
Masterarbeit

Spectrum-based Debugging by means of
Java Bytecode Manipulation

Sabine ZARL, BSc

————————————–

Institut für Softwaretechnologie
Technische Universität Graz

Vorstand: Univ.-Prof. Dipl.-Ing. Dr. techn. Wolfgang Slany

Betreuer/Begutachter: Univ.-Prof. Dipl.-Ing. Dr. techn. Franz Wotawa

Graz, im Dezember 2010

Spectrum-based Debugging by means of Java Bytecode Manipulation Master’s Thesis

Kurzfassung

Dieses Projekt kombiniert Spektrum-basiertes Debugging und Java Bytecode Ma-
nipulation. Spektrum-basiertes Debugging ist eine statistische Diagnosetechnik um
einen Fehler in Computerprogrammen zu lokalisieren. Java Bytecode Manipulation
wird dazu verwendet den Ausführungsablauf des zu testenden Programms zu ex-
trahieren. Es wurde ein Framework implementiert um das Projekt zu realisieren.
Es manipuliert class Dateien und führt die gegebenen Testfälle aus um Laufzeit-
Informationen zu sammeln. Diese Informationen, gemeinsam mit den Ergebnissen
der Testfälle werden dazu verwendet, die Befehle des zu testenden Programms an-
hand ihrer Fehlermöglichkeit zu reihen. Das Framework unterstützt verschiedene
Ähnlichkeitskoeffizienten um die Rangliste zu berechnen. Diese Arbeit stellt eine
empirische Evaluation des Frameworks bereit.

Sabine Zarl 1/80

Spectrum-based Debugging by means of Java Bytecode Manipulation Master’s Thesis

Abstract

This project combines spectrum-based debugging and Java bytecode manipulation.
Spectrum-based debugging is a statistical diagnosis technique to locate a fault in
computer programs. Java bytecode manipulation is used to extract the execution
trace of the program under test. A framework was implemented to realize the
project. It manipulates class files and executes the given test cases to collect
runtime information. This information in collaboration with the results of each test
case is used to rank the statements of the program under test according to their pos-
sibility of being faulty. The framework supports different similarity coefficients to
calculate the ranking. This paper provides an empirical evaluation of the framework.

Keywords: spectrum-based debugging, spectrum-based diagnosis, fault localiza-
tion, java bytecode manipulation

Sabine Zarl 2/80

Spectrum-based Debugging by means of Java Bytecode Manipulation Master’s Thesis

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other
than the declared sources / resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

.. ..
date (signature)

Sabine Zarl 3/80

Spectrum-based Debugging by means of Java Bytecode Manipulation Master’s Thesis

Acknowledgment

My family and my boyfriend deserve special gratitude. They supported me during
the whole studies. Without my parents the university studies have not been possible
for me.

I thank the members of the Institute for Software Technology of the Graz Uni-
versity of Technology, especially my advisor and assessor for the master’s thesis
Univ.-Prof. Dipl.-Ing. Dr. techn. Franz Wotawa.

December 2010 Sabine Zarl

Sabine Zarl 4/80

Contents Master’s Thesis

Contents

1. Introduction 7
1.1. Structure of the Document . 7

2. Related Work and Background Information 8
2.1. Failure, Error and Fault . 8
2.2. Spectrum-based Debugging . 9

2.2.1. Program Spectra . 9
2.2.2. Fault Localization . 10
2.2.3. Similarity Coefficients . 10
2.2.4. Example . 11
2.2.5. Other Application Areas . 15

2.3. Java Virtual Machine . 15
2.4. Java Bytecode Analysis . 18
2.5. Java Bytecode Manipulation Tools 19

2.5.1. BCEL . 19
2.5.2. ASM . 20
2.5.3. Javassist . 20

2.6. Summary . 21

3. Software Analysis and Design 22
3.1. Software Requirements . 22
3.2. Software Design . 22

3.2.1. Programming Language and Tools 22
3.2.2. UML Diagrams . 23

4. Implementation 25
4.1. Description of Classes and Methods 26

4.1.1. Framework . 26
4.1.2. Manipulation . 27
4.1.3. TestRunner . 27
4.1.4. ProgramSpectrum . 29
4.1.5. SpectraCollection . 29
4.1.6. Coefficient . 30

4.2. Used Libraries . 31
4.2.1. Javassist . 31
4.2.2. JUnit . 31

Sabine Zarl 5/80

Contents Master’s Thesis

4.3. Framework Output . 32
4.4. Summarization of the program flow 33

5. Empirical Evaluation 34
5.1. Test Environment . 34
5.2. Simple Test Program: Factorial . 34
5.3. TCAS . 40

5.3.1. Analysis . 40
5.3.2. tcas v01 . 42
5.3.3. Summarization of TCAS . 44

5.4. Initialization of Variables . 47
5.5. JTopas - Java tokenizer and parser tools 48
5.6. Summary . 54

6. Conclusion and Future Work 57
6.1. Spectrum-based Debugging . 57
6.2. Java Bytecode Manipulation . 57
6.3. Future Work . 58

A. TCAS 59
A.1. Diagrams . 59
A.2. Source . 71

A.2.1. Source Code . 71
A.2.2. Injected Faults . 72

B. Abbreviations 77

Bibliography 78

Sabine Zarl 6/80

1. Introduction Master’s Thesis

1. Introduction

Since the first computer system has been invented, the computer is getting better
and faster. Therewith, computer programs are getting greater, more complex and
thus more fault-prone. This is the reason, why fault localization techniques are
more important than ever today. The most promising fault localization approach
is spectrum-based debugging. It is simple and moreover effective. Contrary to the
model-based approach, it is a statistical, single-fault diagnosis technique, which uses
similarity coefficients to rank all program entities according to their possibility of
being faulty.

This project combines spectrum-based debugging and Java bytecode manipula-
tion. Java bytecode is manipulated to get the information of the program used by
the similarity coefficient at runtime to calculate the ranks. The most obvious advan-
tage of working on Java bytecode is that the source code is not needed. Despite of
that, the mapping of bytecode instruction and source line number is available. This
information is necessary to realize debugging, or in other words diagnosis. More im-
portant for this project is that the source code needs not to be parsed anymore. The
Java bytecode can easily be manipulated with the help of bytecode manipulation
tools.

The practical part of the project was to realize spectrum-based debugging with
Java bytecode manipulation. Therefore, a framework was implemented. It manipu-
lates class files and executes the given test cases to collect runtime information. The
execution trace and the results of each test case (failed or not) are used to rank the
statements of the program under test according to their possibility of being faulty.
The framework supports different similarity coefficients to calculate the ranking.
Finally, an empirical evaluation of the framework, including the coefficients, was
carried out.

1.1. Structure of the Document

The paper is indexed as follows. Section 2 refers to some related work and gives the
background information. It describes spectrum-based debugging and Java bytecode.
In Section 3 the analysis and the design of the software are provided. Section 4
explains how the software was implemented. The empirical evaluation is documented
in Section 5. Section 6 concludes the project and points to some possible future work.

Sabine Zarl 7/80

2. Related Work and Background Information Master’s Thesis

2. Related Work and Background
Information

This chapter deals with the existing work on spectrum-based debugging and Java
bytecode analysis. In Section 2.1 a few definitions are given. Section 2.2 introduces
spectrum-based debugging and describes what program spectra are. Section 2.3
explains what Java bytecode is and why it is needed. In Section 2.4 other projects
using Java bytecode analysis are referenced. Finally, Section 2.5 describes three
different Java bytecode manipulation tools.

2.1. Failure, Error and Fault

These items are defined in [7] as follows:

• Failure: event that occurs when the delivered service differs from the correct
one

• Error: deviation of a system state from the correct one

• Fault (Bug): cause of an error

Summarized in one sentence it could be said that a fault causes an error, which
leads to a failure. However, it should be noticed that not every error effects a failure.

In other words, a fault is the incorrect source code, the error is the wrong behavior
of the program and the failure is the exception which is thrown if the error is
identified.

In the following, an example is provided to illustrate these three different defini-
tions.

1 public int power(int a)

2 {

3 int res = (a+a); // FAULT! correct: (a*a)

4 return res;

5 }

Sabine Zarl 8/80

2. Related Work and Background Information Master’s Thesis

The error is that the program does not calculate the power of the given variable a,
but the sum. When the program is executed with test inputs, the expected output
and the correct output are compared. If they differ, a failure event is output. This
example also shows that an error is not always identified. If variable a is set to value
2, no failure occurs. However, if variable a is set to value 3, the error is detected.

2.2. Spectrum-based Debugging

Debugging is diagnosis applied to computer programs. Diagnosis, in general, is
fault localization. [2]

Spectrum-based debugging is a lightweight, statistical, single-fault approach. It
uses a program spectrum, an error vector and a similarity coefficient to locate a
fault in a computer program. [5, 4, 2, 3, 29, 1] This fault localization approach is
simple and effective and thus one of the most promising [30].

2.2.1. Program Spectra

A program spectrum, in general, is a collection of data, providing information about
dynamic behavior [5, 4]. In [17] a listing of different types of program spectra is
given.

This project uses a hit spectrum and stores in a matrix X whether a program
entity, in this case a statement, was executed during a test run or not. Therefore, one
dimension of the matrix represents the test cases and the other one the statements.
The value 1 indicates that the statement was invoked, when the particular test case
was executed. The value 0 represents that it was not invoked. Besides, an error
vector ~e is needed to store whether a test case failed (1) or not (0). [5, 4, 2] Figure
2.1 illustrates such a program spectrum.

test suite
statements tc1 . . . tcj . . . tck

s1 x11 . . . x1j . . . x1k

.
si xi1 . . . xij . . . xik

.
sn xn1 . . . xnj . . . xnk

error vector e1 . . . ej . . . ek

Figure 2.1.: A program spectrum with an error vector, where n is the number
of statements and k is the number of test cases. xij = {0, 1}, ej =
{0, 1}; i = 1 . . . n, j = 1 . . . k

Sabine Zarl 9/80

2. Related Work and Background Information Master’s Thesis

2.2.2. Fault Localization

To locate the fault, the statements have to be ranked in terms of their suspicious-
ness [18]. In conjunction with spectrum-based debugging, locating a fault means to
identify the statement whose run vector is most similar to the error vector. There-
fore, a similarity coefficient is used, which rank the program entities regarding their
possibility of being faulty. [5]

In [2] four counters to express such similarity coefficients are introduced i =
1 . . . n, j = 1 . . . k:

1. a11: xij = 1, ej = 1

2. a10: xij = 1, ej = 0

3. a01: xij = 0, ej = 1

4. a00: xij = 0, ej = 0

For example, a11 is the number of runs where statement i was executed and where
an error has been detected. This means, xij indicates whether a statement i was
executed in run j (1) or not (0). This information is taken from the matrix X. The
error vector ~e declares whether run j was faulty ej = 1 or not ej = 0. See also
Figure 2.1.

2.2.3. Similarity Coefficients

In the following, the most popular similarity coefficients are listed. Comparing these
coefficients, [2, 5] and [4] come to the conclusion that the Ochiai coefficient gives
the best results.

Ochiai Coefficient:
The Ochiai coefficient is taken from the molecular biology domain [2]. In [27] it is
used for genetic cluster analysis.

si = a11√
(a11+a01)∗(a11+a10)

Jaccard Coefficient:
The major application area of this coefficient is the field of data clustering [2]. It
is used in the Pinpoint framework [11]. The Pinpoint framework detects system
problems and isolates their root causes. It can be applied to almost any J2EE
application.

si = a11
a11+a01+a10

Tarantula Coefficient:
The Tarantula system [19, 18] is a fault analysis and visualization tool using two
different coefficients. The first one is used for computing the hue of a statement and
the other one is used for calculating the suspiciousness. The relevant coefficient for
this work is the one calculating the suspiciousness.

Sabine Zarl 10/80

2. Related Work and Background Information Master’s Thesis

si =
a11

a11+a01
a11

a11+a01
+

a10
a10+a00

AMPLE Coefficient:
This coeficient is used by the AMPLE (Analyzing Method Patterns to Locate Errors)
tool [2]. The idea of [15] is that some failures appear only through a sequence of
method calls. That’s why their tool collects sequences of method calls on a per-
object basis when instrumenting a given Java program. Thus, a sequence set for
each class is created. The aim of the tool is then to rank the classes according to
their possibility of being defective.

si =
∣∣∣ a11
a01+a11

− a10
a00+a10

∣∣∣
2.2.4. Example

This section provides an example, which should help to get the idea of spectrum-
based debugging.

Below a short multiplication method, which takes two integers and calculates their
product with performing addition, is written down.

1 public int mult(int a, int b)

2 {

3 if (a == 0 || b == 0)

4 return 0;

5

6 int res = a;

7

8 for (int i = 0; i < (b-1); i++)

9 res += b; //correct: res += a;

10

11 return res;

12 }

The multiplication method is executed with 8 different input data. The result is
compared to the expected output. Besides, the execution trace needs to be stored.
However, the information of how often a statement was executed is not necessary.
Table 2.1 shows the test cases, the expected output and the execution trace as well
as the real output of each test case.

The resulting program spectrum is illustrated in Table 2.2. The visited statements
for each test case are marked with the value 1 in the matrix. If the expected output
and the result of the multiplication method do not match, the error is marked in
the error vector with the value 1.

Sabine Zarl 11/80

2. Related Work and Background Information Master’s Thesis

input expected output execution trace output of mult()
mult(2,3) 6 1, 3, 6, 8, 9, 11 res = 8
mult(0,5) 0 1, 3, 4 res = 0
mult(1,1) 1 1, 3, 6, 8, 11 res = 1
mult(2,1) 2 1, 3, 6, 8, 11 res = 2
mult(1,2) 2 1, 3, 5, 8, 9, 11 res = 3
mult(2,0) 0 1, 3, 4 res = 0
mult(4,3) 12 1, 3, 6, 8, 9, 11 res = 10
mult(5,2) 10 1, 3, 6, 8, 9, 11 res = 7

Table 2.1.: The test suite with the expected output, the execution trace and the real
output of the multiplication method.

statements tc1 tc2 tc3 tc4 tc5 tc6 tc7 tc8
1 1 1 1 1 1 1 1 1
2 0 0 0 0 0 0 0 0
3 1 1 1 1 1 1 1 1
4 0 1 0 0 0 1 0 0
5 0 0 0 0 0 0 0 0
6 1 0 1 1 1 0 1 1
7 0 0 0 0 0 0 0 0
8 1 0 1 1 1 0 1 1
9 1 0 0 0 1 0 1 1
10 0 0 0 0 0 0 0 0
11 1 0 1 1 1 0 1 1
12 0 0 0 0 0 0 0 0

error vector 1 0 0 0 1 0 1 1

Table 2.2.: The program spectrum and the error vector of the multiplication
example.

