
Institute for Computer Graphics and Vision

Graz University of Technology

Graz

Visualization of
Gene Expression Data

with Advanced Scatterplots
Master’s Thesis

Jürgen Pillhofer, BSc

juergen.pillhofer@student.tugraz.at

April 2010

Supervisor:

Univ.-Prof. Dipl.-Ing. Dr. techn. Dieter Schmalstieg

Advisor:

Dipl.-Ing. Marc Streit

Dipl.-Ing. Alexander Lex

Abstract

Caleydo is an information visualisation framework focusing on pathway exploration and
the visualisation of gene expression data. In this thesis we provide another visualisation
method for gene expression data based on scatterplots and scatterplot-matrices. While
methods like dimension reduction techniques for this kind of visualisation have their own
advantages, in our software implementation we focus on scatterplot matrices to present the
data. Investigating modern InfoVis techniques is the key to provide a seamless integration
of the scatterplot view into the framework. To maximize the usability, we combine many
of these techniques to enhance a normal scatterplot into a powerful tool for the analysis of
multivariate data. Using scatterplots matrices can produce a vast amount of data. Because
high responsiveness in a real-time system is mandatory, methods which alleviate the per-
formance issues are especially useful for our implementation.

Keywords: scatterplot, scatterplot matrix, focus plus context, details on demand, gene
expression, Caleydo, OpenGL, JOGL

Zusammenfassung

Caleydo ist ein Informationsvisualisierung Framework, welches sich auf die Darstellung von
Stoffwechselwegen und Genexpressionsdaten spezialisiert hat. In dieser Arbeit stellen wir
eine weitere Visualisierungsmethode mit Scatterplots (Streudiagrammen) und Scatterplot
Matrizen vor. Während Dimensionsreduzierung-Methoden für diese Art der Visualisierung
ihre eigenen Vorteile haben, konzentrieren wir uns in unserer Software-Implementierung auf
Scatterplot Matrizen, um die Daten zu präsentieren. Moderne Informationsvisualisierungs-
techniken sind der Schlüssel, um eine nahtlose Integration der Scatterplot Ansicht in das
Framework zu gewährleisten. Um die Benutzerfreundlichkeit zu maximieren, kombinieren
wir mehrere dieser Techniken, um aus einem gewöhnlichen Scatterplot ein leistungsfähi-
ges Werkzeug für die Analyse von multivariaten Daten zu erstellen. Bei der Verwendung
von Scatterplots Matrizen können eine beträchtliche Menge Daten anheimfallen. Weil eine
schnelle Reaktionszeit in einem Echtzeitsystem eine wichtige Anforderung ist, sind Me-
thoden, welche die Rechenleistungen optimieren, für unsere Implementierung besonders
nützlich.

Schlüsselwörter: Streudiagramme, Scatterplot Matrizen, focus plus context, details on
demand, Genexpressionsdaten, Caleydo, OpenGL, JOGL

Pledge

I hereby certify that the work presented in this master’s thesis is my own and that work
performed by others is appropriately cited.

Ich versichere hiermit, diese Arbeit selbständig verfasst, keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt und mich auch sonst keiner unerlaubten Hilfsmittel
bedient zu haben.

4

Danksagung

Anfangs möchte ich meinen Eltern, Manfred und Doris Pillhofer danken, die mir meine
Ausbildung ermöglichten. Ich möchte mich bei ihnen für die Unterstützung und das Ver-
ständnis bei allen meinen Entscheidungen bedanken, und nicht zuletzt für die Förderung
meines Wissensdurstes, welcher meine Leben immer wieder bereichert hat.

Ebenfalls danke ich ganz herzlich meinen Betreuern. Dieter Schmalstieg für die Ermög-
lichung dieser spannenden Diplomarbeit, Marc Streit und Alexander Lex danke ich für
das konstruktive erhaltende Feedback, der guten Zusammenarbeit und den wertvollen
Tipps.

Ich möchte mich aller herzlichst bei meiner wunderbaren Frau Maureen bedanken, ohne de-
ren Liebe, Unterstützung und Verständnis für die vielen späte Stunden auf der Universität
diese Arbeit nicht möglich gewesen wäre.

Zu guter Letzt möchte ich mich bei meinem Sohn Odin bedanken, dessen Lächeln mir
immer wieder die nötige Motivation beschert hat.

5

Contents

1 Introduction 8
1.1 Problem Statement and Contribution . 8
1.2 Biological Background and Gene Expression Data 9
1.3 Structure of this Document . 10

2 Related Work 11
2.1 Information Visualization . 11

2.1.1 The Information-Seeking Mantra 11
2.1.2 Focus plus Context (F+C) . 13

2.1.2.1 Distortion-oriented F+C Methods 14
2.1.3 Coordinated Multiple Views . 16
2.1.4 Linking and Brushing . 18
2.1.5 Efficient Rendering of huge data-sets 20
2.1.6 Discussion . 22

2.2 InfoVis in Caleydo . 23
2.2.1 Heatmaps . 23
2.2.2 Parallel Coordinates . 23

2.3 Scatterplots . 25
2.3.1 Overplotting . 26
2.3.2 Scatterplots related diagrams . 27
2.3.3 Continuous Scatterplots . 27
2.3.4 Multivariate Data and Scatterplots 28

2.3.4.1 Dimension Reduction Methods 31
2.3.5 Scatterplot Matrix . 33

2.3.5.1 Navigation in the Scatterplot Matrix 35
2.3.6 Discussion . 36

3 Concept 37
3.1 The main Scatterplot-view . 37
3.2 The Scatterplot Matrix . 38
3.3 Focus plus Context . 38
3.4 Linking and Brushing . 39
3.5 Zooming in the Scatterplot . 40
3.6 Integration into the framework . 40

4 Design and Implementation 41
4.1 Used Technologies . 41
4.2 Framework . 42

4.2.1 View Management . 42

Contents 6

4.2.2 Plug-In Architecture . 43
4.2.3 Storage Concept . 43
4.2.4 Event System . 43
4.2.5 Selection Management . 44

4.3 Software Design . 44
4.3.1 Display Lists . 44
4.3.2 Sampling and Textures . 45
4.3.3 Zooming . 46
4.3.4 Selection Management and Brushing 47

5 Results 50
5.1 Scattterplot Main View . 50
5.2 Scattterplot Matrix . 56
5.3 Selections and Selection Manager . 57

6 Conclusions and Future Work 61

A Keyboard shortcuts 63

Appendix 64

List of Figures 65

List of Tables 66

List of Listings 67

Bibliography 74

Contents 7

Chapter 1

Introduction

If we wish to make a new world we have the material ready. The first one, too,
was made out of chaos.

Robert Quillen

When we collect data or gain information in huge quantities, at the first glance every-
thing will appear confusing and chaotic, until we find the means to classify and order
it. The field of Information Visualisation provides us with many techniques and methods
to detect meanings and patterns in abstract data, find correlations between at the first
glance disjointed aspects in the informations we get. But Information Visualisation does
not only show us how we reach our goals, a major aspect in this field of science focuses on
maximizing efficiency on the way to get there.

Bioinformatics provide a vast playground for Information Visualisation methods. To un-
derstand the complexity which lie in biotic systems, computer-aided methods played a big
part in the growth of this field the recent years. For example, the analysis of gene expres-
sion data, where each experiment can hold thousands of genes and multiple experiments
are examined at once to detect important correlations would be a hard, maybe even im-
possible task without the help of visualisation methods like heatmaps, parallel coordinates
or scatterplots.

1.1 Problem Statement and Contribution

At the Graz University of Technology, with the help of the Institute for Pathology of the
Medical University of Graz the Caleydo framework was developed, which is an information
visualisation framework focusing on pathway exploration and the visualisation of gene
expression data.

In the framework there already exist two ways for visualizing gene expression data: heatmaps
and parallel coordinates. It lacks one well-known visualisation method though, which
can be typically found in comparable frameworks: the scatterplot. For this reason the fo-
cus of this work is to provide a visualisation method for gene expression data based on
scatterplots and scatterplot-matrices. In this thesis we describe the methods which we use
for a smooth and seamless integration in the framework, the interaction with the already
existing methods, the modifications and enhancements we provide over normal scatterplots
and the improved usability when using them.

Chapter 1 Introduction 8

1.2 Biological Background and Gene Expression
Data

Like computer programs are encoded in bits and bytes witch describe their behaviour and
functionality, the base code on which the living species is built upon is the deoxyribonucleic
acid, the DNA [Alberts2002]. The DNA, which is a part of the cell, is polymer consisting of
4 monomers (nucleotides) called A (adenine), G (guanine), C (cytosine) and T (thymine).
The DNA comes in form of a double helix consisting of a sugar-phosphate backbone, where
on each side 2 nucleotides (called base pairs) are connected (A with T, C with G on the
opposite strand) [Alberts2002] (see Figure 1.1). How those base pairs are ordered in the
DNA represents the building code of a life form, whether it is a small mouse or a human
being.

Figure 1.1: The DNA in form of a double helix and its base pairs (Illustration by the U.S.
National Library of Medicine).

Every cell produces a certain amount of protein. This is called expression regulation.
How much protein is produced is encoded in so called non-coding regions. Examining the
gene expression regulation can give hints to the functionality or even the malfunction
of the studied gene, for example a cancer type can have a distinct regulation pattern
[Alberts2002].

To study multiple genes at once DNA microarrays became famous in the last 20 years
in diagnostics and analysis of the genome. Microarrays (see Figure 1.2) are small glass
plates, where thousands of small DNA oligonucleotides called featured are spotted beside
each other. After a biochemical process the color of those spots correlate to their expression,
which then can be further investigated: detecting differences in the regulations of different
patients or of the same patient at different times is a powerful tool for diagnosis and can
help with the appropriate treatment of diseases.

Chapter 1 Introduction 9

Figure 1.2: cDNA (complementary DNA) Microarray

1.3 Structure of this Document

Section 2 will be an overview of related work including general Information Visualization
techniques like focus plus context and visualisation of immense data-volumes, scatterplots
and scatterplot matrices. Section 3 will show the details about the concept behind the
implementation of this thesis and Section 4 will focus on the software design and the
actual implementation details. Results and conclusions are discussed in Section 5. Section
6 concludes the thesis and summarizes potential future work.

Chapter 1 Introduction 10

Chapter 2

Related Work

This thesis is based on two major topics: general information visualisation and in a par-
ticular case, visualisation with scatterplots.

Section 2.1 introduces common InfoVis techniques like focus+context, linking and brush-
ing and visualisation of large data-sets. In Section 2.2 we briefly look at the visualisations
approaches the Caleydo framework provides, especially focusing on multivariate-data visu-
alisation. Section 2.3 describes the various types of scatterplots, scatterplot-matrices and
related techniques like dimension reduction approaches.

2.1 Information Visualization

”Visual representations and interaction techniques take advantage of the human
eye’s broad bandwidth pathway into the mind to allow users to see, explore,
and understand large amounts of information at once. Information visualization
focused on the creation of approaches for conveying abstract information in
intuitive ways.

[Thomas2005]

In simpler words, Information Visualisation (InfoVis) wants to graphically present ab-
stract, often quite complex data as easily to understand as possible for the viewer. One
of the first known attempts to fulfil this goal was a planetary movement digram from
about 950 A.D. (see Figure 2.1), which shows the changing positions of the sun, moon and
the planets in time. Much has changed over the years, from these old diagrams over to
Charles Joseph Minard’s Tableau-graphique in the 19th century up to modern, sophisti-
cated visualisation techniques, but the common goal always remained the same. However,
with computer systems the definition was refined by two aspects: Interaction and anima-
tion.

2.1.1 The Information-Seeking Mantra

In his often cited paper, The Eyes Have It:A Task by Data Type Taxonomy for Information
Visualizations [Shneiderman1996] Ben Shneiderman introduces us to the information seek-
ing mantra, which even until today did not lose its validity in Information Visualisation.
Most applications obey to these rules: Overview first, zoom and filter, then details-on-
demand. Furthermore, Schneiderman introduces seven tasks users want to perform in an
InvoVis environment. Those tasks are:

Chapter 2 Related Work 11

Figure 2.1: Ancient planetary movements diagram.[Tufte1983]

Overview

Before you can focus on detail, you need orientation first. A detailed roadmap for example
is of no use when you have no idea for what part of the country it is. So you would present
the map of the whole country first, before going into detail.

Zoom

After gaining orientation, you want as much detail as possible. Zooming in from the
country-map to a simple road map into a detailed street-view let you get your desired
information without losing orientation.

Filter

Unnecessary data, which may be useful at other times, can just distract you from finding
the particular information you seek. Using the roadmap example, if you wish to find the
best way with your car to a certain destination, you don’t need elevation-data, you just
need to see the roads.

Details-on-demand

Screenspace is valuable, and information should be hidden unless needed to not distract
from current tasks. A lot of tools inside a typical graphical user-interface (GUI) are based
on this idea: Buttons, mouse-overs, pop-ups, menus and so on provide additional informa-
tion through user interaction which are hidden otherwise.

Relate

To further help with orientation, emphasizing relationships between the different data
sets helps. Multiple coordinated views of different data or different representations shown
together of the same data will produce an easier understanding of correlation in the

Chapter 2 Related Work 12

data. Multiple coordinated views are discussed in Section 2.1.3 When highlighting a
point of interest (POI) in one view also highlights the same POI in the other views,
we talk about Section Linking and Brushing, which we discuss more thoroughly in Section
3.4.

History

In lots of interactive computer applications, especially in information visualisation, the
desired end-result is rarely accomplished by following a predefined plan, it is often the
result of trial and error methods and successive refinements through user actions. Such
applications require an undo-functionality for usability-purposes, so having a history of
recent events to jump back is needed.

