Graphics View Framework, 2010. Available online at

http://doc.qt.nokia.com/4.6/graphicsview.html (last visited: 28th Septem-

ber 2010).

[26] W.J. Brown, R.C. Malveau, H. W. McCormick, and T. J. Mowbray. AntiPatterns:

Refactoring Software, Architectures, and Projects in Crisis. Wiley, 1998.

[27] Nokia Corporation. Qt Designer Manual, 2010. Available online at http://doc.

qt.nokia.com/4.6/designer-manual.html (last visited: 28th September 2010).

[28] The Debian GNU/Linux FAQ. Chapter 7 - Basics of the Debian package man-

agement system, 2008. Available online at http://www.debian.org/doc/FAQ/

ch-pkg_basics (last visited: 28th September 2010).

[29] P. Brown, J. Blandford, O. Taylor, V. Untz, and W. Bastian. Desktop En-

try Specification. Version 1.0, 2008. Available online at http://standards.

freedesktop.org/desktop-entry-spec/desktop-entry-spec-1.0.html (last

visited: 28th September 2010).

50

