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Preface

This master thesis is about portfolio optimization considering uncertain input parame-
ters.

In the first chapter, we introduce the classical mean-variance optimization model of
Harry Markowitz. We assume that the expected returns and the covariance matrix,
which is used as risk measure, are known. Some related portfolio optimization problems
and the corresponding solution methods are discussed.

In the second chapter we define robust optimization in general and describe different
problems: uncertainty in the objective function, uncertainty in the constraints and the
concept of relative robustness. Further we discuss some strategies like resampling of
data and solution methods for conic optimization problems needed when dealing with
robust optimization problems.

The robust portfolio optimization is considered in the third chapter. There we assume,
that the knowledge about expected returns and the covariance matrix is uncertain; for
these inputs we only have estimations leading to uncertain input data. We include these
data in the optimization problem by assuming that they lie in so-called uncertainty sets.
The resulting optimization problems are formulated and solved.

In the last chapter, the models described in the previous chapters of the thesis are ap-
plied to an instance of a portfolio optimization problem focussing on the comparison of
classical optimization models with their robust counterparts.
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ful supervision, the patience and the helpful advices. I also want to thank all people,
who helped me with this master thesis, especially my parents for supporting me dur-
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1 Markowitz: Classical Mean-Variance
Optimization

1.1 Introduction

This chapter is based on the paper of Steinbach [1] and the paper of A. and D. Nieder-
mayer [2]. The duality theory is from the script of Burkard [3] and the book of Fabozzi
et al. [5], Chapter 9.

In this chapter we discuss the classical portfolio optimization by Harry Markowitz, the
so-called mean-variance optimization. Markowitz proposed an optimization model to get
a high reward with low risk. This model is sufficiently simple to be solved numerically
and can be used in practice.
First of all we will analyze the single-period mean-variance model. There we show the
optimization problem for several assumptions: First we discuss the problem with risky
assets only. Then we include the possibility to invest in riskless cash and the third step
is to look at the optimization of investing in an account with guaranteed total loss.
We will also consider the influence of constraints with inequalities instead of equations.
Since the choice of the risk measure influences the solutions of an optimization problem,
we want to discuss the downside risk optimization too where we use the semi-variance
instead of the variance as risk measure. We need some certain assumptions of the return
distributions.
Then we want to consider the multi-period mean-variance model. In this context we
need so-called scenario trees.

Throughout this master thesis we assume that short selling is not allowed.
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1 Markowitz: Classical Mean-Variance Optimization

1.2 Single-period mean-variance model

In our considerations we can invest in n assets over a certain period of time. A portfolio
over these n assets is specified by the so-called portfolio vector w ∈ Rn, where wi is
the percentage of capital invested in asset i. Let us denote the random vector of asset
returns by r ∈ Rn. Denote by pi the price of asset i at time ti and by pi+1 the price of
asset i at time ti+1 for 1 ≤ i ≤ n. Then the return of asset i is given as ri = pi+1−pi

pi
. At

the end of the period [ti, ti+1] the portfolio return is given as R =
n∑
i=1

riwi = r′w, where

r′ denotes the transposed vector of r. Assume that the asset returns have expectation
µr := E[r] and covariance matrix

Σ := E[(r − µr)(r − µr)′] = E[rr′]− µrµ′r.

The total return of the portfolio is a random variable which depends on the portfolio
vector (wi): R = r′w. The aim is to determine a portfolio vector w which leads to a re-
turn distribution fullfilling the investor’s needs. In this context we define two important
quantities, reward and risk, as follows:

Definition 1.1: Reward
The reward of a portfolio is the mean of its return,

µ(w) := E[R] = E[r′w] = µ′rw.

Definition 1.2: Risk
The risk of a portfolio is the variance of its return,

σ2(w) := V ar[R] = E[(r′w − E[r′w])2] = E[w′(r − µr)(r − µr)′w] = w′Σw.

We want to maximize the reward and minimize the risk leading to the optimization
problem:

max
w

{
cµ(w)− 1

2
σ2(w)

}
(1.1)

s.t. e′w = 1,

wi ≥ 0, ∀i,

2



1 Markowitz: Classical Mean-Variance Optimization

where e ∈ Rn denotes the vector of all ones. The investor tries to get a good trade-off
between reward and risk. The equation e′w = 1 is called the budget equation and spec-
ifies the initial wealth.
Problem 1.1 can be reformulated as one of the following two optimization problems,
which are dual to each other. For understanding we give a short discussion to duality of
optimization problems (see Fabozzi et al. [5], Chapter 9).
The variables of a dual problem are related to variables of the corresponding primal
problem. If the primal optimization problem is a maximization then the dual optimiza-
tion problem is a minimization and conversely, if the primal problem is minimization
then the dual problem will be maximization. The number of variables of the primal
problem is equal to the number of constraints of the dual problem and vice versa. There
are several advantages of dual optimization problems:

• The dual problem is often better tractable from a theoretical or computational
point of view. This can be used to compute the primal and dual solutions.

• If we have a convex optimization problem, then we can solve the dual problem and
the objective value is the same as in the primal problem.

So we use dual problems, because they are often easier to solve than the primal problems.

Dual optimization problems also play a major part in formulations of robust optimization
problems, which are discussed in the following chapters. Now we want to summarize
briefly how to obtain the dual of a problem given.
Consider the following primal optimization problem:

min
x
f(x) (1.2)

s.t. gi(x) ≤ 0, i = 1, . . . , n.

First we formulate the Lagrangian to put the constraints of the primal problem in the
objective function for which we use n nonnegative multipliers ui:

L(x, u) = f(x)− u′g(x).

Now we construct the dual function:

L∗(u) = min
x

{
f(x) + u′g(x)

}
.

Finally we can formulate the dual optimization problem:

max
u

L∗(u) (1.3)

s.t. u ≥ 0.

3



1 Markowitz: Classical Mean-Variance Optimization

In the following passage we review some basics of duality theory in linear and quadratic
optimization. First consider linear optimization problems:

• Primal problem:
max
x

c′x (1.4)

s.t. Ax ≤ b,
x ≥ 0.

• Dual problem:
min
u
b′u (1.5)

s.t. A′u ≥ c,
u ≥ 0.

We can formulate two theorems about the solutions of primal and dual problems:

Theorem 1.1: Weak Duality
For every feasible solution x of the primal problem and every feasible u of the dual
problem holds:

c′x ≤ b′u.

Proof:
From A′u ≥ c, x ≥ 0 and Ax ≤ b follows:

c′x ≤ u′Ax ≤ u′b.

�

Theorem 1.2: Duality
If one of two dual linear optimization problems has a finite optimal solution, then the
other problem has a finite optimal solution and for the optimal values x∗ and u∗ of the
objective function holds:

c′x∗ = b′u∗.

4



1 Markowitz: Classical Mean-Variance Optimization

For the proof, see Burkard [3], page 87.

Now we consider the duality in quadratic optimization:

• Primal problem:

min
x

{
1

2
x′Qx+ c′x

}
(1.6)

s.t. Ax ≥ b.

• Dual problem:

max
u

{
u′b− 1

2
(c−A′u)′Q−1(c−A′u)

}
(1.7)

s.t. u ≥ 0.

Look up the book of Fazozzi et al. [5], Chapter 9.

Now consider the mean-variance optimization Problem 1.1 again. An equivalent formu-
lation of Problem 1.1 is the following:

max
w

µ(w) (1.8)

s.t. e′w = 1,

σ2(w) ≤ s.
wi ≥ 0, ∀i.

The equivalence of Problem 1.1 and 1.8 will be shown in Section 1.2.1.

In this model we maximize the reward subject to the budget equation and the constraint
that the risk is lower than a fixed level s.

The dual problem is to minimize the risk subject to the budget equation and the con-
straint that the reward is fixed at level m.

5



1 Markowitz: Classical Mean-Variance Optimization

min
w

1

2
σ2(w) (1.9)

s.t. e′w = 1,

µ(w) = m,

wi ≥ 0, ∀i.

Problem 1.8 has a linear objective function and convex quadratic restrictions and Prob-
lem 1.9 has a convex quadratic objective function and linear restrictions. The convexity
of the quadratic restrictions or the quadratic goal function, follows from the positive
semidefinitness of Σ as a covariance matrix. So numerically Problem 1.9 is easier to
solve than Problem 1.8.

Further in this section the relationship between these optimization problems is discussed.
We extend the general single-period model by including riskless cash, guaranteed loss,
inequalities and downside risk.

1.2.1 Risky assets

Now consider the simplest situation with a portfolio consisting of n risky assets only.
We need two assumptions on the return distribution.

Assumptions:

• (A1) Σ > 0, the covariance matrix is positive definite.:
All n assets and any convex combination of them are risky.

• (A2) µr is not a multiple of e: µr 6= ke for k ∈ N:
This implies n ≥ 2 and guarantees that the situation does not degenerate. Other-
wise the optimal portfolio of Problem 1.1 would always be the same: w = Σ−1e

e′Σ−1e
regardless of the trade-off parameter c. Furthermore the constraints of Problem
1.9 would be violated except of one specific value of the desired reward, namely

m = µ′re
n .

To solve Problem 1.1 we minimize the negative utility function and get the following
optimization problem:

6



1 Markowitz: Classical Mean-Variance Optimization

min
w

{
1

2
w′Σw − cµ′rw

}
(1.10)

s.t. e′w = 1,

wi ≥ 0, ∀i.

The Lagrangian is

L(w, λ; c) =
1

2
w′Σw − cµ′rw − λ(e′w − 1).

∂L

∂w
= w′Σ− cµr − λe = 0. (1.11)

The optimal solution for the portfolio vector w is

w∗ = Σ−1[cµr + λe].

To get the optimal multiplier λ we substitute the optimal w in the budget equation:

e′[Σ−1[cµr + λe]] = 1

λ∗ =
1− ce′Σ−1µr

e′Σ−1e
. (1.12)

The optimal reward m is obtained by substitution of the optimal w in m = µ′rw:

m∗ = cµ′rΣ
−1µr + λe′Σ−1µr =

c(e′Σ−1eµ′rΣ
−1µr − [e′Σ−1µr]

2) + e′Σ−1µr
e′Σ−1e

(1.13)

This solution is unique because the objective is strongly convex and Constraint 1.11 is
of full rank.

Thus Problem 1.9 is easier to solve numerically.

7
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min
w

1

2
w′Σw (1.14)

s.t. e′w = 1,

µrw = m,

wi ≥ 0, ∀i.

The Lagrangian is

L(w, λ, c;m) =
1

2
w′Σw − λ(e′w − 1)− c(µrw −m).

∂L

∂w
=w′Σ− λe− cµr = 0.

The optimal solution for the portfolio vector w is

w∗ = Σ−1(λe+ cµr).

To get the optimal value c we substitute the optimal value of w in the budget equation:

e′(Σ−1(λe+ cµr)) = 1.

Hence we get λ:

λ =
1− e′Σ−1µrc

e′Σ−1e
. (1.15)

By substituting the optimal w in the equation m = µ′rw we get

m = µr(Σ
−1(λe+ cµr)). (1.16)

In Equation 1.16 we substitute Equation 1.15 for λ and we get the optimal c:

8



1 Markowitz: Classical Mean-Variance Optimization

m =µr(Σ
−1((

1− e′Σ−1µrc

e′Σ−1e
)e+ cµr)).

m =
µ′rΣ

−1e− e′Σ−1µre
′Σ−1µrc

e′Σ−1e
+ cµ′rΣ

−1µr.

me′Σ−1e− µrΣ−1e =c(−(e′Σ−1µr)
2 + µ′rΣ

−1µre
′Σ−1e).

c∗ =
me′Σ−1e− µrΣ−1e

µ′rΣ
−1µre′Σ−1e− (e′Σ−1µr)2

. (1.17)

For the optimal λ we substitute the optimal c from 1.17 in Equation 1.15:

λ =
1− e′Σ−1µr(

me′Σ−1e−µrΣ−1e
µ′rΣ

−1µre′Σ−1e−(e′Σ−1µr)2
)

e′Σ−1e
.

λ =
µ′rΣ

−1µre
′Σ−1e− (e′Σ−1µr)

2 − e′Σ−1µre
′Σ−1em+ (e′Σ−1µr)

2

e′Σ−1e(µ′rΣ
−1µre′Σ−1e− (e′Σ−1µr)2)

.

λ∗ =
µrΣ

−1µr − e′Σ−1µrm

µ′rΣ
−1µre′Σ−1e− (e′Σ−1µr)

. (1.18)

Theorem 1.3:
Problem 1.10 with parameter c and Problem 1.14 with parameter m are equivalent if
and only if c equals the optimal reward multiplier λ of Problem 1.14, or equivalently, m
equals the optimal reward multiplier λ of Problem 1.10.

Proof :
The conditions c = e′Σ−1em−e′Σ−1µr

e′Σ−1eµ′rΣ
−1µr−[e′Σ−1µr]2

and m = c(e′Σ−1eµ′rΣ
−1µr−[e′Σ−1µr]2)+e′Σ−1µr

e′Σ−1e

are equivalent. For the optimal reward multipliers of Problem 1.10 and 1.14 follows that
they are identical:

9



1 Markowitz: Classical Mean-Variance Optimization

λ1 =
1− ce′Σ−1µr

e′Σ−1e

=
e′Σ−1eµ′rΣ

−1µr − [e′Σ−1µr]
2 − e′Σ−1ee′Σ−1µrm+ [e′Σ−1µr]

2

e′Σ−1ee′Σ−1eµ′rΣ
−1µr − [e′Σ−1µr]2

=
e′Σ−1eµ′rΣ

−1µr − e′Σ−1ee′Σ−1µrm

e′Σ−1ee′Σ−1eµ′rΣ
−1µr − [e′Σ−1µr]2

=
µ′rΣ

−1µr − e′Σ−1µrm

e′Σ−1eµ′rΣ
−1µr − [e′Σ−1µr]2

= λ2.

So the optimal portfolios are equivalent.

�

To continue we need the following definition of an efficient frontier and a Pareto-optimal
solution.

Definition 1.3: Efficient frontier
The efficient frontier is a curvature containing points (m,σ2) where σ2 is the optimal
risk. For a given level of return all points in this curve correspond to portfolios with
lowest risk.

The restrictions of Problem 1.10 are restrictions of Problem 1.14, too. The later problem
contains one more additional restriction, the so-called reward restriction. These n + 2
restrictions define for n+ 3 variables w, λ, c,m a one-dimensional affine subspace which
is parametrized by c in Problem 1.10 and by m in Problem 1.14. The optimal risk is a
quadratic function of m, σ2(m), which graph is called the efficient frontier.

Definition 1.4: Pareto-optimality
Let X be a feasible set. A solution x∗ ∈ X is called Pareto-optimal, if there exists no
x ∈ X : f(x) < f(x∗).

Generally, the efficient frontier refers to the set of all Pareto-optimal solutions of an opti-
mization problem. In our considerations it applies to the upper branch corresponding to
m ≥ m̂ only, where m̂ is the optimal reward. The lower branch corresponds to m ≤ m̂.
All feasible portfolios are on the right and below the efficient frontier.

10



1 Markowitz: Classical Mean-Variance Optimization

Figure 1.1: Efficient frontier of a portfolio with risky assets

Theorem 1.4:
The optimal risk in Problem 1.10 and 1.14 is

σ2(m) =
e′Σ−1em2 − 2e′Σ−1µrm+ µ′rΣ

−1µr
e′Σ−1eµ′rΣ

−1µr − [e′Σ−1µr]2
.

It takes the global minimum over all rewards at

m̂ =
e′Σ−1µr
e′Σ−1e

and has the positive value in this case

σ2(m̂) =
1

e′Σ−1e
.

The associated solution is

ŵ =
Σ−1e

e′Σ−1e
, λ̂ =

1

e′Σ−1e
, ĉ = 0.

Proof :
We use Definition 1.2 of the optimal risk and the solution of Problem 1.14,

11



1 Markowitz: Classical Mean-Variance Optimization

σ2(m) =w′Σw = (λe+ cµr)
′Σ−1(λe+ cµr)

=λ2e′Σ−1e+ 2λce′Σ−1µr + c2µrΣ
−1µr

=λ(λe′Σ−1e+ ce′Σ−1µr) + c(λe′Σ−1µr + cµrΣ
−1µr).

