Diplomarbeit Bildung von potentiell toxischen Furanderivaten in Lebensmitteln

Tatjana Golubkova

05. März 2011

Institut für Biochemie

Technische Universität Graz

Betreuer: Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Michael Murkovic

Danksagung

Zuerst möchte ich mich bei Prof. Michael Murkovic für seine herzliche Aufnahme in das Institut und seine fachliche Betreuung bedanken. Ich habe mich bei Ihnen immer sehr wohl gefühlt. Lieber Herr Prof. Murkovic, Sie haben sich immer für mich Zeit genommen, dafür möchte ich mich bedanken!

Many thanks to my collegues, especially Reni who helped me every time with the HPLC. Reni thank you very much for your patience!

Liebe Mama, lieber Papa, ich möchte mich bei euch für eure seelische Unterstützung während meiner Studienzeit bedanken. Ihr habt mich immer aufgemuntert und mit guten Ratschlägen versorgt!

Liebe Diana, Ernestine und Magdalena ihr seit in den letzten Monaten zu meiner Familie geworden. Zusammen sind wir durch gute und schwierige Zeiten gegangen. Ich kann immer auf euch zählen, dafür danke ich euch!

Lieber Andrej, Bruderherz, diese Diplomarbeit widme ich dir, weil du mich dazu gebracht hast Chemie zu studieren! Ohne dich, wäre es nie soweit gekommen! Ich danke dir, für deine Motivation in schwierigen Lagen und dass du mir jederzeit geduldig zur Rat gestanden bist.

Abstract

During processing and especially roasting of food, many substances are formed by the Maillard reaction and caramelization. Many of the formed substances contribute to the flavor, but some of them can be harmful like HMF (5hydroxymethylfurfural), HMFA (5-hydroxymethyl-2-furoic acid), furfural and FA (furfurylalcohol).

In the present work HPLC methods for the determination of these substances were established, optimized, and afterwards adapted to the analyses of food. Coffee is well known for its high content of Maillard Reaction Products (MRPs) and also for the high content of furan derivatives. Therefore a focus was laid on coffee and the development of HMF, furfural and FA during the roasting process at 210 °C. Another aim was to find the precursors of HMFA in coffee with the purpose to explain the high concentration in roasted coffee.

Furfural was derivatized with DNPH (2,4-dinitrophenylhydrazine) to get a better selectivity. Furfural was only found in small quantities in filter coffee (6,36 μ g/g) and balsamic vinegar (below the LQ).

High contents of furfurylalcohol were observed in filter coffee (1430 μ g/g) and instant coffee (267 μ g/g). Furthermore a low concentration was found in pineapple juice (3,28 μ g/g).

HMF was detected in plum juice (5,98 μ g/g), coffee substitute (38,4 μ g/g), balsamic vinegar (59,1 μ g/mL), caramel-syrup (33,9 μ g/mL), filter coffee (187 μ g/g) and instant coffee (869 μ g/g).

The roasting profile shows that the maximum concentrations of HMF (152 μ g/g) and furfural (3,51 μ g/g) occur after 2 minutes. In contrast the highest concentration of furfurylalcohol (1340 μ g/g) was found after 5 minutes of roasting.

To find an explanation of the high HMFA-content in coffee, several model systems were developed to simulate the processes of the Maillard reaction during the roasting of coffee. Following model systems were investigated:

- 1. Glyceraldehyd + Na-pyruvat
- 2. Alanine + glyceraldehyd
- 3. Alanine + sucrose
- 4. Pectin
- 5. Galacturonic acid
- 6. Glucuronic acid
- 7. Glucono-delta-lactone

Only Glucono-delta-lactone and glyceraldehyd with Na-pyruvate generate HMFA. However the HMFA concentrations were too low to explain the excessive formation in coffee.

Zusammenfassung

Durch das Zubereiten und vor allem durch das Rösten von Lebensmitteln entstehen aufgrund der Maillard-, Karamellisierungs- und Dehydratisierungsreaktion unterschiedliche geschmacks- und aromabildende, aber auch teilweise gesundheitsschädliche Reaktionsprodukte. Dazu gehören folgende Furanderivate: 5-Hydroxymethyl-2-furfural (HMF), 5-Hydroxymethyl-2-furansäure (HM-FA), Furfurylalkohol (FA), und Furfural.

Die vorliegende Arbeit befasst sich mit der Entwicklung und Optimierung von HPLC-Methoden zur Bestimmung von FA, HMF und Furfural und der anschließenden Anwendung dieser bei der Analyse von Lebensmitteln (Fruchtsäfte, Honig, Karamellprodukte, Balsamicoessig). Besonderen Wert wurde dabei auf die Charakterisierung von Kaffee gelegt. Eine weitere Aufgabenstellung war es herauszufinden, aus welchen im Kaffee vorkommenden Komponenten HMFA bei der Röstung entsteht, um damit dessen Bildung erklären zu können.

Die Analyse der Furanderivate erfolgte mittels HPLC, wobei Furfural mit 2,4-Dinitrophenylhydrazin derivatisiert wurde, um eine höhere Selektivität zu erhalten. Für HMF, Furfural und FA wurde deren Gehalt im Verlauf einer Röstung (210 °C) von Robusta-Kaffee bestimmt.

Furfurylalkohol wurde in Filterkaffee (1430 $\mu g/g$), Instantkaffee (267 $\mu g/g$) und Ananassaft (3,28 $\mu g/mL$) gefunden. Furfural wird in keinem der untersuchten Lebensmittel außer Filterkaffee (6,36 $\mu g/g$) und Aceto Balsamico gefunden.

Höhere Konzentrationen an HMF findet man in Pflaumensaft (5,98 μ g/g), Malzkaffee (38,4 μ g/g), Aceto Balsamico (59,1 μ g/mL), Karamell-Sirup (33,9 μ g/mL), Filterkaffee (187 μ g/g) und Instantkaffee (869 μ g/g).

Im Verlauf des Röstens von Kaffee bei 210 °C ergibt sich ein Maximum an HMF (152 μ g/g) und Furfural (3,51 μ g/g) nach 2 Minuten. Im Gegensatz dazu findet man die höchste Konzentration von Furfurylalkohol (1340 μ g/g) nach 5 Minuten.

