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Abstract

This thesis investigates and presents robust multi-view matching methods to produce dense

depth maps from highly redundant imagery. We gather theory from camera models and

two-view geometry to methods for solving the correspondence problem. We investigate in

several experiments the influence of different cost functions and cost aggregation schemes

on the results of multi-view depth matching in a plane sweep framework. The evaluation

includes local and global optimization methods.

The main contribution of this thesis is an extension of the highly efficient TV-L1 optical

flow algorithm that includes the epipolar constraint. While correspondence computation

is still performed between pairs of images, we present a method for correspondence linking

between nearby views. This enables the use of measurements from all neighboring views

used for matching and provides wider baselines for robust and accurate triangulation.

We provide evaluation results of the proposed method and present its performance in

contrast to a standard plane sweep approach. The benefits include less computation time

and memory costs, continuous results instead of discrete depth estimates and comparable

but in most cases even better accuracy. It requires no or just little user guidance, thus

our design is capable for integration into a fully automatic reconstruction pipeline.

Keywords. Computer Vision, Stereo Correspondence Problem, Matching Costs, Global

Optimization, Optical Flow, Epipolar Constraint, Multi-View Stereo, Dense Matching,

Robust 3D Reconstruction
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Kurzfassung

Diese Arbeit untersucht und präsentiert robuste Mehrbild-Verfahren, um aus redundanten

Bilddaten über Punktkorrespondenzen dichte Tiefenkarten zu erstellen. Wir erarbeiten die

Theorie beginnend bei Kameramodellen und Zweibild-Geometrie bis hin zu Methoden zur

Lösung des Korrespondenzproblems. Dabei untersuchen wir in mehreren Experimenten

den Einfluss verschiedener Kostenfunktionen und Modelle zur Kombination von Kosten

auf die Ergebnisse eines Mehrbild-Rekonstruktionsverfahrens auf Basis eines Plane-Sweep-

Ansatzes.

Der Hauptbeitrag dieser Arbeit besteht in der Erweiterung des hocheffizienten TV-L1

optischen Fluss-Algorithmus zur Berücksichtigung der Epipolargeometrie. Während die

Korrespondenzberechnung weiterhin zwischen Bildpaaren erfolgt, wird eine Methode zur

Verlinkung von Korrespondenzen zwischen benachbarten Bildern präsentiert. Dies erlaubt

die Einbeziehung von korrespondierenden Bildpunkten aus weiter entfernten Nachbar-

bildern und ermöglicht robuste und genaue Triangulation.

Wir zeigen Evaluierungsergebnisse für die vorgestellte Methode und prasentieren

die Resultate im Vergleich zu einem Standard-Plane-Sweep-Ansatz. Die Vorteile

liegen vor allem in einer Reduzierung von Berechnungsaufwand und Speicherbedarf,

kontinuierlichen Tiefen im Gegensatz zu diskreten Werten und einer vergleichbaren und

in den meisten Fällen bessern Genauigkeit. Die Methode benötigt keine beziehungsweise

nur wenig Benutzerführung, weshalb unser Design zur Integration innerhalb einer

vollautomatischen Rekonstruktionspipeline geeignet ist.

Schlagwörter. Computer Vision, Stereo Korrespondenzproblem, Kostenfunktionen,

Globale Optimierung, Optischer Fluss, Epipolargeometrie, Mehrbild-Verfahren, Dense

Matching, Robuste 3D Rekonstruktion
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1.1 Outline and Motivation

Image-based 3D reconstruction is an active field of research in Photogrammetry and

Computer Vision. The need for detailed 3D models for mapping and navigation, in-

spection, cultural heritage conservation or photorealistic image-based rendering for the

entertainment industry lead to the development of several techniques to recover the shape

of objects. Common systems are based on active-sensor methods or active and passive 3D

vision.

Active-sensor methods usually based on RAdio Detection And Ranging (Radar) or LIght

Detection And Ranging (Lidar) systems are able to provide directly 2.5D range images

and 3D point clouds.

To achieve precision and high detail reconstructions, Lidar systems are successfully

employed. Laser-based methods on the other hand, are very complex for large scale

outdoor scenes, especially when aerial data acquisition with airborne sensors is required.

Active stereo systems are able to determine 3D coordinates under controlled condi-

tions accurately and in real-time, but are not suited for large scale outdoor environments.

1



2 Chapter 1. Introduction

Passive image-based methods utilize multiple overlapping views to determine geometry.

Those methods are more robust, low-cost and flexible for reconstructing large scenes and

are capable to provide comparable accuracy to Lidar systems [25].

Figure 1.1: A Reconstructed Scene: The scene has been reconstructed from
five Microsoft VEXCEL UltraCam Images from the Jakomini dataset.
The images have a geometrical resolution of 7500x11500 pixels with
approximately eight centimeter ground resolution per pixel.

This thesis is motivated by the goal of competing and replacing these methods with

image based approaches using high resolution aerial imagery to achieve savings in cost,

effort and time for acquiring automatic high accuracy large scale 3D reconstructions. But

new problems and challenges can arise, in particular due to temporary varying events

during data acquisition, e.g. vehicles, pedestrians and/or changing light conditions.

The objective of this thesis is to present fast, accurate and robust multi-view match-

ing techniques suitable for high resolution images of large scale scenes. Starting from

terrestrial or aerial imagery, we compute dense depth maps with (semi) automatic pas-

sive image-based methods as an intermediate step to a full Euclidean 3D reconstructed

model. Reconstruction from multiple views hereby contributes to the completeness of the

scene, aids in the correspondence problem and improves depth accuracy by increasing

triangulation angles.

Motivated by related work on image-based modeling [11, 13, 14, 16, 19, 43, 51] we are

going to take a look at two different approaches for multi-view reconstruction, keeping in
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mind the surveys of Scharstein et al. [33], Seitz et al. [34] and Strecha et al. [37] who

evaluated the performance of several algorithms.

The following dense matching approaches assume already known camera calibration.

Intrinsic parameters and external orientations of the camera’s positions are provided.

Additionally, a sparse scene reconstruction obtained by Structure-from-Motion (SfM) [17,

22] exists that is used for initialization.

The first technique described is a plane-sweep approach that traverses 3D space by

parallel planes. Local matching costs measure similarity between a key view and multiple

neighboring images projected onto these planes in varying depths. The correct depth is

assumed to be the one with the lowest cost value or the highest similarity score respectively.

Correlation scores are used to fill a 3D cost volume. Additional optimization techniques

are needed to extract high quality depth maps since this method will always be prone to

errors.

One global approach is to define depth as a multi-labeling problem (each label corre-

sponds to a discrete depth) that can be then solved exactly using a variational approach

[30]. However such methods are in general very time and memory intensive.

To overcome the time consuming optimization step required to extract depth maps in

the first approach, we propose a method that estimates pixel correspondences using TV-L1

optical flow [50]. Disparities between pixels are estimated within a global optimization

framework that seeks a solution by minimizing an appropriate energy function. This

approach is extended to follow the epipolar constraint, hence restricts the correspondence

search to a one-dimensional problem.

The successive subsections of this introductory chapter describe the challenges to cope

with in 3D reconstruction and recall the basics of camera models and two-view geome-

try, followed by a brief overview of different scene representations. The chapter closes

with a classification of dense stereo algorithms. Chapter 2 examines how to find pixel

correspondences (i.e. matching) in pairs of images using local correlation measures and

total variation based optical flow minimizing a global energy function. 3D reconstruction

extended to multiple views, occlusion handling and the requirement for initialization is

discussed in Chapter 3. We present details on the plane sweep and optical flow based

reconstruction methods in Chapter 4, followed by experimental results and qualitative
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and quantitative evaluation in Chapter 5. The thesis concludes with Chapter 6 presenting

a summary of covered considerations, a discussion based on our observations and results

and displays future prospects.

1.2 3D Reconstruction

Recovering scene structure from images is one major topic in the field of Computer

Vision. As we use two or more images as input, we talk about image-based (multi-view)

stereo reconstruction. Image-based 3D reconstruction usually incorporates and solves

three main problems [8]:

1. Camera calibration,

2. point correspondence and

3. reconstruction.

Digital images are captured by a sensor within a camera measuring the radiance reflected

(or emitted) by the object’s surface. This strategy allows that 3D structure can be inferred

passively without interfering the reconstructed object.

Extracting 3D information from 2D image representations is far from being an easy

task. The object’s appearance in an image can change completely with viewpoint. For-

mally, there is no unique solution to such an ill-posed problem [7].

The main challenges of 3D reconstruction are [36]:

Perspective Projection. As the human eye does, a camera projects all scene points

along a ray from the camera center onto a single point in the 2D image plane. A

single image does not provide enough information to recover depth.

Brightness Constancy. Depending on surface attributes and orientation, type and po-

sition of light sources and viewpoint, image intensity values of corresponding scene

points might vary.

Occlusions. Visibility of scene points of non-convex objects or points affected by mutual

occlusion changes with viewpoint, making the search for uniquely corresponding

image points impossible.

Noise. Due to the physics of image formation, input data is corrupted by noise.
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To overcome all these difficulties two or more images and robust methods incorporating

assumptions about the physical world are necessary to achieve reliable and accurate results.

1.3 Camera Model and Two-View Geometry

1.3.1 Camera Model

A camera projects 3D scene points onto a 2D image plane. In general, a camera models

central projection with its camera center being finite. The mapping of 3D world points and

pixel coordinates can be described by employing homogeneous coordinates and projective

geometry. This allows to represent the camera as a matrix incorporating all its geometric

entities and attributes. A 3x4 matrix P, the projection matrix, usually has 11 degrees of

freedom (DOF) to describe internal and external parameters of the camera.

Figure 1.2: The Pinhole Camera Model: A scene point X projects onto the
image plane to a point x on the line connecting the projection center C
and X. The optical axis goes through the image plane at the principal
point p. The point X maps to the point x on the image plane by
similar triangles (adopted from [17]).

We start to develop our camera model with the simplest one, the pinhole camera. We

assume that 3D scene points project onto a plane through the projection center lying at

the origin of a Euclidean coordinate system. The image plane or focal plane is at Z = f

and perpendicular to the principal or optical axis with f equal to the focal length of the

camera. The central projection mapping from world to image coordinates of a scene point

X = (X,Y, Z)> to the point x = (fX/Z, fY/Z, f)> on the image plane is computed by

similar triangles. The pinhole camera geometry is shown in Figure 1.2.

We can express the linear mapping in terms of a matrix multiplication by representing

the coordinates of both points by homogeneous vectors:
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X

Y

Z

1

 7−→


fX

fY

Z

 =


f 0

f 0

1 0



X

Y

Z

1

 (1.1)

Equation (1.1) can be described in a compact manner as

x = PX (1.2)

The 3x4 homogeneous camera projection matrix P can be written as

P = K[I|0] (1.3)

K is the camera calibration matrix and [I|0] the identity matrix with an appended

column vector with zeros. The camera calibration matrix is of the form K = diag(f, f, 1).

Taking the principal point offset into account, then K becomes:

K =


f px

f py

1

 (1.4)

The camera model derived so far assumes square pixels with equal scales in both di-

mensions. To derive the general form of a camera calibration matrix, we multiply K on

the left with diag(mx,my, 1). The parameters mx and my represent the number of pixels

per unit distance in the x and y direction respectively. An additional skew parameter s

(which usually equals zero) modeling non-rectangular pixels gives 5 DOFs for the intrinsic

camera parameters in K.

K =


αx s x0

αy y0

1

 (1.5)

The camera is still located at the origin of our Euclidean coordinate system, the current

camera coordinate frame. Scene point coordinates make use of a world coordinate frame

which, in general, is different from our camera coordinate system. It relates to the world

coordinates via a rotation and a translation (Figure 1.3).
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Figure 1.3: Camera Rotation and Translation: The camera coordinate frame
is related to the world coordinate system via rotation and translation
(adopted from [17]).

A point X̃ in world coordinates is transformed into the camera coordinate system with

X̃cam = R(X̃ − C̃). The camera center in world coordinates is denoted as C̃ and R is a

3x3 rotation matrix representing the external orientation of the camera coordinate frame.

Together with (1.3), P results in

P = KR[I| − C̃] (1.6)

and with t = −RC̃

P = K[R|t] (1.7)

Rotation and translation add three DOFs each, together they form the set of extrinsic

parameters representing the external orientation of the camera. Hence, a finite projective

camera has a total of 11 DOFs, equal to the number of degrees of freedom of a 3x4 matrix,

defined up to an arbitrary scale [17].

The inverse of Expression (1.2) describes the back-projection of image points to rays.

It writes to:

X = P+x (1.8)

X(λ) = P+x+ λC (1.9)
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with the pseudo-inverse P+ = P>(PP>)−1 of the matrix P for which PP+ = I is

valid. Two points on the ray in Equation (1.9) are known: P+x and the camera center C.

Every point on that ray projects onto the same image coordinates [4, 17].

1.3.2 Epipolar Geometry

In this section we introduce the geometric relation of two views. Given two images with

associated projection matrices P for the first view and P’ for the second, capturing the

same scene from different viewpoints, then there exists a geometric relationship between

these views depending solely on the relative poses and internal parameters of the cameras.

A 3D scene point projects to x = PX in the first view and to x′ = P ′X in the

second. The Epipolar geometry (see Figure 1.4) describes the relationship between two

views constraining possible positions for the corresponding image points x and x’. This

relationship is expressed through a 3x3 matrix, named the fundamental matrix F.

Figure 1.4: Epipolar Geometry: The corresponding points x and x’ are projec-
tions of the same 3D point in space. Point x in the first view defines
an epipolar line l’ in the second image. The imaged point of X in the
second view must lie on that line (adopted and modified from [17]).