Sabine Zarl 12/80

2. Related Work and Background Information Master’s Thesis

Statement Counters
1, 3 a00 = 0

a01 = 0
a10 = 4
a11 = 4

2, 5, 7, 10, 12 a00 = 4
a01 = 4
a10 = 0
a11 = 0

4 a00 = 2
a01 = 4
a10 = 2
a11 = 0

6, 8, 11 a00 = 2
a01 = 0
a10 = 2
a11 = 4

9 a00 = 4
a01 = 0
a10 = 0
a11 = 4

Table 2.3.: The counters for each statement.

Sabine Zarl 13/80

2. Related Work and Background Information Master’s Thesis

possibility
State- Jaccard Ochiai Tarantula

ment si = a11
a11+a01+a10

si = a11√
(a11+a01)∗(a11+a10)

si =
a11

a11+a01
a11

a11+a01
+

a10
a10+a00

1 4
4+0+4

= 0.5 4√
(4+0)∗(4+4)

= 0.7071
4

4+0
4

4+0
+ 4

4+0

= 0.5

2 0
0+4+0

= 0.0 0√
(0+4)∗(0+0)

= 0.0
0

0+4
0

0+4
+ 0

0+4

= 0.0

3 4
4+0+4

= 0.5 4√
(4+0)∗(4+4)

= 0.7071
4

4+0
4

4+0
+ 4

4+0

= 0.5

4 0
0+4+2

= 0.0 0√
(0+4)∗(0+2)

= 0.0
0

0+4
0

0+4
+ 2

2+2

= 0.0

5 0
0+4+0

= 0.0 0√
(0+4)∗(0+0)

= 0.0
0

0+4
0

0+4
+ 0

0+4

= 0.0

6 4
4+0+2

= 0.6667 4√
(4+0)∗(4+2)

= 0.8165
4

4+0
4

4+0
+ 2

2+2

= 0.6667

7 0
0+4+0

= 0.0 0√
(0+4)∗(0+0)

= 0.0
0

0+4
0

0+4
+ 0

0+4

= 0.0

8 4
4+0+2

= 0.6667 4√
(4+0)∗(4+2)

= 0.8165
4

4+0
4

4+0
+ 2

2+2

= 0.6667

9 4
4+0+0

= 1.0 4√
(4+0)∗(4+0)

= 1.0
4

4+0
4

4+0
+ 0

0+4

= 1.0

10 0
0+4+0

= 0.0 0√
(0+4)∗(0+0)

= 0.0
0

0+4
0

0+4
+ 0

0+4

= 0.0

11 4
4+0+2

= 0.6667 4√
(4+0)∗(4+2)

= 0.8165
4

4+0
4

4+0
+ 2

2+2

= 0.6667

12 0
0+4+0

= 0.0 0√
(0+4)∗(0+0)

= 0.0
0

0+4
0

0+4
+ 0

0+4

= 0.0

Table 2.4.: The ranks for all source lines calculated by three different similarity
coefficients.

The next step is to calculate the 4 counters for each statement. Table 2.3 shows
the counters for each statement.

The counter value of statement 9 attracts attention. The statement is visited
every time a failure occurred and never visited when no failure occurred. It can also
be seen that statements 1 and 3 are always visited and that statements 2, 5, 7, 10
and 12 are never visited.

The results of the similarity coefficients are listed in Table 2.4. The possibilities
of being faulty are calculated for each source line.

Every similarity coefficient diagnoses that statement 9 has the highest similarity
to the error vector. In this easy example, there is even a similarity of 100 %.

Sabine Zarl 14/80

2. Related Work and Background Information Master’s Thesis

2.2.5. Other Application Areas

Spectrum-based fault localization is, as described above, a statistical, single-fault
approach. In [3] a spectrum-based multiple-fault approach is presented. Therefore,
spectrum-based fault localization (SFL) is combined with model-based diagnosis
(MBD). MBD considers multiple faults, but it is more complex than SFL and cannot
be applied to large programs. They try to unify the best of both to enable multiple
fault localization on large, real-world programs.

The project of [1] also combines the spectrum-based and the model-based ap-
proach. They use the model-based approach to refine the spectrum-based ranking.
The program’s semantics is examined to filter out the components that do not ex-
plain the observed failures.

Spectrum-based fault localization can also be used for test case grouping, like
[29] describes. The test cases are generated with the model-based approach. These
test cases are grouped by means of spectrum-based fault localization applied to the
specification. Consequently, test cases are in the same group, which most likely
detect the same failure. This grouping enables that not all failed test cases need to
be analyzed, but only one per group. Thus, the post analysis time is reduced.

The technical report [30] deals with spectrum-based fault localization without
test oracles. This means, it deals with programs of which the correctness of the
output is unable or too expensive to be verified. To minimize this oracle problem
metamorphic slices are used. Such metamorphic slices are related to a property of
the algorithm being implemented, a metamorphic relation. With multiple inputs
and the output of the algorithm it can be verified if these relations are satisfied.
The violation or non-violation of a metamorphic relation can then be treated as
alternative to the test result failed or passed in spectrum-based fault localization.

2.3. Java Virtual Machine

The Java Virtual Machine (JVM) executes a Java program. The specification of the
JVM can be found at [21]. The Java Platform was designed to meet some network
requirements [23]:

1. compiled code had to survive transport across networks

2. compiled code had to operate on any client

3. assure the client that the program was safe to run

The Java Virtual Machine [23] is the most important component of a Java Plat-
form. It affords hardware- and operating system-independency, the small size of
compiled code and protects users from malicious programs. It is an abstract com-
puting machine, which has its own instruction set like a real computing machine.

A Java Virtual Machine knows a particular binary format, the class file format.
Such class files contain Java Virtual Machine Bytecode instructions and some

Sabine Zarl 15/80

2. Related Work and Background Information Master’s Thesis

additional information. One class file defines one class or interface. [25] To ensure
security, there are strong format and structural constraints on the class file code
[23].

A class file consists of the following elements [24]:

magic: number to identify the class file format with the value: 0xCAFEBABE

minor version: minor version number of the class file

major version: major version number of the class file

constant pool count: the number of entries in the constant pool table plus one

constant pool: a table of constants, indexed from 1 to constant pool count-1

access flags: used to denote access permissions to and properties of this class or
interface (public, final, super, interface, abstract)

this class: the value represents the index of a CONSTANT Class info in the con-
stant pool; this CONSTANT Class info structure represents the class or in-
terface defined by this class file

super class: the value is zero (for the Object class) or the index of a CON-
STANT Class info in the constant pool; this CONSTANT Class info repre-
sents the direct superclass of the class defined by this class file

interfaces count: the number of direct superinterfaces of this class or interface
type

interfaces: an array, indexed from 0 to interfaces count-1, of values represent-
ing the indexes of CONSTANT Class info items in the constant pool; these
CONSTANT Class info structures represent interfaces that are direct super-
interfaces of this class or interface type

fields count: the number of field info structures in the fields table

fields: an array of field info structures; it does not include fields that are inherited
from superclasses or superinterfaces

methods count: the number of method info structures in the methods table

methods: an array of method info structures; it does not include methods that
are inherited from superclasses or superinterfaces

attributes count: the number of attributes in the attributes table of this class

attributes: an array of attribute structures; certain attributes are prede-
fined, one of them is LineNumberTable

Sabine Zarl 16/80

2. Related Work and Background Information Master’s Thesis

The LineNumberTable [24] is an optional attribute, which supplies important
information for debuggers. It provides a mapping between JVM instructions and
the line numbers in the original source file. The LineNumberTable attributes may
appear in any order and need not be one-to-one with source lines. This means,
multiple LineNumberTable attributes may represent one source line number.

Hint: Compiling *.java files with javac -g generates
all debugging information.

Since a Java Virtual Machine need not to know and does not know anything about
the programming language, any language can be hosted by it. The only requirement
is that the functionality of the language can be embodied in a valid class file. [23]

Figure 2.2 shows that source code is compiled to Java bytecode, which can be
executed by a JVM. Figure 2.3 illustrates that Java bytecode can be executed on
any computer platform for which a JVM is implemented.

Figure 2.2.: A compiler transforms source code into Java bytecode. The JVM exe-
cutes Java bytecode. This and more examples of compiling Java source
code for the JVM are provided by [22].

As we can see in Figure 2.2 the JVM is stack-oriented. Many operations take
operands from the operand stack of the current frame and/or push a result. Each

Sabine Zarl 17/80

2. Related Work and Background Information Master’s Thesis

Figure 2.3.: A Java class file can be executed on any computer platform for which
a JVM is implemented.

time a method is invoked, a new frame is created with a new operand stack and a
set of local variables. The “i” in front of many opcodes stands for the type of the
values, thus int. dconst 0, e.g., would push a double constant 0.0 The number in
front of the opcodes is the index of the opcode in the byte-array of the JVM code
of the method. [22]

2.4. Java Bytecode Analysis

The project of [20] deals with bytecode-based program analysis. This approach
builds a front-end that processes bytecode to gather data, such as control flow
graph, symbol table and def-use data. The back-end could then compute analytic
information. The reason of processing bytecode is that that way a program analysis
tool can be built more cheaply. The problems of performing syntax analysis and
symbol table construction are delegated to existing tools, such as compilers.

In the paper [6] cost analysis of Java bytecode is established. They use bytecode,
because sometimes there is no access to the source code and despite that one wants
to have the cost information. The generated cost relations define at compile-time
the cost of a program as a function of its input data size.

A debugging approach of Java bytecode programs is presented in [28]. They
compute dynamic slices without needing access to source code. That’s why programs
written in any source language and compiled into Java bytecode could be diagnosed.
Therefore, they implemented an instrumented JVM to produce the execution trace
of a program. Additionally, their toolbox contains a slicer that reads the execution
trace to compute the dynamic slices. Of course, source code line number information
is needed to express a slice, but this information is present in compiled code.

Sabine Zarl 18/80

2. Related Work and Background Information Master’s Thesis

2.5. Java Bytecode Manipulation Tools

The following sections describe tools, which allow manipulating Java bytecode, or
in other words, manipulating Java class files. Of course, there are many different
tools, but I decided to survey three of them: BCEL, ASM and Javassist, all three
with satisfactory documentation.

2.5.1. BCEL

BCEL [16] (Bytecode Engineering Library) provides on a high level of abstraction
static analysis and dynamic creation or transformation of Java class files.

The BCEL API consists of three parts [16]:

1. A package that reflects the class file format. It is not intended for bytecode
manipulation. It is used to read and write class files. The main data structure
is JavaClass. See Figure 2.4.

2. A package that enables to dynamically create and modify JavaClass or Method
objects.

3. Utilities, such as code examples, class file viewer and converter (class file →
HTML or class file → Jasmin assembly language)

Figure 2.4.: UML diagram for the BCEL API [16].

BCEL supports the Visitor design pattern. The API is available under the terms
of the Apache Software License.

Sabine Zarl 19/80

2. Related Work and Background Information Master’s Thesis

2.5.2. ASM

The name ASM [9] is a reference to the asm keyword in C. ASM is designed
to generate and transform Java classes at runtime, but also offline. This library
provides two APIs:

• core API: event based representation

• tree API: object based representation

event based model: A class is represented with a sequence of events and each event
represents an element of the class.

object based model: A class is represented with a tree of objects and each object
represents a part of the class and has references to its constituents.

Of course, both of them have advantages, as well as disadvantages. The event
based API is faster and requires less memory. However, there is only one element
available at any given time. With the object based API the whole class is available
in memory.

However, both APIs maintain no information about the class hierarchy. They can
only manage one class at a time.

ASM [10] uses the Visitor design pattern without explicitly representing the visited
tree with objects. This approach helps to achieve the goal of being as small and
as fast as possible. The size and the runtime performance are compared to that of
BCEL and SERP (similar to BCEL). The result was that ASM is much smaller and
faster than these tools.

2.5.3. Javassist

Javassist [12, 14] (Java programming assistant) is a class library for editing Java
Bytecode at compile time or load time. Besides, new classes can be defined at
runtime. The difference to most other tools is the source-level abstraction Javassist
provides. This enables programmers to manipulate Java bytecode without detailed
knowledge of bytecode instructions and the structure of a class file. Javassist
instead takes source text and compiles it into bytecode before inserting it into a
class file.

The three main application areas of Javassist are [12]:

Aspect Oriented Programming (AOP): Javassist allows to introduce new meth-
ods into a class and to insert before/after/around advices at the caller as well
as at the callee sides.

Runtime Reflection: Javassist enables to use a metaobject to control method calls
on base-level objects.

Sabine Zarl 20/80

2. Related Work and Background Information Master’s Thesis

Remote method invocation: Javassist can be used to call a method on a remote
object running on a web server. However, no stub compiler (such as rmic) is
needed, because the stub code is dynamically produced by Javassist.

2.6. Summary

Spectrum-based debugging is an often used approach, also because of its simplic-
ity and effectiveness. It is a statistical approach, which uses similarity coefficients
to rank program entities according to their possibility of being faulty. To realize
spectrum-based debugging of Java bytecode programs, the information about the
source line numbers of the statements is necessary. This is also available in the
debugging information of a class file. The bytecode of the class file can be ma-
nipulated to gain the execution trace of a program. There are a lot of libraries to
manipulate Java bytecode. Each Java bytecode manipulation tool has its advan-
tages and disadvantages. The one used in this project is Javassist. It is easy to use,
because of the source-level abstraction it provides. The next sections describe how
spectrum-based debugging and Java bytecode manipulation are combined to a new
approach.

Sabine Zarl 21/80

3. Software Analysis and Design Master’s Thesis

3. Software Analysis and Design

This chapter deals with the analysis and the design of the software to implement.
Section 3.1 covers the software requirements and Section 3.2 the software design.

3.1. Software Requirements

This section lists the defined requirements of the software to be implemented.

1. The framework should search the fault of a given program under test by using
spectrum-based debugging.

2. Therefore, it manipulates a given class file of the program under test to
extract runtime information.

3. To perform spectrum-based debugging a test suite is needed. The framework
should take JUnit-tests, which test the program under test.

4. The aim of the framework is to output the possibility of being faulty of each
program entity of the manipulated class file.

3.2. Software Design

This section describes the software design. It explains the selection of the pro-
gramming language and the manipulation tool. Additionally, UML diagrams are
provided.

3.2.1. Programming Language and Tools

The programming language Java was chosen. It is an object oriented programming
language and thus the software written in Java is easily expandable and changeable.
This ensures to enhance the life-cycle of the software. Besides, JUnit tests should
be run and therefore, Java is necessary. Another motive for using Java is that Java
bytecode should be manipulated. There are a lot of bytecode manipulation libraries
written in Java, which can be integrated into Java programs.