Um die Bildung von HMFA durch die Röstung von Kaffee erklären zu können, wurden Modellsysteme aufgestellt, die die Maillard-Reaktion simulieren sollen. Es wurde von folgenden Edukten ausgegangen:

- 1. Glycerinaldehyd + Na-Pyruvate
- 2. Alanin + Glycerinaldehyd
- 3. Alanin + Saccharose
- 4. Pektin
- 5. Galacturonsäure
- 6. Glucuronsäure
- 7. Gluconsäure-delta-lacton

HMFA wird dabei nur aus Glycerinaldehyd und Na-Pyruvat (5,58 mg/g Na-Pyruvat) und aus Gluconsäure-delta-lacton (123 μ g/g) gebildet. Die gefundenen Ausgangssubstanzen machen jedoch nur einen kleinen Teil an der Gesamtbildung aus; demnach ist es noch unklar wie der Großteil der HMFA in Kaffee gebildet wird.

Inhaltsverzeichnis

Ι	Problemstellung	11				
II	Theoretische Grundlagen	12				
1	Kaffee	12				
	1.1 Einführung	12				
	1.2 Die Kaffeepflanze	12				
	1.3 Rohkaffee	13				
	1.3.1 Ernte und Vorbereitung	13				
	1.3.2 Rohkaffeesorten	14				
	1.3.3 Zusammensetzung des Rohkaffees	14				
	1.4 Kaffeeröstung	15				
	1.5 Instantkaffee	15				
	1.5.1 Herstellung	15				
	1.6 Kaffee als Getränk	16				
2	Maillard-Reaktion und ihre Produkte	16				
	2.1 Furfurylalkohol	18				
	2.2 Furfural	18				
	2.3 5-Hydroxymethyl-2-furfural (HMF)	18				
	2.3.1 Toxizität	19				
II 3	I Material und Methoden HPLC Analyse	20 20				
4	Bestimmung von Furfural	20				
	4.1 Material	21				
	4.2 Derivatisierung	21				
	4.3 Geräteparameter	23				
5	Bestimmung von HMF und Furfurylalkohol					
	5.1 Analysedurchführung	23				
	5.2 Material \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	25				
	5.3 Geräteparamter	25				
6	Validierung	25				
	6.1 Herstellung der Standardreihen	25				
7	Lebensmittelanalyse					
	7.1 Material	26				
	7.2 Analysedurchführung	27				
	7.2.1 Sahnetoffees von Werthers Original	27				
	7.2.2 Monin-Karamell-Sirup	27				

8	Ana	lyse von Kaffee auf HMF, Furfurylalkohol und Furfural	27
	8.1	Extraktionskinetik	27
		8.1.1 Material	27
		8.1.2 Analysedurchführung	28
	8.2	Röstverlauf	28
		8.2.1 Material	28
		8.2.2 Analysedurchführung	28
	8.3	Untersuchung von Filterkaffee auf HMF, Furfurylalkohol und Fur-	
		fural	28
		8.3.1 Material	28
	~ .	8.3.2 Analysedurchführung	28
	8.4	Analyse einer Tasse Kaffee auf HMF, Furfurylalkohol und Furfural	28
		8.4.1 Material	29
		8.4.2 Analysedurchfuhrung	29
9	Mo	dellsystem der Furfurylalkohol-Bildung	29
		9.0.3 Material	29
		9.0.4 Analysedurchführung	29
10	Dec	timmung von 5 Hudnouwenthul 2 fungesäung (HMFA)	90
10	10 1	Kalibration	30 20
	10.1	Conorollo Analyzodurabführung	30 30
	10.2	Glycerinaldebyd mit Na-Pyruyat	- 30 - 30
	10.0	10.3.1 Erstellung der Kalibration von Na-Pyruvat	30
		10.3.2 Analyse Kaffeebohnen - Versuchsdurchführung	30
		10.3.3 Glycerinaldehyd und Alanin	31
		10.3.4 Alanin + Saccharose	31
		10.3.5 Galacturonsäure + Pektin. Zugabe von Chlorogensäure	31
	10.4	Bestimmung von HMFA in geröstetem Kaffee	31
	1011	10.4.1 Durchführung	31
	10.5	Gluconsäure-δ-lacton, Glucuronsäure	32
		10.5.1 Zeitverlauf der HMFA- Bildung	32
		10.5.2 HMFA- Bildung bei unterschiedlichen Temperaturen	32
τı	7 Έ	Trachnisse	33
Т	· •		00
11	Kal	ibration	33
	11.1	Kalibrationsgeraden bei der Aufstellung eines Modellsystemes für	
		die HMFA-Bildung	33
12	Der	ivatisierung von Furfural	33
	Dor		00
13	\mathbf{Leb}	${f ensmittelanalyse}$	34
	13.1	Malzkaffee	34
	13.2	Ananassaft aus Nektar	35
	13.3	Essig mit Himbeer-Aroma von Mautner Markhof	35
	13.4	Aceto Balsamico di modena von Ponti	35
	13.5	Blutenhonig von Imkerei Gössler vs. Blütenhonig von Spar	35
	13.6	Butterkeks von Spar	36