The ray through C and x together with the baseline connecting the projection centers

C and C’ of the two cameras span the epipolar plane π. The epipolar line l’ locates where

the plane π meets the image plane of the second view. Equivalently, the epipolar line is

the back-projected ray in 3D-space defined by the camera center C of the first view and

x, projected into second image.
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x 7→ l′ (1.10)

l′ = Fx l = F>x′ (1.11)

The imaged point x’ of X in the second view must locate on the line l’. If we know

only x, this yields that the search for correspondences in stereo matching algorithms can

be reduced to a 1D search problem along the epipolar line, no need for covering the entire

image plane.

The point where the baseline intersects the image plane is called epipole and corre-

sponds to the imaged camera center of the second camera. It is the intersection point of

all epipolar lines in that image.

For corresponding image points x and x’ the fundamental matrix F satisfies the relation

x′>Fx = 0 (1.12)

The fundamental matrix F can be derived either from the camera projection matrices

P and P’ or computed via known point correspondences in the images. However, F is

independent from scene structure. The following algebraic derivation of the fundamental

matrix is one of various ways and uses the former approach.

Again we back-project a pixel by X = P+x and get a ray, as shown in Equation (1.9).

Then, we use two points on that ray imaged by the second camera. In particular, we

project the camera center C of the first camera, which gives the epipole in the second

image with e′ = P ′C, and a second point on the ray (P+x at λ = 0), that projects to

P ′P+x. The line connecting these two points is the epipolar line

l′ = (P ′C)× (P ′P+x) = [e′]×(P ′P+)x = Fx (1.13)

with the fundamental matrix

F = [P ′C]×P
′P+ = [e′]×P

′P+ (1.14)

In (1.13) and (1.14) the notation [·]× is used to represent the cross product with the

epipole as a matrix multiplication.
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For a 3-vector a = (a1, a2, a3)> it is defined as

[a]× =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 (1.15)

To form the fundamental matrix based on the cameras extrinsic parameters, we trans-

form both cameras in order that the camera center of first camera becomes the world

origin with R = I, t = 0 and with R′ = R, t′ = t for the second camera by applying

R = R′R> and t = −R′R>t+ t′. The projection matrices for the two cameras now write

to

P = K[I|0] P ′ = K ′[R|t] (1.16)

With

P+ =

(
K−1

0>

)
C =

(
0

1

)
(1.17)

applied to Equation (1.14), the fundamental matrix becomes

F = [P ′C]×P
′P+ = [K ′t]×K

′RK−1 = K ′−>[t]×RK
−1 (1.18)

From R and t we are able to derive the epipoles e = −KR>t and e′ = K ′t directly

[4, 17]

1.3.3 Stereo Triangulation

Given corresponding image points x and x’ and the calibration matrices of the cameras,

we are now able to reconstruct the 3D position of the imaged scene point X to estimate its

depth. We suppose the left cameras coordinate system is the world origin with the optical

axis in z-direction, the right camera’s optical axis is parallel to the first one. Translation

of the second camera is only along the x-axis as shown in Figure 1.5.

The focal length of both cameras is f and the distance along the baseline between them

is denoted as T. The depth in z-direction of the point X in this canonical configuration is

now deduced by applying elementary geometry.

Z

T
=

Z − f
T − x− x′

(1.19)
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Figure 1.5: Stereo Triangulation: Recovering depth in a simple canonical
stereo configuration. The depth calculates to Z = f T

x+x′ using simi-
lar triangles CC’X and xx’X.

Z = f
T

x+ x′
= f

T

d
(1.20)

In this basic stereo triangulation for a camera setup in canonical or standard configura-

tion, the disparity d = x+x′ measures the difference in the position between corresponding

points. The depth is inversely proportional to disparity.

Recovering depth for non-canonical setups with arbitrary rotations between cameras is

done by finding the intersection point of two rays in 3D space. The rays are given through

back-projecting the image measurements x and x’. For corresponding image points, the

epipolar constraint x′>Fx = 0 is fulfilled and both rays lie in an epipolar plane and so

intersect in the point X.

But in general, the epipolar constraint is not satisfied and naive triangulation will fail.

Due to errors in the measured image points x and x’, their back-projected rays will not

intersect, as shown in Figure 1.6. It is necessary to estimate an algebraically best solution

related to the reprojection error for the point of X in 3D space using linear triangulation or

Maximum Likelihood Estimates (MLE) for the true image point correspondences. Here,

only linear triangulation is discussed because it provides acceptable results in most real

world problems and easily generalizes to more than two views.
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Figure 1.6: Ray Back-Projection: Back-projected rays from imperfectly mea-
sured image points x and x’ that do not satisfy the epipolar constraint
will not intersect.

The measurements x = PX and x′ = P ′X can be combined into an equation of the

form AX = 0 linear in X. For each image point, we get three equations of which two are

linearly independent by a cross product eliminating the homogeneous scale factor. For the

first image x× (PX) = 0, this is gives

x(p3>X)− (p1>X) = 0

y(p3>X)− (p2>X) = 0

x(p2>X)− y(p1>X) = 0

(1.21)

The rows of the projection matrix P are denoted with pi>. Using two equations from

each image results in four equations in four homogeneous unknowns. We can write

A =


xp3> − p1>

yp3> − p2>

x′p′3> − p′1>

y′p′3> − p′2>

 (1.22)

The system of linear equations of the form AX = 0 can be solved either by a ho-

mogeneous or inhomogeneous method. The Homogeneous method solves by finding the

smallest singular value of A and its corresponding unit singular vector.

With X in homogeneous coordinates, AX = 0 is reduced to a set of four inhomogeneous

equations in tree unknowns. The solution of this inhomogeneous method is achieved by
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using a least-squares approximation [17].

1.4 Classification of Dense Stereo Algorithms

We focus on algorithms that produce a dense disparity or depth map (i.e. a disparity or

depth value is assigned to each pixel) and operate on images with known camera geometry.

The emphasis on dense output is motivated by the requirement for depth estimates in all

image regions including texture-less or occluded areas. The disparity or depth map is

usually a univalued function d(x, y) encoding the output of the stereo correspondence

method with respect to a reference or key view.

Alternative approaches for scene geometry representation used in related work include

voxel-based [43] surface approximations in a regularly sampled 3D grid or volume, level-set

methods [12] for encoding the distance to the closest surface as a function and polygonal

meshes [52] that represent a surface as a collection of vertices and (triangulated) planar

polygonal faces. In contrast to these output representations, the depth map [23] represen-

tation eliminates the need for resampling the geometry in the three-dimensional domain

[33, 34].

Dense stereo correspondence algorithms can be divided into two categories. The first

class of dense stereo methods are local (window-based) algorithms, which use information

from each pixel or its local neighborhood making implicit smoothness assumptions. This

allows for determining a pixel’s disparity or depth independently, typically by analyzing

the intensity values within a finite (rectangular) window around the pixel of interest and

comparing two windows by statistical means. The result of this comparison is a cost value

or similarity score that measures the similarity between the two windows. It is usually

derived based on correlation.

Secondly, algorithms in the category of global methods make explicit smoothness as-

sumptions. Algorithms in this class typically find a solution by minimizing an energy

function. The choice of an appropriate energy function, from which the most contain a

data term and an additional smoothness term is an important aspect. A solution for the

minimization of the energy function is in general achieved by an iterative optimization

technique. Commonly used minimization procedures in global algorithms are simulated

annealing, probabilistic (mean-field) diffusion or graph-cuts [33, 38].
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2.1 Local Stereo Matching

A core component of every stereo correspondence algorithm is a method to measure

similarity between image locations. The similarity is expressed by a matching cost value,

usually scaled between [ 0 ... 1 ]. At each pixel, the matching cost is computed over all

disparities within a certain disparity range under consideration. Depending on the method

that calculates the matching cost, we try to find the disparity which either maximizes a

similarity measure or minimizes an error score [4, 20].

A general notation of a cost function comparing intensity values of the images I1 and

I2 at an image location x = (x, y)> is given by:

C = fC(I1(x), I2(x+ d)) (2.1)

Equation (2.1) defines a mapping that takes intensity values from an image pair and

outputs a cost value for a certain disparity vector d. For example, with rectified image

pairs where epipolar lines are horizontally aligned, the search for corresponding image

15
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locations can be restricted to a path along the x-direction (with the y-coordinate fixed)

and d reduces to d = (dx, 0)>.

Cost functions examined here are defined on intensity (luminance) values, but can

easily be extended to color. Therefore, costs for all color channels are separately computed

and then combined accordingly.

We can distinguish between pixel-based and window-based cost functions. Whereas

simple pixel-based cost functions rely only on values I1 and I2 from a single image loca-

tion x and assume constant intensities (brightness constancy assumption), window-based

matching costs take more intensity values within a finite neighborhood around the pixel

of interest into account.

Typically, the neighborhood is defined by a rectangular k × k window w, with the

window size k as an odd integer number. A rectangular window around a pixel of interest

can be defined by a single parameter r, denoting the radius of the window. The radius is

linked with the window size k through the relation k = 2r + 1.

C(I1, I2, x, y, dx, dy) =
r∑

u=−r

r∑
v=−r

fC(I1(x+ u, y + v), I2(x+ dx + u, y + dy + v)) (2.2)

A shortened notation for Equation (2.2) for all pixels w in a certain neighborhood

around a pixel x = (x, y)> (for the disparity we again use the notation d = (dx, dy)
>) is

given as

C(I1, I2, x, d) =
∑
w

fC(I1(x), I2(x+ d)) (2.3)

For better readability we omit pixel coordinates and the disparity in Equation (2.3)

and write

C(I1, I2) =
∑
w

fC(I1, I2) (2.4)

While rectangular windows are commonly used, arbitrary shapes of windows aggregat-

ing support are possible.

Due to varying illumination conditions and changing appearance of image points accord-

ing to viewpoint changes, in general, a similarity measures with normalization is required.
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More robust (normalized) matching costs are able to compensate for noise and certain

radiometric differences (e.g. additive or multiplicative brightness variations) [4, 18, 20].

In general, any stereo correspondence algorithm makes implicit or explicit assumptions,

necessary to model the physical world and the image formation process. Matching as-

sumptions include, for example, that image points are projections of the same scene point.

Often object surfaces are assumed to hold Lambertian properties, i.e. that their appear-

ance does not change with viewpoint (diffuse reflection, no specular highlights). Other

methods try to embed assumptions about radiometric differences appearing as image in-

tensity changes in gain and bias or model certain forms of noise of the camera sensor.

The correspondence problem would be ill-posed and underconstrained without addi-

tional assumptions about visual appearance of scene objects or the world and scene ge-

ometry, e.g. that the physical world consists of piecewise smooth surface patches. These

assumption can be summarized under the term smoothness assumptions [33].

Matching costs evaluated pixel-based on pixel intensities include absolute differences

(AD), squared differences (SD) or the sampling insensitive dissimilarity measure (BT)

proposed by Birchfield and Tomasi [6].

As window-based matching costs, the sum of absolute differences (SAD) or squared

differences (SSD) and cross correlation (CC) are commonly used. To reduce mismatches

due to radiometric differences between images, in practical implementations at least cross

correlation is mainly used only in its normalized variant (NCC) accounting for multiplica-

tive changes (gain), denoted by the prefix N. Additive differences are compensated by

the zero-mean versions of SAD, SSD or NCC to address constant intensity offsets (bias),

denoted by the prefix Z, resulting in ZSAD, ZSSD and ZNCC.

Insensitivity against radiometric differences can be achieved by filtering the images in

a preprocessing step, for example mean filtering, computing the first derivative producing

a gradient magnitude image or the Laplacian of Gaussian (LoG). These filters applied in

stereo matching algorithms have the disadvantage to produce blurred depth images.

To avoid blurring high contrast texture differences that may correspond to depth dis-

continuities, Ansar et al. proposed background subtraction by bilateral filtering (BilSub)

in [1]. Bilateral filtering works by summing neighboring pixel values weighted depending

on their spatial (proximity) and radiometric (color similarity) distance to the center pixel.

This technique is able to effectively remove a local offset by smoothing without blurring
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high contrast texture.

Cost functions mentioned so far can be classified under the term parametric matching

cost functions [20, 33].

Other measures insensitive to differences in gain or bias belong to the group of non-

parametric matching cost functions. Non-parametric measures like Rank and Census,

introduced for being robust against outliers at object boundaries, were proposed in [48].

Since they rely solely on the relative ordering of intensities and not on the intensity values

itself, they are also invariant to radiometric variations that preserve the original order of

the pixels [20, 33].

The disadvantage of the methods mentioned so far is their problematic behavior when

matching images over wide baselines, due to perspective distortions, occluded areas and, in

general, regions with uniform texture. As an alternative, feature-based methods attempt to

overcome these problems by computing reliable descriptors. Local region descriptors have

been designed to be robust to perspective distortions and changes in illumination. Tra-

ditionally, descriptors like SIFT or GLOH are computationally demanding and therefore

used only for sparse matching.

A local region descriptor named DAISY was introduced by Tola et al. able to be

computed quickly at every pixel, however, retaining the robustness of SIFT and GLOH.

DAISY descriptors may then be matched by calculating the Euclidean distance between

the two feature vectors [39].

2.1.1 Parametric Cost Functions

2.1.1.1 Absolute Differences

A simple but commonly used error measure is the absolute difference (AD). It is defined

as the absolute difference of intensity values of two pixels:

CAD(I1, I2) = |I1 − I2| (2.5)

The window-based version is called sum of absolute differences (SAD) summing up all

differences within the neighborhood w:

CSAD(I1, I2) =
∑
w

|I1 − I2| (2.6)
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Window-based SAD allows to compensate for radiometric differences in bias and gain

through a normalization strategy. For additive and multiplicative intensity differences,

there exists an approach to achieve a certain degree of invariance to variations in pixel

brightness. Both approaches can be combined.