The chosen Java bytecode manipulation tool is Javassist. It is easy to use, because
of the source-level abstraction it provides. This means, Javassist takes source text
and compiles it before inserting it into the class file. The advantage is that the

Sabine Zarl 22/80

3. Software Analysis and Design Master’s Thesis

programmer needs not to know bytecode instructions and the structure of the class
file. Therefore, Java bytecode manipulation is less fault-prone.

3.2.2. UML Diagrams

The following UML diagrams illustrate the structure and the functionality of the
software to implement. Figure 3.1 shows the class diagram. To ensure expandability

Figure 3.1.: class diagram

there are two interfaces: TestRunner and Coefficient. Primarily JUnitTestRun-

ner implements TestRunner to be able to execute JUnit tests. The coefficients,
which will be implemented, are the OchiaiCoefficient, JaccardCoefficient and
the TarantulaCoefficient.

The sequence of the program to implement is presented in Figure 3.2. At first,
the *.class files have to be manipulated. Then, the JUnit tests are run to get the
execution trace. The JUnitTestListener has to be added to react to the events
of the running JUnit tests (start, finish and fail). The created logfile needs to be
parsed. For each *.class file a ProgramSpectrum object is created and added to
the SpectraCollection. When a statement should be marked in the matrix as

Sabine Zarl 23/80

3. Software Analysis and Design Master’s Thesis

Figure 3.2.: sequence diagram

visited or not, the appropriate ProgramSpectrum object is get and a 0 or 1 is in-
serted into the matrix at the adequate position. If a failure occurred during a test
run, the error will be set in the error vector. The complete SpectraCollection is
then returned to the Framework. The Framework calls for each ProgramSpectrum

object in the SpectraCollection the method getCounters() of the SpectraCol-

lection. Finally, the possibility of being faulty is calculated for each statement
of the represented class with the help of a similarity coefficient. In this case the
OchiaiCoefficient is used.

Sabine Zarl 24/80

4. Implementation Master’s Thesis

4. Implementation

This chapter explains how the framework was implemented. Section 4.1 describes
each single class with its methods. The used libraries are listed in Section 4.2.
Section 4.3 shows the output of the framework and the continue processing. Finally,
Section 4.4 summarizes the program flow.

It has been decided to insert standard output messages into the given Java byte-
code with the help of Javassist. Later, when this program is executed, the standard
output messages are diverted to a file. This approach enables to execute only parts
of the program. There is no need to take care of any logging object (Has it been
created? Has it been initialized? Is it known by the invoked program entity? . . .).
Tests which only invoke a method can thus be executed without any problem.

The framework takes the following parameters:

description obligatory?
-cp 〈 classpath 〉 - (1)
-c 〈 class file to manipulate 〉

√

〈 name of the methods to manipulate 〉 - (2)
-l 〈 level [m | s] 〉 - (3)
-lf 〈 logfile name 〉

√
(4)

-jp 〈 path to JUnit test(s) 〉 - (5)
-j 〈 JUnit class 〉

√
(6)

-sc 〈 similarity coefficient 〉 - (7)

Table 4.1.: The parameters taken by the framework.

(1) -cp indicates a pathlist separated with semicolons (in Windows) or colons (in
Linux). It is not obligatory, or to be more precise, the path has to be specified if
the class file cannot be found in the working directory.
(2) -c declares the name of a class file including packages, which has to be manip-
ulated. This information is obligatory. Additionally, one can limit the methods to
manipulate. The only thing to keep in mind is that if there are more methods with
the same name, but different parameters, only one of these methods is manipulated.
However, it cannot be guaranteed which one. It is possible to declare more than one
class file to manipulate, each of them introduced with -c.
(3) -l allows setting the level, considered by the program. It can either be set to

Sabine Zarl 25/80

4. Implementation Master’s Thesis

method-level (m) or to statement-level (s). By default the statement-level is consid-
ered.
(4) Since the program writes the runtime-behavior of the program under test into
a file, a logfile-name is needed. It is expected that the parameter -lf specifies it.
(5) -jp enables to declare the path to the JUnit test(s). Similarly to the classpath
parameter, the path has to be specified if the JUnit test classes cannot be found in
the working directory.
(6) -j declares the name of a JUnit class file including packages. This information
is also obligatory. It is possible to declare more than one JUnit class file, each of
them introduced with -j.
(7) -sc specifies the similarity coefficient. The supported values are: ochiai, jac-
card or tarantula. By default the Ochiai coefficient is set.
In the following a few examples of calling the framework are listed.

-cp C:\java\testprogram; -c source.Framework -lf C:\java\testprogram\

output\result.log -jp C:\java\testprogram -j junit.FrameworkTest -sc

ochiai

-c test_src.Test -c test_src.Test2 doTest -lf log.txt -j

junit.FirstTest -sc jaccard

-c src.Class1 -c src.Class2 method1 method2 -lf output.log -j

src.junit.Test1 -j src.junit.Test2

-c Class -l m -lf output\log.txt -jp C:\junitTests -j junitTest

-sc tarantula

4.1. Description of Classes and Methods

The following section lists the implemented classes and their methods. Each method
is described in detail.

4.1.1. Framework

Framework is the main class. It controls the sequence of the program. First of
all, the committed arguments are parsed and saved. These arguments have to be
delivered from the user when executing the program. The arguments are described
in detail in Table 4.1.

The next step is to manipulate the class files. Framework expects the number
of lines to be returned from Manipulation class. The number of lines is then
given to a TestRunner. It runs the tests and writes the execution trace into a file.
Additionally, the JUnitTestRunner calls the JUnitFileParser, which parses the
file and creates a SpectraCollection. This SpectraCollection object is returned

Sabine Zarl 26/80

4. Implementation Master’s Thesis

to Framework. The Framework gets the counters of each ProgramSpectrum object
from the SpectraCollection. The counters of one statement are given to the
Coefficient, which returns the possibility of the considered statement. Finally,
the possibility of being faulty of each statement for each manipulated class file is
displayed on the console.

4.1.2. Manipulation

Java Bytecode Manipulation is carried out with the help of the Javassist library.
See also Section 4.2.1. Standard output messages are inserted to collect runtime
information when executing the tests later.

protected HashMap<String, Integer> manipulate(): is called from the Frame-
work. For each class to manipulate either manipulateMethods() or manipu-

lateAllMethods() is called, depending on whether specific methods are given
as arguments. It returns a mapping of class name and the number of source
lines of the class or the number of methods to manipulate, depending on
whether the statement level or method level is considered. This information
is used to define the size of the program spectra.

private void manipulateMethods(CtClass c, ArrayList<String> L): assem-
bles strings with class name and method name for all methods given in L. It
calls insertInformation() for each method to manipulate. If the method
level is considered, the number of methods to manipulate is saved.

private void manipulateAllMethods(CtClass ctclass): assembles
strings with class name and method name for all methods of the ctclass

object. It calls insertInformation() for each method to manipulate. If the
method level is considered, the number of methods to manipulate is saved.

private void insertInformation(String info, CtBehavior behav): If only
method level is considered, the string is inserted as standard output message
at the beginning of the method. On the other hand, if the statement-level is
considered, the string extended with the line number is added to each state-
ment as standard output message. A line, which only contains a bracket is
not considered as statement by Javassist and thus not manipulated. Besides,
the maximal source line number is detected while manipulating the *.class

file, if the statement level is considered.

4.1.3. TestRunner

The TestRunner interface is implemented by JUnitTestRunner. Additionally, the
implementation of TcasTestRunner was introduced to use a test program for which
no JUnit tests exist. The following methods have to be implemented by any imple-
mentation of the TestRunner interface:

Sabine Zarl 27/80

4. Implementation Master’s Thesis

SpectraCollection runTests(HashMap<String, Integer> lineNumbers) :
should run the saved tests and return a SpectraCollection object. The
given mapping of class name and the number of source lines of the class or
the number of methods to manipulate is used to define the size of program
spectra.

void setPath(String path): saves the given path to the test classes.

void addClass(String className): adds a test class to run.

void setFilename(String filename): saves the log file name.

JUnitTestListener:

JUnitTestListener extends org.junit.runner.notification.RunListener.
The methods are called while a JUnit test class is executed. The implemented
methods of JUnitTestListener are listed below. They allow noticing when atomic
tests start, fail and finish. All of them write standard output messages, which are
diverted into the logfile.

public void testStarted(Description description): writes “START:“ and
method name if an atomic test case is started.

public void testFailure(Failure failure): writes “FAILURE OCCURED!”
and the failure description if an atomic test case failed.

public void testFinished(Description description): writes “FINISHED!”
if an atomic test case finished.

JUnitFileParser:

The JUnitFileParser is responsible for reading out the information of the logfile
and saving it in a SpectraCollection object. The method

public SpectraCollection parseFile(String file, Result[] result,

HashMap<String, Integer> lineNumbers):

takes the logfile name, the results of the JUnit tests and a mapping of class name and
the number of source lines in the class. From the size of the results one can conclude
the number of test cases to create a SpectraCollection object. For each class a
ProgramSpectrum object is created, which is added to the collection. The class name
and the number of source lines are taken from the map. As described above, each test
case is initiated with “START:“, followed by all statements or methods visited when
the test case was executed. Each visited statement has to be marked in the matrix of
the ProgramSpectrum object. Therefore collection.get(className).insert(1,

visitedStatement, testCase) is called. If “FAILURE OCCURED!” indicates a
failure, the error vector has to be updated with collection.setError(1, test-

Case).

Sabine Zarl 28/80

4. Implementation Master’s Thesis

4.1.4. ProgramSpectrum

One ProgramSpectrum object saves the runtime information of one class file in a
matrix. The constructor expects the class name and furthermore the number of
statements and the number of test cases to determine the size of the matrix. Each
matrix value is initialized with 0.

protected void insert(int val, int statement, int testcase): is used to
insert a binary digit (0,1) into the matrix. The value 0 represents that the
given statement was not performed when executing the given test case. On
the contrary, the value 1 represents that the given statement was performed.

protected int[] getCounters(int[] errorVector, int statement): returns
the counters of a statement as int array. The returned array is composed as
follows:
count[0] = a00 increases when statement was not executed and test case was
not erroneous
count[1] = a01 increases when statement was not executed and test case was
erroneous
count[2] = a10 increases when statement was executed and test case was not
erroneous
count[3] = a11 increases when statement was executed and test case was erro-
neous

Additionally, it provides some methods to get information about the spectrum,
also outside the object:

public String getClassName(): returns the class name of the class file repre-
sented by the ProgramSpectrum object.

public int getNumStatements(): returns the number of statements of the class
file represented by the ProgramSpectrum object.

public int getNumTestCases(): returns the number of test cases used to test the
class files.

4.1.5. SpectraCollection

The SpectraCollection class is a collection of ProgramSpectrum objects. Besides,
it saves the error vector. Therefore, the number of test cases has to be given to the
constructor. Each value of the error vector is initialized with 0.

public void add(ProgramSpectrum spectrum): adds a ProgramSpectrum

object.

Sabine Zarl 29/80

4. Implementation Master’s Thesis

protected void setError(int val, int testcase): allows to fill the error vec-
tor with binary digits (0,1). The value represents if the given test case was
faulty (1) or not (0).

Two methods are provided to get a specific ProgramSpectrum object. Besides,
there are two methods to get the counters of a specific ProgramSpectrum object. One
takes the class name of the class file represented by the ProgramSpectrum object.
The other one takes the index of the collection, where the ProgramSpectrum object
is saved.

public ProgramSpectrum get(String className): takes the class name as
String and returns the appropriate ProgramSpectrum object.

public ProgramSpectrum get(int index): chooses the ProgramSpectrum

object with the given index.

protected int[][] getCounters(String className): takes the class name as
String. It returns the counters of each statement of the class represented by
the ProgramSpectrum object.

protected int[][] getCounters(int index): takes the index to choose the
ProgramSpectrum object in the collection. It returns the counters of each
statement of the class represented by the ProgramSpectrum object.

private int[][] counters(ProgramSpectrum spectrum): is called by getCoun-

ters(String className) as well as by getCounters(int index). The
method calls getCounters(int[] errorVector, int statement) of Pro-

gramSpectrum for each statement of the class represented by the Program-

Spectrum object. Finally, it returns the counters of each statement.

public int size(): returns the size of the collection. In other words, it returns
the number of ProgramSpectrum objects stored.

public int getNumTestCases(): returns the number of test cases used to test the
class files.

4.1.6. Coefficient

The Coefficient interface is implemented by OchiaiCoefficient, JaccardCoef-
ficient and TarantulaCoefficient. The interface allows swapping these imple-
mentations. All coefficients implement the method:

public double calculate(int[] counters)

Sabine Zarl 30/80

4. Implementation Master’s Thesis

The method takes an array as argument, which contains the four counters de-
scribed in Section 2.2.2 (a11, a10, a01, a00). If any denominator is 0, the method
returns the possibility of 0.0 instead of NaN (Not a Number). Further information
about the coefficients can be found in Section 2.2.3. The formulas are here again
written down:

• Jaccard Coefficient: s = a11
a11+a01+a10

• Ochiai Coefficient: s = a11√
(a11+a01)∗(a11+a10)

• Tarantula Coefficient: s =
a11

a11+a01
a11

a11+a01
+

a10
a10+a00

4.2. Used Libraries

This section refers to the used libraries. Javassist was used to manipulate class files
and the JUnit library is necessary to enable running JUnit tests.

4.2.1. Javassist

The javaDocs of Javassist can be found at [13]. The used classes of the Javassist
library are described briefly. For further information see the javaDocs.

javassist.ClassPool: is a container of CtClass objects. If get(String classname)

is called, the locations represented by ClassPath are searched to find the
appropriate class file. A CtClass object, representing the class file is created
and returned.

javassist.CtBehavior: is the abstract super class of CtMethod and CtConstructor.
This means, a CtBehavior object represents a method or a constructor.

javassist.CtClass: a CtClass object represents a Java class.

javassist.CtMethod: a CtMethod object represents a method.

4.2.2. JUnit

A javaDoc of JUnit 4.8 can be found at [8]. The used classes of the JUnit library
are described briefly. For further information see the javaDocs.

org.junit.runner.JUnitCore: is used for running JUnit tests. It supports JUnit 4
and JUnit 3.8.x as well as mixtures.

org.junit.runner.Result: collects and summarizes information from the running JU-
nit tests.