13.7 Karamellbonbon von Werthers Original	36
13.8 Monin-Karamell-Sirup	36
13.9 HMF, Furfurylalkohol und Furfural in verschiedenen Säften	37
14 Analyse von Kaffee	37
14.1 Extraktionskinetik	38
14.2 Röstverlauf \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	40
14.2.1 Sensorische Beobachtungen	40
14.3 Instantkaffee	42
14.4 Tasse Kaffee	42
15 Modellsystem der Furfurylalkohol-Bildung	43
16 Modellsystem der HMFA-Bildung	44
16.1 Glycerinaldehyd mit Na-Pyruvat	44
16.1.1. Bestimmung des Na-Pyruvat-Gehalts in Bohkaffee	45
16.1.2 Bestimming des Ara-1 yruvat-Genaits in Romanee 16.1.2 Bestimming des Anteils an HMFA aus Na- Pyruvat im	40
Kaffee	46
16.2 Bestimmung von HMFA in geröstetem Kaffee	46
16.3 Gluconsäure- δ -lacton, Glucuronsäure	46
16.3.1 Zeitverlauf der HMFA-Bildung	46
16.3.2 HMFA-Bildung bei unterschiedlichen Temperaturen	48
16.3.3 Gluconsäure- δ -lacton (GL) mit Chlorogensäure (CS)	48
16.3.4 Berechnung des Anteils an HMFA aus Gluconsäure- δ -lacton	
$\operatorname{im} \operatorname{Kaffee}$	49
V Gesamtdiskussion	50
17 Lebensmittelanalyse	50
18 Kaffaanalysa	51
18 1 Extractional since it	51
18.9 Bögtvorlauf	51
18.2 Instantlaffoo	52
18.4 Tagga Vaffaa	50
10.4 Tasse Kallee	55
19 Modellsystem für Furfurylalkohol-Bildung	53
20 HMFA-Modellsystem	54
VI Anhang	55
A Rohdaten	56
A.1 Validierung	56
A.1 Validierung	$56 \\ 61$
A.1 Validierung A.2 Lebensmittelanalyse A.3 Analyse von Kaffee	$56 \\ 61 \\ 64$
A.1 Validierung	$56 \\ 61 \\ 64 \\ 64$
A.1 Validierung	$56 \\ 61 \\ 64 \\ 64 \\ 66$

	A.5 HMFA	67
в	Geräteliste	71
С	Probenbeschreibung	72
D	Abkürzungsverzeichnis	73
\mathbf{E}	Poster	74

Abbildungsverzeichnis

1	Kaffee-Beeren (ns.umich.edu)	12
2	Schema der Maillard-Reaktion nach Hodge	17
3	Strukturformel Furfurylalkohol	18
4	Strukturformel Furfural	18
5	Strukturformel 5-Hydroxymethyl-2-furfural	18
6	Reaktionsschema der Furfural-Derivatisierung	20
7	Probenvorbereitung und Derivatisierung des Furfurals mit DNPH	22
8	Probenvorbereitung für die Bestimmung von HMF und Furfuryl-	
	alkohol	24
9	Chromatogramm einer Furfuralderivatisierung; Laufmittel: 60%	
	MeOH + 40 % Wasser	34
10	Vergleich der HMF-Konzentration in Säften	37
11	Extraktionskinetik von HMF und Furfurylalkohol	39
12	Extraktionskinetik von Furfural	39
13	Chromatogramm der HMF- Extraktion aus Kaffee mit Wasser	
	$(\lambda = 280 \text{ nm})$	40
14	Bildung von HMF und Furfurylalkohol beim Rösten (210 °C) von	
	Robusta-Kaffee	41
15	Röstverlauf des Furfural-Gehaltes in Kaffee (Robusta)	41
16	Chromatogramm von Furfurylalkohol nach 3 minutiger Röstung	
	$(\lambda = 395 \text{nm})$	42
17	Zeitprofil der Furfurylalkoholbildung im Modelsystem Alanin +	
	Saccharose	44
18	Zeitlicher Verlauf des Umsatzes von HMFA aus Na-Pyruvat und	
	Glycerinaldehyd (240 °C)	45
19	Strukturformel Glucuronsäure (wikipedia)	46
20	Strukturformel Gluconsäure- δ -lacton (ecc-kiel.de)	46
21	Zeitverlauf der HMFA- Bildung aus Gluconsäure- δ -lacton (240	
	°C)	47
22	Temperaturprofil der HMFA-Bildung aus Gluconsäure-δ-lacton	
	(Zeit: 1 Minute)	48
23	Auswirkungen der Chlorogensäure auf die HMFA-Bildung aus	
	Gluconsäure-δ-lacton	49
24	Trendlinie und Extrapolation	50
25	Validierung von HMF	57
26	Validierung von Furfurylalkohol	59
27	Validierung vom Furfuralderivat	61

Tabellenverzeichnis

1	wichtigste Kaffee produzierende Länder und Weltproduktion (in
	Millionen 60 kg Säcke) [2]
2	Zusammensetzung von Arabica und Robusta Rohkaffees [1] 14
3	Geräteparameter zur Detektion des Furfural-Derivates 23
4	Paramter der HMF-Bestimmung 23
5	Parameter der Furfurvlalkohol-Bestimmung
6	Konzentrationen der Stammlösungen
7	Einwaage und Stoffmenge
8	Gehalt an HMF in Malzkaffee
9	Gehalt an Furfurvlalkohol in Ananassaft
10	Gehalt an HMF in Essig mit Himbeer-Aroma
11	Gehalt an HMF in Aceto Balsamico
15^{-1}	HMF in Karamell-Sirup
12	HMF- Gehalt in Honig
13	HMF-Gehalt in einem Butterkeks
14	HMF in Karamellhonbon 36
16	HMF-Konzentration in verschiedenen Säften 3'
17	Ergebnisse der Extraktion von HME Furfurvlalkohol (FA) und
11	Furfural aus einer Kaffeenrohe (Extraktionsmittel: Wasser)
18	Bildung von HMF und Eurfurvlalkohol beim Rösten $(210 ^{\circ}C)$ von
10	Bobueta-Kaffaa Λ^{2}
10	Gebelt en HMF und Eurfurvlelkohol in löslichen Keffee
20	Konzentrationen von Eurfurvlalkohol HME und Eurfural in einer
20	Tasso Kaffoo A
91	Coholt an Eurfurylalkohol im Modellsystem Saccharose \pm Alapin
21	(borogon but die Finwaage der Mischung) 4°
<u> </u>	Zeitabhängige Bildung von HMFA aus Na Pyruvat und Clycori
22	naldahyd
<u>93</u>	Antoil HMFA aug Na Pyruvat* an Cosamtkonzontration yon HM
20	FA in Kaffoo
94	Mittelworte der HMFA Konzentration aus Cluconsäure & lacton
24	$(240 \ ^{\circ}C)$ (240 $^{\circ}C)$
95	Temperatur und Konzentrationsmittelwerte von HMFA (Zeit 1
20	Minuto)
26	Finfluce your Chlorogenerge up of Chlorogenerge least on the second state of the
$\frac{20}{97}$	Eminuss von Omorogensaure au Gruconsaure-o-racton $\ldots \ldots \ldots $
41	tion UMEA in Koffee
20	Volidiorung von HME
20 20	Validierung von Eurfundslichel
29 20	Validierung von Furfundeningt
ეე ე1	The formula line has a second se
01 90	Fuffurylarkonol in Ananassait 0.
ე∠ ეე	ПМГ 1
う ろ 9.4	IMIF 2
34 ელ	Rondaten der HMF-Bestimmung in Getranken
პ ე იი	Kondaten Extractionskinetik Furiural
36	Extractionskinetik HMF
37	Extractionskinetik Furfurylaikonol
38	Kostveriaut Furtural 66