An additive offset (bias) is compensated by zero-mean normalization. We therefore

assume that the pixel intensities vary in a constant additive value t:

I1 + t = I2 (2.7)

To compensate for additive intensity variations, we need to reduce the mean intensity

value within a window w to zero. This is achieved by subtracting it from each original

pixel intensity within the window:

CZSAD(I1, I2) =
∑
w

|(I1 − Ī1)− (I2 − Ī2)| (2.8)

with

Ī =
1

Nw

∑
w

I (2.9)

For the normalized images I ′1 = I1 − Ī1 = I2 − Ī2 = I ′2 holds true:

I ′2 = I2 − Ī2 = I2 −
1

Nw

∑
w

I2 = I1 + t− 1

Nw

∑
w

(I1 + t) = I1 −
1

Nw

∑
w

I1 = I1 − Ī1 = I ′1

(2.10)

To compensate for multiplicative changes (gain), we assume that pixels of both images

I1 and I2 differ only in a constant factor r. For all pixels applies:

r · I1 = I2 (2.11)

To normalize the image data, we need to scale the original pixel intensity values with

its Frobeniusnorm (2.12) within the observed window.

‖I‖F =

√∑
w

I2 (2.12)
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Both images normalized for multiplicative changes calculate to:

I ′′1 =
I1

‖I1‖F
I ′′2 =

I2

‖I2‖F
(2.13)

It is easy to prove that I ′′1 = I ′′2 using Equation (2.11):

I ′′2 =
I2

‖I2‖F
=

I2√∑
w I

2
2

=
rI1√∑
w (rI1)2

=
I1√∑
w I

2
1

=
I1

‖I1‖F
= I ′′1 (2.14)

The resulting cost value is called normalized and is denoted by the prefix N.

CNSAD(I1, I2) =
∑
w

∣∣∣∣ I1

‖I1‖F
− I2

‖I2‖F

∣∣∣∣ =
∑
w

∣∣∣∣∣∣ I1√∑
w I

2
1

− I2√∑
w I

2
2

∣∣∣∣∣∣ (2.15)

Both normalization approaches combined result in a cost function that is insensitive to

additive and multiplicative changes. The Frobeniusnorm calculates now from the zero-

mean image data.

‖I ′‖F =

√∑
w

(I − Ī)2 (2.16)

CZNSAD(I1, I2) =
∑
w

∣∣∣∣I1 − Ī1

‖I ′1‖F
− I2 − Ī2

‖I ′2‖F

∣∣∣∣ =
∑
w

∣∣∣∣∣∣ I1 − Ī1√∑
w(I1 − Ī1)2

− I2 − Ī2√∑
w(I2 − Ī2)2

∣∣∣∣∣∣
(2.17)

What we get is a zero-mean normalized cost function value that has normal distribution

with zero mean and unit variance, denoted by the prefix ZN.

In the same way, this normalization approach is applied to the parametric cost functions

SSD and cross correlation described in the following subsections.

2.1.1.2 Squared Differences

The next classical cost function under consideration is the squared difference (SD). It

calculates a reliable error score for like intensity values, but is more sensitive to outliers,

accounting to the square of the intensity differences.
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CSD(I1, I2) = (I1 − I2)2 (2.18)

CSSD(I1, I2) =
∑
w

(I1 − I2)2 (2.19)

The sum of squared differences (SSD) from Equation (2.19) calculates the cost value

over a window w which is again suitable for normalization.

For the normalized variants the same steps from above apply to SSD analogously, re-

sulting in

CZSSD(I1, I2) =
∑
w

((I1 − Ī1)− (I2 − Ī2))2, (2.20)

CNSSD(I1, I2) =
∑
w

(
I1

‖I1‖F
− I2

‖I2‖F

)2

=
∑
w

 I1√∑
w I

2
1

− I2√∑
w I

2
2

2

(2.21)

and finally

CZNSSD(I1, I2) =
∑
w

(
I1 − Ī1

‖I ′1‖F
− I2 − Ī2

‖I ′2‖F

)2

=
∑
w

 I1 − Ī1√∑
w(I1 − Ī1)2

− I2 − Ī2√∑
w(I2 − Ī2)2

2

.

(2.22)

2.1.1.3 Cross Correlation

Unlike both previously discussed cost functions, cross correlation (CC) defines a sim-

ilarity measure. The more similar the intensity values are, the higher is the similarity

score.

CCC(I1, I2) =
∑
w

I1 · I2 (2.23)

The expressions for the normalized variants are:

CZCC(I1, I2) =
∑
w

(I1 − Ī1) · (I2 − Ī2) (2.24)
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CNCC(I1, I2) =
∑
w

I1

‖I1‖F
· I2

‖I2‖F
=

∑
w I1 · I2√∑
w I

2
1 ·
∑

w I
2
2

(2.25)

CZNCC(I1, I2) =
∑
w

I1 − Ī1

‖I ′1‖F
· I2 − Ī2

‖I ′2‖F
=

∑
w(I1 − Ī1) · (I2 − Ī2)√∑

w(I1 − Ī1)2 ·
∑

w(I2 − Ī2)2
(2.26)

In contrast to the previous cost functions, we notice that the Frobeniusnorm is not part

of the summation here, which is a benefit when taking runtime under consideration.

When dealing with Gaussian noise, normalized cross correlation is statistically the op-

timal correlation method. On the contrary, due to high errors in presence of outliers it

tends to blur depth discontinuities more than other cost functions [20].

2.1.2 Non-Parametric Cost Functions

A different approach for solving the correspondence problem was introduced in [48] by

Zabih and Woodfill by applying non-parametric local transforms to the images before

matching.

Non-parametric local transforms rely solely on the local ordering of intensity values

rather than on the intensities themselves. The transforms only depend on the sign of

the comparison between the center pixel and the pixel intensities in its neighborhood and

are therefore invariant under radiometric distortions that preserve this ordering. Those

measures can reduce sensitivity to outliers arising from radiometric gain and bias or noise

significantly [8]. The limited error-proneness and enhanced tolerance against outliers can

improve the resulting performance near depth discontinuities at the boundaries of objects.

Some of these cost functions can be implemented as filters that change the input images

individually. Then, matching is performed using correlation.

Pixels within a local region near object boundaries picture distinct parts of the scene

and represent scene elements from two different intensity populations. The intensity dis-

tribution within such a local region is in general multimodal and poses a severe problem

for many statistical correlation measures.

Correspondence measures based on statistical methods such as normalized cross corre-

lation are suited best for unimodal intensity distributions. This issue referred as faction-
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alism arising in many computer vision tasks has been addressed with methods like robust

statistics, Markov Random Fields and regularization [48].

We are now going to take a look at two non-parametric measures: the rank transform

and the census transform.

2.1.2.1 Rank

The rank transform measures intensities within a local region w and is defined as the

number of pixels whose intensity is less than the intensity of the center pixel x. It replaces

the pixel’s intensity with its rank among all neighboring pixels p in that local region

[8, 20, 48].

IRank(x) =
∑
w

T (I(p) < I(x)) (2.27)

The function T (·) returns 1 if its argument evaluates true, and 0 otherwise. An example

is given in Figure 2.1.

95 97 105
90 100 107
97 105 110

=⇒
1 1 0
1 0
1 0 0

=⇒ 4

Figure 2.1: The Rank Transform: The rank transform replaces the intensity
of a pixel by the number of pixels within a local region for which the
intensity values are less than that of the center pixel.

Noise can be a problem for rank filtering in textureless image regions. To address this

shortcoming, soft rank, a variation of the rank transform defines a linear, soft transition

zone between 0 and 1 which produces clearly less noisy results:

ISoftRank(x) =
∑
w

min

(
1,max

(
0,
I(x)− I(p)

2t
+

1

2

))
, (2.28)

with t acting as a threshold.

Matching of the rank filtered images is then performed using the L1 norm (i.e. with the

absolute difference (AD)).
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The rank transform compresses the magnitudes of the intensities into one single value,

which is the reason for the reduced sensitivity to outliers and improved tolerance for fac-

tionalism. The influence of a minority of neighboring pixels with very different intensity

values is limited. Such pixels only contribute proportional to their number, not propor-

tional to their intensity, as this would be the case with parametric measures.

While this is an advantage in presence of radiometric variations in the image data,

it also reduces the discriminatory power as the ordering information of the pixels is lost

during the transform.

2.1.2.2 Census Transform

Census stores not only the intensity ordering of the surrounding pixels, but preserves

also the spatial structure of the intensity values within the local neighborhood by encoding

it in a bitstring. Each bit set to 1 corresponds to a certain pixel p whose intensity is lower

than that of the center pixel x [8, 20, 48].

ICensus(x) = BITSTRINGw[ T (I(p) < I(x)) ] (2.29)

with T (·) returning 1 if its argument evaluates true, and 0 otherwise.

Through this transform, the dimensionality of the resulting census filtered image is

increased by a factor of the size of the local neighborhood used for deriving the bitstring.

95 97 105
90 100 107
97 105 110

=⇒
1 1 0
1 0
1 0 0

=⇒ [11010100]

Figure 2.2: The Census Transform: The census transform defines a bitstring
in some canonical ordering for a pixel of interest, where each bit
corresponds to a certain neighboring pixel. A bit for a corresponding
pixel is set, if its intensity is lower than that of the center pixel.

Similar to the rank transform, the influence of a minority of pixels with very different

intensity values within the neighborhood is restricted. The effects of a minority of pixels

with very different intensity values is limited by the size of the minority.
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Furthermore, mean and median variants of the census transform try to reduce the

influence of the center pixel’s intensity value. As the name suggests, the mean census

variant uses the mean intensity within the local neighborhood in the comparison step.

The median census transform calculates the, in terms of computation time more costly

median to generate the bitstring.

For correspondence computation, the two bitstrings are matched using the Hamming

distance (i.e. the number of bits that differ) between them. The Hamming distance is

then minimized after applying the census transform. Comparing for similarity using the

Hamming distance can be performed very efficiently and confirms a trend of moving from

Euclidean to Hamming distance for matching purposes [9].

Table 2.1 summarizes all local correspondence methods and matching metrics with their

formulas discussed so far.

2.1.3 Cost Window Aggregation

Stereo algorithms typically incorporate four steps: matching cost computation, cost

aggregation, disparity/depth estimation and refinement/optimization [33]. So far we have

discussed the cost computation step, now we focus on aggregating costs on a variable

support.

Most recent research on advances in computational stereo concentrated on robust match-

ing in the presence of radiometric distortions and noise, occlusion detection and real-time

methods. Besides, several interesting and effective approaches for cost aggregation on lo-

cal methods have been developed during the last couple of years. These methods provide

results that promise to yield comparable accuracy to that of many global algorithms [41].

Different cost aggregation schemes were implemented using fixed squared windows sym-

metrically around a center pixel of varying window size [41], shiftable windows [23] an-

chored at variable positions within the window or (adaptive) weights [2, 47], where every

single pixel’s contribution to the support region is defined by (adaptive) weights allowing

any unconstrained, arbitrary shape [33].
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Local Correspondence Method Definition

Absolute Difference AD CAD(I1, I2) = |I1 − I2|

SAD CSAD(I1, I2) =
∑

w |I1 − I2|

ZSAD CZSAD(I1, I2) =
∑

w |(I1 − Ī1)− (I2 − Ī2)|

NSAD CNSAD(I1, I2) =
∑

w

∣∣∣∣ I1√∑
w I

2
1

− I2√∑
w I

2
2

∣∣∣∣
ZNSAD CZNSAD(I1, I2) =

∑
w

∣∣∣∣ I1−Ī1√∑
w(I1−Ī1)2

− I2−Ī2√∑
w(I2−Ī2)2

∣∣∣∣
Squared Difference SD CSD(I1, I2) = (I1 − I2)2

SSD CSSD(I1, I2) =
∑

w(I1 − I2)2

ZSSD CZSSD(I1, I2) =
∑

w((I1 − Ī1)− (I2 − Ī2))2

NSSD CNSSD(I1, I2) =
∑

w

(
I1√∑
w I

2
1

− I2√∑
w I

2
2

)2

ZNSSD CZNSSD(I1, I2) =
∑

w

(
I1−Ī1√∑
w(I1−Ī1)2

− I2−Ī2√∑
w(I2−Ī2)2

)2

Cross Correlation CC CCC(I1, I2) =
∑

w I1 · I2

ZCC CZCC(I1, I2) =
∑

w(I1 − Ī1) · (I2 − Ī2)

NCC CNCC(I1, I2) =
∑

w I1·I2√∑
w I

2
1 ·
∑

w I
2
2

ZNCC CZNCC(I1, I2) =
∑

w(I1−Ī1)·(I2−Ī2)√∑
w(I1−Ī1)2·

∑
w(I2−Ī2)2

Rank Transform IRank(x) =
∑

w T (I(p) < I(x))

Matching is performed using the absolute difference.

Census ICensus(x) = BITSTRINGw[ T (I(p) < I(x)) ]

Matching is performed using the Hamming distance.

Feature Matching Distinctive image features are matched rather than intensities.

Table 2.1: Local Matching Metrics: A Summary of local matching metrics
and their definitions.
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Using variable support for cost aggregation aims at higher accuracy at depth disconti-

nuities and an overall lower matching ambiguity in textureless image regions. The concept

behind is to find the best set of pixels (i.e. the support) for computing the matching cost

at a potential correspondence. In contrast to fixed static support like squared windows or

a single pixel, these methods vary and adapt itself depending on each correspondence’s

local characteristics.

It is important to state, that the criterion on determining the support window size,

shift offset and weights at each correspondence depends on both images, due to the fact

that it is typically obtained from the cost function itself. And that is by nature based on

values of both images. The best support between a set of windows of different size and/or

displacement is chosen based on minimization of e.g. the variance of the cost function

serving as a local confidence (or reliability) value [41].

2.1.3.1 Rectangular Windows for Cost Aggregation

Choosing an appropriate window size for cost aggregation that fits multiple scenarios is a

difficult problem. While small windows allow good localization of the minimum cost along

the search path and better handling near depth discontinuities and object borders, they do

not capture enough information in low textured image areas yielding to a high matching

ambiguity. Large windows instead lead to boundary overreach at depth discontinuities,

when pixels belonging to different depths are aggregated within the support window. This

causes blurred edged in the results and comprises the possibility of missing fine image

details.

See Figure 2.3 for typical correlation results for different window sizes. We assume the

correct disparity or depth to locate at the overall minimum score along the search path.