Sabine Zarl 31/80

4. Implementation Master’s Thesis

org.junit.runner.Description: describes a JUnit test, either a test which is to be
run or which has been run.

org.junit.runner.notification.Failure: consists of the Description of the failed JU-
nit test and the thrown exception.

org.junit.runner.notification.RunListener: provides methods to react to events
that occur during a test run. Therefore, the appropriate methods of Run-

Listener have to be overridden. The JUnitTestListener of the framework
overrides the following methods of RunListener:

• testFailure(Failure failure): atomic test case failed

• testFinished(Description description): atomic test case finished

• testStarted(Description description): atomic test case is to be
started

4.3. Framework Output

This section describes which results are provided and how these results can help to
find the faulty statement.

As already mentioned, the framework supplies the possibility of being faulty for
each statement of each considered class file. This information is written on the
console in collaboration with some runtime information. Therefore, the framework
is split into subprocesses. The runtime is given for each single subprocess.

• initialization

• manipulation

• run tests (including parsing logfile)

• calculating possibility values

The possibility values are written in the following format.

class: <class name>

line: x possibility: y

line: z possibility: 0.0

Each possibility value is a value between 0.0 and 1.0. The value 1.0 means the
highest possibility of being faulty. Thus, the statements with the highest possibility
value should be regarded first to find the fault. If the statements with the highest
possibility do not contain the fault, one can regard the statements with the next
smaller possibility. The aim, of course, is to find the fault with considering as few
statements as possible.

Sabine Zarl 32/80

4. Implementation Master’s Thesis

4.4. Summarization of the program flow

This section summarizes the most important steps of the framework to get a better
understanding. Therefore, Figure 4.1 visualizes a simplified program flow.

Figure 4.1.: Visualization of the program flow.

The framework gets one or more class files. To manipulate a class file means
to add standard output messages to each source code statement. Each class file
is replaced by its manipulated class file. After manipulating the Java bytecode of
the class files the tests are executed. When a statement is visited, the appropriate
standard output message is generated. The standard output is redirected to the
logfile. That way the execution trace is saved. The test listener is responsible for
logging when an atomic test case starts, when a failure occurs and when a test case
has finished. The information written to the logfile is parsed and stored in program
spectra objects and an error vector. The basic idea of program spectra is described
in Section 2.2.1. The program spectra provide the information for the similarity
coefficients (see Section 2.2.3) to calculate the possibility values for each line of
source code. These values are written on the console as described in Section 4.3.

Sabine Zarl 33/80

5. Empirical Evaluation Master’s Thesis

5. Empirical Evaluation

The empirical evaluation is carried out at statement level. The ranking is calculated
with all three provided similarity coefficients:

• Jaccard coefficient

• Ochiai coefficient

• Tarantula coefficient

5.1. Test Environment

The used notebook has a 2 GHz Processor, 2 GB RAM and a 64-bit operating
system. The installed operating system is Windows 7 Professional, additionally
Ubuntu 10.04 is emulated in VMware Player.

To execute the framework a few libraries are needed. Therefore, Java standard
edition (SE) version 1.6, JUnit version 4.8.2 and Javassist version 3.11.0 are installed.

5.2. Simple Test Program: Factorial

A really simple testprogram has been written, which calculates the factorial of a
given integer. Line 15 contains the fault. In the following, the assumptions of the
program are listed:

• The factorial of a negative integer is 0.

• The factorial of 0 is 1.

• The factorial of 1 is 1.

• The factorial of any higher integer is the product of this integer and all smaller
positive integers.

To provide the possibility to reconstruct the whole example, the source code of
Factorial.java and FactorialTest.java is written down.

1 package t e s t s r c ;
2
3 public class F a c t o r i a l {

Sabine Zarl 34/80

5. Empirical Evaluation Master’s Thesis

4
5 public int c a l c u l a t e (int x)
6 {
7 i f (x < 0)
8 return 0 ;
9 i f (x == 0)

10 return 1 ;
11
12 int r e s = x ;
13
14 for (int i = x−1; i > 1 ; i−−)
15 r e s ∗= x ; // co r r e c t : r e s ∗= i ;
16
17 return r e s ;
18 }
19 }

The appropriate JUnit test (JUnit version: 4.8.2) checks if the program returns
the expected results. Therefore, a test was written, which takes multiple pairs of
parameters. The first parameter is the input for the program and the second one
the expected output.

1 package t e s t s r c . j u n i t ;
2
3 import stat ic org . j u n i t . Assert . a s s e r tEqua l s ;
4
5 import java . u t i l . Arrays ;
6 import java . u t i l . C o l l e c t i o n ;
7
8 import org . j u n i t . Test ;
9 import org . j u n i t . runner . RunWith ;

10 import org . j u n i t . runners . Parameter ized ;
11 import org . j u n i t . runners . Parameter ized . Parameters ;
12
13 import t e s t s r c . F a c t o r i a l ;
14
15 @RunWith(Parameter ized . class)
16 public class Fac to r i a lTe s t
17 {
18 private int input ;
19 private int r e s ;
20
21 public Fac to r i a lTe s t (int input , int r e s)
22 {
23 this . input = input ;
24 this . r e s = r e s ;
25 }

Sabine Zarl 35/80

5. Empirical Evaluation Master’s Thesis

26
27 @Test
28 public void t e s t F a c t o r i a l ()
29 {
30 F a c t o r i a l f a c = new F a c t o r i a l () ;
31 int r e t = fa c . c a l c u l a t e (input) ;
32 a s s e r tEqua l s (res , r e t) ;
33 }
34
35 @Parameters
36 public stat ic Co l l e c t i on<Object []> c reateTest Input ()
37 {
38 return Arrays . a s L i s t (new Object [] [] {
39 {−10, 0} ,
40 {−2, 0} ,
41 {0 , 1} ,
42 {1 , 1} ,
43 {2 , 2} ,
44 {3 , 6} ,
45 {4 , 24} ,
46 {5 , 120} ,
47 {6 , 720} ,
48 {8 , 40320} ,
49 {10 , 3628800} ,
50 {12 , 479001600}}) ;
51 }
52 }

To manipulate the class Factorial in the package test src and then run the
test FactorialTest in the package test src.junit, the program has to be called
with the following arguments. Since these packages are in the same folder as the
src package of the framework, no paths have to be declared.

-c test src.Factorial -j test src.junit.FactorialTest -lf log.txt -sc

<coefficient>

While executing FactorialTest a logfile is produced, which logs the visited source
lines of Factorial.java for each test case. An excerpt is shown below. The START:
..., FINISHED! and FAILURE OCCURED! ... lines are outputs from JUnitTestLis-

tener. The other output lines result from the manipulation of the class file.

START: testFactorial[0]

--

test_src.Factorial method: calculate() 1 line: 7 visited!

test_src.Factorial method: calculate() 1 line: 8 visited!

FINISHED!

START: testFactorial[1]

Sabine Zarl 36/80

5. Empirical Evaluation Master’s Thesis

--

test_src.Factorial method: calculate() 1 line: 7 visited!

test_src.Factorial method: calculate() 1 line: 8 visited!

FINISHED!

START: testFactorial[2]

--

test_src.Factorial method: calculate() 1 line: 7 visited!

test_src.Factorial method: calculate() 1 line: 9 visited!

test_src.Factorial method: calculate() 1 line: 10 visited!

FINISHED!

START: testFactorial[3]

--

test_src.Factorial method: calculate() 1 line: 7 visited!

test_src.Factorial method: calculate() 1 line: 9 visited!

test_src.Factorial method: calculate() 1 line: 12 visited!

test_src.Factorial method: calculate() 1 line: 14 visited!

test_src.Factorial method: calculate() 1 line: 17 visited!

FINISHED!

START: testFactorial[4]

--

test_src.Factorial method: calculate() 1 line: 7 visited!

test_src.Factorial method: calculate() 1 line: 9 visited!

test_src.Factorial method: calculate() 1 line: 12 visited!

test_src.Factorial method: calculate() 1 line: 14 visited!

test_src.Factorial method: calculate() 1 line: 17 visited!

FINISHED!

START: testFactorial[5]

--

test_src.Factorial method: calculate() 1 line: 7 visited!

test_src.Factorial method: calculate() 1 line: 9 visited!

test_src.Factorial method: calculate() 1 line: 12 visited!

test_src.Factorial method: calculate() 1 line: 14 visited!

test_src.Factorial method: calculate() 1 line: 15 visited!

test_src.Factorial method: calculate() 1 line: 17 visited!

FAILURE OCCURED! testFactorial[5](test_src.junit.FactorialTest): expected:<6>

but was:<9>

FINISHED!

START: testFactorial[6]

--

test_src.Factorial method: calculate() 1 line: 7 visited!

test_src.Factorial method: calculate() 1 line: 9 visited!

test_src.Factorial method: calculate() 1 line: 12 visited!

test_src.Factorial method: calculate() 1 line: 14 visited!

test_src.Factorial method: calculate() 1 line: 15 visited!

test_src.Factorial method: calculate() 1 line: 15 visited!

test_src.Factorial method: calculate() 1 line: 17 visited!

FAILURE OCCURED! testFactorial[6](test_src.junit.FactorialTest): expected:<24>

but was:<64>

FINISHED!

START: testFactorial[7]

--

test_src.Factorial method: calculate() 1 line: 7 visited!

Sabine Zarl 37/80

5. Empirical Evaluation Master’s Thesis

test_src.Factorial method: calculate() 1 line: 9 visited!

test_src.Factorial method: calculate() 1 line: 12 visited!

test_src.Factorial method: calculate() 1 line: 14 visited!

test_src.Factorial method: calculate() 1 line: 15 visited!

test_src.Factorial method: calculate() 1 line: 15 visited!

test_src.Factorial method: calculate() 1 line: 15 visited!

test_src.Factorial method: calculate() 1 line: 17 visited!

FAILURE OCCURED! testFactorial[7](test_src.junit.FactorialTest): expected:<120>

but was:<625>

FINISHED!

[snip...]

7 failure(s) of 12 run(s).

The resulting possibility of being faulty is written on the console for each line of
code. The following output is displayed when the Ochiai coefficient is applied.

starttime: 1289295784493

start manipulation: 1289295784509

start run tests: 1289295784712

start calculate pos.: 1289295784899

--------------------results:--------------------

class: test_src.Factorial

line: 1 possibility: 0.0

line: 2 possibility: 0.0

line: 3 possibility: 0.7637626158259734

line: 4 possibility: 0.0

line: 5 possibility: 0.0

line: 6 possibility: 0.0

line: 7 possibility: 0.7637626158259734

line: 8 possibility: 0.0

line: 9 possibility: 0.8366600265340756

line: 10 possibility: 0.0

line: 11 possibility: 0.0

line: 12 possibility: 0.8819171036881969

line: 13 possibility: 0.0

line: 14 possibility: 0.8819171036881969

line: 15 possibility: 1.0

line: 16 possibility: 0.0

line: 17 possibility: 0.8819171036881969

--

endtime: 1289295784899

It can be seen, that line 15, which really contains the fault, has a possibility of
being faulty of 100 %. The start and end time are displayed in milliseconds. The
total runtime was, hence, 406 ms. Most of the time is consumed with manipulating
the class file.

The following output is displayed when the Jaccard coefficient is applied.

starttime: 1289296498288

start manipulation: 1289296498304

start run tests: 1289296498522

Sabine Zarl 38/80

5. Empirical Evaluation Master’s Thesis

start calculate pos.: 1289296498694

--------------------results:--------------------

class: test_src.Factorial

line: 1 possibility: 0.0

line: 2 possibility: 0.0

line: 3 possibility: 0.5833333333333334

line: 4 possibility: 0.0

line: 5 possibility: 0.0

line: 6 possibility: 0.0

line: 7 possibility: 0.5833333333333334

line: 8 possibility: 0.0

line: 9 possibility: 0.7

line: 10 possibility: 0.0

line: 11 possibility: 0.0

line: 12 possibility: 0.7777777777777778

line: 13 possibility: 0.0

line: 14 possibility: 0.7777777777777778

line: 15 possibility: 1.0

line: 16 possibility: 0.0

line: 17 possibility: 0.7777777777777778

--

endtime: 1289296498709

Applying the Jaccard coefficient, line 15 has also a possibility of 100 %. The total
runtime was 421 ms.

The following output is displayed when the Tarantula coefficient is applied.

starttime: 1289296691198

start manipulation: 1289296691214

start run tests: 1289296691432

start calculate pos.: 1289296691635

--------------------results:--------------------

class: test_src.Factorial

line: 1 possibility: 0.0

line: 2 possibility: 0.0

line: 3 possibility: 0.5

line: 4 possibility: 0.0

line: 5 possibility: 0.0

line: 6 possibility: 0.0

line: 7 possibility: 0.5

line: 8 possibility: 0.0

line: 9 possibility: 0.625

line: 10 possibility: 0.0

line: 11 possibility: 0.0

line: 12 possibility: 0.7142857142857143

line: 13 possibility: 0.0

line: 14 possibility: 0.7142857142857143

line: 15 possibility: 1.0

line: 16 possibility: 0.0

line: 17 possibility: 0.7142857142857143

--

endtime: 1289296691635

Sabine Zarl 39/80

5. Empirical Evaluation Master’s Thesis

Applying the Tarantula coefficient, line 15 has also a possibility of 100 %. The
total runtime was 437 ms.

What all coefficients have in common are the lines rated with 0 % error possibility.
Besides, line 3 and line 7 have the lowest error rate, except the lines with 0 %. Since
line 15 is only invoked when a failure occurs and never invoked when no failure
occurs, it is 100 % equal to the error vector. This equality is detected by all three
similarity coefficients.

5.3. TCAS

TCAS is a testprogram, with 41 different versions from the Software-artifact In-
frastructure Repository (SIR), which can be found at http://sir.unl.edu/. The Java
implementation of TCAS is introduced in [26]. Each version has another fault
injected. The TestRunner was manually set to TcasTestRunner, instead of JU-

nitTestRunner, because no JUnit tests are provided. In the following, the results
of all versions with a single fault are shown. The rejected versions, which have more
than one fault injected, are: 10, 11, 15, 31, 32, 40.

The testprograms are executed with the help of a batch file:

@ECHO off

ECHO

ECHO batch file for tcas

set CLASSPATH=%CLASSPATH%;C:\Users\luser\MASTERARBEIT\svn\tools\junit-4.8.2.jar;

C:\Users\luser\MASTERARBEIT\svn\tools\javassist-3.11.0\javassist.jar;.

ECHO tcas_v01

del src\tcas*.class

javac src*.java

java src.Framework -c src.tcas_v01 -j src.tcas_v01 -lf output\logtcas_v01.txt

-sc ochiai > output\logtcas_v01_ochiai.txt

del src\tcas*.class

javac src*.java

java src.Framework -c src.tcas_v01 -j src.tcas_v01 -lf output\logtcas_v01.txt

-sc jaccard > output\logtcas_v01_jaccard.txt

del src\tcas*.class

javac src*.java

java src.Framework -c src.tcas_v01 -j src.tcas_v01 -lf output\logtcas_v01.txt

-sc tarantula > output\logtcas_v01_tarantula.txt

[snip...]