Using the expressions on the right hand sides of Equations 1.12 and 1.13 we get

σ2(m) = λ+ cm.

With Equations 1.17 and 1.18 we get

σ2(m) =
e′Σ−1em2 − 2e′Σ−1µrm+ µrΣ

−1µr
e′Σ−1eµ′rΣ

−1µr − [e′Σ−1µr]2
. (1.19)

Differentiating Equation 1.19 with respect to m we obtain

2e′Σ−1em− 2e′Σ−1µr =0

m̂ =
e′Σ−1µr
e′Σ−1e

Substituting this optimal minimum in Equations 1.17 and 1.18 we get the associated
solution ŵ, λ̂ and ĉ:

ŵ =
Σ−1e

e′Σ−1e
, λ̂ =

1

e′Σ−1e
, ĉ = 0.

�

1.2.2 Risky assets and riskless cash

Consider n risky assets and also a cash account wc with deterministic return rc = E[rc].
So the portfolio includes (w,wc) and the variables w, r, µr and Σ belong to the risky part.

Assumptions: We get two similar assumptions as in the previous section, but we replace
(A2) by another condition where the portfolio consists just of one risky asset and the
cash account.

12



1 Markowitz: Classical Mean-Variance Optimization

• (A1) Σ > 0, the covariance matrix is positive semidefinite.

• (A2) µr 6= rce: No degenerate situations can occur.

We formulate the following optimzation problem

min
w,wc

1

2

(
w
wc

)′(
Σ 0
0 0

)(
w
wc

)
=

1

2
w′Σw (1.20)

s.t. e′w + wc = 1,

µ′rw + rcwc = m,

wc ≥ 0, wi ≥ 0, ∀i.

The Lagrangian is

L(w,wc, λ, c;m) =
1

2
w′Σw − λ(e′w + wc − 1)− c(µ′rw + rcwc −m). (1.21)

By differentiating the Lagrangian 1.21 with respect to w we get

w′Σ− λe− cµr = 0

w = Σ−1(λe+ cµr). (1.22)

By differentiating the Lagrangian 1.21 with respect to wc we get

−λ− crc = 0

λ = −crc. (1.23)

Putting Equation 1.23 in Equation 1.22 we get the optimal solution for w

w∗ = cΣ−1(µr − rce). (1.24)

By using the budget equation and substituting the optimal w from Equation 1.24 in the
budget equation we get

wc = 1− c(e′Σ−1µr − rce′Σ−1e). (1.25)

13
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By putting Equations 1.24 and 1.25 on the left hand side of the second restriction of
Problem 1.20 we get the optimal c

c∗ =
m− rc

(µr − rce)′Σ−1(µr − rce)
. (1.26)

The optimal risk occurs to using the definition of risk σ2(m) = w′Σw and Equations
1.24 and 1.26:

σ2(m) =
(m− rc)2

(µr − rce)′Σ−1(µr − rce)
.

Differentiating with respect to m we get

2(m− rc) = 0

and therefore the global minimum is taken at m̂ = rc with σ2(m̂) = 0. The associated
solution is to invest 100% of the capital in cash and the risk vanishes: (w,wc) = (0, 1)
and λ̂ = ĉ = 0.

The trade-off version of Problem 1.20 is

min
w,wc

{
1

2
w′Σw − c(µ′rw + rcwc)

}
(1.27)

s.t. e′w + wc = 1,

wc ≥ 0, wi ≥ 0, ∀i.

Theorem 1.5:
Problem 1.20 with parameter m and Problem 1.27 with parameter c are equivalent if
and only if m = rc + c(µr − rce)′Σ−1(µr − rce).

Proof :
Analogous to the proof of Theorem 1.3.

�
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For m = rc the whole capital is invested in cash. Otherwise e′w = c(e′Σ−1µr−rce′Σ−1e)
is invested in risky assets, so the risk is positive because the optimal portfolio is a mix-
ture of the risky portfolio (Σ−1(µr − rce), 0) and cash (0, 1).

The following theorem shows, how the risk reduces, if we have a portfolio with cash
added.

Theorem 1.6:
The risk in Problem 1.20 with cash is lower than in Problem 1.14 without cash as soon
as the portfolio invests in risky assets.
If e′Σ−1µr 6= rce′Σ−1e: The efficient frontiers touch in the point

m = rc +
(µr − rce)′Σ−1(µr − rce)
e′Σ−1µr − rce′Σ−1e

,

σ2(m) =
(µr − rce)′Σ−1(µr − rce)
(e′Σ−1µr − rce′Σ−1e)2

.

If w is an optimal solution of Problem 1.14, then is (w, 0) an optimal solution of Problem
1.20. Vice-versa, the optimal solution of Problem 1.20 has the form (w, 0) and w is then
an optimal solution of Problem 1.14.
If e′Σ−1µr = rce′Σ−1e: wc = 1, e′w = 0 and risks differ by 1

e′Σ−1e
:

(m− rc)2

(µr − rce)′Σ−1(µr − rce)
+

1

e′Σ−1e
=
e′Σ−1em2 − 2e′Σ−1µrm+ µ′rΣ

−1µr
e′Σ−1eµ′rΣ

−1µr − [e′Σ−1µr]2
.

Proof :
If e′Σ−1µr 6= rce′Σ−1e: The solution of Problem 1.20 is wc = 0 because we do not invest
in cash with

c =
1

e′Σ−1µr − rce′Σ−1e
, λ = − rc

e′Σ−1µr − rce′Σ−1e
.

This results in the values of m and σ2(m) by substituting it in m = rc + c(µr −
rce)′Σ−1(µr − rce) and σ2(m) = (m−rc)2

(µr−rce)′Σ−1(µr−rce) . If m is substituted in the solu-

tions of Problem 1.14 for λ and c, the values of both problems will be the same. So the
portfolios are equivalent. To get the curvatures of the efficient frontiers we derive both

risks twice and get for Problem 1.14 ∂2σ2(m)
∂m2 = 2e′Σ−1e

e′Σ−1eµ′rΣ
−1µr−[e′Σ−1µr]2

and for Problem

1.20 ∂2σ2(m)
∂m2 = 1

(µr−rce)′Σ−1(µr−rce) . We compare these values and get

2e′Σ−1e

e′Σ−1eµ′rΣ
−1µr − [e′Σ−1µr]2

− 1

(µr − rce)′Σ−1(µr − rce)
> 0.

15



1 Markowitz: Classical Mean-Variance Optimization

Therefore the risk of Problem 1.20 is lower than in Problem 1.14 if wc 6= 0.

If e′Σ−1µr 6= rce′Σ−1e: The efficient frontiers of Problems 1.14 and 1.20 touch in m̂ = rc

and they have identical curvatures.

�

Figure 1.2: Capital market line with the (m,σ2) combination M

In Figure 1.2 we see the capital market line, which corresponds to linear combinations
of the riskless portfolio A and the risky portfolio M. In point M, no capital is invested
in cash, so we have wc = 0. The portfolio corresponding to M is called market portfolio.
In the point A there is m = rc, so nothing is invested in risky assets and wc = 1.

The following Lemma shows, that it does not make sense to have more than one riskless
asset.

Lemma 1.1: (Arbitrage)
Any portfolio with two or more riskless assets can realize any desired reward with zero
risk.

16
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Proof :
Consider two riskless assets with different returns rc and rd. For every desired return m
we choose the weights

wc =
m− rd

rc − rd
, wd = 1− wc,

and invest nothing in other assets. The expected return of this portfolio is m and its
variance is equal to 0.

wcrc + wdrd =
m− rd

rc − rd
rc + (1− wc)rd =

mrc − rdrc + rcrd − (rd)2 −mrd + (rd)2

rc − rd
= m

�

1.2.3 Risky assets, riskless cash and guaranteed total loss

Consider again a portfolio with n risky assets, a riskless cash account, but include also
an ”asset” wl with guaranteed total loss and rl = E[rl] = 0. First it seems to be senseless
to invest in an asset with guaranteed loss, but we will see, that it makes sense.

Assumptions: We have the same assumptions (A1) and (A2) as before but also a third
one: we require positive cash return. We also assume that the reward of wl is equal to
0.

• (A1) Σ > 0, the covariance matrix of risky assets is positive definite.

• (A2) µr 6= rce.

• (A3) rc > 0 (and rc > rl is reasonable.)

We formulate the following optimization problem

min
w,wc,wl

1

2

w
wc

wl

′Σ 0 0
0 0 0
0 0 0

w
wc

wl

 =
1

2
w′Σw (1.28)

s.t. e′w + wc + wl = 1,

µ′rw + rcwc = m,

wc ≥ 0, wl ≥ 0, wi ≥ 0, ∀i.

17
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The Lagrangian is

L(w,wc, wl, λ, c, η;m) =
1

2
w′Σw−λ(e′w+wc +wl− 1)− c(µ′rw+ rcwc−m)− η(wl− 0).

(1.29)

By differentiating the Lagrangian we get the optimal solutions according to the following
theorem.

Theorem 1.7:
Problem 1.28 has unique solutions w,wc, wl, λ, c, η, where η is the multiplier of the
constraint wl ≥ 0.

• For m > rc: The solution is identical to the solution of Problem 1.20. We have
wl = 0 and η = −λ > 0.

• For m ≤ rc: The optimal solution is to invest in a linear combination of the two
riskless assets:

w = 0, wc =
m

rc
, wl = 1− m

rc
, λ = c = η = 0.

Proof:
We differentiate the Lagrangian 1.29 with respect to w and wc and obtain Equations 1.22
and 1.23. If we differentiate the Lagrangian with respect to wl we obtain the additional
equation

η = −λ.

If m > rc:
Then c > 0, which leads to λ > 0 and −η > 0. With the restriction wlη = 0 follows
wl = 0 and we obtain Problem 1.20.

If m ≤ rc:
Then c = 0 which leads to λ = −η = 0 and w = 0.
From the budget equation we get with w = 0: wc + wl = 1 and it follows wl = 1− wc.
From the reward equation we get with w = 0: rcwc = m and it follows wc = m

rc and
wl = 1− m

rc .

�

The trade-off version of Problem 1.28 is
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min
w,wc,wl

{
1

2
w′Σw − c(µrw + rcwc)

}
(1.30)

s.t. e′w + wc + wl = 1,

wc ≥ 0, wl ≥ 0, wi ≥ 0, ∀i.

Theorem 1.8:
Problem 1.30 with c > 0 and Problem 1.28 with m > rc are equivalent if and only if
m = rc + c(µr − rce)′Σ−1(µr − rce).
Problem 1.30 with c = 0 has the same solutions as Problem 1.28 with m ≤ rc.
Problem 1.30 with c < 0 is unbounded and has no solution.

Proof:
The restrictions of both problems are nearly the same, only the reward condition in
Problem 1.28 is included. The Lagrangian of Problem 1.30 is

L(w,wc, wl, λ, c, η;m) =
1

2
w′Σw − c(µ′rw + rcwc)− λ(e′w + wc + wl − 1)− η(wl − 0).

Differentiating according to wc we get

−crc = λ. (1.31)

By differentiating with respect to wl we get

η = −λ. (1.32)

Putting Equation 1.31 in Equation 1.32 we get η = rcc.
If c > 0: η > 0 and m > rc. If c = 0: η = 0 and m ≤ rc. If c < 0: η < 0 and there
Problem 1.30 has no solution. For these results see Theorem 1.5 where the equation
m = rc + c(µr − rce)′Σ−1(µr − rce) holds.

�

At the beginning of this section we pointed out, that it is strange to invest in an asset
with guaranteed loss. But why does it make sense?
The model describes that the investor wants to minimize the risk of earning exactly
the prescribed reward. So when the variance is reduced, it is okay to loose money. It
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1 Markowitz: Classical Mean-Variance Optimization

minimizes the risk for m < m̂ with m̂ as the reward where the risk is minimal.
Another interpretation is, that the capital invested in wl is just surplus capital: We get
the desired reward without any risk and without that amount. This interpretation of
the riskless but inefficient solutions becomes clear in Lemma 1.2.

Lemma 1.2:
Problem 1.28 is equivalent to the modification of Problem 1.20 where the budget equa-
tion e′w + wc = 1 is replaced by e′w + wc ≤ 1. This means it is allowed to invest less
than 100% of capital.

Proof:
Let s ≥ 0 be a slack variable. We can rewrite the inequality e′w+wc ≤ 1 as e′w+wc+s =
1. So Problem 1.20 is identical to Problem 1.28 with the slack variable s = wl.

�

1.2.4 The influence of inequalities

Instead of specifying the restrictions by equalities, the budget equation and the reward
equation, we consider the influence of inequalities. Let m be a lower bound for the de-
sired reward. The following theorem is proved in Steinbach [1].

Theorem 1.9:
Consider the modification of Problem 1.14 where the reward equation is replaced by
µrw ≥ m and the modification of Problem 1.20 and 1.28 where µrw + rcxc = m is
replaced by µrw + rcxc ≥ m. We define the modified problems with 1.14M, 1.20M and
1.28M. Then the following holds:

• Let m ≥ m̂ where m̂ is the optimal reward. The solutions of the original Problem
1.14, 1.20 or 1.28 is also the unique solution of the modified Problem 1.14M, 1.20M
or 1.28M, respectively.

• Let m ≤ m̂. The solution of Problem 1.14 or 1.20 with reward m̂ is also the unique
solution of the Problem 1.14M or 1.20M.

• Any solution of Problem 1.28 with µ(w,wc, wl) ∈ [m, rc] with m < rc is a riskless
solution of the Problem 1.28M. That is, any portfolio (0, wc, 1−wc) with wc ∈ [mrc , 1]
is optimal.
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Other inequalities, like upper bounds on the assets, will restrict the range of feasible
rewards and increase the risk. Markowitz handles this case by dummy assets and con-
straints Aw = b, w ≥ 0, where A = e′ with w ≥ 0 and µ(w) ≥ m is called the standard
case. He devised an algorithm to trace the segments of the efficient frontier, the so-called
”Critical Line Algorithm”, which we discuss in the next section.

1.2.5 Critical line algorithm

This section is based on the paper of A. and D. Niedermayer [2], pages 2-11.

First of all, we recall and define some variables we need in this section.
Consider a portfolio with n assets and nonnegative weights:

• Σ: (n× n) positive definite covariance matrix of asset returns.

• µr: n-dimensional vector of the assets’ expected returns.

• w: n-dimensional vector of asset weights.

• K: subset of {1, 2, . . . , n} consisting of indexes of those assets on which a positive
amount of money has been invested.
k is the number of elements in K, k := |K|.

• Σk: (k × k) covariance matrix of the returns of non-zero weighted assets.

• µk: k-dimensional vector of expected returns of non-zero weighted assets.

• wk: k-dimensional vector of the non-zero weighted asset weights.

We also need the definition of a turning point.

Definition 1.5: Turning point
A turning point is a point on the efficient frontier with an according portfolio if a point
in its neighborhood (a next lower or higher point on the efficient frontier) with another
according portfolio corresponding to another set of non-zero weighted assets.

We reformulate Problem 1.14 with the notation of the k-dimensional vectors.
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min
wk

1

2
w′kΣwk (1.33)

s.t. e′wk = 1,

µ′kwk = m,

wi ≥ 0, ∀i.

The Lagrangian is

L(w, λ, c;m) =
1

2
w′kΣkwk − λ(e′kwk − 1)− c(µ′kwk −m) (1.34)

Now we can start to describe the algorithm:

• Input: Constraints as a system of linear inequalities.

• 1.Step: Find the turning point with the lowest expected return value.

• Next Steps: Calculate the next higher turning points according to the portfolio
with the next higher expected return.

• Output: Weights of the turning points on the efficient frontier. All other port-
folios on the efficient frontier can be constructed as a linear combination of their
neighboring turning points which are already found.

To move upwards from a turning point to the next one, c will increase:

c1 < c2 < c3 . . . .

For the starting solution we define for the minimal expected return µmin the weight

wmin1 = 1,

and for the other expected returns µi the weights

wi1 = 0.