${ m Modell system Furfury lalkohol: Saccharose + Alanin CFurfury lalkohol}$	
=(y+2,51886)/4,80843	67
Werte für die Kalibration von HMFA bei 255 nm	67
Messwerte und Konzentration aus der Reaktion von Na-Pyruvat	
mit Glycerinaldehyd	68
Verdünnungsreihe und gemessene Werte zur Kalibration von Na-	
Pyruvat	68
Gehalt an HMFA in Lavazza Espresso Kaffee	69
Konzentrationsverlauf bei ansteigender Temperatur - Gluconsäure-	
δ -lacton	70
Konzentrationsverlauf bei ansteigender Temperatur - Gluconsäure-	
δ -lacton	71
	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Teil I Problemstellung

Durch das Zubereiten und vor allem durch das Rösten von Lebensmitteln entstehen aufgrund der Maillard-Reaktion unterschiedliche geschmacks- und aromaintensive, aber auch weniger wünschenswerte und teilweise gesundheitsschädliche Reaktionsprodukte.

Dazu gehören folgende Furanderivate: 5-Hydroxymethyl-2-furfural, 5-Hydroxymethyl-2-furansäure, Furfurylalkohol, und Furfural.

Ziel dieser Arbeit war es zunächst Analysemethoden für die Bestimmung von Furfurylalkohol, Furfural und 5-Hydroxymethyl-2-furfural aufzustellen, zu optimieren und anschließend diese Methoden bei der Untersuchung von Lebensmittel anzuwenden.

Darüberhinaus sollte Kaffee, da es zu den am meisten konstumierten Getränken zählt und somit einen zentraler Bereich der Ernährung darstellt, auf die obengenannten Furanderivate untersucht werden. Im Hinblick darauf sollte der Röstverlauf aufgestellt und eine Tasse herkömmlichen Filterkaffees untersucht werden.

Eine weitere Aufgabenstellung war es herauszufinden aus welchen, im Kaffee vorkommenden Komponenten, HMFA bei der Röstung entsteht, um damit dessen Bildung erklären zu können.

Teil II Theoretische Grundlagen

1 Kaffee

1.1 Einführung

Als Kaffee wird der Samen (geröstet oder roh) von Pflanzen der Gattung *Coffea*, sowie das daraus zubereitete Getränk bezeichnet. Ursprünglich stammt der Kaffee aus Afrika (Äthiopien). Von dort wurde er nach Arabien gebracht und ab dem 12. Jahrhundert großflächig kultiviert. In den nächsten 300 Jahren entwickelte er sich zu einem beliebten Getränk im islamischen Raum. Das Wort Kaffee selber stammt von der türkischen Bezeichnung *cahveh* ab.

Im 16. Jahrhundert wurde das Getränk über Konstantinopel und Venedig nach Europa gebracht und hat seitdem einen festen Platz in der Gesellschaft.

Es entstanden verschiedene Gewohnheiten und Traditionen in Bezug auf die Vorbereitung und den Konsum. Mit dem Konsum von Kaffee werden unterschiedliche Aspekte assoziert wie zum Beispiel Komfort, geselliges Beisammensein, geistige und körperliche Stimulation.

1.2 Die Kaffeepflanze

Der Kaffeebaum gehört zur Familie der *Rubiaceae*. Er wird zwischen 3 bis 12 m hoch. Für die landwirtschaftliche Nutzung wird das Wachstum durch kulturtechnische Maßnahmen auf 2 m Höhe begrenzt. Die Pflanze besitzt lederartige, immergrüne, kurzstielige Blätter und weiße Blüten, aus denen sich dann rote kirschenähnliche Früchte entwickeln (siehe Abbildung 1).

Abbildung 1: Kaffee-Beeren (ns.umich.edu)

In einer Frucht findet man ein (dann: Perlkaffee) bis zwei Samen. Der Kaffeebaum benötigt mittlere tropische Höhenlagen (mittlere Jahrestemperatur 15 - 25°C, 600 - 1200 m). Die Pflanze beginnt nach 3 bis 4 Jahren zu blühen und liefert erst ab dem 6. Jahr Vollernten.

Es gibt ungefähr 70 Coffea-Arten, wobei nur zwei eine wirtschaftliche Bedeutung haben: Coffea arabica mit 75% Anteil an der Weltproduktion und Coffea canephora mit 25%. Die dritte Art C. liberica ist mit weniger als 1% kaum an der Weltproduktion an Kaffee beteiligt. Tabelle 1 gibt einen Überblick über die gesamte Produktion und die wichtigsten Erzeugerländer.

Tabelle 1: wichtigste Kaffee produzierende Länder und Weltproduktion (in Millionen 60 kg Säcke) [2]

Land	Rohkaffee
Brasilien	40
Vietnam	18
$\operatorname{Indonesien}$	11
$\operatorname{Kolumbien}$	8,5
Indien	4,8
${ m \ddot{A}thiopien}$	4,5
Mexiko	4,2
Guatemala	3,5

1.3 Rohkaffee

1.3.1 Ernte und Vorbereitung

Die Ernte erfolgt ein Mal im Jahr. Die Kaffeekirschen werden entweder per Hand oder maschinell (Brasilien und Hawai) geernet. Die Qualität des Rohkaffees wird dabei weniger von der Art der Ernte beeinflusst, als durch die sorgfältige Reinigung und Aussortierung von fehlerhaften bzw. unreifen Früchten.