This is only an excerpt of the batch file for the first version. The calls are the
same for every single version.

5.3.1. Analysis

To analyze TCAS a matlab file was written. It reads the output created by the
batch file and prints the information in diagrams.

Sabine Zarl 40/80

5. Empirical Evaluation Master’s Thesis

close all;

clear all;

%% read data

number_of_versions = 41;

faultlinenum = {60, 48, 105, 64, 103, ...

89, 20, 20, 75, [89, 94], ...

[89, 94, 103], 103, 5, 6, [7, 103], ...

20, 20, 20, 20, 57, ...

57, 57, 75, 75, 82, ...

103, 103, 48, 48, 48, ...

[61, 66, 113], [79, 84, 114], 20, 109, 48, ...

39, 43, 20, 82, [60, 111], ...

64};

maxpos_jac = [];

maxpos_och = [];

maxpos_tar = [];

fault_pos_jac = [];

fault_pos_och = [];

fault_pos_tar = [];

versionnumber = [];

rank_jac = zeros(1,number_of_versions);

rank_och = zeros(1,number_of_versions);

rank_tar = zeros(1,number_of_versions);

for i=1:number_of_versions

fprintf(’tcas_v%02d:\n’,i);

%read jaccard

filename = sprintf(’logtcas_v%02d_jaccard.txt’,i);

[lines, pos_jac] = textread(filename, ...

’line: %d possibility: %f’, ’headerlines’, 6);

lines = lines(1:end-2);

pos_jac = pos_jac(1:end-2);

%read ochiai

[snip...]

%read tarantula

[snip...]

% print the possibilities of being faulty for each statement and mark the

% faulty statement with a bar

[snip...]

close all;

%consider versions with a single fault injected

if (length(faultlinenum{i}) == 1)

%get maximum possibility

maxpos_jac = [maxpos_jac, max(pos_jac)];

maxpos_och = [maxpos_och, max(pos_och)];

maxpos_tar = [maxpos_tar, max(pos_tar)];

%store possibility of faulty statement

fault_pos_jac = [fault_pos_jac, pos_jac(faultlinenum{i}(1))];

fault_pos_och = [fault_pos_och, pos_och(faultlinenum{i}(1))];

fault_pos_tar = [fault_pos_tar, pos_tar(faultlinenum{i}(1))];

versionnumber = [versionnumber, i];

%sort possibilities and get indices of all values equal to the

%fault possibility and calculate rank

[sorted, order] = sort(pos_jac);

index = find(sorted == fault_pos_jac(end));

Sabine Zarl 41/80

5. Empirical Evaluation Master’s Thesis

rank_jac(i) = length(lines) - (index(length(index))-1);

%do the same for ochiai and tarantula

[snip...]

end

end

%print fault possibility compared to maximum possibility for each version

[snip...]

5.3.2. tcas v01

This section looks at the first version of TCAS more precisely. The injected fault is
in line 60. Only lines with a possibility different to 0.0 % are given for all provided
similarity coefficients.
Ochiai coefficient:

starttime: 1289398454280

start manipulation: 1289398454305

start run tests: 1289398454560

start calculate pos.: 1289398456516

--------------------results:--------------------

class: src.tcas_v01

line: 20 possibility: 0.0873704056661038

line: 43 possibility: 0.3816490459683328

line: 48 possibility: 0.3378775335809819

line: 57 possibility: 0.3378775335809819

line: 58 possibility: 0.3378775335809819

line: 60 possibility: 0.36959118899518817

line: 64 possibility: 0.09659161779186924

line: 66 possibility: 0.3378775335809819

line: 75 possibility: 0.3378775335809819

line: 76 possibility: 0.3378775335809819

line: 78 possibility: 0.36959118899518817

line: 82 possibility: 0.09659161779186924

line: 84 possibility: 0.3378775335809819

line: 89 possibility: 0.337260018181911

line: 94 possibility: 0.3259854570353207

line: 103 possibility: 0.28674101656942175

line: 104 possibility: 0.28674101656942175

line: 105 possibility: 0.28674101656942175

line: 107 possibility: 0.28674101656942175

line: 109 possibility: 0.28674101656942175

line: 111 possibility: 0.3378775335809819

line: 112 possibility: 0.3378775335809819

line: 113 possibility: 0.3378775335809819

line: 118 possibility: 0.3378775335809819

line: 119 possibility: 0.45837113170323407

line: 120 possibility: 0.09679098150818871

line: 121 possibility: 0.015951580680567408

line: 123 possibility: 0.10032639104077389

line: 126 possibility: 0.28674101656942175

Sabine Zarl 42/80

5. Empirical Evaluation Master’s Thesis

--

endtime: 1289398456531

Jaccard coefficient:

starttime: 1289398705588

start manipulation: 1289398705619

start run tests: 1289398705868

start calculate pos.: 1289398707793

--------------------results:--------------------

class: src.tcas_v01

line: 20 possibility: 0.007633587786259542

line: 43 possibility: 0.17636986301369864

line: 48 possibility: 0.12866817155756208

line: 57 possibility: 0.12866817155756208

line: 58 possibility: 0.12866817155756208

line: 60 possibility: 0.1796875

line: 64 possibility: 0.04356435643564356

line: 66 possibility: 0.12866817155756208

line: 75 possibility: 0.12866817155756208

line: 76 possibility: 0.12866817155756208

line: 78 possibility: 0.1796875

line: 82 possibility: 0.04356435643564356

line: 84 possibility: 0.12866817155756208

line: 89 possibility: 0.1492063492063492

line: 94 possibility: 0.14566284779050737

line: 103 possibility: 0.08338720103425985

line: 104 possibility: 0.08338720103425985

line: 105 possibility: 0.08338720103425985

line: 107 possibility: 0.08338720103425985

line: 109 possibility: 0.08338720103425985

line: 111 possibility: 0.12866817155756208

line: 112 possibility: 0.12866817155756208

line: 113 possibility: 0.12866817155756208

line: 118 possibility: 0.12866817155756208

line: 119 possibility: 0.2727272727272727

line: 120 possibility: 0.03868194842406877

line: 121 possibility: 0.008032128514056224

line: 123 possibility: 0.04310344827586207

line: 126 possibility: 0.08338720103425985

--

endtime: 1289398707819

Tarantula coefficient:

starttime: 1289398949181

start manipulation: 1289398949210

start run tests: 1289398949538

start calculate pos.: 1289398952535

--------------------results:--------------------

class: src.tcas_v01

Sabine Zarl 43/80

5. Empirical Evaluation Master’s Thesis

line: 20 possibility: 1.0

line: 43 possibility: 0.7152228578009828

line: 48 possibility: 0.6251653320094139

line: 57 possibility: 0.6251653320094139

line: 58 possibility: 0.6251653320094139

line: 60 possibility: 0.7273144480563827

line: 64 possibility: 0.39384866630375615

line: 66 possibility: 0.6251653320094139

line: 75 possibility: 0.6251653320094139

line: 76 possibility: 0.6251653320094139

line: 78 possibility: 0.7273144480563827

line: 82 possibility: 0.39384866630375615

line: 84 possibility: 0.6251653320094139

line: 89 possibility: 0.6754060589809671

line: 94 possibility: 0.67192415854912

line: 103 possibility: 0.5015678782455886

line: 104 possibility: 0.5015678782455886

line: 105 possibility: 0.5015678782455886

line: 107 possibility: 0.5015678782455886

line: 109 possibility: 0.5015678782455886

line: 111 possibility: 0.6251653320094139

line: 112 possibility: 0.6251653320094139

line: 113 possibility: 0.6251653320094139

line: 118 possibility: 0.6251653320094139

line: 119 possibility: 0.8363772862865989

line: 120 possibility: 0.34468794664125774

line: 121 possibility: 0.15769398430688752

line: 123 possibility: 0.3808135250647409

line: 126 possibility: 0.5015678782455886

--

endtime: 1289398952552

Having a look at the runtime, it can be seen that not manipulating extends the
runtime, but running the test. There are 1578 test cases to run, instead of 12 of
the simple testprogram. The Ochiai and the Tarantula coefficient rank the faulty
statement third. The Jaccard coefficient ranks it even second. The next section
summarizes all versions of TCAS.

5.3.3. Summarization of TCAS

The appendix A contains for each version, which has a single fault, one diagram.
The diagram shows the possibility of being faulty for each statement, calculated
with Jaccard coefficient, Ochiai coefficient and Tarantula coefficient. Figures 5.1,
5.2 and 5.3 show the possibility of the faulty statement compared to the maximum.

Table 5.1 shows for each considered version the calculated rank of the faulty
statement. The ranks of all three similarity coefficients are declared.

Sabine Zarl 44/80

5. Empirical Evaluation Master’s Thesis

Figure 5.1.: The possibility of the faulty statement compared to the maximum pos-
sibility calculated by the Jaccard coefficient.

Figure 5.2.: The possibility of the faulty statement compared to the maximum pos-
sibility calculated by the Ochiai coefficient.

Figure 5.3.: The possibility of the faulty statement compared to the maximum pos-
sibility calculated by the Tarantula coefficient.

Sabine Zarl 45/80

5. Empirical Evaluation Master’s Thesis

Version Number Jaccard Ochiai Tarantula
01 2 3 3
02 6 5 6
03 19 16 20
04 2 1 2
05 18 2 18
06 6 7 6
07 28 28 28
08 25 25 25
09 8 6 8
12 17 16 18
13 25 25 25
14 29 29 29
16 28 28 1
17 28 28 28
18 29 29 29
19 28 28 28
20 5 3 5
21 6 9 6
22 6 10 6
23 7 5 9
24 7 11 7
25 1 1 1
26 4 1 4
27 18 2 18
28 2 1 6
29 6 7 7
30 2 1 6
33 29 29 29
34 17 17 18
35 2 1 6
36 29 29 29
37 3 14 2
38 29 29 29
39 1 1 1
41 2 1 2

average rank 13.54 12.80 13.29

Table 5.1.: The rank of the faulty statement calculated by three different similarity
coefficients for each considered version.

Sabine Zarl 46/80

5. Empirical Evaluation Master’s Thesis

Looking at Table 5.1 version 16 attracts attention. The Tarantula coefficient ranks
the faulty statement first. The other coefficients rank it much worse. The faulty
statement is line 20, which initializes a static array. This means, line 20 is called
only once, when the first test case is executed. Looking at the similarity coefficients
it can be seen that the Tarantula coefficient calculates a possibility of 100 %, if the
faulty statement is only visited when a test case is executed where a failure occurs,
even if it is only called once. No matter if there are test cases where a failure occurs
and where the faulty statement is not visited. In contrary, the other coefficients take
that into consideration. The following formulas can demonstrate that.

Tarantula coefficient:
a11

a11+a01
a11

a11+a01
+

a10
a10+a00

=
1

1+x
1

1+x
+0

Jaccard coefficient: a11
a11+a01+a10

= 1
1+x+0

Ochiai coefficient: a11√
(a11+a01)∗(a11+a10)

= 1√
(1+x)∗(1+0)

In the case, the first test case is not erroneous, line 20 is rated with 0.0 %, because
it is never visited when an erroneous test case is executed. This happens in version
7, 8, 17, 18, 19, 33 and 38.

Executing version 13, 14 and 36 the faulty statement (line: 5/6/39) is also rated
with 0.0 %. Line 5, 6 and 39 define static member variables and are never marked
as visited when a test case detects a fault.

When the average rank is compared, the Ochiai coefficient supplies the best re-
sults. The average rank of the Tarantula coefficient is falsified by version 16, because
the faulty statement is ranked first “by accident”, as described above.

5.4. Initialization of Variables

To illustrate the point in time when a variable is initialized, the Factorial.java

file is extended.

1 package t e s t s r c ;
2
3 public class F a c t o r i a l {
4
5 public stat ic f ina l int id = 0123 ;
6 public stat ic St r ing className = ” c l a s s name” ;
7 public double number = 0 . 0 ;
8 private short num = 1 ;
9

10 public int c a l c u l a t e (int x)
11 { // [sn ip . . .]

The corresponding logfile shows that the static variable is only initialized once,
when the first test case is executed. A static variable belongs to the class and not

Sabine Zarl 47/80

5. Empirical Evaluation Master’s Thesis

to the individual objects of this class. The static final variable is never marked
as visited. In contrast, the member variables of the instances are initialized every
time a new object is created. This means for this case, they are initialized every
time a new test case is started. The output looks the same, regardless of executing
the framework in Windows or Ubuntu.

START: testFactorial[0]

--

test_src.Factorial method: <clinit>() 0 line: 6 visited!

test_src.Factorial method: <clinit>() 0 line: 3 visited!

test_src.Factorial method: Factorial() 1 line: 3 visited!

test_src.Factorial method: Factorial() 1 line: 7 visited!

test_src.Factorial method: Factorial() 1 line: 8 visited!

test_src.Factorial method: calculate() 2 line: 12 visited!

test_src.Factorial method: calculate() 2 line: 13 visited!

FINISHED!

START: testFactorial[1]

--

test_src.Factorial method: Factorial() 1 line: 3 visited!

test_src.Factorial method: Factorial() 1 line: 7 visited!

test_src.Factorial method: Factorial() 1 line: 8 visited!

test_src.Factorial method: calculate() 2 line: 12 visited!

test_src.Factorial method: calculate() 2 line: 13 visited!

FINISHED!

START: testFactorial[2]

--

test_src.Factorial method: Factorial() 1 line: 3 visited!

test_src.Factorial method: Factorial() 1 line: 7 visited!

test_src.Factorial method: Factorial() 1 line: 8 visited!

test_src.Factorial method: calculate() 2 line: 12 visited!

test_src.Factorial method: calculate() 2 line: 14 visited!

test_src.Factorial method: calculate() 2 line: 15 visited!

FINISHED!

START: testFactorial[3]

--

test_src.Factorial method: Factorial() 1 line: 3 visited!

test_src.Factorial method: Factorial() 1 line: 7 visited!

test_src.Factorial method: Factorial() 1 line: 8 visited!

test_src.Factorial method: calculate() 2 line: 12 visited!

test_src.Factorial method: calculate() 2 line: 14 visited!

test_src.Factorial method: calculate() 2 line: 17 visited!

test_src.Factorial method: calculate() 2 line: 19 visited!

test_src.Factorial method: calculate() 2 line: 22 visited!

FINISHED!

[snip...]