When we move from a turning point to the higher one, either one non-zero weighted
asset becomes zero, or one zero weighted asset becomes non-zero.
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Consider these two cases separately.

One non-zero weighted asset becomes zero:

Let ccurrent correspond to a turning point. Differentiating the Lagrangian 1.34 with
respect to wk and setting the differential equal to 0 we get

wk = cΣ−1
k µk + λΣ−1

k ek.

We can calculate the value c(i) and λ(i) of c and λ for the given subset K and an asset
i ∈ K where the weight of asset i is zero:

0 = wi = c(i)(Σ−1
k µ)i + λ(i)(Σ−1

k e)i.

Solving this equation for c(i) leads to

c(i) =
(Σ−1

k ek)i

e′kΣ
−1
k µk(Σ

−1
k ek)i − e′kΣ

−1
k ek(Σ

−1
k ek)i

.

The next c > ccurrent where an asset would leave the subset K is

cinside = min
i

{
c(i)|c(i) > ccurrent

}
, i ∈ K.

If we can not find a c(i) > ccurrent then there exists no solution for cinside.

One zero weighted asset becomes non-zero:

In this case we have to redefine the subset K and include in K the index of asset i, which
weight becomes non-zero:

Ki = K ∪ {i} ,

where i /∈ K.
Analogously as before setting wi = 0 we get for c(i)

c(i) =
(Σ−1

ki
eki)i

e′kiΣ
−1
ki
µki(Σ

−1
ki
eki)i − e′kiΣ

−1
ki
eki(Σ

−1
ki
eki)i

.

In order to find the next c > ccurrent where the weight of a zero-weighted asset would
become non-zero we define

coutside = min
i

{
c(i)|c(i) > ccurrent

}
, ∀i /∈ K.
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If we can not find a c(i) > ccurrent then there exists no solution for coutside.

Finally we compare the values of cinside and coutside to find out, which of the above cases
occurs.

• If solutions exist for both cinside and coutside, the next turning point has a c defined
as

cnew = min
{
cinside, coutside

}
.

• If a solution only occurs for cinside the new c is set to cnew = cinside and if a solution
only occurs for coutside the new c is set to cnew = coutside.

• We replace K by K\{i} if a non-zero weighted asset becomes zero or we replace K
by Ki if a zero weighted asset becomes non-zero. We also replace ccurrent by cnew

depending on which case occurs .

• If no solution exist for cinside or coutside, we have reached the highest turning point
and the algorithm terminates.

1.2.6 Downside risk

In this section we consider the distribution of returns, define the semi-variance and
discuss optimization problems involving so-called downside risk measures. The disad-
vantage of the variance as risk measure is, that the positive and negative deviation from
the mean is considered as equally risky. The most common downside risk measures are
the Value at Risk and the Conditional Value at Risk.

Definition 1.6: Downside risk
For a function f of the random vector r with distribution P, the downside risk of order
q > 0 with target τ ∈ R is given as

σqτ (f) := E[|min(f(r)− τ, 0)|q] =

∫
Rn
|min(f(r)− τ, 0)|qdP.

Thus the downside risk of order 1 with target τ is a partial moment of order 1. For
q = 1 and τ = E(f) we get the downside expected value and for q = 2 and τ = E(f) we
get the downside variance or semi-variance.
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We are interested in quadratic downside risk of the portfolio with fw,wc(r, r
c) = r′w+rcwc

only. The standard risk is replaced by the downside risk σ2
m with target τ = m = µ(w).

Now we define the semi-variance matrix of a portfolio specified by its weights w:

Σ(w) :=

∫
µr+H(w,0)

(r − µr)(r − µr)′dP, w 6= 0,

where H(w, 0) := {r ∈ Rn : r′w < 0} is the open half-space.

Now we substitute the objective functions of Problem 1.20 and 1.28 by the downside
risk version and obtain the following problems.

We minimize downside risk σ2
m(w,wc) for risky assets and cash with fixed desired reward

µ(w,wc) = m:

min
w,wc

1

2

∫
Rn

min(r′w + rcwc −m, 0)2dP (1.35)

s.t. e′w + wc = 1,

µ′rw + rcwc = m,

wc ≥ 0, wi ≥ 0, ∀i.

We minimize downside risk σ2
m(w,wc, wl) for risky assets, cash and loss with fixed desired

reward µ(w,wc, wl) = m, where the asset with guaranteed loss has an expected return
of zero:

min
w,wc,wl

1

2

∫
Rn

min(r′w + rcwc −m, 0)2dP (1.36)

s.t. e′w + wc + wl = 1,

µ′rw + rcwc = m,

wc ≥ 0, wl ≥ 0, wi ≥ 0, ∀i.
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In general, closed solutions of Problem 1.35 and 1.36 cannot be found, because the down-
side risk is not linear. But we can discuss some important properties of the solutions and
compare these problems with Problem 1.20 and 1.28. We make the same assumptions
(A1), (A2) and (A3) as before. See also Steinbach [1], Lemma 4 and Lemma 8.

Lemma 1.3:

• In Problems 1.35 and 1.36 there exist always optimal solutions.

• The resulting downside risk is nonnegative and not greater than the optimal risk
in Problem 1.20 and 1.28.

• The riskless solutions of Problems 1.35 and 1.20, or Problems 1.36 and 1.28, are
identical and the solutions are not unique in general.

Proof: See Steinbach [1].

Theorem 1.10:
In Problem 1.35, choose optimal portfolios (w±, w

c
±) for m± := rc±1, respectively. Then

(aw±, aw
c
±−a+ 1) is optimal for m = rc±a, if a ≥ 0. Moreover, w± 6= 0 and w+ 6= w−.

Proof: See Steinbach [1].

Theorem 1.11:
There exist constants c± ∈ (0, 1) so that the optimal risk in Problem 1.35 is c+ or c−
times the optimal risk of Problem 1.20 on the upper or lower branch of the reward.

Proof: See Steinbach [1].

Theorem 1.12:

• For the upper branch in Problem 1.36 holds the same statements as in Theorems
1.10 and 1.11.

• On the lower branch one has the unique riskless solution (w,wc, wl) = (0, mrc , 1−
m
rc ).

Proof: See Steinbach [1].

We have seen, that downside risk behaves similar as standard risk. The difference is,
that the uniqueness is not guaranteed any more and the curvatures of upper and lower
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branches of the efficient frontier may differ. The reason for the similarity is that we fix
the reward. The variance and semi-variance become identical if the return distribution
is symmetric with respect to its expected value µr. In this case Σ(w) = 1

2Σ for all w and
c+ = c− = 1

2 holds.

1.3 Multi-period mean-variance model

In this section we use the previous results of the single-period model in developing multi-
period analysis.

Consider a planning horizon of T + 1 periods in discrete time t = 0, . . . , T + 1. At t = 0
the portfolio is allocated and at t = 1, . . . , T it is restructured, before the investor fi-
nally obtains his reward at time T + 1. The portfolio vector at time t is denoted by
wt ∈ Rn and the reward vector at time t is denoted by rt+1 =

{
r1
t+1, . . . , r

n
t+1

}
∈ Rn

for t = 0, . . . , T . Just before decision time t we have asset capitals Rt := rtwt−1. The
decision at time t is taken after the observation of the realizations r1, . . . , rt but before
the observation of rt+1, . . . , rT+1 and leads finally to a policy w = (w0, . . . , wT ).
We suppose, that the distribution of returns is given by a so-called scenario tree which
we see in Figure 1.3. Each rt has finitely many realizations rj with probabilities pj > 0,
j ∈ Lt, where Lt denotes a level set of the tree. By V := ∪Tt=0Lt is denoted the set of
all nodes, by L := LT the set of leaves, by 0 ∈ L0 the root, by j ∈ Lt the current node,
by i = π(j) ∈ Lt−1 the parent node and by S(j) ⊆ Lt+1 the set of child nodes.

The conditional expectation of the return is given as µT := E[rT+1|LT ] and its covariance
matrix is given as

ΣT := E[(rT+1 − µT )(rT+1 − µT )′|LT ] = E[rT+1r
′
T+1|LT ]− µTµ′T ,

with realizations µj ,Σj on LT .
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Figure 1.3: Scenario tree with t=2 periods

The discrete decision vector is a vector where the decision takes place at certain times
j ∈ V and is denoted by w = (wj)j∈V , wj ∈ Rn. The expectation of the total return
RT+1 and the risk are defined as follows.

Definition 1.7: Expectation

µ(w) := E[RT+1] = E[r′T+1wT ] = E[E[r′T+1|LT ]]wT = E[µ′T ]wT =
∑
j∈L

pjµ
′
jwj .

Definition 1.8: Risk

σ2(w) := V ar[RT+1] = V ar[r′T+1wT ] = E[(r′T+1wT − µ′TwT )2].

Lemma 1.4:
The risk is given by

σ2(w) = E[w′T (ΣT + µTµ
′
T )wT ]− µ(w)2 =

∑
j∈L

pjw
′
j(Σj + µTµ

′
T )wj − µ(w)2.

Proof:
By Definition 1.8, the risk is
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σ2(w) =E[r′T+1wT − µ(w)2]

=E[w′T rT+1r
′
T+1wT ]− µ(w)2

=E[E[w′T rT+1r
′
T+1wT |LT ]]− µ(w)2

=E[w′TE[rT+1rT+1|LT ]wT ]− µ(w)2

=E[w′T (ΣT + µTµ
′
T )wT ]− µ(w)2

=
∑
j∈L

pjw
′
j(Σj + µTµ

′
T )wj − µ(w)2.

�

Corollary 1.1:
The conditional reward and risk of the final period is µT (wT ) := µ′TwT and σ2

T (wT ) :=
w′TΣTwT with realizations µj(wj) := µ′jwj and σ2

j (wj) := w′jΣjwj . The risk can be

separated in a continuous and discrete part σ2(w) = σ2
c (w) + σ2

d(w) with

σ2
c (w) :=E[σ2

T (wT )] =
∑
j∈L

pjw
′
jΣjwj ,

σ2
d(w) :=E[µT (wT )2]− µ(w)2 =

∑
j∈L

pjµj(wj)
2 − µ(w)2.

Proof:
By Lemma 1.4 we have

σ2(w) =
∑
j∈L

pjw
′
j(Σj + µTµ

′
T )wj − µ(w)2

=
∑
j∈L

pjw
′
jΣjwj +

∑
j∈L

pjw
′
jµTµ

′
Twj − µ(w)2

=σ2
c (w) + σ2

d(w).

�
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The continuous part σ2
c is the expectation of the conditional variance of RT+1 , which

measures the average final-period risk. The discrete part σ2
d is the variance of the condi-

tional expectation, which measures how well the individual scenario returns are balanced.

We would also be able to discuss several optimization problems with risky assets only,
with a cash account or guaranteed loss added in the multi-period model, but we do not
do this in this section. Instead we refer to the paper of Steinbach [1].

1.4 Conclusion

In our considerations in this chapter on the classical mean-variance optimization we have
seen, that the single-period and multi-period models are similar in many aspects. It is
possible to avoid overperformance when we allow to remove capital. There is zero risk
at small desired rewards m ≤ rc, so that all the capital is invested in cash or removed.
The problems of minimizing the variance versus minimizing the semi-variance or any
other downside risk measures are equivalent. We consider the multi-period model with
w = (wj , w

c
j)j∈V and mj as a fixed value for the reward in every node j ∈ V . The

problem

min
w
σ2
m(w) (1.37)

s.t. µ(w) = m,

e′wj + wcj ≤ mj ∀j ∈ V,

is equivalent to the downside risk problem

min
w
σ2
m(w) (1.38)

s.t. µ(w) ≥ m,
e′wj + wcj = mj ∀j ∈ V.
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For m > rc one can not avoid overperformance completely, but Problem 1.37 still tends
to minimize the semi-variance. The discrete part σ2

d approximates its downside version
because of the existence of subtrees with zero risk. If m increases the quality of ap-
proximation becomes worse and the risk measures becomes a mixture of variance and
semi-variance for large values of m.
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2 Robust Optimization

2.1 Introduction

In this section we discuss robust optimization problems in general and take a look at
portfolio optimization as an example in the subsection of objective robustness. We con-
sider robust portfolio optimization problems in Chapter 3 in detail. This chapter is
based on the book of Cornuejols and Tütüncü [4], Chapter 19 and on the book of Frank
J. Fabozzi et al. [5], Chapter 10.

Mostly, inputs with real data are uncertain and optimization solvers are sensitive to
small fluctuations in the input parameters. Reasons for uncertainty are estimation er-
rors, uncertain inputs in the constraints or objective functions. We have to handle the
uncertainty in our optimization problems. The oldest method is the sensitivity analysis,
where we treat uncertainty after a solution is obtained. There exist also other methods
dealing with uncertainty during the computation:

• stochastic programming,

• dynamic programming,

• robust optimization.

The fields of these methods overlap, but historically they have evolved independently of
each other.

First we want to consider stochastic and dynamic programming shortly before we put
our considerations on robust optimization.
In stochastic programming methods the uncertainty is represented by scenarios which
are generated in advance and the objective function over all scenarios is optimized on av-
erage. The three most common types of problems are multi-period models, models with
risk measures and chance-constrained models, see Frank J. Fabozzi et al. [5], Chapter
10.
Dynamic programming is used for multi-period models. The main idea is to solve the
problem recursively. We separate a large problem in smaller ones for each possible stage
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and start in the last stage going backward to get the optimal solution.

Our main aspect is the robust optimization. This is an attractive alternative to stochastic
and dynamic programming because it is often difficult to obtain exact informations
about the probabilistic distributions of the uncertain parameters. In the case of robust
optimization we only make general assumptions on these distributions and thus have to
work with problem formulations that are more tractable computationally. Uncertainty
of the parameters is described in uncertainty sets where the possible values for the
uncertain parameters are contained. These sets are based on statistical estimates and
probabilistic guarantees on the solution. The problems are solved for the worst-case
realization of the uncertain parameters. When they have special shapes the problem can
be solved efficiently. We can distinguish between

• Constraint robustness:
The constraints contain uncertain parameters, resulting at the uncertainty of so-
lution feasibility.

• Objective robustness:
Feasibility constraints are certain and the uncertainty affects the coefficients of the
objective function and hence the optimality of the solutions.

In this chapter, we consider relative robustness and adjustable-robust optimization, too.
But first of all we discuss the uncertainty sets.

2.2 Uncertainty sets

As we mentioned before, uncertainty sets can be formed by differences of opinions on
future values of certain parameters and/or alternative estimates of parameters which are
generated by statistical techniques from historical data. Let s = (si) be the vector of
uncertain parameters. Some types of uncertainty sets are as follows.

• A finite number of scenarios:

U = {s1, s2, . . . , sk} .

• The convex hull of a finite number of scenarios:

U = conv(s1, s2, . . . , sk).

• Interval description for each uncertain parameter:

U = {s = (si) : li ≤ si ≤ ui, i = 1, . . . , n} .
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• Polytopic uncertainty sets with the estimator ŝ = (ŝi) for the vector of uncertain
parameters s = (si) of dimension n and with a constant δi:

U = {s = (si) : |si − ŝi| ≤ δi, i = 1, . . . , n} .

• Ellipsoidal uncertainty sets with the estimator ŝ = (ŝi) for the vector of uncertain
parameters s = (si) , a constant vector δ = (δi) of dimension n and a positive
semidefinite matrix A:

U =
{
s = (si) :

√
(s− ŝ)′A−1(s− ŝ) ≤ δ, i = 1, . . . , n

}
.

The constant δ can be interpreted as the aversion to the uncertainty. If δ is small then
the investor has a low risk aversion.