This is a typical winner-takes-all strategy used in real-time applications and for evaluation.

Using the example of an SAD score, we can see that different sizes of correlation windows

lead to different results.

The first method for cost aggregation with variable support is performed using rectan-

gular windows of varying window size. The size is adapted and follows the local charac-

teristics of each pixel correspondence under evaluation. Local constraints for selecting a

support region include that for example large windows are favored in low-textured image

regions whereas small windows are used near depth edges [2].
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Figure 2.3: The Influence of Window Size: The four figures above showcase
typical results for different correlation window sizes on the Jakomini
aerial image sequence.
(a) Matching with the pixel-wise absolute difference lead to noisy re-
sults with lots of outliers, since it does not gather enough information
in low-textured image regions. Increasing the window radius to r=1
(b) and r=3 (c) reduces outliers but tends to smooth edges. Large
windows reduce the possibility of a mismatch, but yield reduced accu-
racy near depth discontinuities. (d) The image illustrates the effect of
a multi-resolution kernel combining three correlation windows. This
allows increased robustness to outliers through a large support region
and though good localization (i.e. less smoothing).
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The resulting matching cost is then computed from the obtained support region with

fixed weights assigned to each pixel within the region. Besides just minimizing the cost,

thus improves robustness, accuracy and provides better results than support windows of

fixed size.

When aggregating support near object boundaries, the matching reliability suffers from

erroneous cost computation introduced by image points within the window belonging to

multiple objects with different depths. Instead of using just one window symmetrically

centered around the pixel we are trying to match, several spatially shifted windows that

include the pixel of interest are investigated. Shiftable windows try to find an appropriate

window in order to aggregate image points that lie on the same depth plane. The support

window is not necessarily anchored around the pixel anymore, for which we search a

corresponding match. This approach can improve matching results near object boundaries

and depth discontinuities, generally speaking, image regions that can suffer from occlusion

effects [23, 41].

Moreover, hierarchical solutions try to select and combine multiple windows representing

the best support instead of a single window [41]. Yang et al. [46] describes a multi-

resolution approach for cost aggregation. In Figure 2.3 we have already seen the influence

of window size on matching scores. Figure 2.4 shows an example of a multi-resolution

kernel for cost aggregation. Cost values of each level are either just summed/averaged or

only the cost value of the window yielding the minimum error is used. This approach is

well suited for computation on graphics hardware.

Figure 2.4: A Multi-Resolution Cost Aggregation Kernel: The shape of
the multi-resolution kernel [46] puts larger weights to pixels at the
center allowing good localization while increasing robustness through
a large support region.

Whereas the multi-resolution approach uses a fixed number of overlapping windows, a

variable support strategy deploys the selection and union of just a subset of all tested

(partially) overlapping support regions, referred to as best supporting windows. Any com-

bination of varying window size and shiftable windows is possible.
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The approach of combining the global characteristics of large support regions and well-

localized small windows corresponds to the use of a large window and assigning stronger

weights to the center pixels. The shape of the resulting support region is then no longer

constrained to a rectangular window. This also leads to a cost aggregation strategy that

allows explicit assignments of different weights for the points of the support region [41, 46].

Since all these approaches of cost aggregation rely on rectangular windows, a consider-

able speedup in efficiency can be achieved by exploiting incremental computation schemes

[41].

2.1.3.2 Support Regions of Unconstrained Shapes

Generalizations of using a set of rectangular windows allow support regions of uncon-

strained shapes and the use of adaptive weights to better adapt to local image characteris-

tics. Image points within a certain neighborhood around a pixel of interest are classified as

associated or not-associated to the support region as a result of a photometric relation or

segmentation process beforehand. The best supporting region for cost aggregation is then

selected as the largest set of connected image points within that region. The approach

is based on the idea that connected components of related intensities belong to the same

object, thus having similar depths. Segmentation information relies either on only one

image or is obtained symmetrically from both [15, 41].

Different and variable weights can be assigned to the image points within the support

region, e.g. according to the variance of the error function. Weights based on spatial

proximity and radiometric distance in color space and weighted by means of a Gaussian

function are also possible. There is now a continuous transition if, and how strong image

points contribute to the support region.

A disadvantage of cost aggregation based on unconstrained shapes and adaptive

weights is that they do not always leads to computationally efficient algorithms [41].

2.2 Global Stereo Methods

2.2.1 Global Optimization

Stereo algorithms in this class exploit global support to search for correspondence in

order to increase robustness and accuracy, where local methods would otherwise result in

incorrect matches and fail due to a lack of texture or occlusions.

While local methods emphasis on the cost computation and aggregation steps and
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e.g. extract final disparities by simply choosing the depth associated with the lowest cost

value (winner-takes-all) at each pixel, global approaches perform all of their work during

disparity computation.

Global methods rely on minimizing a global energy function using an iterative opti-

mization scheme. Typically, such an energy function consists of two terms, a data term

and a smoothness term and a parameter λ that weights between them and determines the

degree of smoothness. The influence on the results of TV-L1 stereo for different values of

λ is examined in Figure 2.5. Large values for λ lead to stronger smoothing of fine details.

Eglobal(d(x, y)) = Edata(d(x, y)) + λEsmooth(d(x, y)) (2.30)

The expression d(x, y) represents the disparity field. The objective and desired solution

is chosen as the value of the disparity function d that minimizes the global energy Eglobal.

How well the disparity function d matches with the input images is measured with the

data term Edata.

Edata(d(x, y)) =
∑
(x,y)

C(x, y, d(x, y)), (2.31)

where C can be just the aggregated or initial unaggregated matching cost.

When using a smoothness term, spatial aggregation of the cost values, i.e. using a

window based method is usually not necessary. Hence, the cost function often reduces to

a pixel-based measure.

The smoothness term Esmooth integrates the smoothness assumptions made by the al-

gorithm and measures the piecewise smoothness in the disparity field. Often, a restriction

to only measure the disparity differences between neighboring pixels allows easier, man-

ageable computation.

Esmooth(d(x, y)) =
∑
(x,y)

shx,yρ(d(x, y)− d(x+ 1, y)) + svx,yρ(d(x, y)− d(x, y + 1)) (2.32)

The smoothness function or potential ρ(·) is some monotonically increasing function.

Typically, ρ is a quadratic, a truncated quadratic or a delta function in regularization-

based vision. Simple quadratic functions smooth d everywhere and may result in erroneous
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matches at depth discontinuities and object borders. Other more robust functions of the

disparity differences do not have this problem, which are then referred to as discontinuity

preserving energy functions.

The parameters shx,y and svx,y weight the smoothness strengths and can vary spatially.

Figure 2.5: Lambda and the Degree of Smoothness: The parameter λ deter-
mines the degree of smoothness. (a) Key view; TV-L1 stereo results
for (b) λ = 0.01 (c) λ = 0.02 (d) λ = 0.04 (e) λ = 0.16 (f) λ = 0.32

Additionally, the terms in Esmooth can also depend on intensity differences to link dis-

parity discontinuities with intensity changes, e.g. at intensity edges related to object

boundaries.

This accounts furthermore for some of the good performance of global algorithms. In

general, global methods are able to produce results that are superior to those of local

methods.

The main difference between global optimization approaches arises in the method that

is used to find the minimum, once the global energy function is defined. Commonly used
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approaches associated with regularization and Markov Random Fields (MRF) include

simulated annealing, mean-field methods and graph cuts [23, 33].

Solving the two-dimensional optimization problem from Equation (2.30) using common

classes of smoothness function is an NP-hard problem. An approach based on dynamic

programming reduces the computational complexity by decomposing the optimization task

into smaller sub-problems. Each one-dimensional energy function can then be solved

independently along each scanline in polynomial time [8, 23, 33, 38].

2.2.2 Pixel Correspondences through Optical Flow

2.2.2.1 Determining Optical Flow

Optical flow seeks to determine displacement fields between two images estimating the

motion of pixels. Hence, optical flow is equivalent to the search for correspondences is

stereo vision.

Horn and Schunck [21] formulate the problem as a differential equation that relates

the change of image brightness at a point to motion of the brightness pattern. Therefore,

it is assumed that the intensity value of a particular point is constant between two views.

This constraint is called the brightness constancy assumption:

dI

dt
= 0 (2.33)

We define I(x, y, t) as the image brightness at a point (x, y) and at time t. Here the

temporal parameter t is understood as the sequence between left and right stereo image.

Applying the chain rule for differentiation yields

∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t
= 0 (2.34)

With

u1 =
dx

dt
and u2 =

dy

dt
, (2.35)

we get a single linear equation in two unknowns u1 and u2:

Ixu1 + Iyu2 + It = 0 (2.36)
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The abbreviations Ix, Iy and It represent the partial derivatives of image intensity in

x, y and t.

Recovering u1 and u2, depicting the displacement or flow respectively solely based on

intensity constraints will in general result in an under-determined system of equations.

Determining optical flow is a highly ill-posed inverse problem, i.e. there is no unique

solution. This is known as the aperture problem.

Some kind of regularization (a prior) is needed to avoid the aperture problem and to get

physically meaningful results. We assume that objects of finite size undergo rigid motion,

this means that neighboring points have similar displacements and the flow field varies

smoothly. Therefore, Horn and Schunck use a quadratic smoothness term to penalize

deviations of the displacement field.

(
∂u1

∂x

)2

+

(
∂u1

∂y

)2

and

(
∂u2

∂x

)2

+

(
∂u2

∂y

)2

(2.37)

Equation (2.37) expresses the additional smoothness constraint as the square of the

magnitude of the flow gradient [8, 21, 50].

Horn and Schunck formulate the optical flow as a variational problem.

min
u

{∫
Ω
|∇u1|2 + |∇u2|2dΩ + λ

∫
Ω

(I1(x+ u(x))− I0(x))2 dΩ

}
(2.38)

Variational methods are motivated by statistical inference methods and aim to minimize

an energy functional. A functional maps an input function to an output value. Variational

methods are able to successfully solve a number of different computer vision problems.

One decisive advantage of variational methods and the reason for its increasing pop-

ularity during the last years is its behavior at locations where no image information is

available. In those regions, the flow functions u1 and u2 have hardly any influence on the

contribution of the data term. As a consequence and to fulfill at least the smoothness

constraint, the flow functions adapt to the local solutions and neighborhood information

is propagated to image locations where such information is missing. This so-called filling-

in effect is the reason why variational methods can compute a solution everywhere and

always obtain dense results.
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In Expression (2.38) denote I0 and I1 the image pair, the two-dimensional displacement

field is represented by the vector u = (u1(x), u2(x))>. The first term is the regularization

(or smoothness) term that penalizes deviations in the flow field u. Secondly, the data

term penalizes variations from the brightness constancy constraint, that assumes that

pixel intensities of I0(x) and I1(x+ u(x)) do not change.

A major drawback of the Horn and Schunck optical flow method is, that they use a

quadratic measure to penalize deviations of the flow field. This yields strong smoothing

along depth borders and does not allow for discontinuities. Another limitation is the use

of a data term that does not handle outliers robustly.

Approaches with more robust error norms and higher order data terms have been

proposed to overcome its limitations. Commonly used techniques use a first order Taylor

approximation to linearize the nonlinear intensity profile of I1(x+ u(x)) locally. To allow

for determining large displacements, coarse-to-fine strategies (i.e. scale-space approaches

or image pyramids) are used, since the approximation is only valid for small disparities

[29, 35, 50].

2.2.2.2 TV-L1 Optical Flow

A highly efficient algorithm for optical flow computation was introduced in [29] and [50].

It is based on total variation (TV) regularization and uses a robust L1 data fidelity term.

TV-L1 optical flow provides robustness to illumination changes, occlusions and noise and

preserves discontinuities in the flow field. Furthermore, they present an efficient numerical

scheme to minimize the model employing a dual formulation of the TV energy. Fast

and efficient implementations accelerated on modern graphics processing units (GPUs)

exploiting the huge computational power and parallel processing capabilities enables for

real-time performance of their method [50]. An extension to the approach was proposed

in [45] which further improves robustness to illumination changes.

The objective of this algorithm is, given two images I0 and I1, to map all image points

from the first image to their new location in the second one, i.e. to find die disparity field

u. This is achieved through minimizing an image-based error criterion (plain intensity

differences are used for measuring similarity between pixels) and a regularization term.

∫
Ω
{λφ(I0(x)− I1(x+ u(x))) + ψ(u,∇u, . . . )} dx (2.39)
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The first term φ(·) represents the data term, known as the optical flow constraint, the

second term ψ(·) is the regularization term (shape prior) which penalizes high variations

in the flow field, The parameter λ weights between them and determines the degree of

smoothness.

If we choose φ(x) = x2 and ψ(∇u) = |∇u|2, we again get the Horn and Schunck model

from (2.38). But with the L1 norm for penalizing the data term, φ(x) = |x| and the total

variation regularization in the smoothness term ψ(∇u) = |∇u|, (2.39) becomes:

E =

∫
Ω
{λ|(I0(x)− I1(x+ u(x))|+ |∇u|} dx (2.40)

The first order Taylor approximation to linearize the image I1 near x+ u0 with respect

to a fixed given disparity map u0 is I1(x+ u0) = I1(x+ u0) + 〈(∇I1, (u− u0)〉.

E =

∫
Ω

{
λ|I1(x+ u0) + 〈(∇I1, (u− u0)〉 − I0(x)|+

∑
d

|∇ud|

}
dx (2.41)

Accounting to linearization, a multi-level coarse-to-fine iterative warping technique is

employed in order to determine large scale displacements between images and to avoid to

get stuck in local minima.

The expression I1(x + u0) + 〈(∇I1, (u − u0)〉 − I0(x) we call now residual ρ(u, u0, x)

and introduce a new auxiliary variable v that is an approximation of u to minimize the

following convex approximation of the functional:

Eθ =

∫
Ω

{∑
d

|∇ud|+
∑
d

1

2θ
(ud − vd)2 + λ|ρ(v)|

}
dx, (2.42)

where θ is a small constant to assure, that vd is a close approximation of ud. Minimizing

the energy is performed by alternating optimization steps, where either u or v is fixed in

every iteration.