5.5. JTopas - Java tokenizer and parser tools

JTopas is a testprogram taken from the Software-artifact Infrastructure Repository
(SIR), which can be found at http://sir.unl.edu/. It provides shell (*.sh) scripts

Sabine Zarl 48/80

5. Empirical Evaluation Master’s Thesis

to install a specific version (with or without errors) of the program. Therefore, it
has to be executed on a Unix system.

Trying to find the injected faults of jtopas-0.4 a few problems appear. First of all,
some faults to inject are faulty initializations of static final variables. As shown
in Section 5.4 the initialization of static final variables are never marked as
visited. Therefore, it is not possible to find the fault with spectrum-based debugging.

When AbstractTokenizer should be manipulated, a CannotCompileException

by javassist.bytecode.BadBytecode: conflict: int and de.susebox.

java.util.TokenizerProperty is thrown. It seems to be a bug of Javassist 3.11.
One could think about why to manipulate abstract methods, but AbstractTok-

enizer does also contain implemented methods. The framework only manipulates
methods if there is a method body. Using Javassist 3.4 also the class AbstractTo-

kenizer can be manipulated without any exception.
Besides, some faults are injected by deleting a statement. The problem is, that a

deleted statement cannot be ranked or rather it does not appear in the analysis.
To demonstrate how spectrum-based debugging behaves if a fault is injected,

which affects multiple lines, the definition of a boolean variable in if and else
block was changed. Thus, the definition is faulty in if as well as in else block.
The parameters given to the framework are listed below. As described above, the
framework is executed in Ubuntu emulated in VMware Player.

-cp /home/user/masterarbeit/svn/Testdaten/jtopas/source/ -c

de.susebox.java.io.ExtIOException -lf log_v1extioexception.txt -jp

/home/user/masterarbeit/svn/Testdaten/jtopas/source/junit/ -j

de.susebox.TestExceptions -sc <coefficient>

Statement 47 and 49 are faulty. If a test case is executed where a failure occurs,
either line 47 or line 49 is visited, never both. Other statements, which are executed
each time a failure occurs, are ranked much higher. The results of all three similarity
coefficients are shown above. Only source lines with a possibility different to 0.0 %
are listed.

Ochiai coefficient:

starttime: 1290977043774

start manipulation: 1290977043825

start run tests: 1290977044010

start calculate pos.: 1290977044104

--------------------results:--------------------

class: de.susebox.java.io.ExtIOException

line: 15 possibility: 0.5773502691896258

line: 19 possibility: 1.0

line: 23 possibility: 0.5773502691896258

line: 31 possibility: 0.5773502691896258

line: 32 possibility: 0.5773502691896258

line: 39 possibility: 0.5773502691896258

line: 40 possibility: 0.5773502691896258

line: 43 possibility: 1.0

line: 46 possibility: 1.0

Sabine Zarl 49/80

5. Empirical Evaluation Master’s Thesis

line: 47 possibility: 0.5773502691896258

line: 49 possibility: 0.8164965809277261

line: 51 possibility: 1.0

line: 52 possibility: 1.0

line: 53 possibility: 1.0

line: 56 possibility: 0.5773502691896258

line: 59 possibility: 1.0

line: 61 possibility: 1.0

line: 63 possibility: 1.0

--

endtime: 1290977044115

Jaccard coefficient:

starttime: 1290977132815

start manipulation: 1290977132846

start run tests: 1290977133050

start calculate pos.: 1290977133165

--------------------results:--------------------

class: de.susebox.java.io.ExtIOException

line: 15 possibility: 0.3333333333333333

line: 19 possibility: 1.0

line: 23 possibility: 0.3333333333333333

line: 31 possibility: 0.3333333333333333

line: 32 possibility: 0.3333333333333333

line: 39 possibility: 0.3333333333333333

line: 40 possibility: 0.3333333333333333

line: 43 possibility: 1.0

line: 46 possibility: 1.0

line: 47 possibility: 0.3333333333333333

line: 49 possibility: 0.6666666666666666

line: 51 possibility: 1.0

line: 52 possibility: 1.0

line: 53 possibility: 1.0

line: 56 possibility: 0.3333333333333333

line: 59 possibility: 1.0

line: 61 possibility: 1.0

line: 63 possibility: 1.0

--

endtime: 1290977133176

Tarantula coefficient:

starttime: 1290977191691

start manipulation: 1290977191725

start run tests: 1290977191932

start calculate pos: 1290977192054

--------------------results:--------------------

class: de.susebox.java.io.ExtIOException

line: 15 possibility: 1.0

line: 19 possibility: 1.0

Sabine Zarl 50/80

5. Empirical Evaluation Master’s Thesis

line: 23 possibility: 1.0

line: 31 possibility: 1.0

line: 32 possibility: 1.0

line: 39 possibility: 1.0

line: 40 possibility: 1.0

line: 43 possibility: 1.0

line: 46 possibility: 1.0

line: 47 possibility: 1.0

line: 49 possibility: 1.0

line: 51 possibility: 1.0

line: 52 possibility: 1.0

line: 53 possibility: 1.0

line: 56 possibility: 1.0

line: 59 possibility: 1.0

line: 61 possibility: 1.0

line: 63 possibility: 1.0

--

endtime: 1290977192067

The reason why the Tarantula coefficient calculates either a possibility of 0.0 % or a
possibility of 100 % is that all test cases, which call the ExtIOException, detect a
fault. As already discussed, applying the Tarantula coefficient a statement is rated
with 100 % if it is only visited when a failure occurs. The other coefficients rate a
statement with 100 % only if it is visited every time a failure occurs and never if no
fault is detected.

In addition, a newer version of JTopas was tested, jtopas-0.5.1. The first injected
fault to AbstractTokenizer cannot be found. One test class creates a logfile, which
is too big (> 400 MB). Executing the other test classes no failure occurs. The faulty
statement is never executed. This means that no statement has a possibility of being
faulty higher than 0.0 %. This case shows how important it is to have test cases,
which cover the whole source code.

The parameters below effect the manipulation of AbstractTokenizer and In-
putStremTokenizer, which extends AbstractTokenizer. Besides, the three test
classes, which supply results that can be evaluated, are executed.

-cp /home/user/masterarbeit/svn/Testdaten/jtopas/source/ -c

de.susebox.java.util.AbstractTokenizer -c

de.susebox.java.util.InputStreamTokenizer -lf log_v2tokenizer.txt -jp

/home/user/masterarbeit/svn/Testdaten/jtopas/source/junit/ -j

de.susebox.java.util.TestDifficultSituations -j

de.susebox.java.util.TestTokenizerProperties -j

de.susebox.java.util.TestTextAccess -sc <coefficient>

Injecting another fault, the test classes even deliver appropriate results to find the
fault. The faulty statement is in line 655 of AbstractTokenizer. Below, the results
of the three coefficients can be compared. This time only the faulty statement and
lines with a higher or equal possibility are listed. To get an impression of the size
of the class files also the last source line is given.

Ochiai coefficient:

Sabine Zarl 51/80

5. Empirical Evaluation Master’s Thesis

starttime: 1291018716182

start manipulation: 1291018716624

start run tests: 1291018717524

start calculate pos: 1291018718860

--------------------results:--------------------

class: de.susebox.java.util.AbstractTokenizer

...

line: 655 possibility: 1.0

line: 656 possibility: 1.0

...

line: 673 possibility: 1.0

...

line: 1419 possibility: 0.2773500981126146

class: de.susebox.java.util.InputStreamTokenizer

...

line: 85 possibility: 0.2773500981126146

--

endtime: 1291018718927

Jaccard coefficient:

starttime: 1291019133810

start manipulation: 1291019133862

start run tests: 1291019134287

start calculate pos: 1291019135114

--------------------results:--------------------

class: de.susebox.java.util.AbstractTokenizer

...

line: 655 possibility: 1.0

line: 656 possibility: 1.0

...

line: 673 possibility: 1.0

...

line: 1419 possibility: 0.07692307692307693

class: de.susebox.java.util.InputStreamTokenizer

...

line: 85 possibility: 0.07692307692307693

--

endtime: 1291019135218

Tarantula coefficient:

starttime: 1291019251981

start manipulation: 1291019252114

start run tests: 1291019252579

start calculate pos: 1291019253522

--------------------results:--------------------

class: de.susebox.java.util.AbstractTokenizer

...

line: 655 possibility: 1.0

line: 656 possibility: 1.0

...

line: 673 possibility: 1.0

Sabine Zarl 52/80

5. Empirical Evaluation Master’s Thesis

...

line: 1419 possibility: 0.5

class: de.susebox.java.util.InputStreamTokenizer

...

line: 85 possibility: 0.5

--

endtime: 1291019253744

No matter which similarity coefficient is used, the faulty statement is found. It even
has a possibility of 100 %. Besides, the other lines with a possibility of 100 % are
associated with the faulty statement. Line 655 is a if statement. The condition to
be smaller was changed to smaller or equal. The following line 656 is executed if the
condition is fulfilled. Line 673 calls the method containing the faulty if statement.
The three test classes contain together 13 different test cases. One of them leads to
a failure. The three lines rated with 100 % are only visited when a fault is detected.

When the Token class is tested a file with 86.7 MB is created, although only 9
test cases are executed. This shows how fast a file with 1332726 lines is created.
Besides, no test case detects a fault. In the following the runtime is listed.

starttime: 1291035109104

start manipulation: 1291035109183

start run tests: 1291035109422

start calculate pos: 1291035150159

endtime: 1291035150174

The manipulation process needs 239 ms, running the tests lasts 40 s in the VMware
Player. The whole runtime amounts 41 s. For comparison only, the TestToken-
Properties is executed without starting the manipulation process. The resulting
runtime is listed in the following.

starttime: 1291056971890

start manipulation: 1291056972023

start run tests: 1291056972028

endtime: 1291056975038

Running the test if no class file has been manipulated takes about 3 seconds. This
is about a tenth of the runtime compared to the run with manipulation. How-
ever, thinking about how many lines are written to the file if the Token class was
manipulated this difference is understandable.

Sabine Zarl 53/80

5. Empirical Evaluation Master’s Thesis

5.6. Summary

This section summarizes the results of the empirical evaluation. Table 5.2 shows
for each program under test the number of lines of code (LoC), as well as the ranks
of the faulty statements and the number of test cases. The ranks are stated for all
three supported similarity coefficients (Jaccard, Ochiai, Tarantula). The number in
brackets specifies the number of statements with the same rank as the faulty state-
ment (including the faulty one). The test cases are divided into positive and negative
test cases. A positive test case is a test, where no failure occurs during execution.
Thus, a negative test case is a test, where a failure occurs during execution. Table
5.3 summarizes for each program under test the runtime information as well as the
size of the logfile, generated when executing the tests. The runtime information is
averaged over the programs executed with the three different similarity coefficients.
The column “runtime” lists the whole runtime of the framework, carrying out ma-
nipulation, running tests and calculating possibility values. The next column shows
the time needed for manipulation. The runtime of executing the tests is displayed
for the case using the original class files as well as using the manipulated ones.
Note that the runtime of executing the tests includes parsing the logfile if the class

files have been manipulated. The Factorial example in the first line shows that the
runtime does also depend on the current system load. The execution time of the
tests without a manipulated class file takes longer than using the manipulated one.

Sabine Zarl 54/80

5. Empirical Evaluation Master’s Thesis

program LoC rankJ rankO rankT pos. TCs neg. TCs
Factorial 19 1 (1) 1 (1) 1 (1) 5 7
tcas v01 128 2 (2) 3 (2) 3 (2) 1447 131
tcas v02 128 6 (11) 5 (11) 6 (11) 1511 67
tcas v03 128 19 (5) 16 (5) 20 (5) 1555 23
tcas v04 128 2 (2) 1 (2) 2 (2) 1558 20
tcas v05 128 18 (5) 2 (5) 18 (5) 1568 10
tcas v06 128 6 (1) 7 (1) 6 (1) 1566 12
tcas v07 128 27 (98) 27 (98) 27 (98) 1542 36
tcas v08 128 24 (101) 24 (101) 24 (101) 1577 1
tcas v09 128 8 (11) 6 (11) 8 (11) 1571 7
tcas v12 128 17 (5) 16 (5) 18 (5) 1508 70
tcas v13 128 24 (101) 24 (101) 24 (101) 1574 4
tcas v14 128 28 (97) 28 (97) 28 (97) 1528 50
tcas v16 128 27 (1) 27 (1) 1 (1) 1508 70
tcas v17 128 27 (98) 27 (98) 27 (98) 1543 35
tcas v18 128 28 (97) 28 (97) 28 (97) 1549 29
tcas v19 128 27 (98) 27 (98) 27 (98) 1559 19
tcas v20 128 5 (11) 3 (11) 5 (11) 1560 18
tcas v21 128 6 (11) 8 (11) 6 (11) 1562 16
tcas v22 128 6 (11) 9 (11) 6 (11) 1567 11
tcas v23 128 7 (11) 5 (11) 9 (11) 1537 41
tcas v24 128 7 (11) 10 (11) 7 (11) 1571 7
tcas v25 128 1 (2) 1 (2) 1 (2) 1575 3
tcas v26 128 4 (5) 1 (5) 4 (5) 1567 11
tcas v27 128 18 (5) 2 (5) 18 (5) 1568 10
tcas v28 128 2 (11) 1 (11) 6 (11) 1503 75
tcas v29 128 6 (11) 6 (11) 7 (11) 1560 18
tcas v30 128 2 (11) 1 (11) 6 (11) 1521 57
tcas v33 128 28 (97) 28 (97) 28 (97) 1489 89
tcas v34 128 17 (5) 17 (5) 18 (5) 1501 77
tcas v35 128 2 (11) 1 (11) 6 (11) 1503 75
tcas v36 128 28 (97) 28 (97) 28 (97) 1458 120
tcas v37 128 3 (1) 14 (1) 2 (1) 1486 92
tcas v38 128 28 (97) 28 (97) 28 (97) 1459 119
tcas v39 128 1 (2) 1 (2) 1 (2) 1575 3
tcas v41 128 2 (2) 1 (2) 2 (2) 1558 20

jtopas 0.5.1
(Tokenizer) 1420+86 1 (3) 1 (3) 1 (3) 12 1
jtopas 0.5.1

(Token) 251 - - - 9 0

Table 5.2.: Summary of test data (1).