Extract

Having found the desired information, extracting it is often useful for further and deeper
investigation or to share them with others. So the ability of saving/printing/drag and drop-
ping sub-collections of the main-data is a commonly used features [Shneiderman1996].

2.1.2 Focus plus Context (F+C)

Schneiderman mantra does not necessarily need to be interpreted as a sequential approach:
First we get an overview of the data, and only afterwards we focus on the detail. We can
also do this simultaneously. The idea is, to show some parts of the screen in greater detail
(Focus) while still keeping a global orientation view with reduced detail (Context), showing
all information available. The information in the context-region may also be different from
the information wanted in the focus part [Card1999]. Robert Kosara and Helwig Hauser
describe four groups of F+C techniques[Kosara2003]:

• Distortion-oriented.

• Overview Methods.

• Filtering.

• In-Place Techniques.

Distortion-oriented F+C methods provide more space for the detail view simply by geo-
metrically distorting the whole or just parts of the image [Kosara2003]. They are discussed
in more detail in Section 2.1.2.1.

In Overview Methods, Focus and Context are presented separately in different re-
gions or in different windows. The default-setup of the windows-explorer is a good and
well known example here, its shows the whole directory-tree of the file system in one
part of a window, and the contents of one directory with more details on the other
half.

With Filtering methods, with the help of user interactions, additional information is fil-
tered out of the overview. Magic Lenses [Bier1993] provide such an approach by letting
the user move a special shape over the window which reveals additional details (see Figure
2.2). Another method was presented by Kosara et al.[Kosara2002]: To emphasize relevant

Chapter 2 Related Work 13

information to the user, they introduced a method that blurs object based on their rele-
vance which they called Semantic Depth of Field (SDOF), inspired by the depth of field
(DOF) effect used in photography (see Figure 2.3).

Figure 2.2: The rectangular ’Magic Lense’ dragged over this house-sketch reveals its shad-
ows. [Bier1993]

Figure 2.3: This simple scatterplot shows the Semantic Depth of Field (SDOF) in action.
The at the moment not relevant information is blurred, so it can be better
distinguished from the desired details. [Kosara2002]

In-Place Techniques do not require a lens, they hide and show different informations
in the same view depending on user interaction. Some Level-of-Detail (LOD) techniques
are also part of this group. (LOD means that each piece of information can be displayed
in various degrees of detail, using the level which is mostly appropriate in the given situ-
ation).

2.1.2.1 Distortion-oriented F+C Methods

Since one of the foci of this thesis practical part employs some of these F+C techniques,
we introduce them here in more detail.

Chapter 2 Related Work 14

Fisheye Views

The most popular methods are the fisheye views [Furnas1986], derived from the fisheye
lens used in photography. The fisheye-view shows the (in most cases interactive) focus area
larger than the rest of the image, using distortion to avoid occlusion or obscuration. Major
drawbacks of fisheye views are that distortion also affects the focus-area, which makes
some visualisations difficult to interpret. An example for a fisheye-distorted graph can be
seen in Figure 2.4.

Figure 2.4: A graph with 100 vertices and 124 edges (a), (b) shows the fisheye-distorted
graph with the focus on the ’48’ label.[Sarkar1994]

The Perspective Wall

The perspective wall is a visualisation method developed by Mackinlay et al. for viewing
mostly 1-dimensional data (e.g. Directory entries)[Mackinlay1991]. The method maps a
2D-Layout onto a three-parted 3D-Wall, resulting in 3 panels, the middle, nearest wall as
non-distorted focus-panel, the other two are distorted into perspective (see Figure 2.5).
Because there are just 3 flat panels, this is an easy to implement approach with standard
hardware using simple texture mapping [Kosara2003].

The Document Lens

The document lens [Robertson1993] follows a very similar approach. The idea is to view
an entire multiple-page document on one screen while still being able to read. A normal
magnifier lens would obscure regions of text, while using a fisheye lens will distort the text
and make it harder to read. The document lens avoids this: Here, the rectangular magni-
fying lens represents the focus area, where the region outside the lens is distorted into the
perspective away from the screen (see Figure 2.5). The view looks like a truncated pyramid
from above, allowing the user to navigate through all the pages.

Chapter 2 Related Work 15

Figure 2.5: (a) The Document Lens and (b) the Perspective Wall. Both techniques show
the focus-part as non-distorted area.[Mackinlay1991][Robertson1993]

Orthogonal Stretching

In the orthogonal stretching method [Sarkar1993] the image is divided into rectangular
subspaces, forming a grid. The grid lines are called (bar) handles , which are used to stretch
the screen from the handles point. Moving such a bar handle, the screen is stretched on
one side and expands on the other side. With this system, the user is able to gain multiple
focus areas on the screen, while still obtaining the orthogonal ordering of the regions and
keeps symmetry (see Figure 2.6).

A related technique is the polygonal stretching, which allows arbitrary polygonal focus
regions, but forfeits the orthogonal ordering [Sarkar1993].

2.1.3 Coordinated Multiple Views

Multiple Views are commonly used to present the same data under different aspects in
two or more windows. Baldonado et al. proposed guidelines when and how multiple views
should be preferred to single views [Baldonado2000]:

• Diversity: When different views show diverging aspects of the data.

• Complementarity: The different views emphasize correlation or disparities of the
data.

• Decomposition: If a view gets too complex for the viewer, separate the data in dif-
ferent views.

• Parsimony: When a new view does not justify the cognitive context switching latency,
the space and/or the computational costs which multiple view raise over single ones,
one should not use them.

• Self-Evidence: Show the relationship between different views.

• Consistency: The user interface and the state of the data in different views should

Chapter 2 Related Work 16

Figure 2.6: (a) shows the original visualisation, focus on the square labeled with ’5.5’.
(b) demonstrates F+C with orthogonal stretching, using four bar handles
.[Sarkar1993]

be consistent

• Attention Management: The focus of the user should be directed to right view.

Multiple views are well-suited for overview-methods [Roberts2007a] as discussed in 2.3.5.
Plumlee and Ware showed, by comparing user perceptions between zooming and multiple
window interfaces, that the number of user errors by using multiple window interfaces have
been much lower than with zooming interfaces [Plumlee2006]. The reason they gave was
that users utilize different windows more often than using a zoom feature for comparison
tasks. They also concluded that using zooming interfaces is faster for the test subjects
with few objects to compare, but with more objects a multiple windows environment is
faster.

Limiting multiple views to two instances, we speak of dual view systems [Convertino2003].
We can distinguish here between the above mentioned focus+context views, the similar
overview+detail techniques where the overview windows shows more simplified and
abstracted data [Roberts2007a]. Further we have difference views which emphasize on
the varieties in data. Master/slave systems let one view navigate others. Small multipes
are small views layed side-by-side spawning a matrix. They use the same visualisation
techniques but show different subsets or different parametrized data. This helps to identify
the influence one parameter has on the data.

Coordinated multiple views are not only build on the same base-data-set of which they
derive their views, but the different visualisation are also concatenated, logically and often
visually. Coordinated multiple views should not be seen isolated, they should be treated
as an entity so that ”..information contained in individual views can be integrated into a

Chapter 2 Related Work 17

Figure 2.7: Multiple Views.[Baldonado2000]

coherent image of the data as a whole” [Buja1991]. To visually emphasize the correlation of
each view, several methods exist: Navigational slaving is one technique, where movements
in one view are propagated to the others [Baldonado2000], Visual links [Shneiderman2006,
Aris2007, Collins2007], which are drawn lines between correlated data in different views, is
another technique. Their use in the Caleyedo framework is discussed in [Lex2008]. The last
approach, Painting multiple views [Buja1991] or better known as Linking and Brushing is
described in the following chapter.

2.1.4 Linking and Brushing

The idea of linking and brushing is to combine different visualization methods
to overcome the shortcomings of single techniques. Interactive changes made in
one visualization are automatically reflected in the other visualizations. Note
that connecting multiple visualizations through interactive linking and brush-
ing provides more information than considering the component visualizations
independently.

[Keim2002]

Chapter 2 Related Work 18

Selecting a sub-set of the visible data-items with a mouse or similar tools is called brushing.
The data-subsets are typically highlighted (or color coded) to distinguish them from the
rest of the data. If those sub-set are also highlighted in other views, the brushes are
considered linked. For example using a rectangle-selection in one plot of a scatterplot
matrix shows the corresponding points in the other cells as well [Becker1987] (see Figure
2.8).

Figure 2.8: Linking and Brushing in a scatterplot matrix, using a rectangular
brush.[Voigt2002]

The basic brushing tools for 2-D environments consist of the same tools found in graphics
editing programs. Various shapes are drawn with a mouse around the desired selections, ex-
amples are rectangle shapes, lasso, freeform shapes, rubber-bands, bezier curves, polylines
and so on. More special presentation may also provide adjusted brushes, like the angu-
lar brushes in parallel coordinates [Hauser2002] or special 3D-brushes for 3-dimensional
visualisations.

On the example of XmdvTool [Ward1994], Martin et al. dig deeper in the details with
brushing technique [Martin1995]. XmdvTool allows to manipulated the brushes after set-
ting them (e.g. a brush can be hovered across the screen by dragging it with a mouse),
multiple brushes and their interactions with boolean operations are featured and new brush
operations are introduces like averaging or masking [Martin1995]. They further distinguish
between demand driven brushing (like explained above) and data driven brushing, where
the sub-selections are not decided by user interaction only but also by the data lying be-
hind, which helps to form the brush. For example, in a heavy cluttered area, it may be
hard to decide which data should lie outside or inside a brush. XmdvTool helps the user
by introducing a virtual paintbrush with witch the user can paint on the data-points of
interest. The painted points then form the brush.

Another issue arises when you don’t want the decision if a point is in a selection or
not to be binary [Martin1995]. The XmdvTool solves this by using brush boundaries,

Chapter 2 Related Work 19

where each point inside the brush gets a degree of interest (DOI) value depending on the
spatial distance to the boundaries. The brushed data is then visualized depending on its
DOI value. In the paper by H.Doleisch and H.Hauser [Doleisch2002], they built on this
idea. They called their method smooth brushing, inspired by the smooth data gained from
flow simulations. In volume rendering, to deal with occlusion problems in 3D-Space, the
rendered data points are often given an opacity value provided by a transfer function. The
DOI function corresponds to this opacity value.

Hong Chen further generalized the brushing strategy with his compound brushing [Chen2004]
idea, which consist of five components (data, selection, device, renderer and transforma-
tion) to model most kinds of brushes for different visualisations.

2.1.5 Efficient Rendering of huge data-sets

Although Moore’s Law [Moore1965] is still in place and will be at least for the next 5-10
years, the sometimes huge amount of data, especially with high-dimensional data-sets, rais-
ing complexity in visualisations and coordinated multiple view strategies still demand other
strategies then naive brute-forcing visualisations [Andrienko2007].

In 2005, Keim et al. proposed an extension to Shneiderman’s information-seeking mantra
to “Analyse First - Show the Important - Zoom, Filter and Analyse Further -Details
on Demand”, which become known as Visual Analytics Mantra [Keim2005]. Seen in this
context, this can also be interpreted as if there are already many analytic steps early in
the visualisation process, the actual visualized data load can be already greatly reduced to
only show the important information. In other words, the analytic steps could also include
performance considerations to ease scaling issues.

Still, often there is the desire to view a huge, unfiltered data-set at once, while maintaining
high responsiveness (below 100 ms [Shneiderman1994]) for user interactions in dynamic
queries.

Sampling

One possibility to reduce data-load is statistical sampling of the data. Information may
be lost, but for some cases this can vastly improve computational and often even visual
performance [Dix2002]. Statistical sampling should be used when there are too many points
to fit on the screen, details are not really that important (overviews) or if information is
lost anyway due to filters like averaging [Dix2002].

Layered Visualisation

Another method to reduce the actual rendering time, is Layered Visualisation described
by Piringer et al [Piringer2009]. The final image is divided into separate elements, spatial
and also chronological in the visualisation pipeline. These subdivisions are called layers
and should be able to be rendered as independently of each other as possible. To be more
precise, they distinguish between:

• Semantic Layers: Spatial and logical different parts of an image

• Incremental Layers: divide the data into sampled subsets where all layers together

Chapter 2 Related Work 20

Figure 2.9: Intel CPU Chart. Notice how clock speed did not rise as fast as the transistor
count due to physical limitations. This is the main reason why there was a great
paradigm-shift to parallel computing [Sutter2005].

present the final image

• LoD Layers: lower LoD-levels with less visualisation costs are replaced by higher
LoD-layers when time permits it.

The advantage this technique provides is that by each user-interaction or changes in the
base dataset, often only a small portion of the final image needs to be updated, so a lot of
the layers can be reused without costly re-calculations or re-renderings.

Multi Threading and Early Thread Termination

Even using the methods mentioned above, we are still limited by what the CPU and the
graphics hardware allow. Nevertheless, out of necessity [Sutter2005] (See Figure 2.9) and
the success of parallel graphic hardware like NVIDIAs CUDA 1 (Compute Unified Device
Architecture), the nowadays very popular parallel software design is going to influence
InfoVis. An obvious example is the rendering pipeline, which is now almost fully shifted into
hardware, and since each subset of the image can be rendered often completely independent
of each other, it can be very effectively parallelized.

All of the methods described have still one big disadvantage: for seamless visual feedback
the final anticipated image quality has to be determined beforehand for each task depend-
ing on computational power. Since the amount of input data can change during the appli-
cation process, the final goal has to be rather conservative or it risks response time issues.
To solve this, Piringer et al. combined the techniques of layered rendering with a multi-

1http://www.nvidia.com/object/cuda home new.html

Chapter 2 Related Work 21

Figure 2.10: Early Thread Termination and Layered Visualisation [Piringer2009].

thread approach [Piringer2009]. Using the Active Object design pattern [Schmidt2000],
they let each layer be rendered when triggered by an event, and stopped or restarted the
visualisation process if the event occurs again and the layer has not finished yet (see Figure
2.10). They made sure to chose layers as efficiently as possible to be able to show partial
results during constant user interaction (e.g. moving a slider), which could be problematic
otherwise if a rendering task would have to be restarted constantly, thus never showing
any results.