The polytopic uncertainty set is also called a box as illustrated in Figure 2.1 for n = 2:

Figure 2.1: Polytopic uncertainty set for n = 2

For example, by using linear factor models in a portfolio optimization problem, the
multivariate returns can be estimated by linear regression where the uncertainty sets
become ellipsoidal sets. The matrix A affects the size and the shape of the uncertainty
set which in turn can significantly affect the robustness of generated solutions. Another
way to compute uncertainty sets is with the technique of bootstrapping and the use of
average returns of historical data. This approach leads to polytopic uncertainty sets.
Although polytopic uncertainty sets generally do not contain any second moment infor-
mation about the distribution of the uncertain parameters like in the case of ellipsoidal
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2 Robust Optimization

uncertainty sets, some attractive computational properties of the original optimization
problem can be inherited by this kind of robust counterpart. Optimization problems
with ellipsoidal uncertainty sets are more difficult to solve than those with polytopic
uncertainty sets. Polytopic uncertainty sets are discussed in Chapter 3. For ellipsoidal
uncertainty sets see the paper of Sanyal et al. [7].

2.3 Models of robustness

2.3.1 Constraint robustness

Constraint robustness is one of the most important models in robust optimization. The
uncertain parameters are in the constraints and we want to obtain solutions which are
feasible for all possible uncertain parameters. An example are multi-period optimization
problems where the uncertain solutions of the previous stages influence the decisions of
the later stages and the decision variables have to satisfy some balance constraints. In
order to find robust solutions we consider the following optimization problem:

min
x
f(x) (2.1)

s.t. G(x, s) ∈ K,

where x are the decision variables and f is the certain objective function. G and K are
certain structural elements of the constraints and s are the uncertain parameters. Let U
be an uncertainty set with all possible values of parameters s. Then the constraint-robust
optimization problem is given as follows:

min
x
f(x) (2.2)

s.t. G(x, s) ∈ K, ∀s ∈ U.

Thus the robust feasible set is the intersection of the feasible set S(s) = {x : G(x, s) ∈ K}
for all s ∈ U.
If we have an ellipsoidal feasible set, where ŝi is the uncertain center of the ellipse corre-
sponding to parameter si, then the robust feasible set is the red intersection in Figure 2.2.
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Figure 2.2: Robust feasible set

If there are uncertain parameters in the objective function and in the constraints, the
optimization problem

min
x
f(x, s) (2.3)

s.t. G(x, s) ∈ K

can be written as

min
x,y

y (2.4)

s.t. y − f(x, s) ≥ 0,

G(x, s) ∈ K.

In Problem 2.4 all uncertain parameters are in the constraints.

2.3.2 Objective robustness

Objective robustness is another important part of robust optimization. In this model
we look for solutions which are close to the optimal solutions for all possible values of
the uncertain parameters. Such solutions are difficult to obtain, especially when the
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uncertainty set is quite large. Thus an alternative aim of objective robustness is to
optimize the worst case, which means finding a solution which is optimal for the worst
possible realization of the uncertain parameters. Consider the following optimization
problem of objective robustness:

min
x
f(x, s) (2.5)

s.t. x ∈ F,

where F is a certain feasible set and the objective function f depends on the uncertain
parameter s. Again, let U be the uncertainty set. For handling with objective robust-
ness we reformulate Problem 2.5 as a constraint-robust optimization problem. Then we
consider the worst case and get the objective-robust optimization problem:

min
x∈F

max
s∈U

f(x, s). (2.6)

The reformulation in the end of the previous subsection, Problem 2.4, and Problem 2.6
lead to two different classes of optimization problems, called semi-infinite and min-max
optimization problems.

As an example, we consider a portfolio optimization problem with n risky assets. We
want to maximize the reward subject to the budget equation. Let w be the vector of
asset weights as in Chapter 1 and let µr := E[r] be the expectation of asset returns. The
vector µr is the vector of uncertain parameters because we do not know the expected
returns at the moment of portfolio construction. So we discuss the following problem
where the uncertainty is in the objective function:

max
w

µ′rw (2.7)

s.t. e′w = 1,

wi ≥ 0, ∀i.

In Problem 2.7 we maximize the expected portfolio return depending on the uncertain
expected asset returns. We model the uncertainty in terms of uncertainty sets and
maximize the expected portfolio return for the worst realization of expected asset returns
in the uncertainty set.
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We define the uncertainty set with the estimated expected returns µ̂r = (µ̂i)1≤i≤n as
follows:

U(µ̂r) =
{
µr = (µi) : (µr − µ̂r)′Σ−1(µr − µ̂r) ≤ δ2, i = 1, . . . , n

}
, (2.8)

with the covariance matrix Σ. This uncertainty set means that the deviation of the
expected returns from the realized returns scaled with the inverse covariance matrix is
bounded by δ, the limit at which the investor wants to be protected from a larger devi-
ation from the optimum.

The robust counterpart of Problem 2.7 is

max
w

min
µr∈U(µ̂r)

µ′rw (2.9)

s.t. e′w = 1,

wi ≥ 0, ∀i.

Problem 2.9 is hard to be solved by standard software because typically such a software
cannot solve a two stage optimization problem. So we rewrite Problem 2.9 by using
duality. We consider the first stage of Problem 2.9. We fix w in Problem 2.9 and
optimize for the worst case over the uncertain parameter µr:

min
µr

µ′rw. (2.10)

s.t.
∥∥∥Σ−

1
2 (µr − µ̂r)

∥∥∥ ≤ δ,
with the Euclidean norm ‖x‖ =

√
x2

1 + . . .+ x2
n for a n-dimensional vector x and

(Σ−
1
2 )′Σ−

1
2 = Σ−1.

To find the dual problem of the conic Problem 2.10 we consider the following primal and
dual conic problems:

• Primal problem:
min
x
c′x (2.11)

s.t. ‖Cix+ di‖ ≤ c′ix+ ei, ∀i.
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• Dual problem:

max
u,v

{
−

n∑
i=1

u′idi + viei

}
(2.12)

s.t.
n∑
i=1

uiCi + vici = c,

‖ui‖ ≤ vi, ∀i.

For conic optimization and duality theory see Fabozzi et al. [5], Chapter 9.

We see two examples for conic optimization later in this chapter.

With x = µr, c = w, ci = 0, vi = λ, ei = δ, Ci = Σ−
1
2 , di = −Σ−

1
2 µ̂r and ui = u the dual

problem of Problem 2.10 is

max
u,λ

{
−(−u′Σ−

1
2 µ̂r)− δλ

}
(2.13)

s.t. Σ−
1
2u+ 0λ = w,

‖u‖ ≤ λ.

The first constraint of Problem 2.13 leads to the equation

u = Σ
1
2w. (2.14)

Using Equation 2.14 we get
max
λ

{
w′µ̂r − δλ

}
(2.15)

s.t.
∥∥∥Σ

1
2w
∥∥∥ ≤ λ.

By using duality, Problem 2.15 is equivalent to Problem 2.10 and the worst case leads
to the equation

w′µ̂r − δ
∥∥∥Σ

1
2w
∥∥∥ = w′µ̂r − δ

√
w′Σw, (2.16)

39



2 Robust Optimization

for any fixed set of weights w. Equation 2.16 does not depend on the uncertain param-
eter µr. Now we replace the objective function of Problem 2.9 by Equation 2.16 and
optimize over w:

max
w

{
w′µ̂r − δ

√
w′Σw

}
(2.17)

s.t. e′w = 1,

wi ≥ 0, ∀i.

Problem 2.17 can be solved by a nonlinear optimization software.

2.3.3 Relative robustness

The models above are not consistent with the risk tolerances of many decision-makers.
We need the worst-case in a relative context to the best possible solution under each
scenario. Therefore we need the relative robustness. Consider Problem 2.3 again. Now
we want the relative robust optimization problem.
For a fixed s ∈ U, let t∗(s) be the optimal value function

t∗(s) = min
x
f(x, s)

s.t. x ∈ F (s),

where F (s) is the set of feasible solutions of Problem 2.3. Let x∗(s) be the optimal
solution map

x∗(s) = argminxf(x, s)

s.t. x ∈ F (s).

We define a measure of regret which is associated with a decision after the uncertainty
is resolved.

r(x, s) = f(x, s)− f(x∗(s), s) = f(x, s)− t∗(s) ≥ 0.

For a fixed x in the feasible set we maximize the regret function:

R(x) := max
s∈U

r(x, s) = max
s∈U
{f(x, s)− t∗(s)} .

The relative robustness model is the minimum of the maximized regret:
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min
x∈F (s)

max
s∈U
{f(x, s)− t∗(s)} . (2.18)

Problem 2.18 contains a three-level optimization problem because t∗(s) involves an op-
timization problem itself and is hard to analyze. So relative robustness is more difficult
to solve than the two-stage optimization Problem 2.9.
There is an easier way to formulate Problem 2.18. By limiting the maximum regret to
M we get the following problem where we have to find an x which satisfies G(x) ∈ K
such that

f(x, s)− t∗(s) ≤M, ∀s ∈ U. (2.19)

As another possibility of relative robustness we consider the proximity of our chosen
solution to the optimal solution set. We need the distance between x and the set of
optimal solutions for a fixed s.

d(x, s) = inf
x∗∈x∗(s)

‖x− x∗‖ .

Now we consider the maximum distance of a solution x and the optimal solution x∗(s)
for s ∈ U:

D(x) := max
s∈U

d(x, s) = max
s∈U

inf
x∗∈x∗(s)

‖x− x∗‖ .

We look for a solution x minimizing the above maximum:

min
x∈F (s)

max
s∈U

d(x, s). (2.20)

This model is attractive when we have time to revise our decision variables x, if s is
revealed. It can also be used for multi-period problems, where it can be time consuming
to revise the decisions from one period to another. Particular examples are portfolio
rebalancing problems with transaction costs. These are problems where it is allowed to
rebalance the portfolio from one period to another while paying transaction costs. We
will see such a multi-period portfolio optimization problem with transaction costs later
in Chapter 3.

2.3.4 Adjustable robust optimization

In multi-period models some of the uncertain parameters are often revealed during the
decision process. Adjustable robust optimization allows recourse actions, so that solu-
tions which are not optimal can be corrected in later stages.
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Now we consider a two-stage linear optimization problem with x1 being the decision
variable of the first stage and x2 being the decision variable of the second stage. The
second variable x2 can be chosen after the uncertain parameters A1, A2 and b of the
following problem are realized and does not appear in the objective function:

min
x1,x2

{
c′x1 : A1x1 +A2x2 ≤ b

}
. (2.21)

Let U be the uncertainty set for the uncertain parameters A1, A2 and b. Before the
uncertain parameters are observed, both sets of variables must be chosen and cannot
depend on these parameters. The standard robust counterpart can be formulated as
follows:

min
x1

{
c′x1 : ∃x2∀(A1, A2, b) ∈ U : A1x1 +A2x2 ≤ b

}
, (2.22)

or equivalently
min
x1,x2

{
c′x1 : A1x1 +A2x2 ≤ b, ∀(A1, A2, b) ∈ U

}
. (2.23)

In adjustable robust optimization problems the decision variable of the second stage x2

depends on the uncertain parameters A1, A2 and b and the problem can be written as
follows:

min
x1

{
c′x1 : ∀(A1, A2, b) ∈ U,∃x2 ≡ x2(A1, A2, b) : A1x1 +A2x2 ≤ b

}
. (2.24)

The feasible set of Problem 2.24 is larger than the feasible set of Problem 2.22. If the ro-
bust counterpart is unnecessarily conservative, adjustable robust optimization problems
are useful. Although these problems are flexible in modeling, the formulations are more
difficult. Another disadvantage is that the feasible sets of the second-period decisions
depend on the uncertain parameters and pn the decision variable of the first stage. To
chance this for a better we can consider simpler assumptions on the feasible set and the
dependence structure.

2.4 Strategies

In this section we discuss some techniques to solve robust optimization problems. The
strategies are based on reformulating the problems such that no uncertainty occurs. We
want that the new optimization problem is not much bigger than the original one and
that it can be solved efficiently.
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2.4.1 Sampling

Sampling is one of the simplest strategies to find the solution of a robust optimization
problem. We sample several scenarios for the uncertain parameters from a set with
possible values. It can be done with or without distributional assumptions and we get a
robust optimization problem with a finite uncertainty set.
If the uncertainty appears in the constraint we copy each such constraint of each scenario.
If uncertain parameters are in the objective function we can handle it similarly. Consider
Problem 2.3 again.
For the uncertainty set U = {s1, s2, . . . , sk} we put all uncertain parameters in the
constraints and obtain the robust formulation:

min
x,y

y (2.25)

s.t. y − f(x, si) ≥ 0, i = 1, . . . , k,

G(x, si) ∈ K, i = 1, . . . , k.

Since the uncertainty set of Problem 2.25 is finite and the new constraints have the same
structural properties as the constraints of the non-robust original problem, Problem 2.25
is not more difficult than Problem 2.3.

2.4.2 Conic optimization

In this section we replace the finite uncertainty sets by continuous sets like intervals
or ellipsoids. There are infinitely many constraints but finitely many variables, so this
leads to a semi-infinite optimization problem. It is possible to formulate semi-infinite
optimization problems with finite sets of conic constraints. A conic optimization problem
has the form:

min
x
c′x (2.26)

s.t. Ax− b ∈ C,

with a closed convex cone C.

43



2 Robust Optimization

A special cone is the so-called second-order cone:

C2 =

x ∈ Rn : x1 ≥

√√√√ n∑
i=2

x2
i

 . (2.27)

The cone C2 leads to a second-order cone programming problem which is a special case
of semidefinite programming. A general formulation of semidefinite problems is:

min
x
〈C,X〉 (2.28)

s.t.
〈
A(ij), X

〉
= bij , i, j = 1, . . . , n,

X � 0,

with a matrix A(ij), i, j = 1, . . . , n and 〈C,X〉 as the trace of the matrix product CX of
two symmetric matrices C and X, which is equal to the sum of the diagonal elements of
the product CX.

Semidefinite programming is computationally more intensive than second-order cone
programming, so if it is possible, it is better to formulate a robust problem as a second-
order cone programming problem. See also Fabozzi et al. [5], Chapter 9.

Two examples with constraint robustness of conic optimization follow:

• Linear constraint optimization problem:

min
x
c′x (2.29)

s.t. a′x+ b ≤ 0, ∀a, b ∈ U,
with the ellipsoidal uncertainty set for the uncertain parameters a and b:

U =

[a; b] = [a0; b0] +
k∑
j=1

uj [a
j ; bj ], ‖u‖ ≤ 1

 ,

with the vectors a and b concatenated to a vector [a; b].

This problem is equivalent to the second-order cone programming problem:
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min
x,t

c′x (2.30)

s.t. a′x+ bj = tj , j = 0, . . . , k,

(t0, t1, . . . , tk) ∈ C2,

where C2 is the second-order cone 2.27.

See Cornuejols and Tütüncü. [4], Chapter 9.

• Quadratically constrained optimization problem:

min
x
c′x (2.31)

s.t. − x′(A′A)x+ 2b′x+ s ≥ 0, ∀A, b, s ∈ U
with the ellipsoidal uncertainty set for the uncertain parameters A, b and s

U =

[A; b; s] = [A0; b0; s0] +
k∑
j=1

uj [A
j ; bj ; sj ], ‖u‖ ≤ 1

 .

This problem is equivalent to the semidefinite programming problem:

min
x,t0,...,tk,v,λ

c′x (2.32)

s.t. Ajx = tj , j = 0, . . . , k,

(bj)′x = vj , j = 0, . . . , k,

λ ≥ 0,
s0 + 2v0 − λ [v1 + 1

2s
1 · · · vk + 1

2s
k] (t0)′

v1 + 1
2s

1 (t1)′

... λI
...

vk + 1
2s
k (tk)′

t0 [t1 · · · tk] I

 � 0,

where A � 0 means that the matrix A is positive semidefinite.

See Cornuejols and Tütüncü. [4], Chapter 9.
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2.5 Conclusion

In this chapter we got to know how to handle uncertain input parameters. We have seen
some special cases of uncertainty sets:

• A finite number of scenarios,

• the convex hull of a finite number of scenarios,

• interval description for each uncertain parameter,

• polytopic uncertainty sets and

• ellipsoidal uncertainty sets.

We also got to know relative robustness which is very useful when we measure the per-
formance relative to ones peers. We minimize the maximized regret function leading to
a more difficult problem than usual robust formulations.
Finally we discussed strategies for dealing with uncertainty in the optimization prob-
lems:

• Sampling and

• conic optimization.