Sabine Zarl 55/80

5. Empirical Evaluation Master’s Thesis

program runtime manipulation exec. tests exec. tests logfile
time (with man.) (without man.) size
[ms] [ms] [ms]

Factorial 421 213 187 203 7 KB
tcas v01 2189 255 1883 718 1661 KB
tcas v02 2137 245 1841 671 1657 KB
tcas v03 2210 271 1888 609 1792 KB
tcas v04 2158 240 1852 666 1664 KB
tcas v05 2179 266 1862 807 1746 KB
tcas v06 2128 255 1820 671 1662 KB
tcas v07 2158 255 1852 718 1658 KB
tcas v08 2205 245 1893 666 1661 KB
tcas v09 2257 245 1961 718 1659 KB
tcas v12 2439 317 2070 682 2061 KB
tcas v13 2190 281 1857 692 1695 KB
tcas v14 2111 302 1753 775 1431 KB
tcas v16 2226 261 1903 697 1656 KB
tcas v17 2220 271 1898 759 1658 KB
tcas v18 2205 276 1878 645 1658 KB
tcas v19 2340 302 1987 702 1659 KB
tcas v20 2237 266 1914 671 1663 KB
tcas v21 2257 256 1945 645 1607 KB
tcas v22 2278 265 1945 676 1599 KB
tcas v23 2132 271 1815 713 1597 KB
tcas v24 2221 271 1898 713 1606 KB
tcas v25 2257 276 1935 630 1660 KB
tcas v26 2351 276 2028 728 1719 KB
tcas v27 2247 287 1914 760 1746 KB
tcas v28 2226 271 1903 707 1648 KB
tcas v29 2221 271 1893 729 1655 KB
tcas v30 2184 271 1857 697 1654 KB
tcas v33 2283 281 1940 811 1668 KB
tcas v34 2387 276 2059 526 2092 KB
tcas v35 2138 244 1836 676 1648 KB
tcas v36 2169 250 1872 780 1660 KB
tcas v37 2142 245 1852 676 1669 KB
tcas v38 2168 234 1878 754 1553 KB
tcas v39 2148 250 1852 739 1660 KB
tcas v41 2216 260 1893 588 1644 KB

jtopas 0.5.1
(Tokenizer) 1972 596 1035 692 2.3 MB
jtopas 0.5.1

(Token) 41070 239 40737 3010 86.7 MB

Table 5.3.: Summary of test data (2).

Sabine Zarl 56/80

6. Conclusion and Future Work Master’s Thesis

6. Conclusion and Future Work

This master’s thesis presents a new approach which combines spectrum-based debug-
ging and Java bytecode manipulation. The following sections provide the conclusions
of the project and make some suggestions for future work.

6.1. Spectrum-based Debugging

A detected challenge of spectrum-based debugging is to find a faulty initialization of
a static variable. The problem is that such a statement is only marked as visited
once, when executing the first test case. If the first test case detects no fault, the
initialization will even have a possibility of being faulty of 0.0 %. The initialization
of a static final variable is never marked as visited. Therefore, the initialization
of a static final variable does always have a possibility of being faulty of 0.0 %,
even if it is faulty.

The empirical evaluation approved that the Ochiai coefficient performs best, com-
pared to the two other tested. The Tarantula coefficient gives the most insufficient
results. This affirms the conclusions of former works.

The most important thing to get satisfactory results of spectrum-based debugging
is that the test cases cover the whole source code. A statement can only be evaluated
as faulty if it is processed.

6.2. Java Bytecode Manipulation

Java bytecode manipulation is a good approach to get runtime-information of the
program under test needed to create program spectra. Manipulating one class

file usually takes about 300 - 500 ms (up to 1500 lines source code) with the used
notebook. Besides, the manipulation runtime could be decreased by using another
Java bytecode manipulation tool, which takes already Java bytecode and does not
need to compile source code before inserting it.

However, there is also a problem which occurs, when the execution trace is written
into a file with the help of Java bytecode manipulation. The file size gets rather fast
extremely big.

Sabine Zarl 57/80

6. Conclusion and Future Work Master’s Thesis

6.3. Future Work

Analyzing Java bytecode enables to analyze all programming languages, which can
be transformed into Java bytecode. In the future one could thus treat not only pro-
grams written in Java, but also programs written in other programming languages.
Besides, another Java bytecode manipulation tool can be used to decrease the run-
time of the manipulation process. Furthermore, one can think about more efficient
ways to save the execution trace.

Future work could include extending this approach. Spectrum-based debugging
can be combined with model-based techniques. To ensure that most of the source
code is covered with test cases, the test cases could be generated automatically.

Sabine Zarl 58/80

A. TCAS Master’s Thesis

A. TCAS

A.1. Diagrams

This section shows some diagrams, which illustrate the probabilities of being faulty
for each statement. Only versions which have a single fault are considered. The
x-axis represents the line (statement) numbers of the source code and the y-axis
represents the possibility. The possibility value is between 0 and 1.

It can be seen, that the Tarantula coefficient results in the highest possibility
values and the Jaccard coefficient in the lowest. The Ochiai coefficient lies in the
middle of both.

Figure A.1.: The possibility of being faulty for each statement of version 01.

Figure A.2.: The possibility of being faulty for each statement of version 02.

Sabine Zarl 59/80

A. TCAS Master’s Thesis

Figure A.3.: The possibility of being faulty for each statement of version 03.

Figure A.4.: The possibility of being faulty for each statement of version 04.

Figure A.5.: The possibility of being faulty for each statement of version 05.

Sabine Zarl 60/80

A. TCAS Master’s Thesis

Figure A.6.: The possibility of being faulty for each statement of version 06.

Figure A.7.: The possibility of being faulty for each statement of version 07.

Figure A.8.: The possibility of being faulty for each statement of version 08.

Sabine Zarl 61/80

A. TCAS Master’s Thesis

Figure A.9.: The possibility of being faulty for each statement of version 09.

Figure A.10.: The possibility of being faulty for each statement of version 12.

Figure A.11.: The possibility of being faulty for each statement of version 13.

Sabine Zarl 62/80

A. TCAS Master’s Thesis

Figure A.12.: The possibility of being faulty for each statement of version 14.

Figure A.13.: The possibility of being faulty for each statement of version 16.

Figure A.14.: The possibility of being faulty for each statement of version 17.

Sabine Zarl 63/80

A. TCAS Master’s Thesis

Figure A.15.: The possibility of being faulty for each statement of version 18.

Figure A.16.: The possibility of being faulty for each statement of version 19.

Figure A.17.: The possibility of being faulty for each statement of version 20.

Sabine Zarl 64/80

A. TCAS Master’s Thesis

Figure A.18.: The possibility of being faulty for each statement of version 21.

Figure A.19.: The possibility of being faulty for each statement of version 22.

Figure A.20.: The possibility of being faulty for each statement of version 23.

Sabine Zarl 65/80

A. TCAS Master’s Thesis

Figure A.21.: The possibility of being faulty for each statement of version 24.

Figure A.22.: The possibility of being faulty for each statement of version 25.

Figure A.23.: The possibility of being faulty for each statement of version 26.

Sabine Zarl 66/80

A. TCAS Master’s Thesis

Figure A.24.: The possibility of being faulty for each statement of version 27.

Figure A.25.: The possibility of being faulty for each statement of version 28.

Figure A.26.: The possibility of being faulty for each statement of version 29.

Sabine Zarl 67/80

A. TCAS Master’s Thesis

Figure A.27.: The possibility of being faulty for each statement of version 30.

Figure A.28.: The possibility of being faulty for each statement of version 33.

Figure A.29.: The possibility of being faulty for each statement of version 34.

Sabine Zarl 68/80

A. TCAS Master’s Thesis

Figure A.30.: The possibility of being faulty for each statement of version 35.

Figure A.31.: The possibility of being faulty for each statement of version 36.

Figure A.32.: The possibility of being faulty for each statement of version 37.

Sabine Zarl 69/80

A. TCAS Master’s Thesis

Figure A.33.: The possibility of being faulty for each statement of version 38.

Figure A.34.: The possibility of being faulty for each statement of version 39.

Figure A.35.: The possibility of being faulty for each statement of version 41.

Sabine Zarl 70/80

A. TCAS Master’s Thesis

A.2. Source

A.2.1. Source Code

This section supplies the original source code of TCAS. The Java implementation
of TCAS is introduced in [26]. The uninitialized member variables are set for each
test case by the test runner.

class tcas {

public static final int OLEV = 600; /* in feets/minute */

public static final int MAXALTDIFF = 600; /* max altitude difference in feet */

public static final int MINSEP = 300; /* min separation in feet */

public static final int NOZCROSS = 100; /* in feet */

static int Cur_Vertical_Sep;

static boolean High_Confidence;

static boolean Two_of_Three_Reports_Valid;

static int Own_Tracked_Alt;

static int Own_Tracked_Alt_Rate;

static int Other_Tracked_Alt;

static int Alt_Layer_Value; /* 0, 1, 2, 3 */

static int Positive_RA_Alt_Thresh[] = {400,500,640,740};

static int Up_Separation;

static int Down_Separation;

/* state variables */

static int Other_RAC; /* NO_INTENT, DO_NOT_CLIMB, DO_NOT_DESCEND */

public static final int NO_INTENT = 0;

public static final int DO_NOT_CLIMB = 1;

public static final int DO_NOT_DESCEND = 2;

static int Other_Capability; /* TCAS_TA, OTHER */

public static final int TCAS_TA = 1;

public static final int OTHER = 2;

static boolean Climb_Inhibit; /* true/false */

public static final int UNRESOLVED = 0;

public static final int UPWARD_RA = 1;

public static final int DOWNWARD_RA = 2;

static int ALIM ()

{

return Positive_RA_Alt_Thresh[Alt_Layer_Value];

}

static int Inhibit_Biased_Climb ()

{

return (Climb_Inhibit ? Up_Separation + NOZCROSS : Up_Separation);

}

static boolean Non_Crossing_Biased_Climb()

{

boolean upward_preferred;

int upward_crossing_situation;

boolean result;

upward_preferred = Inhibit_Biased_Climb() > Down_Separation;

if (upward_preferred)

{

result = !(Own_Below_Threat()) || ((Own_Below_Threat()) && (!(Down_Separation >= ALIM())));

}

else

{

result = Own_Above_Threat() && (Cur_Vertical_Sep >= MINSEP) && (Up_Separation >= ALIM());

}

return result;

}

static boolean Non_Crossing_Biased_Descend()

{

boolean upward_preferred;

int upward_crossing_situation;

boolean result;

upward_preferred = Inhibit_Biased_Climb() > Down_Separation;

if (upward_preferred)

Sabine Zarl 71/80

A. TCAS Master’s Thesis

{

result = Own_Below_Threat() && (Cur_Vertical_Sep >= MINSEP) && (Down_Separation >= ALIM());

}

else

{

result = !(Own_Above_Threat()) || ((Own_Above_Threat()) && (Up_Separation >= ALIM()));

}

return result;

}

static boolean Own_Below_Threat()

{

return (Own_Tracked_Alt < Other_Tracked_Alt);

}

static boolean Own_Above_Threat()

{

return (Other_Tracked_Alt < Own_Tracked_Alt);

}

static int alt_sep_test()

{

boolean enabled, tcas_equipped, intent_not_known;

boolean need_upward_RA, need_downward_RA;

int alt_sep;

enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) && (Cur_Vertical_Sep > MAXALTDIFF);

tcas_equipped = Other_Capability == TCAS_TA;

intent_not_known = Two_of_Three_Reports_Valid && Other_RAC == NO_INTENT;

alt_sep = UNRESOLVED;

if (enabled && ((tcas_equipped && intent_not_known) || !tcas_equipped))

{

need_upward_RA = Non_Crossing_Biased_Climb() && Own_Below_Threat();

need_downward_RA = Non_Crossing_Biased_Descend() && Own_Above_Threat();

if (need_upward_RA && need_downward_RA)

/* unreachable: requires Own_Below_Threat and Own_Above_Threat

to both be true - that requires Own_Tracked_Alt < Other_Tracked_Alt

and Other_Tracked_Alt < Own_Tracked_Alt, which isn’t possible */

alt_sep = UNRESOLVED;

else if (need_upward_RA)

alt_sep = UPWARD_RA;

else if (need_downward_RA)

alt_sep = DOWNWARD_RA;

else

alt_sep = UNRESOLVED;

}

return alt_sep;

}

}

A.2.2. Injected Faults

To show which faults have been injected to the different versions the difference file
is inserted below.

1c1

< class tcas {

> class tcas_v01 {

58c58

< result = !(Own_Below_Threat()) || ((Own_Below_Threat()) && (!(Down_Separation >= ALIM())));

> result = !(Own_Below_Threat()) || ((Own_Below_Threat()) && (!(Down_Separation > ALIM())));

1c1

< class tcas {

> class tcas_v02 {

46c46

< return (Climb_Inhibit ? Up_Separation + NOZCROSS : Up_Separation);

> return (Climb_Inhibit ? Up_Separation + MINSEP : Up_Separation);

1c1

< class tcas {

> class tcas_v03 {

103c103

< intent_not_known = Two_of_Three_Reports_Valid && Other_RAC == NO_INTENT;

> intent_not_known = Two_of_Three_Reports_Valid || Other_RAC == NO_INTENT;

1c1

< class tcas {

Sabine Zarl 72/80

A. TCAS Master’s Thesis

> class tcas_v04 {

62c62

< result = Own_Above_Threat() && (Cur_Vertical_Sep >= MINSEP) && (Up_Separation >= ALIM());

> result = Own_Above_Threat() && (Cur_Vertical_Sep >= MINSEP) || (Up_Separation >= ALIM());

1c1

< class tcas {

> class tcas_v05 {

101c101

< enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) && (Cur_Vertical_Sep > MAXALTDIFF);

> enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV);

1c1

< class tcas {

> class tcas_v06 {

87c87

< return (Own_Tracked_Alt < Other_Tracked_Alt);

> return (Own_Tracked_Alt <= Other_Tracked_Alt);

1c1

< class tcas {

> class tcas_v07 {

18c18

< static int Positive_RA_Alt_Thresh[] = {400,500,640,740};

> static int Positive_RA_Alt_Thresh[] = {400,550,640,740};

1c1

< class tcas {

> class tcas_v08 {

18c18

< static int Positive_RA_Alt_Thresh[] = {400,500,640,740};

> static int Positive_RA_Alt_Thresh[] = {400,500,640,700};

1c1

< class tcas {

> class tcas_v09 {

73c73

< upward_preferred = Inhibit_Biased_Climb() > Down_Separation;

> upward_preferred = Inhibit_Biased_Climb() >= Down_Separation;

1c1

< class tcas {

> class tcas_v10 {

87c87

< return (Own_Tracked_Alt < Other_Tracked_Alt);

> return (Own_Tracked_Alt <= Other_Tracked_Alt);

92c92

< return (Other_Tracked_Alt < Own_Tracked_Alt);

> return (Other_Tracked_Alt <= Own_Tracked_Alt);

1c1

< class tcas {

> class tcas_v11 {

87c87

< return (Own_Tracked_Alt < Other_Tracked_Alt);