Die gesammelten Kaffeekirschen werden dann vom Fruchtfleisch befreit und verpackt. Dies kann auf dreierlei Weise geschehen:

- Natürliches (trockenes) Verfahren: Die Früchte werden nach der Ernte von leichter Verschmutzung (Blätter, Steine etc) befreit, auf Trockenterrassen ausgebreitet und an der Sonne getrocknet. Mit speziellen Schälmaschinen (konische Schneckenwalzen) wird das getrocknete Fruchtfleisch, die Pergamenthaut und wenn möglich auch das Silberhäutchen entfernt. Anschließend wird der Rohkaffee in 60 kg Säcke verpackt. Das trockene Verfahren wird hauptsächlich in Brasilien und Äthiopien angewendet.
- Nasses Verfahren: Dieses Verfahren ist üblich für Arabica-Kaffee in Mittelamerika, Kolumbien und Afrika. Dabei werden die Kirschen gewaschen und in einem Pulper, mit Hilfe von aufgerauhten Scheiben und Walzen, vom Fruchtfleisch befreit. Die Bohnen werden einem mit Wasser durchströmten Gärbassin zugeführt und 12 bis 48 h fermentiert. Dadurch wird das restliche Fruchtfleich durch Mikroorganismen und Kaffeeeigenen Pektinasen soweit aufgeweicht, dass es durch die Wasserströmung entfernt werden kann. Anschließend werden die Bohnen auf Sieben abgetropft und an der Sonne getrocknet. Mit Schälmaschinen wird die noch anhaftende Pergamenthülle entfernt und der Rohkaffee in Säcke verpackt. Bei hochwertigen Bohnen wird die störende Silberhaut durch Polieren abgetragen.
- Halbtrockenes Verfahren: Das Verfahren ist ein Kompromiss zwischen dem trockenen und nassen Verfahren. Einerseits dient es dazu um Wasser zu

sparen, und andererseits um eine höhere Qualität zu erhalten als beim trockenen Verfahren. Dafür werden die geernteten Kaffeekirschen gewaschen und das Fruchtfleisch abgequetscht. Die Bohnen werden aber nicht fermentiert, sondern gleich getrocknet und so wie bei der Trockenaufbereitung weiter bearbeitet.

1.3.2 Rohkaffeesorten

Zu den drei genannten Gattungen der *Coffea* gibt es ca. 80 Unterarten. Die wichtigsten bei *Coffea arabica* sind die Varietäten *typica, bourbon, maragogips* und *mocca*, bei *Coffea canephora* die Varietäten *robusta, typica, uganda* und *quillon*. Wobei alle Unterarten von *Caffea canephora* als Robusta im Handel sind.

Arabicas besonders jene aus Kenia, Kolumbien und Mittelamerika haben eine "feine Säure" und "gute Fülle". Robustas sind dagegen kräftiger, grober und herber im Geschmack.

1.3.3 Zusammensetzung des Rohkaffees

Die Zusammensetzung des Rohkaffees ist stark abhängig von der Herkunft, Sorte, Gewinnung und klimatischen Einflüssen. In Tabelle 2 werden die beiden Kaffeearten Arabica und Robusta miteinander verglichen.

Bestandteil	Komponenten	Arabica	Robusta
Monosaccharide	Fructose, Glucose, Galactose	0,2	- 0,5
Oligosaccharide	Saccharose ($>90\%$), Raffinose	6-9	3-7
Polysaccharid	Polymere aus Galactose (55-65%),	3	-4
	Arabinose (20-35%), Mannose $(10-20\%)$		
${ m Hemicellulosen}$	Polymere aus Galactose (65-75%),	5 - 10	3-4
	Arabinose $(25-30\%)$		
	Mannose $(0-10\%)$		
Cellulose		41 - 43	32 - 40
Säuren und Phenole			
Flüchtige Säuren		0,1	
nichtfl. aliphat. Säuren	Zitronensäure, Apfelsäure, Chinasäure	2-2,9	1,3-2,2
Chlorogensäure	Mono-, Di-caffeoyl- und Feruloylchinasäure	6,7-9,2	7, 1-12, 1
Lignin		$1 \cdot 1$	-3
Lipide			
Wachs		0,2	-0,3
Öl	Hauptfettsäuren: $16:0$ und $18:2$ (9.12)	7,7-	17,7
$N ext{-}Verbindungen$			
Freie Aminosäuren	Glu, Asp, Asp-NH ₂	0,2-0,8	
$\operatorname{Proteine}$		8,5-12	
Coffein	Spuren von Theobromin und Theophyllin	0,8-1,4	1,7-4,0
Trigonellin		$0,\!6\text{-}1,\!2$	0, 3-0, 9
Mineral stoff e	Kalium (40%), Calcium, Magnesium	3	5,4

Tabelle 2: Zusammensetzung von Arabica und Robusta Rohkaffees [1]

Werte in % der Trockenmasse

1.4 Kaffeeröstung

Beim Rösten kommt es zu gravierenden Veränderungen in der Bohne. Das Volumen nimmt um 50 bis 80 % zu, gleichzeitig nimmt das Gewicht ab (Einbrand 11-20 %). Es kommt zu Veränderungen in der Farbe und Struktur der Kaffeebohne und zur Ausbildung des charakteristischen Kaffeearomas (Röstgeruch und -geschmack). Bei der Röstung werden vier Hauptphasen unterschieden: Trocknung, Entwicklung, Zersetzung und Vollröstung.