In the next chapter, we see, that we need the resampling technique, the second-order
cone programming and the semidefinite programming in the case of robust portfolio
optimization.
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This chapter is based on the book of Cornuejols and Tütüncü. [4], Chapter 20 and on
the book of Fabozzi et al. [5], Chapter 12. For the resampling technique see the master
thesis of Jiao [6], too.

The classical mean-variance optimization by Markowitz which we discussed in the first
chapter, is very sensitive to the uncertainty of the inputs. Especially in finance future
values are often used in the optimization problems and have to be estimated or fore-
casted. There can occur errors at the estimation and modeling, and we have to make the
problem robust against these risks. The computational overhead of robust optimization
problems is minimal.

First we consider briefly the technique of resampling a portfolio, then we discuss portfolio
allocation with several robustified variations of the mean variance optimization problem.
We consider uncertainty in the expected values and the covariance matrix of returns and
the corresponding robust optimization problems.

We discuss an example of relative robust portfolios and finally we consider multi-period
models with cash, sales and purchases.

3.1 Portfolio resampling technique

One way to deal with estimation errors is by resampling the estimated inputs.

First we consider the original estimates for the expected return vector µ̂ and the covari-
ance matrix Σ̂ and solve the global minimum variance portfolio problem and the maxi-
mum return portfolio problem. The standard deviation of the global minimum variance
portfolio is denoted with σGMV and the deviation of the maximum return portfolio is
denoted with σMR. We assume that the inequality σGMV < σMR holds. We partition
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the interval [σGMV , σMR] in m points so that σGMV = σ1 < . . . < σm = σMR. We
solve the maximum return portfolio problem for each standard deviation σi, 1 ≤ i ≤ m.
Denote by w1, . . . , wm the corresponding portfolio weights. Now we perform portfolio
resampling as follows:

• Step 1: Compute t random samples from the multivariate distribution N(µ̂, Σ̂)
where t can be seen as a control parameter which reflects the degree of uncertainty
in the inputs. We use these samples to estimate a new expected return vector µ̂i
and a new covariance matrix Σ̂i. The details of this procedure will be described
in the next chapter, in Section 4.1.1.

• Step 2: With these new estimates µ̂i and Σ̂i we solve the corresponding global min-
imum variance and maximum return portfolio problems and get σGMV,i, σMR,i. As
before, partition the interval [σGMV,i, σMR,i] in m points and solve the correspond-
ing maximum return portfolios for each standard deviation and get w1,i, . . . , wm,i.

• Step 3: Compute an efficient frontier with the results of step 2.

• Step 4: Repeat Step 1 and Step 2 N times with a large N, for example 100 or 500.

If the resampling is finished for each point in the partition we calculate the resampled
weights for a portfolio of rank m as the average:

wrsm =
1

N

N∑
i=1

wm,i,

where wrsm denotes the resampled weight and wm,i stands for the weight of the mth port-
folio of the frontier for the ith resampling.
Now consider the efficient frontier with the original inputs µ̂ and Σ̂ and with the resam-
pled portfolio weights. The resampled efficient frontier is below the original one. The
reason is, that the weights w1,i, . . . , wm,i are efficient relative to the estimates µ̂i and Σ̂i

but inefficient relative to the estimates µ̂ and Σ̂. The effect of estimation error is incor-
porated into determination of the resampled weights by resampling and reestimation.
From the simulated data, we can compute a distribution of the portfolio weights. For
example, a large standard deviation of the portfolio weights means that the original
portfolio weights are not very precise if the size of random samples t is small. With a
test statistic we can check if two portfolios are statistically different or not. Denote by
Σ−1
rs the inverse covariance matrix of the resampled portfolio weights. Two portfolios

with two different portfolio weights w1 and w2 are statistically equivalent if the following
inequality holds:
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d1(w1, w2) = (w1 − w2)′Σ−1
rs (w1 − w2) ≤ C

with a constant C. See also the master thesis of Jiao [6], Chapter 3.

3.2 Robust portfolio allocation

Another way to cope with uncertain inputs is to consider them in the optimization pro-
cess directly.
First we discuss the mean-variance optimization problem, where the uncertainty occurs
in the expected returns and then we consider the problem with uncertainty in the co-
variance matrix, too.

3.2.1 Uncertainty in the expected returns

We assume that the uncertainty occurs in the expected returns and denote the uncer-
tainty set by U(µ̂r). The robust formulation of the mean-variance optimization problem
is

max
w

min
µr∈U(µ̂r)

{
µ′rw −

1

2
w′Σw

}
(3.1)

s.t. e′w = 1,

wi ≥ 0, ∀i.

The objective function can be interpreted as maximization of the expected return in the
worst case, i.e., maximization of the smallest expected return. In Problem 3.1 the inner
optimization problem has to be solved first while the vector of weights is fixed. In this
case we compute the worst case expected return over the uncertainty set. We want to
solve Problem 3.1 with two special uncertainty sets.
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• The polytopic uncertainty set:

U(µ̂r) = {µr = (µi) : |µi − µ̂i| ≤ δi, i = 1, . . . , n} , (3.2)

where µ̂r = (µ̂i)1≤i≤n is the estimation of µr.
In uncertainty set 3.2 we assume that the realized expected return of asset i does
not differ more than a small account δi from the estimated expected return of this
asset, ∀i, 1 ≤ i ≤ n.

• The ellipsoidal uncertainty set:

U(µ̂r) =
{
µr = (µi) : (µr − µ̂r)′Σ−1

µ (µr − µ̂r) ≤ δ2, i = 1, . . . , n
}
, (3.3)

where µ̂r = (µ̂i)1≤i≤n is the estimation of µr and with a constant δ.
Uncertainty set 3.3 can be interpreted as an n-dimensional confidence region for the
parameter vector µr with Σµ as the covariance matrix of the errors in the estimation of
the expected returns. It means that the investor is protected in the case that the total
scaled deviation of the realized average returns from the estimated returns is smaller
than δ.

First we consider the polytopic uncertainty set 3.2.
With uncertainty set 3.2 for µr = (µ1, . . . , µn) the robust optimization problem for the
worst case of µr can be formulated as

max
w

{
µ̂′rw − δ′w −

1

2
w′Σw

}
(3.4)

s.t. e′w = 1,

wi ≥ 0, ∀i.

The worst case of the expected return is µ̂r − δ with δ = (δi)1≤i≤n and in this case we
want to loose the smallest possible amount. The computational complexity of Problem
3.4 is the same as that of the non-robust mean-variance formulation.
The solution of this problem is given as

w∗ = Σ−1(µ̂r − δ − λe) (3.5)
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λ∗ =
e′Σ(µ̂r − δ)− 1

e′Σ−1e

as we saw in Section 1.2.1.

Now we consider the ellipsoidal uncertainty set 3.3.
Again, we consider the worst case of the estimates for the expected returns in Problem
3.1. First we solve the inner optimization problem and compute the worst case of µr for
a fixed vector of weights w:

min
µr

{
µ′rw −

1

2
w′Σw

}
(3.6)

s.t. (µr − µ̂r)′Σ−1
µ (µr − µ̂r) ≤ δ2.

The Lagrangian is

L(µr; c) = µ′rw −
1

2
w′Σw − c(δ2 − (µr − µ̂r)′Σ−1

µ (µr − µ̂r)). (3.7)

By differentiating Equation 3.7 with respect to µr, we get the first-order condition

∂L

∂µr
= w + 2cΣ−1

µ (µr − µ̂r) = 0

and obtain

µ∗r = µ̂r −
1

2c
Σµw (3.8)

as a solution. We obtain the optimal value c∗ by plugging Expression 3.8 in Equation
3.7 and get the Lagrangian:

L(µ∗r ; c) = (µ̂r−
1

2c
Σµw)′w− 1

2
w′Σw− c[δ2− (µ̂r−

1

2c
Σµw− µ̂r)′Σ−1

µ (µ̂r−
1

2c
Σµw− µ̂r)]

L(µ∗r ; c) = µ̂′rw −
1

2
w′Σw − 1

4c
w′Σµw − cδ2. (3.9)

Differentiating the Lagrangian 3.9 with respect to c and putting it equal to zero, we get
the first order condition:

∂L

∂c
=

1

4c2
w′Σµw − δ2 = 0.

The optimal value c∗ is c∗ = 1
2δ

√
w′Σµw and hence µ∗r = µ̂r − δΣµw√

w′Σµw
.

By substituting the optimal value µ∗r of the inner optimization problem in 3.1 we get the
outer optimization problem as follows:
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max
w

{
µ̂′rw −

1

2
w′Σw − δ

√
w′Σµw

}
(3.10)

s.t. e′w = 1,

wi ≥ 0, ∀i.

The term δ
√
w′Σµw represents the penalty for estimation risk where δ is the degree of

the investor’s aversion to estimation risk.

The Lagrangian of Problem 3.10 is

L(µr;λ) = µ̂′rw −
1

2
w′Σw − δ

√
w′Σµw − λ(e′w − 1) (3.11)

Differentiating with respect to w, we get the first order condition:

∂L

∂w
= µ̂r − w′Σ−

δw′Σµ√
w′Σµw

− λe = 0.

It is difficult to compute the optimal value w∗ from this Lagrangian, but we can solve
Problem 3.10 numerically.

Finally a few words about the estimation of Σµ. There exist several methods to estimate
Σµ, for example the Bayesian statistics and regression-based methods. Some effective
techniques include least square regression models, the James-Stein estimator and the
Black-Litterman model. See Fabozzi et al. [5], Chapter 12.

3.2.2 Uncertainty in covariance matrix of returns

In this section we consider the uncertainty in the estimation of the covariance matrix of
returns, too. Notice that in comparison to errors in the estimates of expected values, the
optimization is less sensitive against errors in the estimates of the covariance matrix of
returns. Denote by U(µ̂r) and U(Σ) the uncertainty sets of the expected returns and the
covariance matrix, respectively. The robustified mean variance optimization problem
can be written as
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max
w

{
min

µr∈U(µ̂r)

{
µ′rw

}
− 1

2
max

Σ∈U(Σ)

{
w′Σw

}}
(3.12)

s.t. e′w = 1,

wi ≥ 0, ∀i.

We consider uncertainty set 3.2 for the expected returns and a confidence interval for
the covariance matrix:

U(Σ) =
{

Σ = (Σij) : Σij ≤ Σij ≤ Σij , i, j = 1, . . . , n
}
. (3.13)

Assume that the matrix Σ = (Σij) is positive semidefinite for i, j = 1, . . . , n. Problem
3.12 becomes then

max
w

{
(µ̂r − δ)′w −

1

2
w′Σw

}
(3.14)

s.t. e′w = 1,

wi ≥ 0, ∀i.

This is a classical mean-variance portfolio optimization problem with expected asset
returns given by (µ̂r − δ) and covariance matrix of asset returns by Σ. As such the
solution of this problem is given by

w∗ = Σ
−1

(µ̂r − δ − λe) (3.15)

and

λ∗ =
e′Σ
−1

(µ̂r − δ)− 1

e′Σ
−1
e

,

see also Section 1.2.1.

In the general case Problem 3.12 cannot be simply reformulated as Problem 3.14, because
the upper bounds Σij generally do not represent a valid covariance matrix, since (Σij) is
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not necessarily positive semidefinite. Therefore we use second-order cone optimization
and duality.

Recall that we have already solved the first inner optimization problem of Problem 3.12
as Problem 3.4 with uncertainty set 3.2 for the expected returns. Now we discuss the
second inner optimization problem of Problem 3.12 in general.
We consider the worst case for the risk w′Σw of the portfolio if the estimator of the
covariance matrix Σ lies in uncertainty set 3.13. For a fixed weight vector w the worst
case risk is given by

max
Σ

w′Σw (3.16)

s.t. Σ ≤ Σ ≤ Σ

Σ � 0,

where these order relations have to be understood as component-wise.
Problem 3.16 is a semidefinite program.

Recall the general formulation of dual problems in semidefinite programming, for ex-
ample see Fabozzi et al. [5], Chapter 9 or Vandenberghe and Boyd [8]. We obtain this
general formulation by rewriting Problem 3.16 as follows:

max
X
〈C,X〉 (3.17)

s.t.
〈
A(ij), X

〉
≤ b1ij , i, j = 1, . . . , n

−
〈
A(ij), X

〉
≤ −b2ij , i, j = 1, . . . , n

X � 0,
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with C = ww′, X = Σ, b1ij = Σij , b
2
ij = Σij and a (n× n) matrix

A(ij) =



0 . . . . . . . . . 0
...

. . .
...

... 1
...

...
. . .

...
0 . . . . . . . . . 0


with all entries equal to zero except of a one in the i-th row and j-th column. The dual
problem of Problem 3.17 is

min
u1ij ,uij2


n∑
i=1

n∑
j=1

(u1
ijb

1
ij − u2

ijb
2
ij)

 (3.18)

s.t. − S +
n∑
i=1

n∑
j=1

(u1
ijA

(ij) − u2
ijA

(ij)) = C,

S � 0, u1
ij ≥ 0, u2

ij ≥ 0, i, j = 1, . . . , n

with the dual variables u1
ij = Λij , u

2
ij = Λij and the dual slack variable S. With this

reformulation we obtain the dual problem of Problem 3.16.

min
Λ,Λ

{〈
Λ,Σ

〉
− 〈Λ,Σ〉

}
(3.19)

s.t. − S + Λ− Λ = ww′

S � 0, Λ ≥ 0, Λ ≥ 0

wi ≥ 0, ∀i.

with the dual variables Λ = (Λij) and Λ = (Λij). Problem 3.19 can be rewritten as
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min
Λ,Λ

{〈
Λ,Σ

〉
− 〈Λ,Σ〉

}
(3.20)

s.t. Λ− Λ− ww′ � 0

Λ ≥ 0, Λ ≥ 0

wi ≥ 0, ∀i.

Notice that the variable Σ does not occur in Problem 3.20. According to duality theory
of semidefinite programming the optimal values of the primal and the dual problem are
equal, provided that one of these problems is strictly feasible and bounded. The dual
Problem 3.20 is bounded, because Σ is positive semidefinite and lies between the lower
bound Σ and the upper bound Σ, which are nonnegative matrices and the weights are
nonnegative too. For the proof of the feasibility of Problem 3.20 we consider a (n × n)
matrix B = αI + J with I as the identity matrix, J as a matrix with all entries equal to
one and α as a positive constant. We set B = Λ−Λ with Λ ≥ 0,Λ ≥ 0 (component-wise).
So the eigenvalues of −ww′+B are λ(−ww′+B) = λ(−ww′+αI+J) = λ(−ww′+J)+α.
If we choose α large, then all eigenvalues λ(−ww′+B) > 0, which means that −ww′+B
is positive definite and B > 0 (component-wise). Thus Problem 3.20 is strictly feasible
and we can substitute the objective function of Problem 3.16

max
Σ

w′Σw

by the objective function of Problem 3.20

min
Λ,Λ

{〈
Λ,Σ

〉
− 〈Λ,Σ〉

}
in the objective function of Problem 3.12.

Now we use the so-called Schur complements to make the optimization problem amenable
to optimization software. The Schur complement of a square matrix D in a larger square
matrix E

E =

(
A B
C D

)
is defined as A−BD−1C.
The first constraint of Problem 3.20 can be reformulated in a linear matrix inequality.
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Consider the constraints Q(x)−S(x)R(x)−1S(x)′ � 0 and R(x) � 0, where x is a vector
variable. Then these constraints can be reformulated as a linear matrix inequality:(

Q(x) S(x)
S(x)′ R(x)

)
� 0,

see also Fabozzi et al. [5], Chapter 9.

In our case Q(x) = Λ − Λ, S(x) = w and R(x) = 1 and the first constraint of Problem
3.20 can be reformulated as (

Λ− Λ w
w′ 1

)
� 0.

Putting things together in Problem 3.12 we get the following optimization problem:

max
w,Λ,Λ

{
(µ̂r − δ)′w −

1

2
(
〈
Λ,Σ

〉
− 〈Λ,Σ〉)

}
(3.21)

s.t. e′w = 1,

wi ≥ 0, ∀i,
Λ ≥ 0, Λ ≥ 0(

Λ− Λ w
w′ 1

)
� 0.