2.1.6 Discussion

For displaying huge amounts of data, especially multivariate data, early design decisions
are inevitable. Thankfully, the field of InfoVis equips us with a many tools and techniques
to simplify this task.

Building up on Shneiderman mantra [Shneiderman1996], we can dissect our intent into
smaller, manageable parts. Focus+Context methods let us split our attention on the on
overview and detail visualisations, which often require completely different design deci-
sions. Overviews should provide an overview, a feel of the scale and they should serve as
orientation guide for the actual data, occlusion or even loss of data is not that impor-
tant here. On the other hand, visualizing the details in the data should guarantee that
the user has access to any bit of information which is available and that data-points are
distinguishable from each other.

Linking and Brushing help us overcome the interactive challenges which arise while using
multiple views. Finally, techniques as discussed in the last section let us overcome the con-
strains which hardware-limitations and vast input-data produce.

Chapter 2 Related Work 22

2.2 InfoVis in Caleydo

Caleydo2 is an information visualisation framework focusing on pathway exploration and
the visualisation of gene expression data. Its based on Java3 and Java Bindings for OpenGL
(JOGL)4. It uses many advanced InfoVis techniques which where already discussed in
Section 2.1:

• Multiple Views

• F+C, especially worth mentioning the Bucket, described in [Streit2009a] and [Lex2008].

• Linking and Brushing

• Details on Demand

• Visual Links

Pathways, which describe biological processes in cells, are not in the scope of this work
and are thoroughly discussed in [Streit2007] and [Streit2008], the interaction with gene
expression data is the topic of the [Lex2010] paper. Caleydo provides many visualisa-
tion modes like Histograms, Dendograms, Radial Hierarchy Layouts and others,
all implemented as separated views for a customizable application thanks to a plug-in
architecture. Since the practical part of this thesis focuses on the visualisation of gene ex-
pression data with scatterplots in this work, we briefly describe the two other visualisation
methods that currently fulfil this task:

2.2.1 Heatmaps

Heatmaps are the most common visualisation methods for gene expression data, devel-
oped 1998 by Eisen et al. [Eisen1998]. In a heat map, each data-point is visualised as a
small, color-coded (mostly green, black and red, but other colour schemes exist) square,
depending on its value. Their strength is their easy reordering of its cells according to
clustering algorithms, and they are therefore often drawn together with dendograms, a
tree-structure visualisation. Caleydo uses an enhancement by Schlegl with an hierarchical
approach [Schlegl2009] (see Figure 2.11).

2.2.2 Parallel Coordinates

Parallelcoordinates (PCs) are a popular technique for the visualisation of multivariate
data, invented by Maurice d’Ocagne in 1885 and much later further developed by Inselberg
[Inselberg1985]. PCs map each data row on parallel axis, and each point on the axis is con-
nected with its corresponding points on the adjacent axes. This means each n-dimensional
data point is visualized by a polyline across all n axes. The PCs in Caleydo (see Figure 2.12)
support angular brushing, let the user modify the axis and handle cluttering issues with
the help of transparency and random sampling [Lex2008].

2http://www.caleydo.org/
3http://java.sun.com/
4https://jogl.dev.java.net/

Chapter 2 Related Work 23

Figure 2.11: Hierarchical Heat Map in Caleydo

Figure 2.12: Parallel Coordinates in Caleydo

Chapter 2 Related Work 24

2.3 Scatterplots

Scatterplots are a widely known, simple and easy to understand form of a diagrams used
in statistics and information visualisation. Scatterplots, also known as scatter diagrams
or X–Y graphs, are also commonly used in quality control, described as one of the seven
”indispensable” tools [Tague2004].

Figure 2.13: A scatterplot showing a linear positive height-weight correlation of 606
Afghani pupils aged 6-14 years. Outliers are labeled with their case
number.[Rezaeian2009]

A scatterplot is a diagram, where each of the 2 dimensional data points is mapped on the
cartesian coordinate-system. In other words, the value of the data point represents the po-
sition in the diagram. The value is then visualized by a point or glyph. Scatterplots are used
to indicate different kinds of correlations between variables. The further individual points
are away from the diagonal, the greater is their variance.

If there is a correlation, clustered points will indicate a line, which is called trendline or
line of best fit. If the line is linear, the trendline is also called linear regression curve. If the
slope of the curve is raising, we talk about a positive correlation, if it is falling, we have
a negative correlation. Scatterplots do not have to form trendlines to reveal meaningful
results, a cluster indicates already by itself that the variables in this areas are showing a
strong similarity.

One of the interesting aspects of scatter plots is the fact that you can also see nonlinear cor-
relation trends at the first glance, and if the plot is randomly cluttered, we see immediately
that there may not exist any significant correlations. Another advantage of this visuali-
sation mode is that you can easily spot points not fitting the trendlines, called outliers.

Chapter 2 Related Work 25

An outlying observation, or outlier, is one that appears to deviate markedly from other
members of the sample in which it occurs. [Grubbs1969]

2.3.1 Overplotting

While large datasets obviously put constrains on the speed, complexity and display quality
[Murrell2006], one problem especially related to scatterplots is overplotting. With a dense
data-set, each point may lie so close to each other that one can’t distinguish if there are
just some or a huge amount of points in a specific local area.

Reducing the point size may help in certain cases, but for plots where the amount of data-
values exceeds the diagram-resolution greatly in some highly cluttered areas, this methods
won’t really help. Another disadvantage of reducing point size is that while the cluttered
area may show some meaningful information, outliers are hard to see or may even vanish.
This is also true when using transparency values for each point or glyph, an otherwise sim-
ple but very powerful technique to show the density in plots.

Figure 2.14: Left:sunflower plot; right: scatterplot. Due to overplotting, only a fraction of
the points could be seen in the original scatterplot.[Cleveland1984]

To solve this problem, we can span a virtual grid over the scatterplots. Now we count the
points in each grid-cell and fill the cell with a color, symbol or transparency value related
to the point quantity. This is called binning. One example of this plot is the sunflower
plot of Cleveland and McGill [Cleveland1984]. There, the grid-cells are represented by
symbols called ’sunflowers’, which consist of line-segments (called petals) radiating around
the center of the grid-cell. The number of pedals in each sunflower corresponds to the
number of points the related cell. (See Figure 2.14).

The drawback of sunflower-plots is, that specially with bigger cell-sizes, the exact location

Chapter 2 Related Work 26

of the points in low-density regions are lost [Dupont2003]. To solve this, one can draw
not only sunflowers but also the exact points in locations, where there are only a few
points in a grid cell [Carr1987]. To further improve this type of visualisation, one can
also use a hexagonal tiled grid to squeeze more bins into the plot, and to make strictly
horizontal and vertical patterns not as visible [Dupont2003]. Using color coded shapes
result in Density Distribution Sunflower Plots , as suggested in [Dupont2003] (see Figure
2.15).

Figure 2.15: Density Distribution Sunflower Plot. The diagram consists of regular hexag-
onal bins consisting of color-coded sunflowers. Blue circles are drawn at their
exact location as long as there are less than 3 points per hexagon [Dupont2003]

2.3.2 Scatterplots related diagrams

Normal scatterplots can visualize only two-dimensional data. To raise the dimensionality
by one, there is the possibility to connect each point with a line by the increasing order
of a third variable [Rabenhorst1994], leading to parametric snake plots, which looks like
a connect-the-dots picture. The deviation from a straight line “indicates variability intro-
duced by a third variable on the relationship between the other two” [Schall1995] (see
Figure 2.16).

Similar to the snake plot is the quad-vise plot, where two scatterplots are drawn beneath
each other and each point in one scatterplot is connected with a line to the corresponding
point in the other scatterplot. Thus, the line shows the relationship between 2 pairs of vari-
ables, so effectively showing 4 dimensions [Schall1995] (see Figure 2.17).

2.3.3 Continuous Scatterplots

One limitation of scatterplots is that they are only useful for discrete data-input. Sven
Bachthaler and Daniel Weiskopf enhanced this model by introducing Continuous Scatter-
plots , which enhance the diagram to provide a visualisation of spatially continuous input
data [Bachthaler2008]. But they are also useful for displaying discrete data, for example

Chapter 2 Related Work 27

Figure 2.16: Parametric Snake Plot in DIAMOND, a tool for interactive exploration of
multidimensional data.[Rabenhorst1994] The line indicates the influence of
the third variable.[Schall1995]

they do not have the problems of overplotting. Because continuous scatterplots are based
on scalar density functions, scalar field visualisations like isosurfaces can be applied here
[Bachthaler2008] (see Figure 2.18).

Relate: Isosurfaces and Contour plots

An isosurface is a surface representing scalars in a 3-dimensional scalar-field. While isosur-
faces (and their 2D-pedants, Contour plots) are more known in scientific visualisation and
3D-reconstructions of point clouds or computational fluid dynamics (CFD), they are also
known to be used in InfoVis. For example, the work of Bajaj et al.[Bajaj1997] describes
an interactive approach in isosurface statistics, while Carr et al.[Carr2006] investigated
the influence of the higher interpolation methods (which isosurface statistics provide), to
histograms, which use nearest neighbour interpolation. Examples are illustrated in Figure
2.19.

2.3.4 Multivariate Data and Scatterplots

3D Scatterplot

In the chapter before we focused on 2-D scatterplots, but of course it is an easy task
to extend the idea by adding another coordinate axis, leading to a 3D-scatterplot (see
Figure 2.20). Expanding the plot into the third dimension will yield to some other prob-
lems, though. Overplotting issues are emphasized heavily by occlusion; user interaction to

Chapter 2 Related Work 28

Figure 2.17: 4-dimensional linked quad-wise plots in DIAMOND, a tool for interactive
exploration of multidimensional data.[Rabenhorst1994] The lines between the
two plots shows the correlation between 2 pairs of variables.[Schall1995]

Figure 2.18: (a) shows a the discrete scatterplot, where (b) shows the continuous version
of the same data-set. [Bachthaler2008]

find the desired view-angle is more or less required and interactions with sub-sets require
more sophisticated tools like a simple rectangle-brush. For this reasons, ”..their perceptual
effectiveness is unclear” [Bachthaler2008]. To alleviate these problems a little, the main
2D-projection of the 3D-plot in -x,-y and -z direction are sometimes additional visualized
for better orientation.

As discussed in the last section, scatterplots provide a fine solution for 2 dimensions of
the input data (bivariate data). With enhancements like 3D-scatterplots, snake-plots and
quad-vise plots we can raise the dimensionality a little. But for multivariate data-sets like
gene expression data for many experiments, scatterplots are very limited. Nevertheless,
there are methods to squeeze additional dimensions into one scatterplot, some methods
are suggested in [Cleveland1988]:

• use different sizes for an additional dimension

Chapter 2 Related Work 29

Figure 2.19: (a) Weisstein, Eric W. ”Contour Plot.” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/ContourPlot.html (b) shows an iso-
surface around a zirconocene molecule. (Accelrys (http://www.accelrys.com))

• use different shapes for an additional dimension

• use different spatial orientation of shapes for an additional dimension

• use different colours for an additional dimension

In other words, any Visual Variable can be used here: Jaques Bertin [Bertin1974] de-
scribed methods to modify basic units called marks. Those methods are called Visual
Variables and methods are shapes, sizes, textures, values, colors, orientation and posi-
tion.

Unfortunately, all of these methods have their disadvantages. Too much shapes/colours
make the plots quite unclear and confusing. It is also quite important which shapes are
used, as they allow a wide range of discriminability [Li2009]. Furthermore, techniques
discussed previously circumventing the overplotting problem cannot be applied that easily.
Shapes or colours may be also already reserved for sub-selections (brushing), clusters
or other things. While there is the possibility to squeeze up to seven dimensions into
one plot [Schall1995], in practice 2-dimensional data will be the limit for most common
scatterplots.

Nevertheless, other solutions for showing higher dimensional multivariate data with scat-
terplots exist:

• Dimension Reduction Methods: Building a linear combination of the whole or part
of the dataset and mapping them onto 1 scatterplot, for example with the Principal
Component Analysis.

• The Scatterplot Matrix: Mapping each axis of the n-dimensional dataset on each
other to gain a nxn-Matrix of scatterplots.

• A combination of dimension reduction and still having multiple different plots of the
same base-data, ordered by their entropy.

We will discuss these methods in the following sections.

Chapter 2 Related Work 30

Figure 2.20: 3D-Scatterplot 4th axis mapped into one 3D Scatterplot. The color-coding rep-
resents the fourth dimension.

Figure 2.21: 3D-Scatterplot showing seven dimensions.[Schall1995]

2.3.4.1 Dimension Reduction Methods

Principal Component Analysis

The Principal Component Analysis was introduced in the year 1901 by Karl Pearson
[Pearson1901] and further developed by Harold Hotelling 30 years later. It is also called
Hotelling transform, discrete Karhunen–Loève transform (K.L.T.), or proper orthogonal
decomposition (POD). The PCA is an orthogonal linear transformation to maximize the
variance of the original data-set, which yields a new axis called the first component. The
second component is orthogonal to the first component and maximizes the variance of the
projected data and so forth. The first and the second component span a plane which is
called the most interesting plane, since it should provide the most information due to the
maximized variance. This is not guaranteed, however. Also, a linear transformation cannot
always produce a dimension-reduction: if for example, all points lie on a hypersphere - only
nonlinear transformations can. Another point is that the PCA is extremely sensitive to

Chapter 2 Related Work 31

outliers, mainly because distances between points are squared. Yehuda Koren and Liran
Carmel [Koren2004] sighted these problems and suggested some enhancements. They in-
troduced a weight for each distance and underweighted outliers, leading to a normalized
PCA (see Figure 2.22).