- 50 °C: Eiweiß gerinnt und das Wasser beginnt zu verdampfen
- 100 °C: Bräunung durch thermische Zersetzung der org. Substanzen, Schwelung der Bohne, trockene Destillation beginnt
- 150 °C: gasförmige Produkte (Wasserdampf, CO, CO₂) führen zu einer Volumenszunahme
- 180-200 °C: Zersetzungsphase beginnt, Kaffeefurche platzt, Bildung eines bläulichen Rauches und des Kaffeearomas
- > 200 °C: Karamellbildung, Vollröstung der Wassergehalt sinkt auf 1,5 3,5 %

Während des Röstens spielen sich eine Vielzahl von Reaktionen ab, die beiden wichtigsten davon sind die Karamellisierung und die Maillard-Reaktion. Deren Produkte kennzeichnen die dunkle Färbung (durch Melanoidine) und bestimmen das Aromabild. Die Zusammensetzung des Aromaprofils ist sehr kompliziert. Es sind 840 Verbindungen identifiziert worden, wovon 28 für das Aroma besonders relevant sind.

Die Wärmeübertragung beim Rösten erfolgt durch Kontakt mit einer Oberfläche (Kontaktröstung) oder mit Luft (Konvektionsröstung). Die Kontrolle des Röstvorganges erfolgt meist elektronisch. Nach Erhalt des gewünschten Röstgrades wird, um Nachrösten und Aromaverlust zu vermeiden, das Produkt sofort durch Kühlsieben oder Aufsprühen von Wasser abgekühlt. Der gewünschte Grad der Röstung unterscheidet sich regional. In den USA und in Mitteleuropa wird hell geröstet (200 - 230 °C, 3 - 10 min), in Frankreich, Italien und den Balkanländern dunkel (Espressokaffee).

1.5 Instantkaffee

Die Bedeutung des Instantkaffees ist seit seiner Erfindung 1901 von Satori-Kato und der kommerziellen Umsetzung durch Nestlé (1938 in den USA) stetig gewachsen. Es gibt viele verschiedene Sorten mit unterschiedlichen Gehalt an Säure, Koffein und zugesetzten Aromastoffen.

1.5.1 Herstellung

Zunächst wird über die Mischung der Kaffeesorten (Robusta und Arabica) und über den Röstgrad das Aroma- und Geschmacksprofil eingestellt. Die Zusammenstellung des Kaffees kann aber auch nach der individuellen Röstung der Sorten erfolgen. Die Mischung wird anschließend gemahlen (Körngröße: 2 mm). In einer speziellen Anlage werden die löslichen Bestandteile mit ungefähr 200 °C heißem Wasser bei Drücken von 20 bar herausgelöst. Der gewonnene Extrakt wird in einer Eindampfanlage konzentriert und im Anschluss daran sprüh- oder gefriergetrocknet.

1.6 Kaffee als Getränk

Zur Gewinnung eines aromatischen Getränks mit hohem Gehalt an Geschmacksund Anregungsstoffen werden drei Methoden verwendet: Aufbrüh-, Auslaugund Filtrationsverfahren. Daraus ergeben sich unterschiedliche Getränkevariationen.

Türkischer Mokka wird aus staubfein gemahlenen Bohnen, die mit kalten Wasser zuerst versetzt und aufgekocht werden, zubereitet. Der Mokka wird dabei mit dem Satz getrunken.

Filterkaffee wird durch Aufgießen von gemahlenem Kaffee auf einer filtrierenden Unterlage (Papier-, Leinen-, Kunststoffilter, Glasfritte...) zubereitet.

Bei *Espressokaffee* wird heißes Wasser unter Druck (4 - 5 bar) durch feingemahlenen Kaffee geleitet. Dabei bildet sich die *Crema* aus den Kaffeebohnenölen.

Instantkaffee ist ein pulverförmiges Kaffeekonzentrat, dass man durch einfaches Aufgießen mit heißem Wasser zubereitet.

Um ein bestmöglichstes Ergebnis zu erhalten, sollte die Wassertemperatur nicht über 85 - 90 °C liegen. Die Wasserqualität selber hat ebenfalls eine große Bedeutung, da die enthaltenen Mineralstoffe den Geschmack beeinflussen.

2 Maillard-Reaktion und ihre Produkte

Die Maillard-Reaktion spielt eine zentrale Rolle bei der Zubereitung von Lebensmitteln. Sie führt zur typischen braunen Farbe beim Backen und Braten. Dies kann erwünscht aber ebenso unerwünscht erfolgen, zum Beispiel bei Produkten mit schwacher Eigenfarbe wie Kondensmilch. Durch die Bräunungsreaktion werden flüchtige oft aromawirksame Verbindungen gebildet. Es entstehen jedoch aufgrund der Maillard-Reaktion auch Fehlaromen bei der Lagerung von Lebensmitteln, insbesondere bei thermisch behandelten Produkten.

Die beteiligten Reaktionen führen ebenso zur Bildung von Geschmackstoffen, insbesondere Bitterstoffe, die beim Kaffee erwünscht sind, bei gegrillten Fleisch oder Fisch allerdings einen Fehlgeschmack (Röstbitterstoffe) verursachen.

Es kommt des Weiteren zu Verlusten an essentiellen Aminosäuren (Lysin, Arginin, Cystein, Methionin), da diese oft als Reaktionspartner herangezogen werden. Die Reaktionsprodukte können teilweise mutagen wirken, andererseits entstehen auch antioxidative Verbindungen [5] und stark reduzierende Stoffe (Reduktone), die zur Stabilisierung von Lebensmitteln gegen oxidativen Verderb beitragen können.

Die Maillard-Reaktion läuft schon bei relativ milden Bedingungen ab. In Lebensmitteln wird sie durch erhöhte Temperaturen, geringe Wasseraktivität und bei längerer Lagerung verstärkt. Die Reaktanden sind einerseits Glucose, Fructose, Maltose und Lactose und andererseits primäre Aminosäuren. In Abbildung 2 werden die wichtigsten Reaktionsabläufe gezeigt.

Abbildung 2: Schema der Maillard-Reaktion nach Hodge

2.1 Furfurylalkohol

Furfurylalkohol ist sehr toxisch. Es wirkt irritierend auf Augen, Haut und die Atemwege. Furfurylalkohol wird von NIOSH als karzinogen eingestuft [7].

Es werden folgende Arbeitsplatzgrenzwerte aufgestellt: 10 mL/m³ bzw 41 mg/m³[8]. Es besteht die Gefahr der Hautresorption. Aus neueren Studien geht hervor, dass es sich auf die Leber und Nieren toxisch auswirkt [10]. Die LD₅₀ (oral) bei Ratten beträgt 177 mg/kg [9]. Abbildung 3 zeigt die Strukturformel von Furfurylalkohol.