> return (Own_Tracked_Alt <= Other_Tracked_Alt);

92c92

< return (Other_Tracked_Alt < Own_Tracked_Alt);

> return (Other_Tracked_Alt <= Own_Tracked_Alt);

101c101

< enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) && (Cur_Vertical_Sep > MAXALTDIFF);

> enabled = High_Confidence || (Own_Tracked_Alt_Rate <= OLEV) && (Cur_Vertical_Sep > MAXALTDIFF);

1c1

< class tcas {

> class tcas_v12 {

101c101

< enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) && (Cur_Vertical_Sep > MAXALTDIFF);

> enabled = High_Confidence || (Own_Tracked_Alt_Rate <= OLEV) && (Cur_Vertical_Sep > MAXALTDIFF);

1c1

< class tcas {

> class tcas_v13 {

3c3

< public static final int OLEV = 600; /* in feets/minute */

Sabine Zarl 73/80

A. TCAS Master’s Thesis

> public static final int OLEV = 600+100; /* in feets/minute */

1c1

< class tcas {

> class tcas_v14 {

4c4

< public static final int MAXALTDIFF = 600; /* max altitude difference in feet */

> public static final int MAXALTDIFF = 600+50; /* max altitude difference in feet */

1c1

< class tcas {

> class tcas_v15 {

5c5

< public static final int MINSEP = 300; /* min separation in feet */

> public static final int MINSEP = 300+350; /* min separation in feet */

101c101

< enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) && (Cur_Vertical_Sep > MAXALTDIFF);

> enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV);

1c1

< class tcas {

> class tcas_v16 {

18c18

< static int Positive_RA_Alt_Thresh[] = {400,500,640,740};

> static int Positive_RA_Alt_Thresh[] = {400+1,500,640,740};

1c1

< class tcas {

> class tcas_v17 {

18c18

< static int Positive_RA_Alt_Thresh[] = {400,500,640,740};

> static int Positive_RA_Alt_Thresh[] = {400,500+1,640,740};

1c1

< class tcas {

> class tcas_v18 {

18c18

< static int Positive_RA_Alt_Thresh[] = {400,500,640,740};

> static int Positive_RA_Alt_Thresh[] = {400,500,640+50,740};

1c1

< class tcas {

> class tcas_v19 {

18c18

< static int Positive_RA_Alt_Thresh[] = {400,500,640,740};

> static int Positive_RA_Alt_Thresh[] = {400,500,640,740+20};

1c1

< class tcas {

> class tcas_v20 {

55c55

< upward_preferred = Inhibit_Biased_Climb() > Down_Separation;

> upward_preferred = Inhibit_Biased_Climb() >= Down_Separation;

1c1

< class tcas {

> class tcas_v21 {

55c55

< upward_preferred = Inhibit_Biased_Climb() > Down_Separation;

> upward_preferred = (Up_Separation + NOZCROSS) > Down_Separation;

1c1

< class tcas {

> class tcas_v22 {

55c55

< upward_preferred = Inhibit_Biased_Climb() > Down_Separation;

> upward_preferred = Up_Separation > Down_Separation;

1c1

< class tcas {

> class tcas_v23 {

73c73

< upward_preferred = Inhibit_Biased_Climb() > Down_Separation;

> upward_preferred = (Up_Separation + NOZCROSS) > Down_Separation;

1c1

< class tcas {

Sabine Zarl 74/80

A. TCAS Master’s Thesis

> class tcas_v24 {

73c73

< upward_preferred = Inhibit_Biased_Climb() > Down_Separation;

> upward_preferred = Up_Separation > Down_Separation;

1c1

< class tcas {

> class tcas_v25 {

80c80

< result = !(Own_Above_Threat()) || ((Own_Above_Threat()) && (Up_Separation >= ALIM()));

> result = !(Own_Above_Threat()) || ((Own_Above_Threat()) && (Up_Separation > ALIM()));

1c1

< class tcas {

> class tcas_v26 {

101c101

< enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) && (Cur_Vertical_Sep > MAXALTDIFF);

> enabled = High_Confidence && (Cur_Vertical_Sep > MAXALTDIFF);

1c1

< class tcas {

> class tcas_v27 {

101c101

< enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) && (Cur_Vertical_Sep > MAXALTDIFF);

> enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV);

1c1

< class tcas {

> class tcas_v28 {

46c46

< return (Climb_Inhibit ? Up_Separation + NOZCROSS : Up_Separation);

> return ((Climb_Inhibit == false) ? Up_Separation + NOZCROSS : Up_Separation);

1c1

< class tcas {

> class tcas_v29 {

46c46

< return (Climb_Inhibit ? Up_Separation + NOZCROSS : Up_Separation);

> return (Up_Separation);

1c1

< class tcas {

> class tcas_v30 {

46c46

< return (Climb_Inhibit ? Up_Separation + NOZCROSS : Up_Separation);

> return Up_Separation + NOZCROSS;

1c1

< class tcas {

> class tcas_v31 {

58a59

> result = result && (Own_Tracked_Alt <= Other_Tracked_Alt);

62a64

> result = result && (Own_Tracked_Alt < Other_Tracked_Alt);

109c111

< need_upward_RA = Non_Crossing_Biased_Climb() && Own_Below_Threat();

> need_upward_RA = Non_Crossing_Biased_Climb();

1c1

< class tcas {

> class tcas_v32 {

76a77

> result = result & (Other_Tracked_Alt < Own_Tracked_Alt);

80a82

> result = result & (Other_Tracked_Alt <= Own_Tracked_Alt);

110c112

< need_downward_RA = Non_Crossing_Biased_Descend() && Own_Above_Threat();

> need_downward_RA = Non_Crossing_Biased_Descend();

1c1

< class tcas {

> class tcas_v33 {

18c18

< static int Positive_RA_Alt_Thresh[] = {400,500,640,740};

> static int Positive_RA_Alt_Thresh[] = {0,400,500,640,740}; /* not quite equivalent to C code fault */

1c1

< class tcas {

Sabine Zarl 75/80

A. TCAS Master’s Thesis

> class tcas_v34 {

107c107

< if (enabled && ((tcas_equipped && intent_not_known) || !tcas_equipped))

> if (enabled && tcas_equipped && intent_not_known || !tcas_equipped)

1c1

< class tcas {

> class tcas_v35 {

46c46

< return (Climb_Inhibit ? Up_Separation + NOZCROSS : Up_Separation);

> return (Climb_Inhibit ? Up_Separation : Up_Separation + NOZCROSS);

1c1

< class tcas {

> class tcas_v36 {

37c37

< public static final int DOWNWARD_RA = 2;

> public static final int DOWNWARD_RA = 1;

1c1

< class tcas {

> class tcas_v37 {

41c41

< return Positive_RA_Alt_Thresh[Alt_Layer_Value];

> return Positive_RA_Alt_Thresh[0];

1c1

< class tcas {

> class tcas_v38 {

18c18

< static int Positive_RA_Alt_Thresh[] = {400,500,640,740};

> static int Positive_RA_Alt_Thresh[] = {400,500,640}; /* not quite equivalent to C fault */

1c1

< class tcas {

> class tcas_v39 {

80c80

< result = !(Own_Above_Threat()) || ((Own_Above_Threat()) && (Up_Separation >= ALIM()));

> result = !(Own_Above_Threat()) || ((Own_Above_Threat()) && (Up_Separation > ALIM()));

1c1

< class tcas {

> class tcas_v40 {

58c58

< result = !(Own_Below_Threat()) || ((Own_Below_Threat()) && (!(Down_Separation >= ALIM())));

> result = ((Own_Below_Threat()) && (!(Down_Separation >= ALIM())));

109c109

< need_upward_RA = Non_Crossing_Biased_Climb() && Own_Below_Threat();

> need_upward_RA = Non_Crossing_Biased_Climb();

1c1

< class tcas {

> class tcas_v41 {

62c62

< result = Own_Above_Threat() && (Cur_Vertical_Sep >= MINSEP) && (Up_Separation >= ALIM());

> result = (Cur_Vertical_Sep >= MINSEP) && (Up_Separation >= ALIM());

Sabine Zarl 76/80

B. Abbreviations Master’s Thesis

B. Abbreviations

API Application Programming Interface
JVM Java Virtual Machine
LoC Lines of Code
MBD Model-based Diagnosis
SFL Spectrum-based Fault Localization
UML Unified Modeling Language

Sabine Zarl 77/80

Bibliography Master’s Thesis

Bibliography

[1] Rui Abreu, Wolfgang Mayer, Markus Stumptner, and Arjan J. C. van Gemund.
Refining spectrum-based fault localization rankings. In SAC ’09: Proceedings
of the 2009 ACM symposium on Applied Computing, pages 409–414, New York,
NY, USA, 2009. ACM.

[2] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. An evaluation of
similarity coefficients for software fault localization. In PRDC ’06: Proceedings
of the 12th Pacific Rim International Symposium on Dependable Computing,
pages 39–46, Washington, DC, USA, 2006. IEEE Computer Society.

[3] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. Spectrum-based
multiple fault localization. In ASE ’09: Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, pages 88–99,
Washington, DC, USA, 2009. IEEE Computer Society.

[4] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund.
A practical evaluation of spectrum-based fault localization. J. Syst. Softw.,
82(11):1780–1792, 2009.

[5] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. On the accuracy of
spectrum-based fault localization. In TAICPART-MUTATION ’07: Proceed-
ings of the Testing: Academic and Industrial Conference Practice and Research
Techniques - MUTATION, pages 89–98, Washington, DC, USA, 2007. IEEE
Computer Society.

[6] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis
of java bytecode. In ESOP’07: Proceedings of the 16th European conference on
Programming, pages 157–172, Berlin, Heidelberg, 2007. Springer-Verlag.

[7] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. Dependable and Secure Com-
puting, IEEE Transactions on, 1(1):11 – 33, jan.-march 2004.

[8] Kent Beck. Junit api document. kentbeck.github.com/junit/javadoc/4.8/.

[9] Eric Bruneton. Asm 3.0 a java bytecode engineering library.
download.forge.objectweb.org/asm/asm-guide.pdf.

Sabine Zarl 78/80

Bibliography Master’s Thesis

[10] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. Asm: a code manipula-
tion tool to implement adaptable systems, November 2002. Grenoble, France.

[11] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric Brewer.
Pinpoint: Problem determination in large, dynamic internet services. In DSN
’02: Proceedings of the 2002 International Conference on Dependable Systems
and Networks, pages 595–604, Washington, DC, USA, 2002. IEEE Computer
Society.

[12] Shigeru Chiba. Javassist java bytecode manipulation made simple.
www.jboss.org/javassist.

[13] Shigeru Chiba. Javassist javadocs. http://www.csg.is.titech.ac.jp/∼ chiba/-
javassist/html.

[14] Shigeru Chiba and Muga Nishizawa. An easy-to-use toolkit for efficient java
bytecode translators. In GPCE ’03: Proceedings of the 2nd international con-
ference on Generative programming and component engineering, pages 364–376,
New York, NY, USA, 2003. Springer-Verlag New York, Inc.

[15] Valentin Dallmeier, Christian Lindig, and Andreas Zeller. Lightweight defect lo-
calization for java. In Andrew P. Black, editor, ECOOP 2005 - Object-Oriented
Programming, volume 3586 of Lecture Notes in Computer Science, pages 528–
550. Springer Berlin / Heidelberg, 2005.

[16] Apache Software Foundation. Bcel api. jakarta.apache.org/bcel/manual.html.

[17] Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu Yi. An empirical in-
vestigation of program spectra. In PASTE ’98: Proceedings of the 1998 ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools and en-
gineering, pages 83–90, New York, NY, USA, 1998. ACM.

[18] James A. Jones and Mary Jean Harrold. Empirical evaluation of the taran-
tula automatic fault-localization technique. In ASE ’05: Proceedings of the
20th IEEE/ACM international Conference on Automated software engineering,
pages 273–282, New York, NY, USA, 2005. ACM.

[19] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test
information to assist fault localization. In ICSE ’02: Proceedings of the 24th
International Conference on Software Engineering, pages 467–477, New York,
NY, USA, 2002. ACM.

[20] Don Lance, Roland H. Untch, and Nancy J. Wahl. Bytecode-based java program
analysis. In ACM-SE 37: Proceedings of the 37th annual Southeast regional
conference (CD-ROM), page 14, New York, NY, USA, 1999. ACM.

Sabine Zarl 79/80

Bibliography Master’s Thesis

[21] Tim Lindholm and Frank Yellin. The java virtual machine specification sec-
ond edition. http://java.sun.com/docs/books/jvms/second edition/html /VM-
SpecTOC.doc.html, 1999.

[22] Tim Lindholm and Frank Yellin. Vm spec - compiling for the java virtual
machine. http://java.sun.com/docs/books/jvms/second edition/html/ Com-
piling.doc.html, 1999.

[23] Tim Lindholm and Frank Yellin. Vm spec - introduction.
http://java.sun.com/docs/books/jvms/second edition/html/Introduction.
doc.html, 1999.

[24] Tim Lindholm and Frank Yellin. Vm spec - the class file for-
mat. http://java.sun.com/docs/books/jvms/second edition/html/Class
File.doc.html, 1999.

[25] Tim Lindholm and Frank Yellin. Vm spec - the structure of the java
virtual machine. http://java.sun.com/docs/books/jvms/second edition/html
/Overview.doc.html, 1999.

[26] Wolfgang Mayer. Static and Hybrid Analysis in Model-based Debugging. PhD
thesis, School of Computer and Information Science, University of South Aus-
tralia, 2007.

[27] Andreia da Silva Meyer, Antonio Augusto Franco Garcia, Anete Pereira de
Souza, and Claudio Lopes de Souza Jr. Comparison of similarity coefficients
used for cluster analysis with dominant markers in maize (Zea mays L). Genetics
and Molecular Biology, 27:83 – 91, 00 2004.

[28] Attila Szegedi and Tibor Gyimothy. Dynamic slicing of java bytecode programs.
In SCAM ’05: Proceedings of the Fifth IEEE International Workshop on Source
Code Analysis and Manipulation, pages 35–44, Washington, DC, USA, 2005.
IEEE Computer Society.

[29] Martin Weiglhofer, Gordon Fraser, and Franz Wotawa. Using spectrum-based
fault localization for test case grouping. In ASE ’09: Proceedings of the
2009 IEEE/ACM International Conference on Automated Software Engineer-
ing, pages 630–634, Washington, DC, USA, 2009. IEEE Computer Society.

[30] X. Xie, W. E. Wong, T. Y. Chen, and B. Xu. Spetrum-based fault localization
without test oracles. Technical Report UTDCS-07-10, Department of Computer
Science, University of Texas at Dallas, February 2010.

Sabine Zarl 80/80