Figure 2.22: Scatterplot using (a) PCA and (b) Normalized PCA of a 64-dimensional
dataset[Koren2004]

Projection Pursuit

The Projection Pursuit was developed by John W. Tukey and J. H. Friedman [Friedman1974].
The idea behind is, that the hyper room constructed by the multivariate data is projected
on a hyperplane, and doing this for each possible projection with a linear mapping algo-
rithm. Each of the hyperplanes is associated with an index, which shows how ‘interesting’
the structures are (interesting projections are aberrations to normal distributions). These
indices are used to perform a heuristic search to locate the most interesting projection. The
component along that projection is then removed form the original data, and the whole
process will be repeated until no interesting structures are found anymore [Friedman1974].
In practise projection pursuit methods are often used for finding non-overlapping clus-
ters.

The Grand Tour

In the grand tour [Asimov1985] projects the multidimensional dataset orthogonal on 2D-
planes (scatterplots). It can be seen as a generalisation of rotations in high-dimensional
space. Asimov’s idea was that to fully understand the nature of a data, one has to see them
from all possible angles [Wegman2002]. Since there are infinitely many possibilities, they
key is here to visit only a dense subset, meaning making a ’tour’ through those projections.
The tour is chosen based on criteria like uniformity, density, continuity and even some form
of user control [Elmqvist2008]. To achieve these goals, many algorithms are proposed, e.g.
in [Wegman2002] or [Asimov1994]. Overall, this is similar to the projection pursuit method,
but only low dimensional projections are visited.

Chapter 2 Related Work 32

2.3.5 Scatterplot Matrix

When we take only 2 axis of the mulltivariate input dataset at a time and map them
to each other, all combinations of doing this yields nxn scatterplots, building a matrix
[Cleveland1988] (see Figure 2.23). These scatterplots are then rendered beneath each
other as small multipes, which were discussed in 2.1.3. Since mapping dimension i on
dimension j will produce the same diagram as mapping j onto i (only rotated), and
mapping j=i will only generate points along the diagonal, the number of useful plots
is n*(n-1)/2 for an n-dimensional dataset. Generalizing this idea to other visualisations,
we talk about a spreadsheet approach [Chi1997]. Unlike a normal spreadsheet, a visualiza-
tion spreadsheet cell can contain “..an entire complex data set, selection criteria, viewing
specifications, and other information needed for a full-fledged information visualization.”
[Chi1997]

Figure 2.23: A simple scatterplot matrix for 4-dimensional data. [Carr1987]

While the saving of screenspace is obviously a big advantage of dimension reduction meth-
ods over the natural redundancy a scatter-matrix provides, one of the problems of di-
mension reductions methods are, that their solutions are often hard to understand. In his
keynote Visualizing Data for the Masses: Information Graphics at The New York Times
for the InfoVis 2007, Matt Ericson, Deputy Graphics Director at the New York Times said
that they won’t even use simple normal scatterplots in their paper, because their readers
have issues understanding them - they expect time to be on the x-axis. Providing plots
with linear-combinations of n dimensions mapped on 2 are far out of scope for the average
audience [Elmqvist2008].

If the whole matrix is visualized, some problems arise with this approach. Because of
the vast number of scatterplots that have to be drawn with higher order data-sets, is-
sues like occlusion are emphasized here due to the small size (which just shrink to the
size of thumbnails) each plot gets allocated [Voigt2002]. Using details on demand and
focus+context techniques to overcome these issues are a central part of this thesis prac-

Chapter 2 Related Work 33

tical work. For example using the scatterplot matrix as an overview and requiring user
action to retrieve further details is an often used approach. The detail view can then be a
pop-up, showing a more sophisticated version of the chosen scatterplot. Or it can be em-
bedded directly in the matrix, using distortion or using the space the natural redundancy
opens.

The space a scatterplot-matrix provides in the diagonal (since no correlation-information
could be retrieved when axis x = axis y) is commonly utilized by showing a histogram or
the names for the corresponding row/column. Name-labels are also often shown directly
beneath each row/column, as seen in Figure 2.23.

Dimensional Reordering

The user task while using a scatterplots-matrix is to find a projection with interesting
patterns and structures. But because each dimension in the data-set can provide vastly
different data, it may be quite difficult to see relations between projections. To improve
this, we can just reorder the dimension in the matrix so that similar plots lie beneath each
other, making comparisons much easier. Peng et al. therefore defined a clutter-measure
[Peng2004] based on the cardinality each plot provides, which serves as a criteria for the
dimensional reordering (see Figure 2.24).

Figure 2.24: Scatterplot matrix dimensional reordering. (a) shows the matrix with ran-
domly distributed projections, dimensional reordering leads to (b) [Peng2004]

Jigsaw map

Similar to dimension reordering, Yang et al. proposed a method, which is an approach
especially suited for very high dimensional data [Yang2007]. They use a jigsaw map for
producing the matrix grid, a technique for layout algorithms producing non-rectangular
regions [Wattenberg2005], in which they embed in pre-calculated hierarchically ordered
dimensions-projections of the matrix. The now visually grouped scatterplots helps when
judging similarities between different plots (see Figure 2.25).

Chapter 2 Related Work 34

Figure 2.25: Jigsaw map by [Yang2007]

2.3.5.1 Navigation in the Scatterplot Matrix

As mentioned above, the scatterplot matrix is often just used for an overview in a fo-
cus+context system of the whole data set, letting the user navigate with the keyboard
and/or mouse through it to select the desired axis for the main scatterplot-view. Without
linking & brushing, just simple switching the main view lacks correlation and comparison
between the different dimensions [Elmqvist2008]. Quad-vise plots are able to indicate cor-
relations between 2 different scatterplots. Dimension-reordering techniques also help for
comparison purposes on adjacent cells.

Figure 2.26: Rolling the Dice:Scatterplot Matrix Navigation using the third dimension for
transitions between different scatterplots [Elmqvist2008]

Blending techniques or transition-animations of points while switching dimensions can
also improve the perceived correlations between the dimensions. The grand tour can also
be seen as ”invaluable tool for animating high-dimensional visualization” [Wegman2002].
Elmqvist et al. proposed a new way to give the user more of a feeling of correlations while

Chapter 2 Related Work 35

exploring the datatset with scatterpolts. They are using animated rotations and transitions
in the 3D-Space between adjacent scatterplots, new introduced axis emerge from the third
dimension. ’Hyperjumps’ from one to another random plot yield to a chained animation
series. This is illustrated in Figure 2.26.

2.3.6 Discussion

A scatterplot is a very commonly used visualisation tool, mostly due to its simplicity and
its familiarity. Dealing with natural shortcomings like overplotting is the key for providing
satisfying results with this visualisation technique. For displaying multivariate data, the
decision must be made between dimension reduction methods or a spreadsheet approaches
like a full-scale scatterplot matrix. While the former methods save screen space and some
correlations in the data can be detected which may be missed otherwise, they are also
limited by their predetermined chosen algorithm and jeopardized by wrong user decisions
resulting of their higher complexity. For this reasons and the fact that scatterplots are not
the only visualisation method in the Caleydo framework, we decided to go with the latter
for the practical part of this thesis.

One will find only few statistic applications without a scatterplot feature, but also for
the visualisation of gene-expression data, most frameworks like GeneVAnD [Hibbs2005],
Hierarchical Cluster Explorer [Seo2002] or commercial tools like Spotfire support
this type of visualisations.

Chapter 2 Related Work 36

Chapter 3

Concept

Caleydo, the visualisation framework on which this thesis practical work is built upon,
already provides two common techniques for the visualisation of expression data, heatmaps
and parallel coordinates (see Chapter 2.2).

We want to add another view based on (2-dimensional) scatterplots, using state-of-the-art
methods and features. Also, a full integration of this view to allow a multiple-coordinated-
views workflow and direct enhancements to the framework to make this happen are the
main concepts of the practical part of this thesis.

Since the target-data consists of experiments witch each can contain thousand of gene
expression data values, we gain a matrix of n*m (see Figure 3.1) data-values, that we want
to visualize at once. Because a normal scatterplot allows us to only view the correlation
between 2 experiments, we have to provide another method for that task: In our case, this
is the scatterplot matrix (see Chapter3.2).

Figure 3.1: Gene expression data in Caleydo: With n experiments and m genes we get a
mxn matrix of data.[Schlegl2009]

3.1 The main Scatterplot-view

Our scatterplot should provide at least the following visualisation features and require-
ment:

Chapter 3 Concept 37

• Performance : On a standard system, each interactive operation should be able
to be performed in realtime. This should be accomplished by using layered rendering
and (if necessary) by random sampling (see chapter 2.1.5.

• Different Representation of Points : Scatterpoints visualisation should be able
to customize, the user should be allowed to chose from different point-primitives.
Pointsize should also be scalable. Transparency should be supported as well.

• Scalable Coordinate System : A two axis coordinate system should be drawn
depending on the logarithmic or linear scale, provided from the chosen input data-
scale of the Caleydo framework. Axis (experiments) should be labeled.

• Mouse Over Detail on Demand : Moving a mouse over a scatter point should
reveal additional detail information (value/name/status..).

• Support of quad-vise plots : Two experiments should be selectable for one axis,
using different color-coding. They also could be connected with lines, to easily see
their correlation (see chapter 2.3.2).

• Zoom Feature : Because there may be a lot of points (currently over 20k) in one
scatterplot which also may be heavy clustered, a zoom-feature for the main view
could be helpful.

3.2 The Scatterplot Matrix

Beside dimension reduction methods, the other method for showing multivariate data with
scatterplots is the spreadsheet approach called scatterplot-matrix (see Chapter 2.3.5). We
decided to go with this direction instead of the former for the following reasons: First,
dimension reduction methods are far more complicated to understand for the average user
[Elmqvist2008]. Second, with methods Caleydo already provides, as well as with the help
of new features like quad-vice plots or the new support of multiple brushes, there are tools
available for displaying correlation between more then two experiments.

Since with this approach the number of visualized scatterplots rises exponentially, we need
to be very careful on how we deal with this now huge number of data-values. A rather sim-
plified visualisation of the scattermatrix cells are here to be expected, which may not even
have a negative visual impact due to the size of the matrix cells.

3.3 Focus plus Context

As we want to view all experiments at once without losing the ability on concentrating
on specific genes, we need powerful focus plus context techniques to accomplish this. We
discussed this already in the related work section under 2.3.5. Since the scatterplot matrix
already provides us with an overview and the main scatterplot with the focus-part, we
only need to merge them together into one view. One of the possibilities we have here is
to develop both views separately, and let the user arrange his focus plus context system
directly via the framework.

Chapter 3 Concept 38

Figure 3.2: Concept of the embedded main-view in the scatterplot matrix. While the more
detailed, bigger versions of the scatterplot cells follow the orthogonal order of
the matrix, the smaller plots do not. The arrows show where cells will move
when cell (a) replaces cell (b) as main focus.

The other possibility is to embed the matrix directly into the main view. Early design
sketches of this idea are shown in Figure 3.2 and Figure 3.3. While using a distortion
based fisheye-method as shown in Figure 3.3 has the disadvantage of distortion even in the
main view, Figure 3.2 loses the orthogonal order of the rows and columns in the matrix.
Also, if we want to visualize the whole matrix, we get weird empty spaces on the edges of
the matrix.

For this reasons, we decided to follow another, two-way approach: We embed the main
scatterplot view in the space the matrix’ natural redundancy opens in the right upper
part (we render only half the matrix). And second, we allow an additional, on demand
zoom directly in the matrix to provide an intermediate detail level between a matrix cell
and a main view. This allows the user to easily search for an interesting scatterplot in
the data while still maintaining full detail on the main view without wasting the valuable
screenspace we have at our disposal.

3.4 Linking and Brushing

When explaining linking and brushing to someone, this is very often done by show-
ing a picture of a scatterplot matrix doing that. (see Section , Figure 2.8). So nat-
urally we provide this technique here, too. Of course, brushed data should be propa-
gated not only to the matrix cells, but to the other available views as well (and vice-
versa).

Clicking points for selecting and deselecting specific points, mouse-over highlighting and
brushing multiple points in the scatterplot with a rectangular brushing tool are needed.
Multiple brushes at once have to be supported.

Chapter 3 Concept 39

Figure 3.3: Concept sketch of scatterplot matrix using fish-eye distortion

3.5 Zooming in the Scatterplot

While the focus view can provide us with a good view on the details, points in there can
still be cluttered. This actually does not solely depend on the amount of points we have
to visualize, but rather their distribution. Especially for picking purposes, even a very low
amount of points can make selecting a single gene an impossible task if their coordinates
are very similar. Therefore, we need to provide a zooming technique in the main view as
well. For this, we follow an orthogonal stretching approach, where we let the user drag the
bar handles in realtime.

3.6 Integration into the framework

The scatterplot view should be an integrated part of future Calyedo builds. Therefore it
should inherit its common concept, technically and visually. For example, scatterpoints use
the (optional) same color-coded gene-expressions like in the heatmap, the common toolbar,
the random sampling methods; custom brushes should not be bounded to a single view.
This also means, that new methods developed especially for the scatterplot view like multi-
ple brushes have to be made available for the other views as well. For this reason, we provide
another view for managing selected data, which allow an overview and some information
of the selections and operations like merging or deleting.

Chapter 3 Concept 40

Chapter 4

Design and Implementation

In this chapter we focus on the implementation details and take a look at the design
challenges of this thesis’ practical part. In Section 4.1 we take a look at the available
technologies used for our work, Section 4.2 gives a brief overview of the architecture on
which the Caleydo framework is built upon. Finally, we discuss the aspects directly related
to the scatterplot implementation in Section 4.3.