Problem 3.21 can be solved by a nonlinear optimization software, for example by using
the cvx-package in MATLAB 7.8.0.347 (R2009a).

3.3 Relative robustness

In Chapter 2 we have considered relative robust optimization problems in general. In
this section we discuss the relative robustness of portfolio optimization. We are looking
for the worst case relative to the best possible solutions in each scenario.
For a fixed µr ∈ U(µ̂r), where U(µ̂r) is the uncertainty set for the expected returns µr,
we consider the optimal value function t∗(µr).
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t∗(µr) = max
w

{
µ′rw −

1

2
w′Σw

}

s.t. e′w = 1

wi ≥ 0, ∀i.

Let w∗(µr) be the optimal solution map:

w∗(µr) = argmaxw

{
µ′rw −

1

2
w′Σw

}

s.t. e′w = 1

wi ≥ 0, ∀i.

Let us define the measure of regret as follows:

r(w, µr) = µ′rw
∗(µr)−

1

2
(w∗(µr))

′Σw∗(µr)−(µ′rw−
1

2
w′Σw) = t∗(µr)−(µ′rw−

1

2
w′Σw) ≥ 0.

For a fixed w we maximize the regret function:

R(w) = max
µr∈U(µ̂r)

r(w, µr) = max
µr∈U(µ̂r)

{
t∗(µr)− (µ′rw −

1

2
w′Σw)

}
.

The relative robust optimization problem is the minimization of the maximized regret:

min
w

max
µr∈U(µ̂r)

{
t∗(µr)− (µ′rw −

1

2
w′Σw)

}
. (3.22)

s.t. e′w = 1,

wi ≥ 0, ∀i.

58



3 Robust portfolio optimization

Problem 3.22 is a three level optimization problem and is difficult to solve, see also
Problem 2.18 in Chapter 2.

A possibility to solve relative robust portfolio optimization problems is to limit the
maximized regret to a level M.

Find w (3.23)

s.t. t∗(µr)− µ′rw ≤M, ∀µr ∈ U(µ̂r)

e′w = 1,

wi ≥ 0, ∀i.

Now we consider an example where the objective function is the maximum of the ex-
pected returns of a portfolio with two assets and a third one which represents the part
of capital which is not invested. A portfolio which invests half of half of the capital in
each asset is considered as a ”benchmark”. If w denotes the vector of weights for the
portfolio and wBM denotes the vector of weights for the benchmark, then the tracking
error TE(w) is defined as

TE(w) :=
√

(w − wBM )′Σ(w − wBM ),

where Σ is the covariance matrix. Assume that we want a tracking error TE(w) which
is smaller than 10%, while the budget equation holds and no short sellings are allowed.

This optimization problem reads as follows

max
w

µ1w1 + µ2w2 + µ3w3 (3.24)

s.t. TE(w1, w2, w3) ≤ 0.10

w1 + w2 + w3 = 1

w1 ≥ 0, w2 ≥ 0, w3 ≥ 0.
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We assume that Σ is given as Σ =

 0.1764 0.09702 0
0.09702 0.1089 0

0 0 0

, then

TE(w1, w2, w3) =

√√√√√
w1 − 0.5
w2 − 0.5
w3

′ 0.1764 0.09702 0
0.09702 0.1089 0

0 0 0

w1 − 0.5
w2 − 0.5
w3

.
The first asset has a standard deviation of

√
0.1764 = 42% and the second asset

a standard deviation of
√

0.1089 = 33% and both have a correlation coefficient of
0.09702√

0.1764·0.1089
= 0.7.

We consider a relative robustness model where the covariance matrix is certain, but the
expected returns are uncertain and their uncertainty set consists of the three possible
scenarios for (µ1, µ2, µ3):

• (6, 4, 0) with the optimal solution w∗(µr) = (0.831, 0.169, 0) and the objective value
t∗(µr) = 5.662.

• (4, 6, 0) with the optimal solution w∗(µr) = (0.169, 0.831, 0) and the objective value
t∗(µr) = 5.662.

• (5, 5, 0) with the optimal solution w∗(µr) = (0.5, 0.5, 0) and the objective value
t∗(µr) = 5.0.

The corresponding relative robust optimization problem can be formulated as follows:

min
w,y

y (3.25)

s.t. 5.662− (6w1 + 4w2) ≤ y
5.662− (4w1 + 6w2) ≤ y
5.0− (5w1 + 5w2) ≤ y
TE(w1, w2, w3) ≤ 0.10

w1 + w2 + w3 = 1

w1 ≥ 0, w2 ≥ 0, w3 ≥ 0

60



3 Robust portfolio optimization

For the optimal solution we use MATLAB 7.8.0.347 (R2009a). The optimal value for y
is given as y∗ = 0.662 with the optimal weight w∗ = (0.5, 0.5, 0).

An easier strategy is to determine a tolerable level of regret M, for example 0.75, and
find portfolios that do not exceed this level as in Problem 3.23.

Find w (3.26)

s.t. 5.662− (6w1 + 4w2) ≤ 0.75

5.662− (4w1 + 6w2) ≤ 0.75

5.0− (5w1 + 5w2) ≤ 0.75

TE(w1, w2, w3) ≤ 0.10

w1 + w2 + w3 = 1

w1 ≥ 0, w2 ≥ 0, w3 ≥ 0

The optimal weight is given as w∗ = (0.5, 0.5, 0).

3.4 Multi-period robustness

We consider a time horizon of T + 1 periods and try to maximize the total final wealth
at the end of the last period. Currently the investor holds a portfolio of n assets with
weights w0 = (w0

1, . . . , w
0
n) and a riskless cash account with weight w0

c . There occur
sales and purchases too for which we need transaction costs. Let bt = (bt1, . . . , b

t
n) be

the percentage of capital invested in the shares of purchases at the beginning of period
t and let st = (st1, . . . , s

t
n) be the percentage of capital invested in the shares of sales at

the beginning of period t, t = 0, . . . , T. Denote by wt = (wt1, . . . , w
t
n) the percentage of

shares at the beginning of period t:

wt = wt−1 − st + bt, t = 1, . . . , T. (3.27)

So the percentage of shares at the beginning of period t is the weight of the beginning
of period t− 1 minus the sales plus the purchases at the beginning of period t.
Define with P t = (P t1, . . . , P

t
n) the price of a share in period t for t = 0, . . . , T and assume

that for the cash account P tc = 1, t = 0, . . . , T., holds. The proportional transaction costs
for the asset sales and purchases αt = (αt1, . . . , α

t
n) and βt = (βt1, . . . , β

t
n), t = 0, . . . , T ,
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respectively, are assumed to be known at the beginning of period 0 and they change
from period to period and from asset to asset. For the cash account we get the following
equation where the transaction costs are paid from this cash account:

wtc = wt−1
c + (1− αt)(P t)′st − (1 + βt)(P t)′bt, t = 1, . . . , T. (3.28)

Thus the cash account at the beginning of period t is obtained from the cash account of
the previous period t−1 by subtracting or adding the transaction, selling and purchasing
costs, respectively. In our optimization problem we will allow the investor to ”burn” some
money if he wants and we replace the equation by an inequality:

wtc ≤ wt−1
c + (1− αt)(P t)′st − (1 + βt)(P t)′bt, t = 1, . . . , T. (3.29)

The reason for the use of inequalities is that robust problems with equalities constraints
get easily infeasible.

We also do not allow short selling and hence get non-negative constraints for wt. Thus
the multi-period optimization problem reads

max
w,s,b

{
P T+1wT+1 + P T+1

c wT+1
c

}
(3.30)

s.t. wtc ≤ wt−1
c + (1− αt)(P t)′st − (1 + βt)(P t)′bt, t = 1, . . . , T

wt = wt−1 − st + bt, t = 1, . . . , T

wtc ≥ 0, wt ≥ 0, t = 1, . . . , T

st ≥ 0, bt ≥ 0, t = 1, . . . , T.

Problem 3.30 could be solved easily as a linear program if we would know the prices
P T+1 and P T+1

c .
In reality we do not know the prices P t for t = 1, . . . , T and so we cannot solve Problem
3.30 as a linear program. All we have are estimators µ̂tP for the expected values of the
prices P t, t = 1, . . . , T . Thus we have to make the problem robust to the uncertainty of
the prices. We reformulate the problem to get all uncertain prices in the constraints.
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max
w,s,b,y

y (3.31)

s.t. y ≤ P T+1wT+1 + P T+1
c wT+1

c

wtc ≤ wt−1
c + (1− αt)(P t)′st − (1 + βt)(P t)′bt, t = 1, . . . , T

wt = wt−1 − st + bt, t = 1, . . . , T

wtc ≥ 0, wt ≥ 0, t = 1, . . . , T

st ≥ 0, bt ≥ 0, t = 1, . . . , T

We consider a so-called 3-σ approach in order to obtain an uncertainty set for the prices.
Denote the expected values of P t with µtP = (µtP1

, . . . , µtPn) and the covariance matrix
with Σt = (Σt

1, . . . ,Σ
t
n) for t = 0, . . . , T .

Now we take a look at the constraints with the uncertain parameters of Problem 3.31.
Consider the first constraint:

y ≤ P T+1wT+1 + P T+1
c wT+1

c (3.32)

The expected value of the right hand side of Inequality 3.32 is

E[P T+1wT+1 + P T+1
c wT+1

c ] = µT+1
P wT+1 + wT+1

c (3.33)

and the variance is

V ar[P T+1wT+1 + P T+1
c wT+1

c ] = (wT+1)′ΣT+1(wT+1). (3.34)

If the prices are normally distributed and we consider the inequality

y ≤E[P T+1wT+1 + P T+1
c wT+1

c ]− 3

√
V ar[P T+1wT+1 + P T+1

c wT+1
c ]

=µT+1
P wT+1 + wT+1

c − 3
√

(wT+1)′ΣT+1(wT+1)

the first constraint of Problem 3.31 would be satisfied with a probability larger than
99% over all possible realizations of prices P T+1. This is the robust counterpart for the
first constraint of Problem 3.31.
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The second constraint of Problem 3.31 is

wtc ≤ wt−1
c + (1− αt)(P t)′st − (1 + βt)(P t)′bt, t = 1, . . . , T. (3.35)

We put the weight of the cash account at the beginning of period t− 1 to the left hand
side of Inequality 3.35, so that all uncertain parameters are isolated on the right hand
side:

wtc − wt−1
c ≤ (1− αt)(P t)′st − (1 + βt)(P t)′bt, t = 1, . . . , T. (3.36)

Again, let us consider the expected value and the variance of the right hand side of
Inequality 3.36:

E[(1− αt)(P t)′st − (1 + βt)(P t)′bt] = (µtP )′Dt
αs
t − (µtP )′Dt

βb
t = (µtP )′(Dt

α;−Dt
β)

(
st

bt

)
,

(3.37)

V ar[(1− αt)(P t)′st − (1 + βt)(P t)′bt] =

(
st

bt

)′(
Dt
α

−Dt
β

)
Σt(Dt

α;−Dt
β)

(
st

bt

)
, (3.38)

with the diagonal matrices

Dt
α :=


(1− αt1)

. . .

(1− αtn)

 , Dt
β :=


(1 + βt1)

. . .

(1 + βtn)

 .

Using the expected value 3.37 and the variance 3.38, we can replace the second constraint
of Problem 3.31 with its robust counterpart:

wtc − wt−1
c ≤ (µtP )′(Dt

α −Dt
β)

(
st

bt

)
− 3

√(
st

bt

)′(
Dt
α

−Dt
β

)
Σt(Dt

α −Dt
β)

(
st

bt

)
. (3.39)

Again, assuming that the uncertain parameters are normally distributed, the original
constraint would be satisfied with a probability of at least 99%.

This approach (the so-called 3-σ approach) we have used, lead to the following uncer-
tainty set for the prices:

Ut(P t) =

{
P t :

√
(P t − µtP )′(Σt)−1(P t − µtP ) ≤ 3

}
, t = 1, . . . , T.

64



3 Robust portfolio optimization

The complete uncertainty set U is the Cartesian product U = U1 × . . .×UT+1. See also
Cornuejols and Tütüncü [4], Chapter 20.

Another way to compute an uncertainty set is by assuming that just the covariance
matrix of the first period is known. The basic idea is that we know more about the
prices of the single-period problem than of prices far in the future. So we get the
following uncertainty sets for the prices:

Ut(P 1) =

{
P 1 :

√
(P 1 − µ1

P )′(Σ1)−1(P 1 − µ1
P ) ≤ δ

}
(3.40)

and
Ut(P t) =

{
P t : P t ≤ P t ≤ P t, t = 2, . . . , T

}
(3.41)

with lower and upper bounds P and P . In the case of uncertainty sets 3.40 and 3.41 we
account for the risk over the first period and we keep in mind some basic forecasts about
the direction of the prices in the following time periods. See the paper of Bertsimas and
Pachamanova [9], too.

3.5 Conclusion

In this chapter we got to know robust formulations of the mean-variance optimization
problem with uncertain input parameters. We considered two special cases of uncer-
tainty sets for the expected returns: The polytopic and the ellipsoidal uncertainty sets.

We sketched the solution of the problem for expected returns lying in a polytopic un-
certainty set and for the covariance matrix lying in an interval. But in general the
covariance matrix of the worst case is not alway positive definite. So we formulated the
optimization problem with the polytopic uncertainty set for expected returns and the
interval for the covariance matrix as a semidefinite program.
We also discussed an example of relative robustness and the robust formulation of the
multi-period problem.

In the next chapter we want to apply the theory presented in the previous chapters to
compare classical with robust mean-variance optimization problems in terms of a prac-
tical example.
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4.1 Data

Our portfolio consists of n = 5 indices, namely:

• Nasdaq Composite

• S&P 500

• FTSE 100

• Dax

• Nikkei 225

We consider the weekly historical prices pt from November 26th, 1990, till January 10th,
2010, and compute the weekly logarithmic returns defined as µr(t) = log(pt+1

pt
), where

pt is the price realized at the t-th week of the above described time window. In this way
we obtain a time series of length N = 996 for each asset.

All statistical computations are done in R 2.10.1. The solution of the optimization prob-
lem is done by using the cvx-package of MATLAB 7.8.0.347 (R2009a).

4.1.1 Implementation in R

We use the technique of bootstrapping to estimate the expected returns µr and the
covariance matrix Σ. There we get the 25%, 50% and 75% quantiles for the expected
returns and the covariances σij . The 50% quantiles are used as estimators for µr and
Σ = (Σij) and the 25% and 75% quantiles are used as lower and upper bounds of the
uncertainty sets in the robust optimization problem.
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As an illustrative example we describe the implementation of the bootstrapping approach
in the case of Nasdaq. The R code looks as follows.

Nasdaqres <- lapply(1:3000, function(i)

sample(Nasdaqlog, replace = T))

Nasdaqmean <- sapply(Nasdaqres, mean)

Nasdaqquantil<-quantile(Nasdaqmean, probs=c(0.25,0.5,0.75))

The explanations of the used functions are as follows:

• lapply: returns a list of the same length as Nasdaqlog. Each element is the result
of applying the function sample to the corresponding element of Nasdaqlog.

• sample: samples from the vector Nasdaqlog with replacement (replace=T).

• quantile: returns the sample quantiles for given probabilities. We get the 25%,
50% and 75% quantiles (probs=c(0.25,0.5,0.75)).

The resulting vectors are explained below:

• Nasdaqlog: a vector of the expected log returns of Nasdaq.

• Nasdaqres: 3000 vectors of length 996 which are the 3000 resamples of the time
series of length 996.

• Nasdaqmean: a vector of length 3000 with the means of each resample.

• Nasdaqquantil: the values of the 25%, 50% and 75% quantiles of the expected
returns (µLr , µr and µUr ).

The same code is used for the indices S&P 500, FTSE 100, DAX and Nikkei 225.

The bootstrapping of the covariance matrix was more complicated. We implement it as
follows.