Abbildung 3: Strukturformel Furfurylalkohol

2.2 Furfural

Furfural entsteht wie in Abschnitt 2 auf Seite 16 erwähnt bei der Maillardreaktion und bei Dehydratisierungsreaktionen von Pentosen.

Furfural (Abbildung 4) ist ebenfalls sehr toxisch und krebserregend. Bei oraler Verabreichung erzeugte es bei *in vivo*- Experimenten Leberkrebs. *In vitro* wirkt es sich genotoxisch (Genmutationen, SCE's) auf Säugetierzellen aus, wobei die in vivo Genotoxizität noch unklar ist [11]. Der LD₅₀ (oral) bei Ratten beträgt 65 mg/kg [12]. Der Arbeitsplatzgrenzwert liegt bei 7,9 mg/m³.

Abbildung 4: Strukturformel Furfural

2.3 5-Hydroxymethyl-2-furfural (HMF)

HMF (Abbildung 5) entsteht bei der Maillard-Reaktion (nicht enzymatische Bräunung), Karamelisierung (säurekatalysiert) und der Dehydratisierung. Unter Karamelisierung versteht man das trockene Erhitzen (110 -180 °C) von Zucker. Wobei der Zucker mit dem Luftsauerstoff reagiert und sich Karamell bildet.

Dehydratisierungsreaktionen finden bei der Erhitzung von Monosacchariden unter sauren Bedingungen statt. Ein Verfahren bei dem eine Dehydratisierungsreaktion auftritt, ist die Pasteurisation von Fruchtsäften. Dabei entstehen neben HMF auch verschiedene andere Furanderivate. Das wichtigste Intermediat der Reaktion stellt das 1,2-Endiol dar. Es entsteht durch eine bei sauren Bedingungen ablaufende Enolisierung aus Glucose und Fructose.

Abbildung 5: Strukturformel 5-Hydroxymethyl-2-furfural

2.3.1 Toxizität

5-Hydroxymethyl-2-furfural ist nach älteren Forschungen weder akut toxisch noch karzinogen. Es hat aber dennoch genotoxisches Potential [3]. HMF wird in den Nieren zu 5-Hydroxymethyl-2-furansäure und weiteren Komponenten abgebaut und über den Urin ausgeschieden [3]. Die LD₅₀ (oral) bei Ratten ist im Vergleich zu Furfural und Furfurylalkohol hoch und beträgt 2,5 g/kg [13].

Teil III Material und Methoden

Es gibt vier Aufgabenbereiche. Der erste Bereich umfasst die Entwicklung einer Analysemethode für jede Substanz, wobei Furfural derivatisiert wird, um die Selektivität bei der Detektion zu erhöhen. Die Analyseverfahren basieren auf schon vorhandenen Konzepten aus der Literatur [3, 4, 16]. Die verwendeten Analysemethoden werden im Anschluss validiert.

Im zweiten Teil werden die aufgestellten Analyseverfahren bei der Untersuchung von verschiedenen Lebensmitteln auf Furfural, Furfurylalkohol und HMF angewandt.

Der dritte Bereich behandelt Kaffee. Es wird zunächst der zeitliche Verlauf der Extraktion von den Furanderivaten aus gemahlenem Kaffee bestimmt. Weiters wird Robusta-Kaffee geröstet und die Entstehung der Furanderivate beobachtet. Zum Schluss wird eine Tasse Filterkaffee auf Furfural, Furfurylalkohol und HMF untersucht.

Im vierten Bereich wird einerseits versucht ein Modellsystem für die Bildung von HMFA zu finden, und andererseits ein Modellsystem bestehend aus Saccharose und Alanin auf die Bildung von Furfurylalkohol untersucht.

3 HPLC Analyse

Alle Messungen werden mittels einem Flüssigchromatographen der Agilent 1100 Serie durchgeführt. Die Trennung der Substanzen erfolgt mit Hilfe einer Umkehrphasen-Säule (LiChrospher 100 RP-18e 125 x 4 mm, 5µm).

4 Bestimmung von Furfural

Furfural hat ein Absoptionsmaximum bei 270 nm [15]. Die Selektivität des Detektors ist bei niedrigen Wellenlängen gering, deshalb wird es mit DNPH (2,4-Dinitrophenylhydrazin) derivatisiert, wobei das Produkt ein Absoptionsmaximum bei 395 nm besitzt. Die Bildung des Hydrazons erfolgt nach folgendem Schema:

Abbildung 6: Reaktionsschema der Furfural-Derivatisierung

4.1 Material

Die verwendeten Reagenzien und Geräte sind im Anhang angeführt.

4.2 Derivatisierung

Es wird eine Stammlösung mit einer Konzentration von 174 µg/mL (3 µL in 20 mL Maßkolben) in Wasser hergestellt. Für die Derivatisierungsreaktionen wird eine 1,76 mM DNPH-Stammlösung in 2 N HCl hergestellt. Bei den Reaktion werden jeweils 300 µL der DNPH-Stammlösung eingesetzt. Bei Zugabe von DNPH zur Furfurallösung entsteht innerhalb einer Minute ein hellroter Niederschlag der sich in Acetonitril lösen lässt.

Zur Konzentrationsbestimmung von Furfural in Kaffee und anderen Lebensmitteln wird eine Kalibrationsgerade mit dem derivatisierten Furfural erstellt.

In der Abbildung 7 auf der nächsten Seite wird die Probenvorbereitung und Derivatisierung zusammengefasst.