4.1 Used Technologies

Since this work runs as integrated view in the Caleydo1 framework, we have to deal with
the technological environment the framework is based on. Non-technical aspects of the
framework are discussed in chapter 2.2.

Java

Caleydo is written completely in Java2, a general purpose, cross-platform object-oriented
programming language. Java is an interpreter language and runs in a runtime environment
called Java Virtual Machine (JVM). Caleydo runs under the current version 1.6.

Eclipse and the RCP

Eclipse 3 is the open-source IDE (integrated development environment) on which the de-
velopment process of Caleydo happens. It was written in Java and was originally meant
to be a Software Development Kit (SDK) for Java only, but in the meantime additional
languages like C/C++ or COBOL are supported via the plug-in architecture. In Eclipse,
most features are provided via plug-ins, making it a very customizable environment. The
version used for this work takes the number 3.5 (Galileo).

Derived from Eclipse, the Rich Client Platform (RCP)4 provides the user with tools to built
a rich client application. In contrast to fat clients, rich clients can enhance the functionality
with plug-ins to solve even foreign problems.

1http://www.caleydo.org/
2http://java.sun.com/
3http://www.eclipse.org/
4http://wiki.eclipse.org/index.php/Rich Client Platform

Chapter 4 Design and Implementation 41

SWT

One part of the RCP is the Standard Widget Toolkit (SWT)5. It provides access to GUI
elements like sliders, buttons, toolbars, menus and so on. The SWT is available for a lot of
platforms, but since the toolkit uses the native GUI-APIs each operating system provides,
it has to be implemented for each platform separately, which results in divergent perfor-
mances, and on some platforms it is not available at all.

Jogl

In Caleydo, the SWT is mostly used for the menus, toolbars and small views like the
selection browser. For the main visualisation part, it uses OpenGL6 via Java Bindings for
OpenGL (JOGL)7. JOGL (Caleydo uses the 2.0 Version at this time) is a wrapper for
using native OpenGL commands directly in Java.

4.2 Framework

Caleydo’s purpose is not only the allocation of several InfoVis methods and techniques,
but also for rapid and easy development of new ideas in this area [Lex2008]. Therefore,
Caleydo provides us with a plethora of classes to let the developer rather focus on his
ideas then on tiresome technical details. The architecture of Caleydo is already thor-
oughly discussed in [Lex2010]. To avoid redundancy, we describe here only briefly the
concepts used especially for this work and new enhancements like the plug-in architec-
ture.

4.2.1 View Management

Caleydo supports two types of views: SWT views and OpenGL views.

SWT Views

SWT views are used for simple visualisations, using mostly SWT-functionality. The newly
added SelectionBrowser is such a view, it contains SWT buttons and a tree-widgets for
the management of selections (see section 4.3.4).

OpenGL Views

OpenGL views are used for more complex visualisations. OpenGL provides much more
flexibility and the ability to use the 3rd dimension. All OpenGL views extend the abstract
AGLView class, which provides basic functionality like picking and basic initialisation. The
in this work implemented GLScatterPlot class is a OpenGL view, an extension of AStor-
ageBasedView (which itself extends AGLView), which provided additional tools for views
heavily based on table-like data (heatmaps, parallel coordinates). An additional advantage
of Caleydos OpenGL views are that the support remote rendering, which means that on

5http://www.eclipse.org/swt/
6http://www.opengl.org/
7https://jogl.dev.java.net/

Chapter 4 Design and Implementation 42

view can be rendered inside another, which is demonstrated in the bucket [Streit2007] or
the hierarchical heat map [Schlegl2009].

4.2.2 Plug-In Architecture

During the development of this thesis, a paradigm shift happened regarding the avail-
ability of views in this work. Each main view is loaded via plug-in now, so the desired
complexity of Caleydo may now vary depending on its configuration. Each loaded view
can provide its own toolbar containing SWT widgets, renderstyles, special event-listeners
and so on. The added flexibility with this approach makes the development of new, exper-
imental methods a very easy task without interfering too much with the code in the main
framework.

4.2.3 Storage Concept

The Caleydo framework deals with the data using a storage concept introduced by Michael
Kalkusch [Kalkusch2006] and further developed by Alexander Lex [?].

The top layer in the storage concept are the UseCases, which holds all information of
the specific data and are used as interface between the views and the data [Schlegl2009].
UseCases can hold Sets, which are the containers of the data itself, containing multiple
Storages. Storages are simple arrays that hold the raw data. The array type can hold vari-
ous types of data like strings or floats and even objects. The gained performance advantages
of arrays are paid with their inflexibility. For this reason they are accessed only via Virtual
Arrays, which consist solely of indices to the data in the storage-arrays. Operations like
reordering of the data (which is needed in clustering algorithms) therefore happen directly
in the virtual arrays, letting the raw data in the storage-arrays completely untouched. The
Set respectively Storage class contain a lot more methods then the access to the data,
like normalisations or conversions to a logarithmic scale.

4.2.4 Event System

Communication between views in Caleydo is event driven. The event system is designed fol-
lowing the Gang of Four [Gamma1995] Observer and Mediator Design Patterns [Lex2008].
The central class is the EventPublisher which handles the events. A class can now trig-
ger an event with the EventPublisher class, which propagates the event to all receiv-
ing classes. To receive an event, a class has to subscribe an instance of the listener in-
terface AEventListener to the EventPublisher. The handleEvent() method of the
listener class executes the event then. This should be only done in the same thread,
otherwise there exist the queueEvent() method which guarantees thread safe execu-
tion.

Chapter 4 Design and Implementation 43

4.2.5 Selection Management

The selection mangers are based on the VABasedSelectionManager respectively Selec-

tionManager which store sub-selections of data-items (not directly, their indices via Virtual
Arrays) in hash maps. Since selection play a big role in this work, they are discussed in
more detail in Section 4.3.4 .

4.3 Software Design

The main class this implementation relies upon is the GLScatterPlot View derived from
AStorageBasedView. The class is supported by the static class ScatterPlotRenderStyle,
which is responsible for graphical configuration like z-values for the layers, spacing, initial
values and so on.

Figure 4.1 shows the UML Diagram of the scatterplot-view class.

Figure 4.1: UML Diagram of the Scatterplot Class

4.3.1 Display Lists

For optimizing performance we use the layered rendering approach we discussed in Chapter
2.1.5. For the rendering-part we use the OpenGL Display Lists. Display Lists group up
OpenGl commands and store them in the graphic card memory, which, when invoked,
can be executed at once in the order they were listed. So for static data, they are a huge
performance gain, since the objects created by the list need to be computed only once.
Their disadvantage come with the fact that they cannot be changed once built without
completely recomputing them, and not all OpenGL commands are allowed. They also may

Chapter 4 Design and Implementation 44

raise compatibility issues with some calls, for example the TextRenderer class in JOGL
has issues with multiple display lists.

Layer In
it
V
ie
w

R
es
iz
e
W

in
d
ow

S
ca
le

G
ly
p
h
s

U
p
d
a
te

C
o
lo
u
r
C
o
d
in
g

U
p
d
a
te

S
el
ec
ti
o
n
s
(M

o
u
se

O
ve
r)

U
p
d
a
te

S
el
ec
ti
o
n
s
(B

ru
sh
es
)

T
o
g
gl
e
Z
o
o
m

T
o
g
gl
e
N
or
m
al
<
->

Q
u
a
d
-v
is
e

U
se

M
at
ri
x
Z
o
o
m

C
h
a
n
g
e
E
x
p
er
im

en
ts

T
o
g
g
le

M
a
tr
ix
<
->

M
a
in

Mouse Over yes yes no no yes no yes yes yes yes yes
Coordinate System yes yes no no no no yes no no no yes
Render Matrix Full yes* yes* no yes* no no no no yes* no yes*
Render Matrix Sel. yes* yes* no no no yes* no no no no yes*
Scatter Points yes yes yes yes no no yes yes yes yes yes
Render Selections yes yes yes no no yes yes yes yes yes yes
Calculate Matrix Sel. yes no no no no yes no no no no no
Calculate Matrix Full yes no no yes no no no no no no no

Table 4.1: Scatterplot Layers. (*): those operations only occur while in Matrix View Mode.

For this reasons, we try to set up logical layers that need to be updated as rarely as
possible. Table 4.1 shows the display lists and needed calculations in the rows and the
events or actions that cause rendering updates as columns. The different layers vary
vastly in their performance costs, and by design we tried to accomplish a reciprocal
correlation between update frequency and execution time. In Table 4.1 we see that the
most expensive operation (calculate the entire scatterplot matrix) needs to be only per-
formed in two occasions: on startup and when we change the color-coding of the data
items.

4.3.2 Sampling and Textures

The obvious approach for rendering the scatterplot matrix is to make use of Caleydo’s
ability to draw nested views by using the remote rendering feature (see Section 4.1). This
is not feasible for two reasons. First, even when we allow the scatterplot to be rendered in
an extremely low detail mode, the space-allocation between the main view and a matrix cell
differ extremely. For a typical screen resolution of 1 million pixels for the main scatterplot
view (substracted are toolbars, menus and borders), with 50 experiments we have only 400
pixel per matrix cell. This is not only a waste of rendering time for no visual gain, without
sophisticated pixel-allocation in the cell we would get very bad results anyway (a 30.000
points scatterplot rendered with 400 pixel would result in a solid square without any means
of density, even if the plot shows strong correlations).

Chapter 4 Design and Implementation 45

Second, like discussed in the above section, we want to minimize the actual re-rendering.
With a simple usage of nested views, a view resizing would cause a full recalculation of the
whole matrix. An intermediate stage would be necessary, for example the nested views are
rendered in a back-buffer and then copied into textures for their visualisation. Since the
rendering of one texture is trivial instead of a whole view in regards to performance, the
texture could be used as substitute of the whole view and only needs to be re-rendered on
special occasions, as shown in Table 4.1.

Figure 4.2: Diagram shows the process for getting the texture of a matrix cell.

For this reasons we implemented the matrix visualisation by rendering each cell directly
into texture. This lead us, beside the performance gain, to an additional advantage: The
down-sampling to the texture resolution is actually the same process as the binning-
technique to solve overplotting issues (see Section 2.3.1). Figure 4.2 shows the process
in detail: First, with the information gained from the available screen resolution and the
actual matrix cell size we get form the number of experiments, we determine the actual
texture resolution. Then we scale the input data to the texture size. We then write the
data directly into the array the texture-map spans, taking Caleydo’s predefined random
sampling rate into account. Since for some texels there are naturally more corresponding
data-points, we use an alpha value to indicate the density in this region. The textures for
brushed data in the matrix are determined in the exact same way, only with a slightly
lower resolution for a better recognition of small selections. When visualised, both textured
are rendered above each other using transparency.

4.3.3 Zooming

For the zooming in the matrix, we just stretch the texture under the mouse-cursor by a
certain factor to gain the desired results. Since we don’t allow any distortion, the position
of all the textured surrounded by the highlighted cell have to be adjusted as well. This
results in a variance of space for the embedded view which tries to utilize as much space as
possible. So when the mouse is hovered across the matrix, this forces often a recalculating
of the three depended display lists (see Listening 4.1).

Chapter 4 Design and Implementation 46

Listing 4.1: Transfer function for orthogonal stretching
1 private f loat transformOnXZoom(f loat x) {
2 i f (! bMainViewZoom)
3 return x ;
4
5 i f (x < fTransformOldMinX) {
6 f loat f a c t o r = fTransformOldMinX / fTransformNewMinX ;
7 return x / f a c t o r ;
8 }
9

10 i f (x > fTransformOldMaxX) {
11
12 f loat f a c t o r = (1 − fTransformOldMaxX) / (1 − fTransformNewMaxX) ;
13 return fTransformNewMaxX + (x − fTransformOldMaxX) / f a c t o r ;
14 }
15
16 f loat f a c t o r = (fTransformNewMaxX − fTransformNewMinX)
17 / (fTransformOldMaxX − fTransformOldMinX) ;
18 return (fTransformNewMinX) + (x − fTransformOldMinX) ∗ f a c t o r ;
19 }

For the zooming in the main view based on orthogonal stretching, we use a transfer function
for the calculation of each xy-value. Each graphic rendered, regardless if they are the main
scatterpoints, the brushed data or the coordinate system, has to be adjusted by its position
relative to the zooming-window. The code-snippets shown in Listening 4.1 and 4.2 show the
transfer function for the x coordinate. The fTransformOldMinX and fTransformNewMinX

respectively fTransformOldMaxX and fTransformNewMaxX indicate the new borders of the
zoom window and their initial positions.

Listing 4.2: Overloaded transfer function with added scaling and position adjustments
1 private f loat transformOnXZoom(f loat x , f loat f S i z e , f loat fO f f s e t) {
2 f loat tmp = (x − fO f f s e t) / f S i z e ;
3 return transformOnXZoom(tmp) ∗ f S i z e + fO f f s e t ;
4 }

The method in 4.2 is used when the position and scale of the main view does not match with
the frustrum of the whole view (like in the embedded view mode).

4.3.4 Selection Management and Brushing

For brushing across multiple views, classes that store and manage those data are a necessity.
Like already indicated in Section 4.2, the Caleydo framework accomplishes this by using
the SelectionManager class. Figure 4.3 shows the UML diagram of the class and the
related ones.

For storage-based views, two SelectionManagers are common: The contentSelection-

Manager are used to handle the genes while the storageSelectionManager is responsible
for the experiments.

Selections can be of four distinct default types, defined by the SelectionType class: NOR-
MAL, MOUSEOVER, SELECTION and DESELECTED. The SelectionType defines the
name, color, priority (used mostly to determine consistent z-values when selections are ren-
dered above each other) and other graphical and functional properties. NORMAL types
define here the base type, where all items are initial stored. Another key feature is the
SelectionDelta which is used to propagate changes in the selections to other views. It is
reset every time it’s getter is called.