Nasdaqmat<-matrix(1:2988000, ncol=3000)

SPmat<-matrix(1:2988000, ncol=3000)

FTSEmat<-matrix(1:2988000, ncol=3000)

Daxmat<-matrix(1:2988000, ncol=3000)

Nikkeimat<-matrix(1:2988000, ncol=3000)
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for(i in 1:996){for(j in 1:3000){

Nasdaqmat[i,j]<-matrix(Nasdaqres[[j]][i])

SPmat[i,j]<-matrix(SPres[[j]][i])

FTSEmat[i,j]<-matrix(FTSEres[[j]][i])

Daxmat[i,j]<-matrix(Daxres[[j]][i])

Nikkeimat[i,j]<-matrix(Nikkeires[[j]][i])}}

covariance<-matrix(1:75000,ncol=5)

for(j in 1:3000){

l<-((j*5)-4)

k<-(j*5)

covariance[l:k,1:5]<-cov(matrix(c(Nasdaqmat[,j],SPmat[,j],FTSEmat[,j],

Daxmat[,j],Nikkeimat[,j]),ncol=5))}

Figure 4.1: Explanation of the matrix Nasdaqmat

First we initialize 5 matrices Nasdaqmat, SPmat, FTSEmat, Daxmat and Nikkeimat

with 996 rows and 3000 columns each. Then we fill the matrices with the columns of
the 3000 resampled time series of length 996. Finally we generate a matrix covariance

with 15000 rows and 5 columns. To this end we generate 3000 matrices with 5 columns
and 996 rows filled with the first, second,. . ., 3000th column of Nasdaqmat, SPmat,

FTSEmat, Daxmat and Nikkeimat by calling
matrix(c(Nasdaqmat[,j],SPmat[,j],FTSEmat[,j],Daxmat[,j],Nikkeimat[,j]),ncol=5).
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Figure 4.2: Explanation of the 996 x 5 matrix

Then we compute the covariance of all 3000 matrices and obtain 3000 5×5-matrices.
These covariance matrices are concatenated in the 1500× 5 matrix covariance.

Next we generate a vector of length 3000 with the first element of each covariance
matrix:

for(j in 1:3000){l<-((j*5)-4) vec11[j]<-c(covariance[l,1])}

Figure 4.3: Explanation of the vector vec11
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This procedure is repeated for all elements of each covariance matrix resulting in 25
vectors called vecij, ∀i, j, 1 ≤ i, j ≤ 5 (the red fields are the vector vec11 of length
3000). For each vector we compute the 25%, 50% and 75% quantiles called quantij,
∀i, j, 1 ≤ i, j ≤ 5:

quantvec11<-quantile(vec11, probs=c(0.25,0.5,0.75))

We summarize the 25% quantiles in the matrix covlow (Σ), equivalently the 50% quan-
tiles and 75% quantiles of the covariance matrix in cov (Σ) and in covup (Σ):

covlow<-matrix(c(quant11[[1]],quant21[[1]],quant31[[1]],quant41[[1]],quant51[[1]],

quant12[[1]],quant22[[1]],quant32[[1]],quant42[[1]],quant52[[1]],

quant13[[1]],quant23[[1]],quant33[[1]],quant43[[1]],quant53[[1]],

quant14[[1]],quant24[[1]],quant34[[1]],quant44[[1]],quant54[[1]],

quant15[[1]],quant25[[1]],quant35[[1]],quant45[[1]],quant55[[1]]),

ncol=5)

The estimations of and the bounds on the covariance matrix obtained by applying the
bootstrapping approach described above do not have to be positive definite. If the
matrix is not positive definite, that means, if the matrix has negative eigenvalues, than
we need an approximation to transform the matrix in a positive definite one. Denote by
Σ̂ the estimator of a covariance matrix, which is symmetric, but not neccessarily positive
definite. We look for the ”closest” positive definite matrix to Σ̂ and use the Frobenius
norm as a measure of closeness:

dF (Σ, Σ̂) =

√√√√ n∑
i=1

n∑
j=1

(Σij − Σ̂ij)2

with a positive definite covariance matrix Σ. The optimization problem for the nearest
covariance matrix for a given matrix Σ̂ reads as follows:

min
Σ
dF (Σ, Σ̂) (4.1)

s.t. Σ ∈ Cns ,

with Cns as the cone of n× n symmetric and positive definite matrices

Cns =

X =

x11 . . . x1n
...

. . .
...

xn1 . . . xnn

 ∈ Rn×n : X � 0

 ,
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and the notation X � 0 means that the matrix X is positive definite.
Now we introduce a dummy variable t and rewrite Problem 4.1 as

min t (4.2)

s.t. dF (Σ, Σ̂) ≤ t
Σ ∈ Cns .

We notice that the first constraint of Problem 4.2 can be written as a second-order
cone constraint and so we can transform Problem 4.2 into a conic optimization problem,
which can be solved by a nonlinear optimization software. See also Tütüncü and Koenig
[4].

4.1.2 Data Analysis

By bootstrapping we get the 50% quantiles for the covariances and the expected returns.
First consider the covariance matrix:

Σ =


0.0011085553 0.0000007558 −0.0000004174 0.0000001376 0.0000006867
0.0000007558 0.0005599362 0.0000005382 −0.0000003611 0.0000007006
−0.0000004174 0.0000005382 0.0005654621 −0.0000003275 0.0000001593
0.0000001376 −0.0000003611 −0.0000003275 0.0010058322 −0.0000013193
0.0000006867 0.0000007006 0.0000001593 −0.0000013193 0.0009486372

 .

In this case the covariance matrix Σ is positive definite. Thus no approximation is
needed.

The following table shows the variances of the different indices sorted in decreasing order:

index variance

Nasdaq 0.0011085553
DAX 0.0010058322

Nikkei 225 0.0009486372
FTSE 100 0.0005654621
S&P 500 0.0005599362

Table 4.1: Variances of indices
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Now consider the 50% quantile of the expected returns:

µr =


0.001834631
0.0012650497
0.0008917582
0.0014501784
−0.0007872628

 .

The index with the largest 50% quantile expected return is the Nasdaq, followed by the
Dax, S&P 500, FTSE 100 and finally the Nikkei 225 with a negative expected return.
In the following we see the charts of all indices from November 1990 till January 2010:

Figure 4.4: Prices of Nasdaq Composite
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Figure 4.5: Prices of S&P 500

Figure 4.6: Prices of FTSE 100
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Figure 4.7: Prices of DAX

Figure 4.8: Prices of Nikkei 225

At this point a natural question arises: To which extent do the values µr (computed as
50% quantiles fo the sampled returns) correspond to the realized returns?
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Let us compare the realized prices for each index with the expected prices assuming that
the expected returns are µr computed as above.

The weekly expected returns are given as eµr , where µr is the weekly expected log
return. The expected returns over the whole time period are given as (eµr)996. Hence
the expected prices of the end of the considered time period are given as po · (eµr)996,
where p0 are the initial prices. The results of these comparisons are summarized in the
following table:

index realized price expected price

Nasdaq 2317.17 2213.192
S&P 500 1144.98 1136.119

FSTE 100 5534.2 5223.799
Dax 6037.61 6109.554

Nikkei 225 10198.04 10578.58

Table 4.2: Comparison of realized and expected prices

Table 4.2 shows a gap between the estimated expected return and the returns realized in
the past. So we have to consider the uncertainty of the parameters in the optimization
problem which leads us to our next considerations.

4.2 Comparison of the parameters

In this section we will consider the classical optimization problems:

max
w

µ′rw (4.3)

s.t. e′w = 1

w′Σw ≤ s
wi ≥ 0, ∀i

min
w
w′Σw (4.4)

s.t. e′w = 1

µ′rw ≥ m
wi ≥ 0, ∀i

max
w

{
µ′rw − cw′Σw

}
(4.5)

s.t. e′w = 1

wi ≥ 0, ∀i
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where µr is the 50% quantile of the resampled returns and Σ is obtained by collecting
the 50% quantiles of the resampled entries of the covariance matrix and eventually ap-
proximating by a positive definite matrix.

These problems are parametrized with the parameters s, m and c, respectively. We
consider their solutions for different values of the parameters. We denote the smallest
value of s by smin and its largest value by smax. Analogously we denote by mmin and
mmax the smallest and the largest value of m, respectively. The smallest value of the
risk aversion parameter cmin is equal to 0. We set smin (smax) equal to the smallest
(largest) value of Σ = (σij) and mmin (mmax) equal to the smallest (largest) value of µr.
The largest value cmax is 3.5 because the solutions do not vary a lot for values larger
than 3.5. In order to get different values for the parameters, we partition the intervals
[smin, smax], [mmin,mmax] and [cmin, cmax] in 20 equal parts:

• Interval for the expected return m: [−0.00078726, 0.0018] with stepsize 0.00013109.

• Interval for the variance s: [−0.0000013193, 0.0011] with stepsize 0.000055494.

• Interval for the risk aversion parameter c: [0, 3.5] with stepsize 0.1750.

We compare the solutions of the portfolio optimization problems 4.5, 4.4 and 4.3 for
different values of the control parameters c, m and s, respectively. Now we solve the
optimization problems and get the portfolio weights for all problems. Let us denote by

• w1 the percentage invested in Nasdaq,

• w2 the percentage invested in S&P 500,

• w3 the percentage invested in FTSE 100,

• w4 the percentage invested in Dax and

• w5 the percentage invested in Nikkei 225.

The efficient frontiers of all three problems are depicted in the following graphics.
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Figure 4.9: Classical efficient frontier of Problem 4.3

Figure 4.10: Classical efficient frontier of Problem 4.4
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Figure 4.11: Classical efficient frontier of Problem 4.5

In order to interpret the parameter c of Problem 4.5, we compare the composition of the
efficient portfolios of Problem 4.3, Problem 4.4 and Problem 4.5, which are illustrated
in the following graphics. For every value of the control parameter (depicted in the
horizontal axis) the length of each monochrome interval represents the percentage of
capital invested in the corresponding asset.

Figure 4.12: Composition of efficient portfolios of Problem 4.3
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Figure 4.13: Composition of efficient portfolios of Problem 4.4

Figure 4.14: Composition of efficient portfolios of Problem 4.5

By comparing Figures 4.12-4.14 we observe that a small risk aversion parameter c in
Problem 4.5 corresponds to a high risk upper bound s in Problem 4.3 and a high return
lower bound in Problem 4.4. Vice versa, a large risk aversion parameter c in Problem 4.5
corresponds to a low risk upper bound s in Problem 4.3 and a low return lower bound
in Problem 4.4.
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We also observe that if the upper bound on the portfolio variance is high, then most
of the capital is invested in Nasdaq which is the most risky index and has the highest
return. If the upper bound on the portfolio variance becomes smaller the optimal port-
folio weights are more diversified.

4.2.1 Implementation in MATLAB

The optimization problems are solved by using the cvx-package in MATLAB 7.8.0.347
(R2009a). The efficient frontier of Problem 4.3 is obtained by solving 21 optimization
problems of that type for different values s. The corresponding Matlab code is given
below.

j=1

for i=min(min(Covres)):(max(max(Covres))-min(min(Covres)))/20:max(max(Covres))

cvx_begin

variable w(n,1);

maximize (meanres’*w)

subject to

ones(1,n)*w == 1;

w >= 0;

w’*Covres*w <= i;

cvx_end

Result(j,:)=[i cvx_optval];

j=j+1;

disp(w);

end

x=Result(:,1);

y=Result(:,2);

plot(x,y);

Covres is the 50% quantile of the resampled covariance matrix. The index i denotes the
20 steps in the interval [smin, smax]. In Result the index i and the corresponding optimal
returns are summarized. Also the optimal weights are displayed (disp(w)). Finally we
plot the efficient frontier, the values of i (x=Result(:,1)) with the corresponding optimal
returns (y=Result(:,2)). Analogously, we implement Problem 4.4 and 4.5 and their
robust counterparts.
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4.3 Comparison: Classical optimization problems with the
robust counterparts

In this section we compare the classical mean-variance optimization problems with their
robust counterparts.

4.3.1 Uncertainty in the expected returns

First we consider Problem 4.3. For the robust counterpart, we assume that the expected
returns are uncertain and lie in the following uncertainty set:

U(µr) =
{
µr = (µi) : µLi ≤ µi ≤ µUi , i = 1, . . . , n

}
(4.6)

with the lower and upper bounds µLi and µUi , ∀i.

The formulation of the robust counterpart of Problem 4.3 is

max
w

min
µr∈U(µr)

µ′rw (4.7)

s.t. e′w = 1

w′Σw ≤ s
wi ≥ 0, ∀i.

See also Problem 3.1, Section 3.2.1.

The worst case for the expected returns is µLr = (µL1 , . . . , µ
L
n) and we get the following

robust optimization problem:

max
w

(µLr )′w (4.8)

s.t. e′w = 1

w′Σw ≤ s
wi ≥ 0, ∀i.
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By bootstrapping from the historical data as described in the beginning of this chapter
we get the following lower bounds of the expected returns as 25% quantiles of the sampled
data

µLr =


0.001131463
0.0007715919
0.0004058809
0.0007871138
−0.0014519829

 (4.9)

and the following upper bounds as 75% quantiles of the sampled data

µUr =


0.002573538
0.0017814287
0.0014111549
0.0021264350
−0.0001566744

 . (4.10)

We have solved Problem 4.3 and its robust counterpart for 21 values of parameter s lying
in the interval [smin, smax], computed as described above.

The composition of the optimal portfolios for the robust optimization Problem 4.8 is
illustrated in the following graphic. The composition of portfolios belonging to the effi-
cient frontier of the corresponding Problem 4.3 is depicted in Figure 4.12.

Figure 4.15: Composition of efficient portfolios for Problem 4.8
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With the highest level s = 0.0011 for the risk, everything is invested in Nasdaq, the
most risky index. If the level for the risk is smaller then the optimal weights are more
diversified, but the robust weights are a little bit more concentrated in Nasdaq than the
classical ones. The optimal value for the maximized reward is higher for the classical
optimization problem than for the robust one, just as expected: in the robust optimiza-
tion problem we use the worst case estimations for the asset returns, which clearly lead
to a smaller portfolio return. We assume uncertainty in the expected returns only, so
the uncertainty does not affect the feasibility of the solution and there exists no solution
for a level of risk lower than 0.00016516.

The following picture shows the efficient frontiers where the blue line corresponds to
the classical mean-variance optimization problem and the green one corresponds to the
robust counterpart.

Figure 4.16: Classical and robust efficient frontiers for Problem 4.3 (blue) and Problem
4.8 (green)

We can see that the robust efficient frontier lies below the classical one which means,
that the robust optimal portfolio for a certain level of risk has a smaller reward than the
portfolio on the classical efficient frontier. This fact is already commented above.
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The following table shows the optimal solutions for the classical optimization Problem
4.3 and its robust counterpart for some upper bounds values s on the risk.

classical robust
s w optimal return w optimal return

0.00010967 No solution exists! -Inf No solution exists! -Inf

0.00016516


0.1800
0.3042
0.2677
0.1793
0.0688

 0.00115956


0.1734
0.3108
0.2757
0.1743
0.0658

 0.000589611

0.00033164


0.4352
0.2970
0.0000
0.2678
0.0000

 0.00156249


0.4468
0.3469
0.0000
0.2063
0.0000

 0.000935551

0.00083109


0.8547
0.0000
0.0000
0.1453
0.0000

 0.00177877


0.8616
0.0623
0.0000
0.0761
0.0000

 0.00108284

0.00094207


0.9186
0.0000
0.0000
0.0814
0.0000

 0.00180333


0.9201
0.0228
0.0000
0.0571
0.0000

 0.00110359

0.0011


1.0000
0.0000
0.0000
0.0000
0.0000

 0.00183463


1.0000
0.0000
0.0000
0.0000
0.0000

 0.00113146

Table 4.3: Solutions of Problem 4.3 and Problem 4.8
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4.3.2 Uncertainty in the expected returns and the covariance matrix:
Simple case

Next we compare Problem 4.4 with the robust counterpart:

min
w

max
Σ∈U(Σ)

w′Σw (4.11)

s.t. e′w = 1

min
µr∈U(µr)

µ′rw ≥ m

wi ≥ 0, ∀i

with the uncertainty set 4.6 for the expected returns and the uncertainty set for the
covariance matrix given as

U(Σ) =
{

Σ = (Σij) : Σ ≤ Σ ≤ Σ, i, j = 1, . . . , n
}

(4.12)

where the lower bound Σ = (Σij) and the upper bound Σ = (Σij) for the covariance
matrix are obtained as 25% and 75% quantiles of the resampled data.