1. For vd fixed, solve for every d:

min
ud

∫
Ω

{
|∇ud|+

1

2θ
(ud − vd)2

}
dx (2.43)

Equation (2.43) is the total variation based image denoising model of Rudin, Osher

and Fatemi (ROF) [32], that provides modeling true statistics of natural images, as
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well as allowing to compute an exact solution [29].

Chambolle in [10] proposed an efficient and globally convergent numerical scheme

for solving the ROF energy, which uses a dual formulation of Equation (2.43).

The dual variables are given as

ud = vd + θdivpd, (2.44)

where p fulfills ∇(θdivp−v) = |∇(θdivp−v)|p. The solution is given in (2.45) with

p0 = 0 and the time step τ ≤ 1/8:

pk+1 =
pk + τ∇(divpk − v/θ)
1 + τ |∇(divpk − v/θ)|

(2.45)

2. Now, for fixed u, solve:

min
v

∑
d

1

2θ
(ud − vd)2 + λ|ρ(v)| (2.46)

The optimization problem of (2.46) can be reduced to an efficient point-wise thresh-

olding step.

v = u+


λθ∇I1 if ρ(u) < −λθ|∇I1|2

−λθ∇I1 if ρ(u) > λθ|∇I1|2

−ρ(u)∇I1/|∇I1|2 if |ρ(u)| ≤ λθ|∇I1|2
(2.47)

If the required step between u and v is sufficiently small, ρ(v) is allowed to vanish.

Since the data fidelity term φ(I0(x) − I1(x + u(x))) assumes constant brightness, it is

necessary to model intensity value changes. In [45], a structure-texture decomposition

approach [3] using the total variation based image denoising model from [32] is proposed

for this purpose. The authors made the observation, that the computation of optical

flow using the textural part of the image is not affected by shading reflection and shadow

artifacts. The structural part for an image I(x) is given as the solution of

min
Is

∫
Ω

{
|∇Is|+

1

2θ
(Is − I)2

}
dx (2.48)

The textural part is then IT (x) = I(x)− Is(x).
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3.1 Multi-View Matching

Multi-view scene reconstruction provides additional information assisting the correspon-

dence problem. By capturing a scene from different viewpoints, multi-view reconstruction

can overcome some of the shortcomings of traditional stereo. Two-View reconstruction

over wide baselines or large slant provides sufficient triangulation angles for better depth

accuracy, but is often not able to find correct correspondences because the visual appear-

ance of scene points can vary significantly with viewpoint [14, 28].

Firstly, multiple views contribute to scene completeness by increased scene coverage cap-

turing otherwise occluded regions. Moreover, multi-view reconstruction is able to improve

depth accuracy by increasing the triangulation angles.

Another important aspect is, that instead of merging a set of independently determined

binocular stereo depth maps, misregistration is less a problem here. Otherwise, combining

individual depth maps may lead to different coordinates of the same world point due to

errors in camera calibration [14, 49].

39
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Figure 3.1: Reconstruction from Aerial Images: Illustration of a city model
from the Jakomini dataset including the reconstructed camera posi-
tions.

In the following, we investigate and categorize multi-view stereo techniques that recon-

struct dense scene models from calibrated views [34]. Methods producing sparse recon-

structions from a set of feature points and structure-from-motion methods are left out in

this examination. This class of multi-view algorithms starts with extracting and matching

a sparse set of feature points and then fitting a surface to the reconstructed points.

There are significant differences between existing algorithms, but a first rough catego-

rization can be made when looking at attributes including the underlying scene represen-

tation, initialization requirements and the reconstruction algorithm itself.

A lot of multi-view stereo methods studied during the last couple of years focused on the

reconstruction of small objects under controlled conditions. Some of the top performing

methods are able to produce results near laser-based reconstructions, but are not suited

do adapt for large scale scenes.

Algorithms relying on visual hulls, that have proven to be useful for indoor scene re-

construction are among this category. The visual hull serves either as an initial guess for
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further optimization, as a soft or hard constraint to be fulfilled by the determined shape

[19]. As algorithms depending on visual hulls can not be applied on outdoor scenes, these

methods can be discarded for our purpose.

Typical representations of the geometry of an object include volumetric approaches due

to their simplicity and ability to approximate any surface, i.e. regularly sampled voxels

on a discrete 3D grid or as level sets encoding the distance to the closest surface [34].

One class of multi-view algorithms operating on a 3D grid perform by sweeping through

the volume, computing cost values and then extracting a surface from it [51]. The voxel

coloring algorithm is an example for this kind of technique. Most methods in this group

differ in the way of cost computation and surface extraction / optimization.

Polygon meshes consist of a set of connected, planar faces and are also commonly used,

as they allow efficient storage, output rendering and furthermore, they are suited for

visibility computation.

Methods working on polygon meshes or voxels, including space carving, volumetric

graph cuts and level sets often iteratively evolve a surface to minimize a cost function.

External and internal forces are applied to polygon meshes to evolve. Level sets try to

minimize a set of partial differential equations (PDEs) defined on a volume, similar to

space carving methods that shrink (or expand, if necessary) an initial volume [34].

Especially methods based on volumetric representations are less suited for large scale

scenes due to their computation and memory costs that raise quickly when the size of the

domain increases.

The most promising methods for large-scale multi-view stereo that have proven to be

more applicable to e.g. architectural outdoor scenes are image-space methods representing

geometry by a set of depth maps. Using multiple depth maps offers the advantage of

avoiding to resample the geometry on a 3D domain. Consistency between the set of depth

maps is either enforced through constraints to ensure a consistent 3D scene representation

or the depth maps are merged into a 3D model in a post process step.

While some algorithms follow one single representation, others use different represen-

tation for every step of the reconstruction process.
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Another property of multi-view algorithms is the way they measure photo-consistency

between views. We can divide between scene space and image space methods. The former

try to match a point, patch or voxel of the geometry with the input views by projecting

it onto the images.

The latter warp an image from one viewpoint to a predicted image using an estimate

of the scene geometry. The comparison between the measured image and the predicted

one yields a measure known as the prediction error.

In addition to photo-consistency measures, shape priors are used to induce constraints

to ensure that the results have desired characteristics, e.g. the amount of (local) smooth-

ness.

Detailed information and an evaluation of multi-view stereo reconstruction algorithms

can be found in Seiz et al. [34] and [19, 37].

3.2 Visibility and Occlusion Handling

Visibility of scene points can change dramatically with viewpoint (Figure 3.2). Some

points are visible to one camera but not to others due to the geometry of the scene

and camera positions from which the scene is observed. Any multi-view reconstruction

algorithm needs some kind of visibility model to handle occlusions in some way or another

to decide which views to consider when evaluating cost measures and correspondences.

Figure 3.2: Visibility of Scene Points: Visibility of scene points can change
dramatically with viewpoint. The facade visible on the right of the
marked building in (a) is barely visible in image (b) and totally oc-
cluded in view (c).
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Figure 3.3 illustrates two scenes with occlusions. The scene on the left shows a typical

occlusion observed in most scenes, less common arrow occlusions occurring at narrow

structures can be observed on the right. The depths of the points PO in both configurations

can not be recovered unless additional views are added in which the points are visible or

assumptions about the scene geometry are introduced.

Figure 3.3: Occlusions: Depth discontinuities cause object to appear and disap-
pear at different viewpoints. In each of the two scenes, two points PO

and PV are observed from two cameras C1 and C2. The points PV are
visible to both cameras and their depths may be reconstructed. The
points PO are called half-occluded because they are visible to only
one camera and not to the other, hence they may not be recovered
(adopted and modified from [8]).

One approach is to either detect and handle occlusions before or after matching. For

dense results, these regions are then interpolated from neighboring pixels in the results. On

the contrary, if handled afterwards by detecting discontinuities in the depth maps, median

filtering [8] or TV denoising [32] can be used to eliminate outliers caused by occluded

regions.

In more sophisticated solutions, occlusions can be handled either implicitly or explicitly.

The first technique avoids handling occlusions explicitly from geometric reasoning and

treats them rather as outliers. Supporting views are selected using simple outlier rejection.

This can be applied especially in cases where scene points are visible more often than they

are occluded [34].

Truncated sum: The final score for the current depth hypothesis d is formed by accu-

mulating all previously calculated matching costs between a reference image (i.e. the key

view) and all N neighboring views (Equation 3.1). High individual cost values Ci of an
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image point at location (x,y) above a threshold t are assumed as occluded. The matching

scores are truncated and then summed up to limit the contribution of those image pairs to

the accumulated total cost and instead favor good depth hypotheses supported by other

views.

C(x, y, d) =
1

N

N∑
i=1

min (Ci(x, y, d), t) (3.1)

Best half selection: Instead of using all cost scores, we split the set of images into two

halves with respect to the matching cost. Only the scores of the better half (best 50% of all

images available) contribute to the final aggregated cost for the current depth hypothesis.

If we assume that the images were captured in a sequence by a camera moving along

a continuous path, then objects occluded along the path in one direction may be visible

the reverse way. Half-occluded regions will appear either in the left (preceding) or right

half-sequence (succeeding frames) with respect to a key view [23] [51].

Quasi-geometric approaches use for minimizing the effect of occlusions only a rough

estimate of the shape (e.g. the visual hull) or just an approximation of the scene geom-

etry to limit the amount of computations by clustering neighboring cameras and discard

diverging views.

Explicit visibility modeling to determine which scene structures are visible in which

images is commonly used in approaches that evolve a surface. These methods are called

geometric techniques. They use a current estimate of scene geometry to predict visibility

of every point on the surface.

Simplifications can be made to the visibility computation by constraining the distribu-

tion of camera viewpoints. The occlusion ordering of points can be fixed for all cameras if

the scene lies outside the convex hull of the camera centers, which leads to more efficient

algorithms [34].

In global optimization frameworks, pixels with erroneous matches will still have some

disparity assigned. In spite that such pixels can be handled as outliers in a post processing

step due to the fact that they often correspond to a high matching error, it would make

sense to include visibility information into the global energy, that is being optimized [23].
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3.3 Initialization Requirements

All multi-view algorithms require more input information than just a set of images and

their associated camera calibration parameters. Some information about the geometric

dimensions of the reconstructed scene needs to be provided to eliminate trivial shapes.

There are manifold ways of how this information is given to the algorithm [34]. Some

algorithms are based on visual hulls that serve as an initial estimate for scene geometry.

This implies silhouette detection, e.g. through foreground-background segmentation for

each image.

Figure 3.4: Bounding Volume: A near and far plane parallel to the image
plane of the reference camera define a bounding volume.

For space carving methods and level sets, only a roughly estimated bounding box

or volume is necessary. Approaches based on image-space algorithms usually constrain

the maximum disparity range or interval, in which possible depth values can occur. The

extent of scene geometry is hereby determined to lie between a near and far plane from

the camera center of each view (Figure 3.4).

zNear and zFar can either be estimated from the sparse scene reconstruction

(Structure-from-Motion output) or explicitly set to some global value if prior knowledge

about the minimal/maximal scene depth is available (e.g. aerial mapping).

Optical flow stereo needs at least a reference point from which to start seeking for a

corresponding image point. The displacement is determined with respect to that reference

point. If, in addition, a rough depth estimate is available, the disparity range and hence

the number of pyramid levels in a coarse-to-fine framework can be reduced.





Chapter 4

Robust Multi-View Methods

Contents

4.1 Reconstruction Pipeline Overview . . . . . . . . . . . . . . . . . 47

4.2 Depth Estimation using Plane Sweep . . . . . . . . . . . . . . . 49

4.3 Dense Depth Maps from TV-L1 Stereo . . . . . . . . . . . . . . 58

4.1 Reconstruction Pipeline Overview

The presented robust multi-view reconstruction method consists of several steps. In the

following, will have an in-depth look at each of the core steps regarding dense matching

and reconstruction. First, we will discuss the plane sweep method, followed by a detailed

examination of the TV-L1 optical flow approach for robust multi-view reconstruction.

The implemented approaches are based on theory gathered in the preceding chapters. An

illustration of the whole reconstruction pipeline is shown in Figure 4.1.

Both methods take a set of images corrected for geometrical distortions and their cor-

responding internal and external camera calibration parameters, together with a sparse

reconstruction of extracted SIFT feature points from the Structure-from-Motion step and

camera calibration stage (Figure 4.2).

The number of shared sparse feature points determines the amount of overlap and

thus which views are considered as neighbors. Then, we compute a depth map for one

of the input images (i.e. the reference or key view) and its neighbors (the sensor images,

respectively). Every image serves as a reference view only once.

47



48 Chapter 4. Robust Multi-View Methods

Figure 4.1: The Reconstruction Pipeline: Both implemented dense matching
methods take a sequence of calibrated images and information about
the scene extent as input and output a depth map with respect to a
key view. The optical flow approach, in addition, may be initialized
with rough depth estimates from the sparse reconstruction.
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Figure 4.2: Point Cloud from Structure-from-Motion: The point cloud is
a reconstruction from 154 aerial images of the city of Graz.

4.2 Depth Estimation using Plane Sweep

4.2.1 The Plane Sweep Principle

Our first implemented method for multi-view matching is based on a plane sweep tech-

nique and enables a simple and elegant way for image based multi-view reconstruction.

It allows to reconstruct depth maps from arbitrary collections of images and an implicit

aggregation of multiple view’s matching costs. The plane sweep approach described here

is similar to that used in the high-performance multi-view reconstruction method from

Zach et al. [51].

In a plane sweep approach, 3D space is iteratively traversed by parallel planes Πd =

(n>, d) aligned with the key view and positioned at an arbitrary number of discrete depths.

The plane at a certain depth d from the reference view induces homographies for all

sensor views. The sensor views are then mapped onto this plane [11, 51]. The principle is

illustrated in Figure 4.3.