The SelectionManager class provides many methods for moving the selected elements in
and out of the storage or between different types. In older Calyedo versions, the selection

Chapter 4 Design and Implementation 47

Figure 4.3: UML Diagram of the SelectionManger class

types where mutually exclusive and unique. The design of the scatterplot view demanded
a removal of these restrictions though. For example, there was no possibility to have the
same elements as NORMAL and MOUSEOVER selections in the same SelectionManager.
Also, the ability to add an arbitrary number user-defined selection types has been added,
since we wanted to support multiple brushes.

Brushing in the Scatterplot View

For the default selection-types, the PickingManager handles these elements. Since the
technique is very similar how it is implemented with heatmaps and parallel coordinates, we
will not go into more detail here, [Lex2008] already covers this topic.

To add a new custom brush, the user has to simple draw the brushing primitive over the
visualized data. Currently, only the rectangular brush is supported, but it would be easy to
add other types of brushes. So in this case, the rectangle is drawn by dragging the mouse
over the desired data-points. Once the mouse-button is released, a new SelectionType

is created with a predetermined color and a name consisting of an abbreviation of the
view and the number of the current brush. The priority is set slightly higher than the
other brushes which may already exist, since we do not want the newest brush to be
covered by older ones. After that, an in-out evaluator method is executed which determines
if points are inside or outside the brush-borders. Elements inside are added with the
contentSelectionManager to the new custom selection. Then a event is created with the
new obtained SelectionDelta. This SelectionUpdateEvent is then triggered with the
help of the eventPublisher. So every view who listens to this event can then update
its visualisation accordingly. The scatterplot view itself listens to this event as well and
sets two flags that, on the next rendering cycle, cause the display-lists responsible for the
selections to be recalculated.

The Selection Browser

Since we implemented the support of multiple brushes, we want to allow the user itself to
have some more control over the different selections. Therefore we added a new SWT-view

Chapter 4 Design and Implementation 48

for managing them. The view uses the Tree widget for visualisation of the custom brushes
and the button widgets to activate the actions like merging and deleting selections. The
SelectionBrowser represent the GUI which invokes the appropriate methods of the con-

tentSelectionManager class. It is also responsible that the SelectionUpdateEvent is
triggered with the corresponding SelectionDelta, which leads to the results described
above.

Chapter 4 Design and Implementation 49

Chapter 5

Results

This chapter discusses the outcomes obtained out of the concepts and design-decisions de-
scribed in Chapters 3 and 4. We first show the implemented features from the main-view in
Section 5.1, discuss the scatterplot matrix execution in Section 5.2 and then take a look on
the brushing and selection enhancements in the framework (Section 5.3).

Figure 5.1 shows an overview describing most features this view provides. We will discuss
each feature more thoroughly below. The scatterplot view is available through the Views
menu if the current configuration has loaded the scatterplot view.

Since we only focus on the visualisation of gene-expression data, we talk about exper-
iments for the dimensions and genes for the actual data-values. Unless said otherwise,
the screenshots in this chapter show human genome test-data with 12344 genes and 14
experiments.

Navigation happens via mouse or keyboard. Every feature is accessible via toolbars, direct
mouse-interaction or keyboard shortcuts (see Appendix A). General features like resetting
selections are available via the general toolbar, the scatterplot-specific features can be
accessed via the scatterplot toolbar.

5.1 Scattterplot Main View

Regardless if embedded in the matrix or not, in both views everything works the same
with one major difference: In the embedded view, changing the experiments with the cursor
requires a confirming ENTER, in the mainview-only mode changing experiments happens
with CURSOR-keys only.

Basic Visualisation

The scatterplot main view provides a coordinate system which can be switched off in case
it occludes the direct view on the data. The coordinate systems’ scale is chosen by the
value-range the input data provides, so that the whole base data fits in the plot and uses
as much space as possible.

The data point glyphs are color coded using the Caleydo framework color-coding, which
can be changed on the fly with Caleydo’s histogram view. Since we have 2 dimensions
instead of the one that the histogram delivers, we take the maximum value of each axis
to determine the color. The color-coding of the glyphs can be turned off (rendering them
black only) as well, which is useful for easily distinguishing brushes from the rest of the
data.

Chapter 5 Results 50

F
ig

u
re

5.
1:

A
n

ov
er

vi
ew

w
it

h
m

os
t

fe
at

u
re

s
en

ab
le

d
in

th
e

sc
at

te
rp

lo
t

im
pl

em
en

ta
ti

on
:

(a
)

to
ol

ba
r,

(b
)

m
at

ri
x-

zo
om

,
(c

)
se

le
ct

io
n

br
ow

se
r,

(d
)

m
ou

se
r-

ov
er

se
le

ct
io

n
,

(e
)

re
ct

an
gu

la
r

br
u

sh
,

(f
)

m
ai

n
vi

ew
-z

oo
m

sl
id

er
s,

(g
)

ex
pe

ri
m

en
t

la
be

ls

Chapter 5 Results 51

Figure 5.2: The Caleydo scatterplot supports different point-primitives: (a) Cross - (b) Box
- (c) Circle - (d) Disk

The plot supports many different glyphs, some are shown in Figure 5.2. The glyphs are
also interactive scalable with a slider-widget, as shown in Figure 5.3. Since the selected
pointsize will mostly depend on the size of the input data, the general rule also is that
bigger points provide an easier picking for selections like mouse-over details for particular
genes, lower scaled points are less affected from overplotting issues but suffer from the fact
that outliers are hardly visible (see Section 2.3.1).

The Zoom Feature

To further unburden the overplotting issues and to help with easier picking, the scatterplot
main view provides a zooming-feature (see Figure 5.4) based on orthogonal stretching. Four
bar handles are provided for each axis. Picture (a) shows the undistorted source image,
only two bar handles are visible per axis. The red area between the bar handles shows the
part which will be stretched. Clicking on the red arrow-glyphs let us change this source-
area. Clicking on the green glyphs will allow us now to stretch the glyph at will (indicated
by the green area), as seen in picture (b) and (c). If the picture is already stretched in any
way, the base (red) area cannot be changed any more unless the stretching is reversed.
This is to not confuse the untrained user. Picture (d) finally shows the interaction with
quadvise-plots and the zoom feature (here only a selection of the data containing only
points inside the stretched area are shown).

Chapter 5 Results 52

Figure 5.3: The scatterplot point sizes are adjustable (see slider in red circle). While small
pointsizes like in the left image give a better feeling for density distribution,
outliers are really hard to see.

We believe that this distortion based zoom feature is best suited for the tasks it needs to ac-
complish: Easier picking in heavy cluttered areas and revealing trends in small local areas.
This technique has advantages over fisheye-zooms and simple pane and zooms techniques
(See Chapter 2.1.2.1): No distortion in the focus area and no occlusion of any data-points.
The additional visual hint accomplished with the red-tinted area to indicate the source-area
also greatly helps with orientation and enriches the usability.

Performance and Random Sampling

Despite the fact that the performance for the test data seems sufficient even for a low-end
development systems like the one used for this thesis (Intel Pentium 4 3.2GHz, 2 GB RAM,
NVIDIA GeForce 7800 GS 256 MB,Windows 7), the operations for updating the whole
scatterplot matrix still stresses the system just from pure numbers (See Section 4.3). Table
5.1 shows the delay for this operation with different number of genes. Since the runtime
values are not exactly reproducible, we took 3 experiments:

#genes Test 1 Test 2 Test 3

514 375 [ms] 343 [ms] 390 [ms]
6172 4109 [ms] 4785 [ms] 4609 [ms]
12344 12656 [ms] 12641 [ms] 12625 [ms]

Table 5.1: The time it takes for re-rendering the whole scatterplot matrix is linear depended
on the number of genes.

Therefore, the scatterplot view fully supports the Caleydo random sampling feature. Pic-
ture 5.5 shows the three versions of the same data with different sample-rates. While
picture (a) shows the entire data, in picture (b) the number of genes is cut in half (around
6000 genes). In picture (c) the number of points are greatly reduces to around 500. While
(b) does not suffer much form the downsampling, picture (c) is not able any more to show

Chapter 5 Results 53

Figure 5.4: Zooming using orthogonal stretching: (a) the source with 4 bar handles, (b)
stretched in the y-direction (indicated by the green area) (c) stretched in x- and
y direction. Picture (d) shows the interaction with quadvise-plots, showing a
selection equivalent to the source area.

the density distribution in the scatterplot. It still can provide an overview of general trends
in the data, though.

Since performance is linear depended on the number of genes to be visualized, the required
sampling rate for acceptable response time should be trivial to set.

Chapter 5 Results 54

Figure 5.5: Scatterplot Random Sampling. While there is not much difference between pic-
ture (a) and (b), the greatly reduced number of samples in (c) loses most out-
liers, but still can indicate general trends in data distribution.

Chapter 5 Results 55

Quadvise Plots

As discussed in Section 2.3.2 quad-vise plots show the correlations between two pairs
of variables. Picture 5.6 shows two versions of it. (a) shows the correlation between 2
pairs of experiments, while (b) shows the correlation between a pair of experiments and
an additional experiment, resulting in lines parallel to the x-axis. Lines are drawn with
transparency for better results with a high amount of visualized genes. Since for example
with our test data, over 12000 lines are drawn which heavily cross each other, meaningful
results are hard to detect. Therefore this view supports showing only small subsets of data:
If there are selections made from the data, not the entire data is displayed in this view,
but the data containing (only) the first selection.

Figure 5.6: Quad-vise plots in Caleydo. (a) The correlation between a pair of experiments
an an additional experiment, resulting in lines parallel to the x-axis. (b) The
correlation between 2 pairs of experiments.

5.2 Scattterplot Matrix

We chose not to employ any dimension reduction methods since we wanted to provide a full
view of the data as it is. Therefore we visualize the data as full-scale scatterplot matrix with
the main-view of two specific experiments embedded. Correlations to other experiments are
provided with the linking and brushing technique both with the scatterplots and with the
other, already implemented views in the Caleydo framework.

General Visualisation

The scatterplot matrix is visualized without the redundancy in the upper left half and the
diagonal of the matrix. The diagonal is used for providing a histogram of the correlated ex-
periment. Left of the histogram name-labels are shown identifying the corresponding exper-
iments with small arrows pointing to the rows and columns.

The main view is embedded in the space not occupied by the matrix. Since the view
sizes are adjustable at will in Caleydo, the embedded main view will place itself any-

Chapter 5 Results 56

where where its area is maximized (with the constrain of a low disparity between the x-
and the y-axis). This can be seen in Figure 5.7, where the size of the matrix changes
zoom-feature. In the worst case, the mainview is allowed to occupy only a quarter of the
screen.

The matrix cells are rendered as 2-layered textures, one layer for the base data and one
layer for the brushed data (see Figure 5.8). The texture resolutions depends on the number
of experiments, number of genes and the selected samples-size (See Section 4.3 for more
details). Selections made in the main view are propagated immediately to each matrix
cell. This is the most costly operation in the scatterplot view, since (selectedgenes) ∗
(experiments)2 operations need to be performed to update the whole matrix. For our
test data with only 14 experiments and 3 selections of 5000 genes, that is already over
3 millions operations to be performed. On low-end systems, that can take some seconds
actually. Using the build in random sampling described above is recommended here. On the
positive side, the redrawing of the textures only take place when a brushing operations is
finished, so it does not really hinder the standard workflow.

Matrix Zoom

The more experiments are contained in the data, the less space is available for each in-
dividual matrix-cell. Recognizing meaningful information in the data without very strong
correlation between experiments might be impossible. For this reasons, instead of having
to bring every projections in the main view, we give the user a tool to get details on
demand directly in the scatterplot matrix.

Figure 5.7 shows the matrix-zoom in action. When this feature is enabled, the matrix-cell
under the mouse pointer (or the current cursor position) is scaled up by the factor nine, its
vicinal cells by the factor of 4. We also do not allow distortion, not even in the non-focus
area. The price for this is that we lose some space, but the big advantage we get is that
we keep the feeling of the rows and columns, which would be lost taking approaches as
suggested in Section 3.3.

5.3 Selections and Selection Manager

Caleydo and in this particular case the scatterplot view offer three kinds of picking or
brushing methods. If used in one view, they are propagated to other views as well:

• Mouse-over picking: Hovering the mouse over a data-item will highlight it and
can provide additional information. In the case of scatterplots it shows its name, its
affinity to specific selections and its value in both directions.

• Selections per mouse-click picking: The left mouse button allows an item to
be selected, the right mouse button deselects the item.

• Selections via view-specific brushes: Each view can provide a special brushing
technique related to its kind of visualisation, parallel coordinates support for example
angular brushing [Lex2008].

Chapter 5 Results 57

Figure 5.7: Scatterplot Matrix Zoom.

Chapter 5 Results 58

Brushing in the Scatterplot

Currently only one type of brush is implemented, the selection via rectangular window.
Holding down the left mouse-button and dragging the mouse over data-points forms a
green rectangle. As soon as the mouse-button is released, the brushed data inside the
rectangle is highlighted and the selection is propagated to the framework, which updates
the corresponding genes to other views. In the scatterplot matrix, selections are drawn
with only half the resolution (thus providing a higher visibility of each selected data-point)
compared to the rest of the data, since small selections may be hard to see there. See Figure
5.8. At this time, only binary brushing is supported.

Figure 5.8: Scatterplot Matrix Selection

The Selection Browser

Since Caleydo supports multiple brushes, there is a need for a tool to administrate them.
This is accomplished by the selection manager (see Figure 5.9).

Every time a brushing operation is performed, a new brush is built. The color of the
brush is predetermined, but follows a scheme for optimal color-coding for maps1. Each
new selection has a higher intern priority value then its predecessors, so they are rendered
over them if two selections contain the same data. Every selection is also given a name
upon creation, normally consisting of the abbreviation of the view and an incremental
number.