The lower and upper bounds Σ and Σ for the covariance matrix for all i, j = 1, . . . , 5.

Σ =


0.001035060 −0.000017004 −0.000017262 −0.000022645 −0.000021411
−0.000017004 0.000524554 −0.000011390 −0.000015934 −0.000014725
−0.000017262 −0.000011390 0.000523608 −0.000016311 −0.000015499
−0.000022645 −0.000015934 −0.000016311 0.000949508 −0.000021178
−0.000021411 −0.000014725 −0.000015499 −0.000021178 0.000892139

 (4.13)

Σ =


0.0011901086 0.0000168514 0.0000164742 0.0000222886 0.0000223994
0.0000168514 0.0005993715 0.0000121208 0.0000152054 0.0000155135
0.0000164742 0.0000121208 0.0006138156 0.0000160002 0.0000162153
0.0000222886 0.0000152054 0.0000160002 0.0010674866 0.0000190276
0.0000223994 0.0000155135 0.0000162153 0.0000190276 0.0010142965

 (4.14)

These matrices Σ and Σ are positive definite. So we do not need an approximation.
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If we optimize with the worst case of the covariance matrix, which is Σ, we get the
following robust optimization problem:

min
w
w′Σw (4.15)

s.t. e′w = 1

µ′rw ≥ m
wi ≥ 0, ∀i

This problem is of the same type as a classical variance minimization problem, and can
be solved by standard methods, see also Problem 3.14, Section 3.2.2. We solve this
problem for 20 different values of parameter m in the interval [−0.00078726, 0.0018] as
described in Section 4.2.

The composition of the efficient portfolios of Problem 4.4 is depicted in Figure 4.13.
The allocation of the weights of its robust counterpart, Problem 4.11 is illustrated in the
following graphic.

Figure 4.17: Composition of efficient portfolios for Problem 4.11

If we compare Figure 4.13 and Figure 4.17 and consider for example the level of m =
0.001, we can observe, that the efficient portfolio of the robust mean-variance optimiza-
tion problem is less diversified, because we invest in Nasdaq, S&P 500 and Dax only,
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whereas in the efficient portfolio of the classical mean-variance optimization problem we
invest in all indices.

The results of the classical and the robust optimization problems are listed in the fol-
lowing table.

classical robust
m w optimal risk w optimal risk

-0.00078726


0.1386
0.2742
0.2719
0.1533
0.1620

 0.000153829


0.1356
0.2791
0.2721
0.1526
0.1606

 0.000177634

0.00078587


0.1385
0.2742
0.2720
0.1533
0.1620

 0.000153829


0.2423
0.3528
0.2077
0.1972
0.0000

 0.00022433

0.00091697


0.1386
0.2742
0.2719
0.1533
0.1620

 0.000153829


0.3945
0.3843
0.0000
0.2212
0.0000

 0.00033752

0.0010


0.1592
0.2890
0.2698
0.1662
0.1158

 0.00015662


0.7638
0.1329
0.0000
0.1033
0.0000

 0.000723623

0.0012


0.1837
0.3068
0.2675
0.1815
0.0605

 0.000167259 No solution exists! +Inf

Table 4.4: Solutions of Problem 4.4 and Problem 4.11

By comparing Table 4.4 and Table 4.3 we can see that the differences between the robust
and the classical efficient portfolios are more pronounced in this case when we take into
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account both the uncertainty in expected returns and also in the covariance matrix. Also
in this case we observe that the optimal weights of the robust optimization problem are
more concentrated on certain indices while the weights of the classical portfolio opti-
mization problem are more diversified. If the level of the prescribed reward is low, we
invest in all of the five indices with the most percentages in S&P 500 and FTSE because
they have the smallest risk. From a level m = 0.0012 upwards there exists no feasible
solution for the robust problem because we assume that the worst case for the expected
returns occurs. If we compare the optimal values we can see that the minimized risk
of the classical problem is lower than its robust counterpart. This is due to the worst
case assumption for the covariance matrix. We can see these the efficient frontiers of the
robust and classical problem in the following picture.

Figure 4.18: Classical and robust efficient frontiers for Problem 4.4 (blue) and Problem
4.11 (green)

The efficient frontier of the robust optimization problem is below and to the right of the
classical one.
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4.3.3 Uncertainty in the expected returns and the covariance matrix:
General case

In our previous chapter we explained that in general lower bounds Σij for the covariances
of asset i and j, 1 ≤ i, j ≤ 5, do not yield a positive definite matrix (Σ)1≤i,j≤5 and hence
Σ cannot be used as a worst case approximation for the covariance matrix Σ. Therefore
we consider the robust risk-adjusted optimization problem with the general case for the
uncertainty set of the covariance matrix, i.e., the robust counterpart of Problem 4.5.

max
w

{
min

µr∈U(µr)
µ′
rw − c max

Σ∈U(Σ)
w′Σw

}
(4.16)

s.t. e′w = 1

wi ≥ 0, ∀i.

Consider the uncertainty set 4.6 for the expected returns, the uncertainty set 4.12 for
the covariance matrix and the dual variables Λ and Λ corresponding to the restrictions
Σ ≤ Σ and Σ ≤ Σ. As shown in Section 3.2.2. (Problem 3.22) the robust optimization
Problem 4.16 is equivalent to the following problem.

max
w,Λ,Λ

{
(µLr )′w − c(

〈
Λ,Σ

〉
− 〈Λ,Σ〉)

}
(4.17)

s.t. e′w = 1

wi ≥ 0, ∀i
Λ ≥ 0, Λ ≥ 0(

Λ− Λ w
w′ 1

)
� 0.

We have solved this optimization problem by using the cvx-package of MATLAB 7.8.0.347
(R2009).

For the optimal weights of Problem 4.5, see Figure 4.14, for the composition of efficient
portfolios of Problem 4.17 see the following graphic.
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Figure 4.19: Composition of efficient portfolios for Problem 4.17

We consider the efficient frontier of Problem 4.5 and 4.17.

Figure 4.20: Classical and robust efficient frontiers for Problem 4.5 (blue) and Problem
4.17 (green)
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The robust efficient frontier of the general case lies below the classical one, and this is
similar to pictures we have already seen when comparing the robust and classical coun-
terpart for other models.

The following table shows the optimal weights of Problem 4.5 and 4.17 with the return
and risk of each efficient portfolio.

classical robust
c w return risk w return risk

0.00


1.0000
0.0000
0.0000
0.0000
0.0000

 0.001834631 0.001108555


1.0000
0.0000
0.0000
0.0000
0.0000

 0.001131463 0.001201982

0.25


0.8397
0.0000
0.0000
0.1603
0.0000

 0.001773003 0.00080745


0.7002
0.1761
0.0000
0.1237
0.0000

 0.001025571 0.00062708

0.75


0.4735
0.2592
0.0000
0.2673
0.0000

 0.001584611 0.00035819


0.3941
0.3846
0.0000
0.2213
0.0000

 0.00091685 0.00033737

1.50


0.3345
0.3234
0.1005
0.2416
0.0000

 0.001437368 0.00024715


0.2807
0.3631
0.1517
0.2045
0.0000

 0.00082033 0.00024357

3.50


0.2379
0.3256
0.2286
0.2079
0.0000

 0.001353618 0.00019522


0.2131
0.3452
0.2500
0.1917
0.0000

 0.00075984 0.00021476

Table 4.5: Solutions of Problem 4.5 and Problem 4.17

We can see that the optimal robust portfolio is mainly invested in Nasdaq and a little bit
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in S&P 500 while the optimal classical portfolio invests even more in Nasdaq. Nothing
is invested in Nikkei 225 because of its negative expected return. If the risk-aversion pa-
rameter c is small, the optimal robust and classical portfolios invest most of the capital
in Nasdaq. The weights get more diversified while c increases.

4.3.4 Stability of the optimization problems

The goal of the following numerical experiments is the investigation of the stability of
classical and robust optimization problems.
In practice, it can often happen that we have wrong estimates for the expected returns
and covariance matrices. Since small fluctuations in the input parameters influence
the solutions of the problem, wrong estimations would probably lead to bad solutions.
In this context the robust portfolio optimization might be an alternative to classical
mean-variance optimization. To illustrate this alternative, we discuss the solution of
three types of problems: the classical mean-variance optimization, the robust mean-
variance optimization with uncertainty in the asset returns and the robust mean-variance
optimization with uncertainty in the asset returns and in the covariance matrix (simple
case) as described in Section 4.3.2. The optimal portfolios are denoted by wc, wR1 and
wR2, respectively. They are summarized in the following table.

wc wR1 wR2

0.7026 0.7148 0.6787
0.0776 0.2319 0.2543
0.0000 0.0000 0.0000
0.2198 0.0532 0.0671
0.0000 0.0000 0.0000

Table 4.6: Optimal weights of Problem 4.3 and its robust counterparts

Let us consider the performance of these three portfolios for real values µ0 and Σ0 of
expected returns and covariance matrix. These values are in general not equal to the
estimators. We compare the returns µ′0wc, µ

′
0wR1 and µ′0wR2 of the classical and ro-

bust optimal portfolios, respectively. Analogously, we compare the variances w′cΣ0wc,
w′R1ΣwR1 and w′R2Σ0wR2 of the classical and robust optimal portfolios. If the robust
optimization problem gets a higher reward and a lower risk, then the robust optimization
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would be an alternative to the classical optimization model in this case.

Let us consider different return vectors and covariance matrices from the corresponding
uncertainty sets as representatives of real values µ0 and Σ0. We pick up 20 vectors
µi, 1 ≤ i ≤ 20, randomly and uniformly distributed over the (µLr , µ

U
r ) given in 4.9,

4.10 where the selection is done independently for each index. Analogously, we select
σij ∈ (Σij ,Σij) randomly and uniformly distributed for i, j = 1, . . . , 5 and repeat this
process 20 times to generate the representatives of the real covariance matrix. The ma-
trices (σij) are approximated by positive definite matrices as described in Section 4.1, if
necessary. The results of this experiment are shown in Table 4.7.

reward risk

µ′iwc µ′iwR1 µ′iwR2 w′cΣiwc w′R1ΣiwR1 w′R2ΣiwR2

0.001061001 0.001073631 0.001058443 0.0005511491 0.0005521375 0.0005066374
0.001077957 0.001090796 0.001075445 0.0005555832 0.0005563026 0.0005105772
0.001094931 0.001105641 0.001090337 0.0005595174 0.0005602688 0.0005143530
0.001106748 0.001117025 0.001101646 0.0005629032 0.0005635259 0.0005174668
0.001121509 0.001129687 0.001114333 0.0005708408 0.0005711929 0.0005247543
0.001133438 0.001141012 0.001125579 0.0005792811 0.0005796031 0.0005326798
0.001149187 0.001155050 0.001139597 0.0005809381 0.0005812734 0.0005342648
0.001178473 0.001183283 0.001167751 0.0005852538 0.0005855010 0.0005382327
0.001216752 0.001219548 0.001203668 0.0006000069 0.0005999404 0.0005518912
0.001245978 0.001246654 0.001230833 0.0006034154 0.0006032613 0.0005550638
0.001275651 0.001277930 0.001261622 0.0006067427 0.0006065504 0.0005581928
0.001300774 0.001301317 0.001285071 0.0006162982 0.0006160385 0.0005671602

0.001403578 0.001400707 0.001383792 0.0006180100 0.0006176606 0.0005686996
0.001479743 0.001471578 0.001454361 0.0006216076 0.0006211292 0.0005720007
0.001733949 0.001716704 0.001697086 0.0006277695 0.0006271607 0.0005777233
0.002060558 0.002025411 0.002004609 0.0006342732 0.0006336522 0.0005838726
0.002160838 0.002123019 0.002102007 0.0006381557 0.0006374667 0.0005874921
0.002268360 0.002226652 0.002204519 0.0006399795 0.0006393226 0.0005892473
0.002301245 0.002259318 0.002236671 0.0006456496 0.0006449328 0.0005945041
0.002365520 0.002320049 0.002297019 0.0006517101 0.0006508782 0.0006000738

Table 4.7: Comparison of return and risk for classical and robust optimal portfolios

In 60% of the considered cases, the portfolio wR1 has the highest reward. When the
”real” returns are high, then portfolio wc performs better in terms of total return. This
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behavior is understandable and plausible because portfolio wc maximizes the total re-
turn assuming that the expected assets returns are equal to the 50% quantiles of the
bootstrapped values. By comparing the risk of portfolio wc and wR1, we can see that
in 12 of 20 cases portfolio wR1 has a lower risk. So we can conclude that in most of
the cases the robust optimal portfolio wR1 outperforms the classical optimal portfolio
wc. The reward of portfolio wR2 is the smallest one. In contrast, portfolio wR2 shows
the lowest risk in all cases. Summarizing we can conlude that the robust portfolio wR1

represent a good trade off between low risk and high return.

4.4 Conclusion

In this chapter we applied the models of classical and robust portfolio optimization pre-
sented in the previous chapters to a portfolio of 5 assets: Nasdaq Composite, S&P 500,
FTSE 100, Dax and Nikkei 225. The test bed and the analysis is similar to the computa-
tional study of Tütüncü and Koenig [10]. They also compare the classical mean-variance
optimization problems with their robust counterparts.

For the estimation of the expected returns and covariances, we apply a bootstrapping
approach similarly as Tütüncü and Koenig do. We use the historical data for bootstrap-
ping and compute the sampled means and sampled covariances for the time series. We
repeat this procedure 3000 times, compute the 50%, 25% and 75% quantiles and get
the estimations of expected returns and covariance matrix as well as the corresponding
lower and upper bounds for the uncertainty sets 4.6 and 4.12.

When comparing the efficient frontiers of the robust and classical optimization problems,
we observe that the robust efficient frontier lies below the efficient frontier of the clas-
sical Markowitz optimization. The reason is clear: the robust optimization model takes
into account the worst case realization of expected returns and covariance matrix. The
terms of the composition of optimal robust and classical portfolios we observe that in
both models most of the capital is investd in Nasdaq, if the upper bound on the variance
or the lower bound on the asset return is high. Especially in the optimization problem
of minimizing the risk, the classical mean-variance optimal portfolio is more diversified
than the optimal robust portfolio.

Another result is that the robust optimal portfolio is more stable in the following sense.
We compare the reward and the variance of two optimal robust portfolios and a classical
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optimal portfolio for different realizations of return and covariance from the correspond-
ing uncertainty sets. In 60% of the considered cases one of the robust portfolios performs
better than the classical portfolio in terms of reward and/or variance.

Summarizing, our tests confirm that the robust portfolio optimization is a valuable
alternative to the classical mean-variance optimization at least for risk-aware investors.
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Optimization Methods in Finance.
Cambridge University Press, 2007

[5] Frank J. Fabozzi, Petter N. Kolm, Dessislava Pachamanova:
Robust Portfolio Optimization and Management
John Wiley and Sons Inc, 2007

[6] Wei Jiao:
Portfolio Resampling and Efficiency Issues
Master thesis, Institute of Statistics and Economics, 2003

[7] Amit K. Sanyal, Teeyoung Lee, Melvin Leok, N. Harris McClamroch:
Global optimum attitude estimation using uncertainty ellipsoids,
Systems and Control Letters, 2008, vol. 57, pp. 236-245

96



Bibliography

[8] Lieven Vandenberghe, Stephen Boyd:
Semidefinite Programming,
Siam Rewiew, 1996, vol. 38, pp. 49-95

[9] Dimitris Bertsimas, Dessislava Pachamanova:
Robust multiperiod portfolio management in the presence of transaction costs,
Computers and Operations Research, 2008, vol. 35, pp. 3-17

[10] R.H.Tütüncü, M. Koenig:
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