The plane sweep technique is based on the idea that if the plane at a certain depth

passes exactly through the object’s surface that we want to reconstruct, then, under

constant brightness conditions, the appearance of the image points (i.e. the color or

intensity values) in the key view should match with those of the projected sensor image
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Figure 4.3: The Plane Sweep Principle: The 3D space is iteratively traversed
by parallel planes. Different depths yield to varying homographies be-
tween reference and sensor views. When projecting the sensor image
onto these planes, the image is transform according to the epipolar
geometry (adopted and modified from [11]).

at the appropriate positions.

By sweeping through 3D space with a plane at varying depths parallel to the key view,

a cost volume can be filled with the combined similarity scores from all sensor images.

The number of depth steps in the volume is chosen with respect to a desired pixel

accuracy (e.g. sub-pixel accuracy is required) over the whole set of images. The vertices

of the bounding volume are backprojected into all views. The value of the depth step is

then based on the intersection covariance of the reconstructed vertices of the bounding

box. The intersection covariance (uncertainty ellipsoid) C(e) is analytically computed as

proposed in [5]. Using a singular value decomposition,

C(e) = U


σ2

1 0 0

0 σ2
2 0

0 0 σ2
3

V > (4.1)

σ1 . . . σ3 is determined and the depth step ∆d is adjusted according the length of the



4.2. Depth Estimation using Plane Sweep 51

semi-major axis of the uncertainty elipsoide ∆d = 2× σ1.

The best combined matching scores obtained through some local image correlation mea-

sure are assumed to correspond to certain depths which are then assigned to the pixels

of the key view. This means that the final depth for each pixel can be determined by a

simple winner-takes-all (WTA) strategy along the optical ray through that pixel in order

to achieve high performance and low memory requirements for depth estimation. On the

contrary, WTA depth extraction suffers from the lack of smoothness and unreliable results

in low texture regions.

If depth discontinuity or any other constraint is required, depth extraction from the cost

volume can be performed using global optimization methods to avoid unreliable values

with low image correlation scores. This allows for smoothness while preserving depth

discontinuities to obtain high quality depth maps. Here we rely on the convex formulation

of continuous multi-label problems proposed in Pock et al. [30].

Figure 4.4: Winner-Takes-All vs. Global Optimization: (a) Winner-takes-
all depth extraction versus global optimization with (b) λ = 100 and
(c) λ = 20. The threshold for SAD truncated sum cost accumulation
is t = 0.17.

The mapping of the sensor image into the current 3D key plane Πd at depth d is given

by a homography H(d). The appropriate homography can be computed directly from the

camera matrices and the value of d. The plane is defined by the depth d (i.e. the distance

from the camera center) and n> represents the vector in viewing direction (i.e. the plane

normal).
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Πd = (n>, d) (4.2)

We assume a canonical setup with the camera center of the key view located at the

coordinate frame origin. Then, the camera projection matrices of the key view P and the

sensor view P ′ yield to

P = K[I|0] and P ′ = K ′[R|t]. (4.3)

In Equation (4.3), K denotes the intrinsic parameters of the cameras. The relative

pose of the sensor view with respect to the key view is given by the rotation matrix R and

the translation vector t. Hence, the appropriate homography calculates to

H(d) = K ′
(
R− tn>

d

)
K. (4.4)

When warping the sensor image onto the plane, the image is transformed according to

the epipolar geometry:

x′ = Hx. (4.5)

Using geometrically corrected, undistorted images has the advantage, that these are

the equivalent images of ideal pinhole cameras [11].

Since the sensor images are transformed by the appropriate homography, there is no

need for a rectification procedure as required in many traditional stereo matching algo-

rithms. In case of a two frame setup with a rectified image pair, the plane sweep technique

is equivalent to traditional stereo methods for disparity estimation. The homography be-

tween the plane parallel to the key view and the sensor image is then reduced to a pure

translation along the X-axis between the views.

As the depth (and accordingly disparity) corresponds to a plane in 3D space, the cost

function can be described as a function of the homography H used to map the sensor

image onto that plane. Since the homography itself is a function of the depth d, we can

now write the initial unaggregated matching cost function as:

Ci(x, y, d) = fc(Ik(x, y), H(d)Ii(x, y)) (4.6)
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In Equation (4.6), Ik(x, y) is the intensity of the key image at position (x, y) and

H(d)Ii(x, y) represents the intensity of the warped sensor view. The function fc can be

any similarity or error score to measure the intensity or color difference between key view

and sensor image [23].

Any possible matching function can be used, but as we cannot expect constant bright-

ness, robust window based measures should be preferred over pure pixel intensity differ-

ences.

All steps in this high performance multi-view reconstruction algorithm are suited to be

performed on modern programmable graphics hardware, utilizing powerful computational

capabilities [51].

4.2.2 Cost Functions and Aggregation Schemes

After mapping the sensor image onto the plane of the current depth hypothesis via the

homography, we need to find corresponding points between key and warped sensor view

by means of an error measure [11].

Many reconstruction approaches running on GPUs measure similarity between the im-

ages using the sum of absolute differences (SAD), mainly for performance reasons [51].

Besides SAD and cross correlation (CC), our implementation provides a large set of dif-

ferent dissimilarity measures, most of them for both CPU and GPU.

The following listing presents a summary of cost functions and methods to reduce the

influence of radiometric differences. We provide a description and its main properties

for each technique and its advantages and disadvantages examined with respect to our

approach. Since we cannot presume constant brightness for long image sequences, the use

of either normalized cost functions or an optional prenormalization step is advised. We

implemented Bilateral filtering for background subtraction (BilSub), but other methods

for prenormalization like subtracting the box-filtered image or mean filtering respectively

are possible [51]. The investigation of the influence of different cost functions that are

insensitive to radiometric differences was mainly motivated by [20].

Absolute Difference: The absolute difference is available as a pixel-based as well as

its window based variant. Besides the original sum of absolute differences (SAD),
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two normalized variants ZSAD and ZNSAD are able to compensate for radiometric

differences up to a certain degree.

Squared Difference: The sum of squared differences (SSD) and two normalized varia-

tions compensating for gain and bias (ZSSD and ZNSSD) are very similar to the

absolute difference, but tend to be more sensitive to outliers due to the squaring.

Cross Correlation: In contrast to the predecessors, this commonly used cost function

is a similarity measure. It is available in its normalized (NCC) and zero-mean

normalized (ZNCC) versions. Statistically, cross correlation is the best measure to

deal with Gaussian noise, but it tends to blur discontinuities more than many other

matching costs, as outliers lead to high error scores. Face to Face with ZNSAD and

ZNSSD, it produces comparable results but its able to be calculated faster. Further

acceleration is possible when using sum tables for an efficient implementation.

Bilateral Background Subtraction: It is not a similarity measure but a filter. Bilat-

eral filtering for background subtraction (BilSub) [1, 20] effectively removes local

offsets in pixel brightness. It allows for smoothness without blurring high contrast

texture. Matching can be performed using the absolute difference or, as originally

proposed by calculating the distance in CIELab color space. Due to its moderate

effect on the results, it is not considered any further in our examination.

The Rank Transform: As all non-parametric measures have in common, Rank does not

match pixel intensities itself. The rank transform substitutes a pixels intensity with

its rank among its neighbors. While this measure is typically robust and insensitive

to illumination changes and tolerates a small number of outliers within its neighbor-

hood as long as the local ordering of the intensities is preserved, it is known to be

susceptible to noise. Due to the loss of ordering information during the transform,

the discriminatory power of this similarity measure is reduced, which leads to mis-

matches. Rank and its variant SoftRank are implemented as a filter. Matching is

then performed using the absolute difference.

The Census Transform: The census transform is an extension of the rank filter and

preserves the spatial ordering of the intensities in a bitstring. The similarity between

two bitstrings is computed by calculating the Hamming distance between them,

that is the number of bits that differ. Matching with census showed overall good

performance under changing illumination conditions.
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DAISY Descriptor: Instead of local correlation metrics, DAISY [39] is a local descrip-

tor, fast enough to be used for dense matching. The authors provide an implemen-

tation of the descriptor on their project website, which was integrated to be tested

for matching in the plane sweep approach. The descriptor provides reliable results

over wide baselines but it’s computation and matching of the long feature vectors

with the Euclidean distance is comparatively slow on the CPU.

SAD and ZNCC are still considered as the matter of choice over all other measures,

since they compute fast and enable decent results. Especially the normalized variants are

always a good option, when radiometric differences can be expected in the image data.

We focus cost computation based on luminance (intensity) rather than on color when

matching pixels. If color matching is needed anyhow, Cornelis et al. in [11] propose an

error measure based on the distance in RGB-space:

C = (rk − rs)2 + (gk − gs)2 + (bk − bs)2. (4.7)

Another option is to use the distance defined in an alternative color space, e.g. in

CIELab space for matching as proposed in [40] or extending intensity-based matching

scores to colors by computing costs for each channel individually and afterwards combining

them in a (weighted) sum over all channels [20].

The image correlation measures AD, SD, CC, Rank and Census take a parameter r to

set the radius of the support window. For performance reasons, all cost functions are

restricted to a fixed window size as usual in high performance dense matching. Adaptive

or shiftable windows are not considered in our implementation, nevertheless it would easily

be possible to integrate these approaches.

Anyway, to increase performance at depth discontinuities and object boundaries, the

multi-resolution cost aggregation scheme described in Chapter 2 is available for several

cost functions.

4.2.3 Accumulating Similarity Scores and Implicit Occlusion Handling

Now we have calculated the matching scores for all pixels at the current depth between

all projected sensor views and the key view, the costs need to be combined in one way
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or another to fill the cost volume and to account for occlusions. In real-time and high-

performance applications, occlusion handling is usually performed implicitly. The simple

blending method is sufficient, if no implicit occlusion handling is desired. Obviously, a

winner-takes-all approach that assigns the minimum error from all sensor costs and the

depth to the pixels of the current plane hypothesis is applicable.

Figure 4.5: Voxel Space Cost Accumulation: The cost values Ci(x, y, d) of
each pixel from all individual sensor views are combined to a total
cost score of the current plane hypothesis d (adopted and modified
from [11]).

A variant of the blending allows to account for occlusions with a thresholding step

before summation. The threshold t is an arbitrary value indicating the maximum cost for

classifying good matching cost from bad values. Values below the threshold are approved

as good matches, values above are considered as occluded.

This strategy referred to as the truncated sum limits the effect of occlusions on the

total error score to favor good depth hypothesis by other image pairs. This is the standard

method for occlusion handling in our plane sweep implementation.

If we assume a logical sequence of views with a total ordering in the set of images, then

we can perform a best half selection. The image set is split into two half-sequences with

respect to the matching cost. Since half-occluded regions may yield to high matching

costs, only the best 50% of the cost values are accumulated and contribute to the final

cost for the current depth hypothesis.
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These occlusion handling policies limit the impact of occlusions and enhance the quality

of the obtained depth maps [11, 51]. It is also possible to integrate a thresholding step into

the latter approach, which then yields a truncated best half cost accumulation scheme.

In the case, we have to deal with larger baselines between views, occlusions should be

handled explicitly. Another shortcoming presents the fact that we assume fronto-parallel

surfaces for the correlation windows, which also reduces the reliability of the obtained

results [51].

4.2.4 Depth Extraction

4.2.4.1 Winner-Takes-All

Now we have filled the cost volume with accumulated cost scores for all depth hypothesis,

we can extract the final values by selecting the depth where the accumulated cost has its

minimum along the optical ray. A simple winner-takes-all strategy is often employed in

high performance applications. The main advantage is that there is no need to store the

whole cost volume. Hence, the depth value of the current depth hypothesis is assigned

to the pixel, if the cost is lower than that of the previous depth hypothesis. WTA only

requires 2*n*m memory for a n×m image and can be computed in O(n*m*d) time, where

d is the number of discrete depth steps.

4.2.4.2 Robust Median Depth

Instead of accumulating the costs for every depth hypothesis from all views first, we can

select a best matching depth value for the pixels in each individual sensor view through a

winner-takes-all strategy along the optical ray.

Figure 4.6: Median Depth: The best overall depth for a key view pixel is se-
lected from the best matching depths in a robust manner by choosing
the median depth value from all five sensor views, d = 4 in this ex-
ample.
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Every sensor view now has depth values assigned, which are considered the best match-

ing depths for that specific view (Figure 4.6). Selecting the median depth value is a robust

way of determining the overall final depth for a specific pixel of the key view.

4.2.4.3 Global Optimization through Multi-Label Problem

The depth maps obtained using these methods described so far do have a substantial

amount of outliers since the local techniques do make errors. A global optimization ap-

proach can be applied to extract depth values from the cost volume, if depth discontinuity

or any other constraint on the depth maps is needed.

The global depth map optimization is formulated as a multi-label problem [30] and

solved via minimizing an energy functional incorporating total variation regularization.

The goal is to assign a label (i.e. a depth value) to every pixel to get a label configuration

that is minimal with respect to an energy function.

min
u

{∫
Ω
|∇u(x)|dx+

∫
Ω
ρ(u(x), x)dx

}
(4.8)

A disadvantage of this approach is its complexity and that it operates on a 3D domain

making it costly with respect to computation time and memory consumption. In spite of

an efficient implementation for GPUs to solve the multi-label problem, the limited memory

resources on graphics hardware poses the biggest drawback, since the whole cost volume

needs to be stored on the graphics card.

The depth precision depends on the angles between the views and on the extent of the

scene to be reconstructed. A certain number of depth hypotheses is required to guarantee

sub-pixel accuracy. The large memory requirements of a voxel based approach can be

handled through a partitioning approach, where the input images are split into smaller

tiles of a usual size of 256x256 or 512x512 pixels with a typical number of 128 to 256 depth

hypotheses.

4.3 Dense Depth Maps from TV-L1 Stereo

4.3.1 The Matching Approach

Here we present a 3D reconstruction approach from multiple images that is based on

optical flow to solve the correspondence problem. Optical flow seeks to estimate the

motion of pixels from one frame (the key view) to another (a sensor view). With the
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motion encoded as usual in a two-dimensional disparity field, we are able to directly

extract correspondences.