In the selection manger all selections are shown with their names, brush-color and the num-

1http://colorbrewer2.org/

Chapter 5 Results 59

Figure 5.9: Selection Manager showing deletion and merging operations

Figure 5.10: Selection Manager in action with parallel coordinates.(a) 4 Selections (SP
Sel 1-4) are available. (b) Selection SP Sel 2 and SP Sel 3 are merged into
selection SP Sel 1

ber of genes they contain. The selection browser supports operations like merging multiple
selections into one and the deletions of one or more selections. Figure 5.10 shows the se-
lection browser in action with the parallel coordinates view.

Chapter 5 Results 60

Chapter 6

Conclusions and Future Work

In this work we created a view for visualizing gene expression data based on scatterplots.
One of the key aspects was to provide a smooth integration into the Caleydo framework to
provide a consistent multiple coordinated view experience (see Figure 6.1).

Figure 6.1: Multiple Coordinated Views in Caleydo featuring scatterplot, heatmap, radial
hierarchy and parallel coordinates, histogram, selection browser and info area.

We have done this by providing a feature-rich main view to visualize the correlation be-
tween two experiments, with the help of quad-vise plots even four experiments. While the
main view itself is very customizable in its visual appearance, some aspects are directly
inherited from the framework itself, like the color-coding of the gene expressions or the
appearance of the standard brushes. For viewing the whole n-dimensional data-set, we

Chapter 6 Conclusions and Future Work 61

provided a high performance scatterplot matrix, which directly embeds the main-view of
the currently selected experiments in the space which the redundancy of a scatterplot
opens. Therefore, we get a Focus plus Context system where the scatterplot matrix serves
as overview for the actual scatterplot.

For indicating correlations between more than four experiments and even across the frame-
work, we implemented a Linking and Brushing method (see Chapter 3.4), which propagates
the brushes taken in the main view to all matrix projections and other views as well. We
have done this by enhancing the Caleydo framework to support multiple user-generated
brushes. For a better management of those, we created a selection browser which can
visualize, merge and delete brushes by user interaction.

Future Work

The currently implemented rectangular brush is easy to use and with the additional single
point picking and the ability to merge brushes with the selection browser, also a very
flexible one. Still, for arbitrarily shaped selections, there are faster and better methods
like polygonal or lasso brushes. In the framework, this is a straightforward enhancement,
only two methods need to be implemented per new brush: a method that draws the new
brush and another evaluator method that performs an in/out test for the chosen brushing
shape.

In this work, we chose to not rely on dimension reduction methods but rather present the
whole data in form of a scatterplot matrix all the time, for reasons discussed in Chapter
4. Nevertheless, dimension reduction methods can reveal correlations which the current
techniques may not be able to, so implementing these techniques might be a valuable
addition. Selecting the dimensions on which the dimension reduction methods are per-
formed normally happen in an extra window, we actually do not need to implement a
special GUI for this, we can enhance our current system to use the scatterplot matrix as
dimension-selector. Currently the matrix is treated as a selector of two (or four in the case
of quad-vise-plots) dimensions, but we do not need to limit the number of projections, we
can allow an arbitrary number by generalising this idea. From the user’s point of view, he
could select a random number of dimensions via shift-clicking on various matrix cells, where
in the main-view a PCA or a similar projection method is then performed to visualize the
correlation between all those selected dimensions.

While the current implementation runs sufficiently fast even on low end systems with typi-
cal gene expression data (See Chapter 4), the Caleydo framework is not limited to any kind
of data. An excessive number of dimensions are able to reduce the responsiveness dramat-
ically due the square order of the program runtime when a scatterplot-matrix is involved.
Since we followed the Layered Rendering approach we discussed in Section 2.1.5 and Chap-
ter 4, the next logical step would be to implement Piringers [Piringer2009] Early Thread
Termination to make full use of modern, multi-core CPUs.

Although Berhard Schlegl already compared the Caleydo framework with similar frame-
works in his master thesis [Schlegl2009], his focus was on the visual analytics aspects and
scatterplot played only a small role in his evaluation. So the next logical step for this
work is to investigate the implementation details and techniques of scatterplots in those
frameworks in comparison to our work.

Chapter 6 Conclusions and Future Work 62

Appendix A

Keyboard shortcuts

Toolbar Action Key Description

Toggle Point Type p Change the point-primitives in the main
view: (box, point, disk, circle, cross)

Toggle Matrix View/Main View m Switch between main view only and embed-
ded view

Toggle Matrix Zoom Mode o Mouseover in the Matrix zooms out the se-
lected matrix cell and its neighbours, simu-
lating a ’discret fisheye’

Toggle Main View Zoom Mode z Enables a scalable and moveable zoom-
window in the main view.The zoom-window
position is reset by disabling this mode

Coloured Scatterplots c Switches between black-only or color-coded
scatterpoints

Enable/Disable Quad-vise Mode b 2 Experiments are rendered each axis, con-
nected with a line to visualize the correlation
between 4 genes

Point Size Slider - The slider widget lets you scale the scatter-
points within a predetermined range

Table A.1: Keyboard shortcuts and toolbar actions for the Caleydo scatterplot view

Additional Keyboard commands:

• Arrow-Keys: In the main view only, you can directly navigate through the exper-
iments. In the scattermatrix view, you can move the Mouse-over selection.

• CTRL+Arrow-Keys: In the quad-vise plot mode, you can navigate with the
second pair of axis through the matrix.

• ENTER: The in the mouse-over selection highlighted matrix-element will be ren-
dered in the main view.

Appendix A Keyboard shortcuts 63

List of Figures

1.1 The DNA in form of a double helix and its base pairs. 9
1.2 cDNA (complementary DNA) Microarray 10

2.1 Ancient planetary movements diagram.[Tufte1983] 12
2.2 Magic Lenses.[Bier1993] . 14
2.3 Semantic Depth of Field. [Bier1993] . 14
2.4 Fisheye View of a graph.[Sarkar1994] . 15
2.5 Document Lens and Perspective Wall.[Mackinlay1991][Robertson1993] . . . 16
2.6 Orthogonal Stretching.[Sarkar1993] . 17
2.7 Multiple Views of various representations of legal cases.[Baldonado2000] . . 18
2.8 Linking and Brushing in a scatterplot matrix.[Voigt2002] 19
2.9 Intel CPU Chart.[Sutter2005] . 21
2.10 Early Thread Termination and Layered Visualisation [Piringer2009]. . . . 22
2.11 Hierarchical Heat Map in Caleydo . 24
2.12 Parallel Coordinates in Caleydo . 24
2.13 Scatterplot showing an age-weight correlation.[Rezaeian2009] 25
2.14 Sunflower plot.[Cleveland1984] . 26
2.15 Density Distribution Sunflower Plot.[Dupont2003] 27
2.16 Parametric Snake Plot in DIAMOND.[Schall1995] 28
2.17 4-dimensional linked quad-wise plots in DIAMOND.[Schall1995] 29
2.18 Continuous Scatterplot [Bachthaler2008] 29
2.19 Isosurfaces and Contour Plot . 30
2.20 3D-Scatterplot with a color-coded, 4th dimension 31
2.21 3D-Scatterplot showing seven dimensions.[Schall1995] 31
2.22 PCA and normalized PCA by [Koren2004]. 32
2.23 Scatterplot Matrix. [Carr1987]. 33
2.24 Scatterplot matrix dimensional reordering. [Peng2004]. 34
2.25 Jigsaw map. [Yang2007]. 35
2.26 Scatterplot Matrix Navigation [Elmqvist2008]. 35

3.1 Gene expression data in Caleydo . 37
3.2 Concept of embedded main-view in the scatterplot matrix 39
3.3 Concept sketch of scatterplot matrix using fish-eye distortion 40

4.1 UML Diagram of the Scatterplot Class . 44
4.2 Diagram showing texture-mapping process 46
4.3 UML Diagram of the SelectionManger class 48

5.1 Caleydo Scatterplot all feature Overview Screenshot 51
5.2 Scatterplot, Different Point Primitives . 52

List of Figures 64

5.3 Scatterplot Point Sizes . 53
5.4 Scatterplot mainview Zoom . 54
5.5 Scatterplot Random Sampling. 55
5.6 Quad-vise plots in Caleydo. 56
5.7 Scatterplot Matrix Zoom . 58
5.8 Scatterplot Matrix Selection . 59
5.9 Selection Browser . 60
5.10 Selection Manager with parallel coordinates 60

6.1 Multiple Coordinated Views in Caleydo . 61

List of Figures 65

List of Tables

4.1 Scatterplot Layers . 45

5.1 Performance Table . 53

A.1 Keyboard shortcuts and toolbar actions foe the Caleydo scatterplot view . 63

List of Tables 66

Listings

4.1 Transfer function for orthogonal stretching 47
4.2 Overloaded transfer function with added scaling and position adjustments . 47

Listings 67

Bibliography

[Alberts2002] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith
Roberts, and Peter Walter. Molecular Biology of the Cell, Fourth
Edition. Garland Science, Taylor & Francis Group, New Yorks, fourth
edition, 2002. ISBN 0815332181.

[Andrienko2007] Gennady Andrienko and Natalia Andrienko. Coordinated multiple
views: a critical view. In CMV ’07: Proceedings of the Fifth Interna-
tional Conference on Coordinated and Multiple Views in Exploratory
Visualization, pp. 72–74. IEEE Computer Society, Washington, DC,
USA, 2007. ISBN 0-7695-2903-8.

[Aris2007] Aleks Aris and Ben Shneiderman. Designing semantic substrates for
visual network exploration. Information Visualization, volume 6(4):pp.
281–300, 2007. ISSN 1473-8716.

[Asimov1994] Daniel Asimov and Andreas Buja. The grand tour via geodesic interpo-
lation of 2-frames. In in Visual Data Exploration and Analysis, Sym-
posium on Electronic Imaging Science and Technology, IS&T/SPIE
(Soc. for Imaging Sci. and Technology/Internat. Soc. for Optical En-
gineering. 1994.

[Bachthaler2008] S. Bachthaler and D. Weiskopf. Continuous scatterplots. Visualiza-
tion and Computer Graphics, IEEE Transactions on, volume 14(6):pp.
1428 –1435, nov.-dec. 2008. ISSN 1077-2626.

[Bajaj1997] Chandrajit L. Bajaj, Valerio Pascucci, and Daniel R. Schikore. The
contour spectrum. In VIS ’97: Proceedings of the 8th conference on Vi-
sualization ’97, pp. 167–ff. IEEE Computer Society Press, Los Alami-
tos, CA, USA, 1997. ISBN 1-58113-011-2.

[Baldonado2000] Michelle Q. Wang Baldonado, Allison Woodruff, and Allan Kuchinsky.
Guidelines for using multiple views in information visualization. In
AVI ’00: Proceedings on Advanced visual interfaces, pp. 110–119. ACM
Press, New York, NY, USA, 2000.

[Becker1987] Richard A. Becker and William S. Cleveland. Brushing scatterplots.
Technometrics, volume 29(2):pp. 127–142, 1987.

[Bertin1974] Jacques Bertin and Georg Jensch. Graphische Semiologie: Diagramme,
Netze, Karten. de Gruyter, Berlin, first published 1967 in french,
german edition, 1974.

[Bier1993] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and
Tony D. DeRose. Toolglass and magic lenses: the see-through inter-
face. In SIGGRAPH ’93: Proceedings of the 20th annual conference on

Bibliography 68

Computer graphics and interactive techniques, pp. 73–80. ACM Press,
New York, NY, USA, 1993.

[Buja1991] A. Buja, J.A. McDonald, J. Michalak, and W. Stuetzle. Interactive
data visualization using focusing and linking. In Visualization, 1991.
Visualization ’91, Proceedings., IEEE Conference on, pp. 156 –163,
419. oct 1991.

[Card1999] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman, editors.
Readings in information visualization: using vision to think. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1999. ISBN 1-
55860-533-9.

[Carr1987] D. B. Carr, R. J. Littlefield, W. L. Nicholson, and J. S. Littlefield. Scat-
terplot matrix techniques for large n. Journal of the American Statis-
tical Association, volume 82(398):pp. 424–436, 1987. ISSN 01621459.

[Carr2006] H. Carr, B. Duffy, and B. Denby. On histograms and isosurface statis-
tics. Visualization and Computer Graphics, IEEE Transactions on,
volume 12(5):pp. 1259 –1266, sept.-oct. 2006. ISSN 1077-2626.

[Chen2004] Hong Chen. Compound brushing explained. Information Visualization,
volume 3(2):pp. 96–108, 2004. ISSN 1473-8716.

[Chi1997] E.H.-H. Chi, P. Barry, J. Riedl, and J. Konstan. A spreadsheet ap-
proach to information visualization. In Information Visualization,
1997. Proceedings., IEEE Symposium on, pp. 17 –24. oct. 1997.

[Cleveland1988] William C. Cleveland and Marylyn E. McGill. Dynamic Graphics
for Statistics. CRC Press, Inc., Boca Raton, FL, USA, 1988. ISBN
053409144X.

[Cleveland1984] William S. Cleveland and Robert McGill. The many faces of a
scatterplot. Journal of the American Statistical Association, vol-
ume 79(388):pp. 807–822, 1984. ISSN 01621459.

[Collins2007] Christopher Collins and Sheelagh Carpendale. Vislink: Revealing rela-
tionships amongst visualizations. IEEE Transactions on Visualization
and Computer Graphics, volume 13(6):pp. 1192–1199, 2007. ISSN
1077-2626.

[Convertino2003] G. Convertino, J. Chen, B. Yost, Y.-S. Ryu, and C. North. Exploring
context switching and cognition in dual-view coordinated visualizations.
In Coordinated and Multiple Views in Exploratory Visualization, 2003.
Proceedings. International Conference on, pp. 55 – 62. july 2003.

[Asimov1985] D.Asimov. The grand tour: A tool for viewing multidimensional data.
SIAM, volume 6:pp. 128–143, 1985.

[Dix2002] Alan Dix and Geoff Ellis. By chance: enhancing interaction with large
data sets through statistical sampling. Proceedings of Advanced Visual
Interfaces - AVI2002, pp. 167–176, 2002.

[Doleisch2002] Helmut Doleisch and Helwig Hauser. Smooth brushing for fo-

Bibliography 69

cus+context visualization of simulation data in 3d. In WSCG, pp.
147–154. 2002.

[Dupont2003] William D. Dupont and W. Dale Plummer Jr. Density Distribution
Sunflower Plots, volume 8. 1 2003.

[Elmqvist2008] N. Elmqvist, P. Dragicevic, and J.-D. Fekete. Rolling the dice: Mul-
tidimensional visual exploration using scatterplot matrix navigation.
Visualization and Computer Graphics, IEEE Transactions on, vol-
ume 14(6):pp. 1539 –1148, nov.-dec. 2008. ISSN 1077-2626.

[Friedman1974] J.H. Friedman and J.W. Tukey. A projection pursuit algorithm for
exploratory data analysis. Computers, IEEE Transactions on, volume
C-23(9):pp. 881 – 890, sept. 1974. ISSN 0018-9340.

[Furnas1986] George W. Furnas. Generalized fisheye views. In CHI ’86: Proceedings
on Human factors in computing systems, pp. 16–23. ACM Press, New
York, NY, USA, 1986.

[Gamma1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign patterns: elements of reusable object-oriented software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995. ISBN
0-201-63361-2.

[Grubbs1969] F. E Grubbs. Procedures for detecting outlying observations in sam-
ples. 11. Technometrics, 1969.

[Hauser2002] Helwig Hauser, Florian Ledermann, and Helmut Doleisch. Angular
brushing of extended parallel coordinates. In INFOVIS ’02: Proceedings
on Information Visualization, pp. 127–130. IEEE Computer Society,
Washington, DC, USA, 2002.

[Hibbs2005] M. A. Hibbs, N. C. Dirksen, K. Li, and O. G. Troyanskaya. Visual-
ization methods for statistical analysis of microarray clusters. BMC
Bioinformatics, volume 6:p. 115, 2005. ISSN 1471-2105.

[Inselberg1985] Alfred Inselberg. The plane with parallel coordinates. The Visual
Computer, volume 1(4):pp. 69–91, 1985.

[Kalkusch2006] Michael Kalkusch and Dieter Schmalstieg. Extending the scene graph
with a dataflow visualization system. In VRST 2006: Proceedings on
Virtual reality software and technology, pp. 252–260. ACM, New York,
NY, USA, 2006.

[Keim2002] Daniel A. Keim. Information visualization and visual data mining.
IEEE Transactions on Visualization and Computer Graphics, vol-
ume 8(1):pp. 1–8, 2002. ISSN 1077-2626.

[Keim2005] Daniel A. Keim. Scaling visual analytics to very large data sets. Pre-
sentation at the Workshop on Visual Analytics, June 2005.

[Koren2004] Y. Koren and L. Carmel. Robust linear dimensionality reduction.
Visualization and Computer Graphics, IEEE Transactions on, vol-
ume 10(4):pp. 459 –470, july-aug. 2004. ISSN 1077-2626.

Bibliography 70

[Kosara2003] Robert Kosara, Helwig Hauser, and Donna L. Gresh. An interaction
view on information visualization. In State-of-the-Art Proceedings of
EUROGRAPHICS 2003 (EG 2003), pp. 123–137. 2003.

[Kosara2002] Robert Kosara, Silvia Miksch, Helwig Hauser, Johann Schrammel, Ver-
ena Giller, and Manfred Tscheligi. Useful properties of semantic depth
of field for better f+c visualization. In VISSYM ’02: Proceedings of
the symposium on Data Visualisation 2002, pp. 205–210. Eurograph-
ics Association, Aire-la-Ville, Switzerland, Switzerland, 2002. ISBN
1-58113-536-X.

[Lex2008] Alexander Lex. Exploration of Gene Expression Data in a Visually
Linked Environment. Master’s thesis, Graz University of Technology,
2008.

[Lex2010] Alexander Lex, Marc Streit, Ernst Kruijff, and Dieter Schmalstieg.
Caleydo: Design and evaluation of a visual analysis framework for gene
expression data in its biological context. In To appear in: Proceedings of
2010 IEEE Pacific Visualization Symposium, Taipeh, Taiwan. 2010.

[Li2009] Jing Li, Jarke J. van Wijk, and Jean-Bernard Martens. Evaluation
of symbol contrast in scatterplots. In PACIFICVIS ’09: Proceedings
of the 2009 IEEE Pacific Visualization Symposium, pp. 97–104. IEEE
Computer Society, Washington, DC, USA, 2009. ISBN 978-1-4244-
4404-5.

[Mackinlay1991] Jock D. Mackinlay, George G. Robertson, and Stuart K. Card. The
perspective wall: detail and context smoothly integrated. In CHI 1991:
Proceedings on Human factors in computing systems, pp. 173–176.
ACM Press, New York, NY, USA, 1991.

[Martin1995] Allen R. Martin and Matthew O. Ward. High dimensional brushing for
interactive exploration of multivariate data. In VIS ’95: Proceedings
on Visualization ’95, p. 271. IEEE Computer Society, Washington,
DC, USA, 1995.

[Moore1965] Gordon E. Moore. Cramming more components onto integrated cir-
cuits. Electronics, volume 38(8), April 1965.

[Murrell2006] Paul Murrell. Graphics of large datasets: Visualizing a million. Journal
of Statistical Software, volume 17(b01), 2006.

[Pearson1901] K. Pearson. On lines and planes of closest fit to systems of points
in space. The London, Edinburgh and Dublin Philosophical Magazine
and Journal of Science, volume 2:pp. 559–572, 1901.

[Peng2004] Wei Peng, Matthew O. Ward, and Elke A. Rundensteiner. Clutter
reduction in multi-dimensional data visualization using dimension re-
ordering. In INFOVIS ’04: Proceedings of the IEEE Symposium on
Information Visualization (INFOVIS’04), pp. 89–96. IEEE Computer
Society, Washington, DC, USA, 2004. ISBN 0-7803-8779-3.

[Piringer2009] H. Piringer, C. Tominski, P. Muigg, and W. Berger. A multi-threading

Bibliography 71

architecture to support interactive visual exploration. Visualization and
Computer Graphics, IEEE Transactions on, volume 15(6):pp. 1113 –
1120, nov.-dec. 2009. ISSN 1077-2626.

[Plumlee2006] Matthew D. Plumlee and Colin Ware. Zooming versus multiple win-
dow interfaces: Cognitive costs of visual comparisons. ACM Trans.
Comput.-Hum. Interact., volume 13(2):pp. 179–209, 2006. ISSN 1073-
0516.

[Rabenhorst1994] David A. Rabenhorst. Interactive exploration of multidimensional
data. In Proceedings of the SPIE Symposium on Electronic Imaging,
pp. 277–286. 1994.

[Rezaeian2009] Mohsen Rezaeian. Getting to know the scatter plot. Middle East Jour-
nal of Age and Ageing, volume 6 - Issue 2, 2009.

[Roberts2007a] Jonathan C. Roberts. State of the art: Coordinated & multiple views in
exploratory visualization. In CMV ’07: Proceedings of the Fifth Inter-
national Conference on Coordinated and Multiple Views in Exploratory
Visualization, pp. 61–71. IEEE Computer Society, Washington, DC,
USA, 2007. ISBN 0-7695-2903-8.

[Robertson1993] George G. Robertson and Jock D. Mackinlay. The document lens. In
UIST ’93: Proceedings of the 6th annual ACM symposium on User
interface software and technology, pp. 101–108. ACM, New York, NY,
USA, 1993. ISBN 0-89791-628-X.

[Sarkar1994] Manojit Sarkar and Marc H. Brown. Graphical fisheye views. Com-
mun. ACM, volume 37(12):pp. 73–83, 1994. ISSN 0001-0782.

[Sarkar1993] Manojit Sarkar, Scott S. Snibbe, Oren J. Tversky, and Steven P. Reiss.
Stretching the rubber sheet: a metaphor for viewing large layouts on
small screens. In Proceedings of the 6th annual ACM symposium
on User interface software and technology, pp. 81–91. ACM, Atlanta,
Georgia, United States, 1993. ISBN 0-89791-628-X.

[Schall1995] Matthew Schall. Diamond and ice: Visual exploratory data analysis
tools. Perspective, volume 18(2):pp. 15–24, Nov 1995.

[Schlegl2009] Bernhard Schlegl. Visual Analytics for Gene Expression Data. Mas-
ter’s thesis, Graz University of Technology, 2009.

[Schmidt2000] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.
Pattern-oriented software architecture volume 2: Patterns for concur-
rent and networked objects. September 2000.

[Seo2002] Jinwook Seo and Ben Shneiderman. Interactively exploring hierarchical
clustering results. Computer, volume 35(7):pp. 80–86, 2002. ISSN
0018-9162.

[Shneiderman1994] B. Shneiderman. Dynamic queries for visual information seeking. Soft-
ware, IEEE, volume 11(6):pp. 70 –77, nov 1994. ISSN 0740-7459.

[Shneiderman1996] Ben Shneiderman. The eyes have it: A task by data type taxonomy

Bibliography 72

for information visualizations. In VL ’96: Proceedings on Visual Lan-
guages. IEEE Computer Society, 1996. ISBN 081867508X.

[Shneiderman2006] Ben Shneiderman and Aleks Aris. Network visualization by semantic
substrates. IEEE Transactions on Visualization and Computer Graph-
ics, volume 12(5):pp. 733–740, 2006. ISSN 1077-2626.

[Streit2007] Marc Streit. Metabolic Pathway Visualization Using Gene-Expression
Data. Master’s thesis, Graz University of Technology, 2007.

[Streit2008] Marc Streit, Michael Kalkusch, Karl Kashofer, and Dieter Schmal-
stieg. Navigation and exploration of interconnected pathways. Com-
puter Graphics Forum (EuroVis 2008), volume 27(3):pp. 951–958(8),
May 2008.

[Streit2009a] Marc Streit, Alexander Lex, Michael Kalkusch, Kurt Zatloukal, and
Dieter Schmalstieg. Caleydo: Connecting pathways with gene expres-
sion. Bioinformatics, 2009.

[Sutter2005] Herb Sutter. The free lunch is over: A fundamental turn toward con-
currency in software. Dr. Dobbs Journal, volume 30(3):pp. 202–210,
2005.

[Tague2004] Nancy R. Tague. The Quality Toolbox. ASQ Quality Press, second
edition edition, 2004.

[Thomas2005] James J. Thomas and Kristin A. Cook. Illuminating the Path: The
Research and Development Agenda for Visual Analytics. National Vi-
sualization and Analytics Ctr, 2005. ISBN 0769523234.

[Tufte1983] Edward R. Tufte. The Visual Display of Quantitative Information.
Graphics Press, Cheshire, Coneeticut, second edition, 1983 (Reprint
2001).

[Voigt2002] Robert Voigt. An Extended Scatterplot Matrix and Case Studies in
Information Visualization. Published as Diplomarbeit. Master’s thesis,
October 2002.

[Ward1994] Matthew O. Ward. Xmdvtool: integrating multiple methods for visu-
alizing multivariate data. In VIS ’94: Proceedings of the conference
on Visualization ’94, pp. 326–333. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1994. ISBN 0-7803-2521-4.

[Wattenberg2005] M. Wattenberg. A note on space-filling visualizations and space-filling
curves. In Information Visualization, 2005. INFOVIS 2005. IEEE
Symposium on, pp. 181 – 186. 23-25 2005.

[Wegman2002] J. Wegman and Jeffrey L. Solka. On some mathematics for visualizing
high dimensional data, 2002.

[Yang2007] J. Yang, D. Hubball, M.O. Ward, E.A. Rundensteiner, and W. Rib-
arsky. Value and relation display: Interactive visual exploration of
large data sets with hundreds of dimensions. Visualization and Com-
puter Graphics, IEEE Transactions on, volume 13(3):pp. 494 –507,

Bibliography 73

may-june 2007. ISSN 1077-2626.

Bibliography 74

	Introduction
	Problem Statement and Contribution
	Biological Background and Gene Expression Data
	Structure of this Document

	Related Work
	Information Visualization
	The Information-Seeking Mantra
	Focus plus Context (F+C)
	Distortion-oriented F+C Methods

	Coordinated Multiple Views
	Linking and Brushing
	Efficient Rendering of huge data-sets
	Discussion

	InfoVis in Caleydo
	Heatmaps
	Parallel Coordinates

	Scatterplots
	Overplotting
	Scatterplots related diagrams
	Continuous Scatterplots
	Multivariate Data and Scatterplots
	Dimension Reduction Methods

	Scatterplot Matrix
	Navigation in the Scatterplot Matrix

	Discussion

	Concept
	The main Scatterplot-view
	The Scatterplot Matrix
	Focus plus Context
	Linking and Brushing
	Zooming in the Scatterplot
	Integration into the framework

	Design and Implementation
	Used Technologies
	Framework
	View Management
	Plug-In Architecture
	Storage Concept
	Event System
	Selection Management

	Software Design
	Display Lists
	Sampling and Textures
	Zooming
	Selection Management and Brushing

	Results
	Scattterplot Main View
	Scattterplot Matrix
	Selections and Selection Manager

	Conclusions and Future Work
	Keyboard shortcuts
	Appendix
	List of Figures
	List of Tables
	List of Listings
	Bibliography