The TV-L1 stereo approach [29, 45, 50] is robust to brightness variations in the image

data and preserves depth discontinuities. The performance on the results at object borders

can be further increased by additional edge weighting, giving more weight to high contrast

areas within the image associated with depth edges. Furthermore, it can be implemented

very efficiently to exploit the huge computational power of modern graphics hardware.

Since we have to face a huge amount of data when matching high resolution aerial

images in our setup, we need an approach that is able to handle this task efficiently. The

TV-L1 stereo method fits perfectly for this purpose.

The use of the first order Taylor approximation of the nonlinear image intensity profile

in the data term implies an iterative warping approach, because the approximation is

only valid for small disparities. To allow for large displacements, the flow estimation is

embedded into a multi-level coarse-to-fine framework (Figure 4.7).

Disparity estimation then corresponds to searching for the shortest path through all

pyramid levels, instead of global optimization in a cost volume as this is the case in the

former approach.

Figure 4.7: Coarse-to-Fine Pyramid Levels: The level of detail increases
from coarse structures on low scales to finer details at higher pyramid
levels.
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A CPU implementation is established for all experiments. We utilize an image pyramid

with an adjustable number of levels, a factor determining the scaling between the pyramid

levels and a smoothing parameter to realize the coarse-to-fine approach. The fully featured

implementation of the scale space in our method is similar to [42] and based on [26].

4.3.2 Initialization

The two views for which a flow field needs to be obtained with standard optical flow

methods should not show large displacements or heavy rotations. This almost requires

that the images where captured in a close spatio-temporal sequence. The flow seeks for

a corresponding pixel location in the sensor view starting from the coordinates of the

reference pixel in the key view.

Because images in our datasets can show large displacements and partly rotations of

180 degrees between the views, standard optical flow algorithms will run into trouble since

they do not account for the relative orientation of the views and camera geometries during

disparity estimation. Epipolar geometry in fact restricts the direction of the correspon-

dence search, though we need a reference or anchor point on the epipolar line to estimate

the displacement with respect to that reference.

In order to be able to estimate disparities correctly, it is important to initialize with

an adequate reference depth. Initialization is indispensable for the algorithm to work.

Otherwise, no reference location is given in the image from where to start searching for

correspondences.

4.3.2.1 Small Depth Variance

We define a reference depth plane somewhere within the depth range of the scenes

minimum and maximum depth value. In a fronto-parallel setup (e.g. aerial images) with

comparatively compact dimensions of the scene in z-direction and evenly distributed depth

values, a reference plane parallel to the image plane of the key view seems to be sufficient.

Alternatively, the reference plane can be chosen for example as the least squares plane

with respect to the SfM sparse points that are visible in the key and sensor view.

A pixel from the key view then unprojects to a 3D point with the reference depth. This

3D point now backprojects to an image location in the sensor view to serve as a staring

point for flow estimation.



4.3. Dense Depth Maps from TV-L1 Stereo 61

4.3.2.2 Wide Depth Variance

In scenes presenting a wide depth range and hence images, where large displacements

can be observed, additional assistance with an initial depth estimate is necessary.

The initialization for the disparity field can be extended by a rough depth map ob-

tained by some other technique. The initial depth values are converted to a disparity map

anchored at the appropriate reference coordinates (Figure 4.8). The better the initializa-

tion, the less pyramid levels are necessary for the algorithm and the faster the method is

able to deliver satisfying results.

Figure 4.8: Flow Initialization and Epipolar Geometry: Initialization is a
crucial point of estimating the flow. We define a reference plane Πref

at a certain depth. Pixels x of the key view are unprojected to that
depth giving a 3D point Xref . This point is projected into the sensor
view to a location x′ref serving es the starting point for disparity
estimation. If the displacement is measured in 2D, then the flow is
represented by a vector d = (u, v)>. The epipolar constrained flow
reduces to a scalar value defining the length of the displacement along
the epipolar line, measured from the starting point. Additionally
available depth information Xinit can be used to assign an initial
disparity.
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We generate an initial depth map from the reconstructed sparse points by backprojecting

them onto fronto-parallel patches with a fixed radius into the key view. Even a rough depth

estimate to initialize at a very small pyramid level is able to improve the results (Figure

4.9 and 4.10).

Generating a polygon mesh from the sparse points is possible. A good way to roughly

estimate a point’s position is to assign depth values within low density regions using

radial basis functions (RBFs) based on the distance to known points in 3D. Newcombe

and Davison use this approach in their recent work on live dense reconstruction proposed

in [27].

Figure 4.9: Initialization from Sparse Points: (a) Key view image with
sparse points overlay for one image from the fountain-P11 dataset
from [37]. (b) The depth map for initialization is generated from the
reconstructed sparse feature points.

Figure 4.10: Influence of Initialization: Results for TV-L1 stereo matching be-
tween adjacent images of the fountain-P11 dataset (a) without initial-
ization and (b) with initial depths provided to the algorithm. Wrong
depth values at foreground pixels in (a) result from erroneous corre-
spondences estimation due to large displacements.
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4.3.3 Disparity Estimation with Epipolar Constrained Flow

We present a modified TV-L1 optical flow motivated by [35] and [44] and extend the

algorithm to integrate the epipolar constraint. For mostly stationary scenes with a moving

camera and known camera parameters, the displacement field cannot be arbitrary since

the epipolar constraint must hold. Hence, the correspondence search can be restricted to

one dimension. The flow then corresponds to the disparity along the epipolar line.

Figure 4.11: Epipolar Constrained Flow: (a) The image represents the key
view with exemplary pixels marked with a small circle. In order to
seek for correspondences, these pixels are unprojected to the reference
depth and then projected to the sensor view (b) to the positions
marked with a cross. The flow seeks for matches along the epipolar
lines and finds correspondences, marked again by a small circle.

Wedel et al. [44] add a fundamental matrix prior as an additional data term to the total

variation optical flow. A hard constrained approach as used in [35] satisfies the epipolar

constraint with a suitable decomposition of the displacement field.

Integrating the epipolar constraint into the linearization step in the TV-L1 optical flow

allows to reduce the dimensionality of the flow to one dimension. The computational effort

is then similar to a standard stereo case with a rectified image pair. Figure 4.8 shows the

principle of our approach.

The epipolar line in the sensor view for a key view pixel x is given with x 7→ l′:

l′ = Fx (4.9)
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The direction of the epipolar line given by the unit vector l′n together with a point on

the line (i.e. the initial reference point obtained from a reference depth plane) and a given

disparity u0 yields the location of the point correspondence x’:

x′ = xref + u0l
′
n (4.10)

We linearize image I1 near x’. The derivative of the image intensity with respect to

the x- and y-direction respectively in the Taylor approximation of the original 2D flow

(Equation (2.41)) now changes to the gradient along the epipolar line. With Ie1 denoting

the derivative with respect to the epipolar direction, the energy functional then reads

E =

∫
Ω

{
λ|uIe1 + I1(x′)− u0I

e
1 − I0|+ |∇u|

}
dx (4.11)

The energy is minimized as described in Section 2.2.2.2.

4.3.4 Correspondence Linking and Robust Reconstruction

Dense correspondence computation is performed between all pairs of images. A pair

always consists of the key view and one of its neighboring sensor views. What we get

is a set of correspondences (i.e. measurements) for each pixel of the key view, one from

every neighboring view in which the pixel is visible. We are then able to empower this

redundant information from multiple views to assist in the reconstruction problem.

Reliable correspondences can be expected for direct neighbors. The quality of the ob-

tained disparity maps decreases steadily with wider baselines and larger viewing angles due

to occlusion. The possibility of a false match increases with a wider baseline. Hence, only

measurements from adjacent neighbors provide sufficient confidence for the reconstruction

of the 3D position and its depth.

Small baselines on the other hand, introduce inaccuracies to the reconstruction due to

narrow triangulation. We suggest a method for correspondence linking between neighbor-

ing views to provide a large number of measurements from multiple views, motivated by

[28] and [14].

For every pixel in the key view, the maximum possible number of measurement is equal

to the number of sensor views in which the pixel is visible. A minimum of at least one

measurement is needed in order to be able to triangulate a 3D point. Ideally, we would
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like to have as much measurements as possible for more robustness. Robustness and depth

accuracy profit from additional measurements and wider triangulation angles.

Since the reliability of a measurement depends on the proximity between key and sensor

camera, we take a look at the baselines between the views. We made the observation

that our epipolar constrained TV-L1 stereo provides trustworthy correspondences only for

small baselines (i.e. in most cases only for the direct neighbors). The decision whether

the correspondence is suited for direct matching or not is based on the image overlap and

hence on the distance between the views. An example is given with Figure 4.12.

Figure 4.12: Correspondence Linking: The measurement of x′4 is not consid-
ered reliable due to the wide baseline B2,4. Robustness and depth
accuracy would profit from an additional measurement and a wider
triangulation angle. Because a correspondence x′3 in view 3 is known
together with a disparity estimation u3,4 between view 3 and view 4,
we can perform a lookup to add a linked measurement for x′4.

In Figure 4.12, a scene point X at key view location x2 is visible in all sensor views.

Pairwise disparity estimations u between the key view (view 2) and all sensor views yield

measurements x′1 = x2 + u2,1(x2), x′3 = x2 + u2,3(x2) and x′4 = x2 + u2,4(x2).

Due to the wide baseline B2,4 between key view and sensor view 4, the disparity es-

timation u2,4 is not considered reliable. However, robustness and depth accuracy would

profit from an additional measurement and a wider triangulation angle. Since a correspon-
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dence x′3 in view 3 is known and a disparity estimation u3,4 between view 3 and view 4 is

available, we can perform a lookup and are able to add a linked correspondence for view

4 over the linking view 3 through x′4 = x2 + u2,3(x2) + u3,4(x2 + u2,3(x2)) = x′3 + u3,4(x′3).

We start by sorting the sensor views according to their baseline to the key view in

ascending order and start traversing the list of views with the one that is the closest to the

reference view. At the beginning, we hold an empty list for the key view pixel xk to store

valid measurements from every sensor view. If the baseline is below a certain threshold and

a measurement (i.e. a disparity estimate) is available, we add the correspondence directly.

The threshold defines the maximum baseline allowed for direct correspondences. Its value

is chosen to favor adjacent views with good overlap for adding direct measurements.

In case that the baseline is above the threshold, we are trying to find a link, i.e. the

disparity estimate from the nearest sensor view to the current sensor that already had a

correspondence added to the list. This view is now referred to as the link or linking view.

If a disparity estimate ul,c between the linking view l and the current sensor view c is

available, we update its coordinates according to x′c = xk +uk,l(xk) +ul,c(xk +uk,l(xk)) =

x′l + ul,c(x
′
l) and add it to the list of measurements. The principle of our correspondence

linking approach is a lookup operation whereas it is not important for the method whether

an existing correspondence was obtained directly or through linking itself.

Correspondence Linking Algorithm:

1. Sort all sensor views according to their baseline to the key view k.

2. Traverse the list of views and examine the baseline of the current sensor view c.

(a) If the baseline is smaller than a threshold and a disparity estimate exists, then

add a direct measurement x′c.

(b) Otherwise, if the baseline is larger than the maximum baseline allowed for direct

linking:

i. Sort the sensor views with respect to the baseline of the current sensor.

ii. Choose the closest view that had already a measurement assigned (i.e. the

link) and for that a disparity estimate to the current sensor view exists.

iii. Load disparity estimates ul,c and update the measurement’s pixel coordi-

nates according to x′c = x′l + ul,c(x
′
l).
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Furthermore, we employ a robust triangulation strategy based on the RANdom SAmple

Consensus (RANSAC) [17] algorithm to provide robust depth estimates in the reconstruc-

tion. The objective of the RANSAC algorithm is to robustly fit a model to a set of data

points that contains outliers.

We iteratively select a random set of data points (i.e. the measurements) and generate

a depth hypothesis (i.e. the model). All data points are then tested against the current

hypothesis. Points supporting the current model are considered as inliers and contribute

to the consensus set.

Robust Triangulation Algorithm:

1. Select a random number of measurements (i.e. the data points). We randomly

pick a number of measurements between two and the maximum number of available

measurements to establish a depth hypothesis.

2. A 3D point as an initial depth hypothesis (i.e. the model) is obtained by triangulation

from the randomly selected measurements.

3. The set of measurements is tested whether it supports the current model (inliers)

based on the reprojection error of the triangulated 3D point. The current 3D point

is projected into all views to decide if the view’s measurement supports the model.

If the distance of the reprojected point to the initial measurement in that specific

view is larger than the reprojection error threshold, then the current measurement

depicts an outlier, an inlier otherwise. The subset of inliers from all views is the

current consensus set.

4. Repeat steps 1-3 until a reasonably large consensus set is found that supports the

model. In each iteration, the algorithm produces a model that is either being rejected

due to a too small number of inliers or kept if the consensus set is larger than that

of the last saved model. The final model with the most support, i.e. the largest

consensus set with the most inliers depicts the robust fit after a certain number of

iterations.

The results depend mainly on the choice of the maximum reprojection error, the number

of iterations and the minimum size of the consensus set. Currently, the maximum repro-

jection error used to classify inliers and outliers is a constant parameter, selected by the
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user. A better way for selecting a threshold value is to calculate the average reprojection

error from the sparse points to offer an appropriate measure.

We set the maximum reprojection error to 0.3 pixels in our experiments and defined a

number of three measurements as the minimum size for the consensus set. The number

of iterations depends on the size of the dataset. If we have a number of N measurements,

there exists a number of 2N possible combinations. A subset of 20-30% of all possible

configurations for N > 10 was usually sufficient in our experiments to obtain a robust

depth estimate. We tested all combinations for smaller datasets.

The size of the consensus set for each pixel is used as a confidence value and encoded

in a confidence map. The confidence map illustrates the number of correspondences that

were selected as reliable for triangulation. Examples are given in Figure 4.13 and 4.14.

This approach treats occlusions and false matches as outliers instead of detecting them

beforehand, since we do not handle occlusions explicitly.

Figure 4.13: Robust Triangulation and Confidence: (a) A detail from the key
view image from the Graz Jakomini aerial image sequence captured
with Microsoft VEXCEL UltraCam. (b) Robust triangulation from
linked correspondences shows crisp edges and reduced outliers. (c)
Non-robust triangulation shows blurred depth discontinuities due to
a missing outlier rejection scheme. (d) The confidence map shows
areas of increased uncertainty with low intensity values. The lighter
the areas in the confidence map, the more reliable correspondences
were found.
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Figure 4.14: The Fountain Dataset: Results and confidence maps for five im-
ages of the fountain-P11 dataset from Strecha et al. [37] obtained
from epipolar constrained TV-L1 stereo with correspondence linking
and robust triangulation.
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5.1 Evaluation Methodology

We evaluate the quality of the obtained depth maps of our TV-L1 stereo based multi-

view reconstruction method compared to the plane sweep approach. In the quantitative

evaluation, we provide error statistics for several images from the used datasets. Strecha

et al. [37] provides multi-view datasets and a geometrical ground truth from Lidar acqui-

sition, which allows us to compare our results on ground truth data.

We generated a set of reference depth maps (Figure 5.1) from the provided ground

truth models for the fountain-P11 and the Herz-Jesu-P8 dataset for the evaluation.

We compute several error statistics for all pixels that are available in the reference depth

maps from ground truth data. We focus on three quality measures in this evaluation [33].

1. The RMS (root mean square error) is measured in depth units between the ground

truth dr and the computed depth map dc over the total number of N available pixels.

E =

√√√√ 1

N

∑
(x,y)

|dr(x, y)− dc(x, y)|2 (5.1)
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Figure 5.1: Reference Depth Maps from Lidar Ground Truth: Reference
depth maps generated from the ground truth models acquired by
Lidar for one image of the fountain-P11 image sequence (left) and
Herz-Jesu-P8 (right) from Strecha et al. [37].

2. The percentage of good matching pixels

Pgood =
1

N

∑
(x,y)

(|dr(x, y)− dc(x, y)| < δd) (5.2)

or alternatively the percentage of bad matches, where δd is a depth error tolerance.

We define δd in percent with respect to the scene’s depth range. In our experiments

we define a good match to lie within +/−5% of the scene’s depth range around the

reference depth.

3. The completeness of the scene is the percentage of estimated depths with respect to

the total number of pixels available in the reference maps.
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5.2 Quantitative Evaluation

5.2.1 Cost Functions under Varying Illumination Conditions

The performance of the cost functions at different window sizes is tested on an image

sequence of ten images with radiometric differences. The images show a planar scene with

a poster. The depth map results of our dense multi-view plane sweep reconstruction are

matched with a reference plane which was retrieved by fitting a least squares plane to the

reconstructed corner points of the poster.

Figure 5.2: Plane Dataset: Top row: Three views out of ten from the plane
poster dataset. The images are taken under varying illumination
conditions. The middle image served as the reference view for the
evaluation in Figure 5.3. Bottom row: The middle image is the
reference depth map. The left image shows the winner-takes-all result
for ZNCC with window radius 1 with many outliers, right ZNCC with
radius 4 delivers a good reconstruction result for the plane but suffers
from boundary overreach.

In Figure 5.3, we show a comparison of several cost functions for different window

sizes from the plane sweep approach with winner-takes-all (WTA) depth extraction. The

images in the plane dataset show heavy radiometric differences, hence the results for

unnormalized cost functions (SAD and SSD) produce results that are inferior to their

zero-mean normalized variants. The non-parametric census transform and the local daisy

descriptor perform well for all window sizes. Throughout the best results can be obtained

by ZNCC, moreover, it is able to be computed as the fastest among all normalized cost

functions.
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Figure 5.3: Performance of Cost Functions: Performance evaluation for di-
verse cost functions and different window sizes on the plane dataset.
The images in the dataset show high radiometric differences.

5.2.2 Comparison between Local and Global Methods

Figure 5.4 provides a comparison of the results from plain local matching with either

a winner-takes-all (WTA) or median depth extraction strategy and results from global

optimization obtained from the plane sweep multi-label approach and the TV-L1 stereo

based method. We compare winner-takes-all and median depth cost extraction from ZNCC

matched images without global optimization to ZNCC and ZNSAD matched depths after

global optimization and the TV-L1 stereo method (flow).

Global methods clearly outperform plain local matching techniques. The influence

of the selected cost function is evident, nevertheless negligible after global optimization.

The results are more influenced by the parameter λ, which determines the degree of

smoothness in the global optimization. The same applies for the window radius, hence it

is set predominantly to r=1 in the experiments. The TV-L1 stereo based robust multi-view

reconstruction provides the overall best results on the tested dataset.
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Figure 5.4: RMS Errors: A comparison of plane sweep matching with and
without global optimization and epipolar constrained TV-L1 stereo
based multi-view reconstruction for one image of the Herz-Jesu-P8
sequence.

5.2.3 Influence of Wide Baselines on TV-L1 matching

The baseline is a crucial point for optical flow based matching. The quality of measure-

ments between pairs of views with large baseline decreases rapidly. We suggest to link

correspondences over wider baselines and robust triangulation to obtain reliable recon-

struction results. We illustrate the effect of wide baseline matching on the reconstruction

and present a set of depth maps in Figure 5.5. View number five serves as the key view

that is matched with all its ten neighbors.

The values for view number five in the diagram corresponds to the combined multi-view

depth map. Only the adjacent correspondences from view four and six were used directly.

Measurements from all other views were added view per view through correspondence

linking, described in Section 4.3.4.

We define the number of supporting measurements (inliers) used in robust triangulation

as the confidence value for a depth and encode it in the confidence map, shown for view

number five in Figure 5.6. The higher the number of outliers, i.e. in occluded areas and

image regions with insufficient overlap, the higher the uncertainty for the according pixel.
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Figure 5.5: Error per View and Baseline: The quality of the obtained pair-
wise depth maps from optical flow decreases with baseline. The dia-
gram shows for all pairs the RMS error and the number of selected
inliers used for robust triangulation. View number five serves as the
key view (cf. Figure 5.6). The depth maps (a) and (b) were obtained
with the direct neighbors of the key view. The images (c) and (d)
illustrate the poor results obtained with flow estimation between the
key view and the two outermost images over wide baselines.
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Figure 5.6: Confidence and Depth Map: The confidence map (a) shows the
number of selected inliers for robust triangulation of the depth map
(b). Image overlap of the input images results in a higher number
of available measurements, areas with occlusions and unreliable mea-
surements reduce the confidence.

5.2.4 Error Statistics for Plane Sweep and TV-L1 matching

Error statistics including RMS error and completeness of the obtained depth maps

are summarized in Table 5.1. We compare results from plane sweep with SAD, ZNSAD

and ZNCC matching and global optimization to epipolar constrained TV-L1 stereo based

reconstruction. Evaluation is done for one image of the fountain-P11 and Herz-Jesu-P8

sequence. We used a depth map obtained from a sparse reconstruction for initialization

for the flow method as it was described in Chapter 4.

flow plane sweep
SAD ZNSAD ZNCC

fountain-P11 RMS error 0.257 0.71454 0.540 0.421878

completeness [%] 93.055 94.7247 94.658 94.6586

Herz-Jesu-P8 RMS error 0.602 0.95931 0.927 0.736

completeness [%] 88.499 93.9321 93.932 93.932

Table 5.1: Error Statistics: All experiments and evaluations on the fountain-
P11 and Herz-Jesu-P8 datasets were performed on an image resolu-
tion of 645x430 pixels. The flow reconstruction method was initialized
with a depth estimate from the sparse points. Parameters for TV-
L1 matching: λ = 0.15, warps=5, iterations=100. Parameters for
plane sweep: λ = 100, t = 0.17 (SAD, ZNSAD) and λ = 20, t = 0.5
(ZNCC).
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Figure 5.7: Global Optimization Plane Sweep and Flow: Comparison be-
tween TV-L1 matching (a) and plane sweep with ZNSAD matching
after global optimization (b) for the Herz-Jesu-P8 dataset. Images
(c) and (d) illustrate the results for one image of the fountain-P11
dataset respectively.

5.3 Qualitative Comparison

Here we provide a few qualitative comparisons between the two presented approaches

on aerial images from the Jakomini sequence. Since no ground truth data is available,

our examination remains a visual inspection of the results. Figure 5.8 shows a compari-

son of TV-L1 stereo based matching and robust triangulation in contrast to the globally

optimized plane sweep depth map obtained with the SAD matching cost. The TV-L1

stereo shows crisper edges than the plane sweep approach but does contain holes (e.g. in

occluded regions) due to the outlier rejection during robust triangulation.

Figure 5.9 provides a 3D view of a single reconstructed depth map computed from two

adjacent views of the Middlebury Dino Sparse Ring dataset [34].
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Figure 5.8: Qualitative Comparison on Aerial Images: From top to bot-
tom: key view image; depth map from epipolar constrained TV-L1

optical flow and robust triangulation; Result from plane sweep with
SAD matching and global optimization; plane sweep winner-takes-all.
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Figure 5.9: Depth Map Visualization: One depth map from the Dino Sparse
Ring sequence reconstructed from two adjacent views.

Finally, we illustrate the results of our 3D reconstruction for the complete fountain-

P11 and Herz-Jesu-P8 sequence as colored point cloud models (Figure 5.10 and 5.11) in

addition to the quantitative evaluation above. The depth maps are unprojected to 3D

points into a common coordinate frame and colored according to their key view pixels.

Figure 5.10: 3D Point Cloud Reconstruction fountain-P11: 3D reconstruc-
tion as colored point clouds for the complete image sequence of the
fountain-P11 datasets. The picture demonstrates the camera setup
reconstructed from SfM.
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Figure 5.11: 3D Point Cloud Reconstruction Herz-Jesu-P8: 3D reconstruc-
tion as colored point clouds for the complete image sequence of the
Herz-Jesu-P8 datasets.
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6.1 Summary

3D reconstruction is an active field of research in computer vision. Several methods

from active stereo to laser measurements (Lidar) for recovering the shape of objects have

been studied over the last decades. While the former is able to determine 3D coordinates

in real time under controlled conditions, it is mainly suited for indoor environments. The

latter, though suited for outdoor scenes, demands complex methods and time consuming

methods for large scenes and causes high costs in particular when aerial acquisition is

required.

As an alternative, image-based reconstruction techniques allow portability, flexibility

and low-costs [31]. The availability of cheap digital cameras and massive computational

power of programmable graphics hardware additionally boost the development of algo-

rithms for generating 3D models.

While the geometric relations of multiple views, camera calibration and reconstruction of

sparse models through Structure-from-Motion [17] is well understood, dense reconstruction

yet poses a few challenges. The main difficulty is to determine reliable correspondences

83
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between the views for all image points that are visible in the neighboring images, since the

appearance of scene points may vary with viewpoint and changing illumination conditions.

Multiple views aid in the correspondence problem and contribute to scene completeness

of otherwise occluded areas.

Plane sweep is one method that allows reconstruction from arbitrary collections of views.

A local matching and cost aggregation step fills a cost volume from which the final depth

values can be extracted using global optimization techniques. All steps of this high-

performance reconstruction algorithm are suited to be performed on modern graphics

hardware. We investigated the influence of different matching cost functions on the results.

The disadvantages of the plane sweep method are its time and memory consuming

depth extraction step and the need for setting user-specified parameters. A new technique

based on total variation based optical flow is able to overcome these limitations. We

integrated the epipolar constraint into the TV-L1 optical flow [29, 50] to reduce the search

for correspondences to a one-dimensional problem.

A method for correspondence linking for wide baseline reconstruction is suggested.

RANSAC based robust triangulation is used to reject outliers due to occlusions in the

multi-view reconstruction step.

6.2 Discussion and Future Work

The experiments have proven that we are able to produce depth maps with similar and

in most cases even better quality with our TV-L1 stereo based multi-view reconstruction

approach in contrast to the plane sweep multi-label method.

The results are even better and computation time faster (i.e. due to a reduced number

of pyramid levels in the coarse-to-fine framework) if a good depth estimate is used for

initialization. Relating to that, the quality of the computed depth maps depends more on

the initialization than on the parameters for λ or the number of warping steps.

This approves that our design is able to facilitate the transition from a semi automatic

to a fully automatic reconstruction pipeline. The perspective is to put a set of images into

the pipeline and get a complete 3D model out, with no user guidance.
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Very good results can be obtained from optical flow matching between views with small

baselines. Wider baselines pose a severe problem for correspondence matching due to an

increasing amount of occluded areas. This necessitates additional techniques for acquiring

more measurements than those of the nearest neighboring views for better triangulation

angles and robust reconstruction with respect to outliers.

The suggested method for correspondence linking offers the possibility to add corre-

spondences from views with wider baseline to the actual key view. Since outliers are

detected at the end in the reconstruction process during triangulation, we are unable to

decide whether a direct correspondence is reliable enough for linking or not. If a bad

correspondence is used, the error propagates over all links and corrupts the correct depth

estimation at this pixel.

The only way of detecting bad measurements is during the triangulation and outlier

rejection stage. Obviously, a flaw of this method is the fact that the depth maps may then

contain holes.

Future work encompasses besides a fast GPU implementation an improved initializa-

tion scheme. A better way of initialization promises an improvement for the algorithm’s

performance.

Recent advances in 3D reconstruction algorithms yielded to live dense reconstruction

with a single moving camera, as proposed by Newcombe et al. [27]. The authors use

a rough surface fitted into sparse points from PTAM [24] and assign interpolated initial

depth values according to radial basis functions (RBFs).

Future work might include an occlusion handling policy, which is able to detect them

in an earlier stage of the reconstruction process rather than at the very end.

A possible extension of the optical flow method to account for different cost functions

in the data term would be of further interest. The influence of window-based measures

compared to the pixel-based intensity difference may be investigated.
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