Abbildung 7: Probenvorbereitung und Derivatisierung des Furfurals mit DNPH

4.3 Geräteparameter

Für die Analyse vom Furfural-Derivat werden folgende Geräteparameter verwendet:

Tabelle 3: Geräteparameter zur Detektion des Furfural-Derivates

HPLC	Agilent Series 1100
Säule	LiChrospher 100 RP-18e 125 x 4 mm $(5\mu m)$
Wellenlänge	395 nm
Injektionsvolumen	1 bis 5 μL
Flussrate	$1 \mathrm{mL/min}$
${\rm Laufmittel}$	$80~\%~{ m Methanol} + 20~\%~{ m Wasser}$
Retentionszeit	ca. 4 min

5 Bestimmung von HMF und Furfurylalkohol

5.1 Analysedurchführung

Zur Quantifizierung des HMF bzw. Furfurylalkohol-Gehaltes in Lebensmittel wird jeweils eine Kalibrationsgerade mithilfe einer Verdünnungsreihe einer HMF bzw. Furfurylalkohol-Stocklösung erstellt. Mittels der Geradengleichung kann anschließend die Konzentration in den jeweiligen Proben bestimmt werden.

Im Schema (Abbildung 8) werden die wichtigsten Schritte für die Probenvorbereitung angeführt. Abbildung 8: Probenvorbereitung für die Bestimmung von HMF und Furfurylalkohol

5.2 Material

Die verwendeten Reagenzien und Geräte sind im Anhang angeführt.

5.3 Geräteparamter

Tabelle 4: Paramter der HMF-Bestimmung

HPLC	Agilent Series 1100
Säule	LiChrospher 100 RP-18e 125 x 4 mm $(5\mu m)$
Wellenlänge	280 nm
Injektionsvolumen	$1 \text{ bis } 5 \mu \text{L}$
Flussrate	$1 \mathrm{mL/min}$
${\rm Laufmittel}$	7~% Methanol + $93~%$ Wasser
Retentionszeit	ca. 5 min

Tabelle 5: Parameter der Furfurylalkohol-Bestimmung

HPLC	Agilent Series 1100
Säule	LiChrospher 100 RP-18e 125 x 4 mm $(5\mu m)$
Wellenlänge	215 nm
Injektionsvolumen	1 bis 5 μL
Flussrate	$1 \mathrm{mL/min}$
${\rm Laufmittel}$	$30~\%~{ m Methanol}$ + $70~\%~{ m Wasser}$
Retentionszeit	ca. 2,5 min

6 Validierung

Zur Konzentrationsbestimmung wird für jeden Analyten eine externe Kalibration aufgestellt, die validiert wird. Das Ziel der Methodenvalidierung ist es mit bestimmten statistischen Test zu zeigen, ob die angewandte Methode geeignet ist, um den Analyten quantitativ zu bestimmen. Dafür werden die Bestimmungsund Nachweisgrenzen definiert. Die Kalibrationsgerade wird auf die Linearität, Varianz der Messwerte und auf Ausreißer geprüft.

Somit ist dann die Reproduzierbarkeit und Vertrauenswürdigkeit nach erfolgreicher Validierung für die definierten Bedingungen gegeben.

Die Validierung der externen Kalibrationen wurde mit dem Programm "Validata" Version 3.2 durchgeführt.

6.1 Herstellung der Standardreihen

Es werden zunächst für jeden Analyten Stammlösungen hergestellt. Die Konzentrationen sind in der nachstehenden Tabelle 6 ersichtlich. Die Substanzen werden in Maßkolben eingewogen bzw. pipettiert. Danach werden die Maßkolben mit dem in Tabelle 6 angeführten Lösungsmittel auf das definierte Volumen aufgefüllt und 5 Minuten lang in ein Ultraschall-Bad gestellt. Anschließend werden die Stammlösungen im Kühlschrank gelagert.

Tabelle 6: Konzentrationen der Stammlösungen

Komponente	Konzentration $[\mu g/mL]$	$L\"osungsmittel$
Furfural	174	Wasser
DNPH	348	2 N HCl
HMF	900	Wasser
Furfurylalkohol	1130	Wasser

Zur Erstellung der Kalibrationsgeraden werden die Stammlösungen so weit verdünnt wie es möglich ist. um innerhalb der Nachweisgrenzen zu bleiben. Dabei liegt der validierte Konzentrationsbereich für das Furfuralderivat zwischen 8,70 und 29,6 μ g/mL, für HMF zwischen 10,0 und 90,0 μ g/mL und für Furfurylalkohol zwischen 11,3 und 56,6 μ g/mL. In diesem Bereich werden fünf Konzentrationspunkte mit gleichem Abstand zueinander gewählt und mithilfe von HPLC gemessen. Durch die erhaltenen Werte wird eine lineare Regressionsgerade gelegt und die Geradengleichung wird mittels Validata errechnet. Mit dieser Gleichung können dann die Konzentrationen in den Proben berechnet werden.

7 Lebensmittelanalyse

Die validierten Analyseverfahren werden eingesetzt, um zu bestimmen in welchen Lebensmitteln HMF, Furfurylalkohol und Furfural vorkommen.

7.1 Material

Die Lebensmittel werden in lokalen Geschäften gekauft. Es werden jene Nahrungsmittel gewählt bei deren Herstellung oder während deren Lagerung Maillardreaktionen stattfinden können. Es werden folgende Produkte untersucht:

- Säfte: Marille, Cranberry, Rote Traube, Johannisbeere, Ananas, Multivitamin Red, Multivitam Tropical
- Getränke: Malzkaffee
- Balsamico, Essig
- Honig vom Bauernmarkt, Honig aus einem Lebensmittelladen
- Butterkeks
- Karamellbonbon
- Karamell-Sirup

Die verwendeten Lebensmittel, Reagenzien und Geräte sind im Anhang angeführt.

7.2 Analysedurchführung

Zur Untersuchung der Lebensmittel auf ihren Gehalt an HMF, Furfurylalkohol und Furfural werden, die im Teil III auf Seite 20 beschriebenen Methoden und Parameter eingesetzt. Der Arbeitsablauf für die Furfural-Bestimmung ist in Abbildung 7 auf Seite 22 und für HMF und Furfurylalkohol in Abbildung 8 auf Seite 24 ersichtlich.

7.2.1 Sahnetoffees von Werthers Original

Für die Analyse werden ungefähr 0,2 g eines zerteilten Karamellbonbons eingewogen und mit 1 mL Hexan versetzt um das Fett zu extrahieren. Es wird 30 Minuten gevortext. Anschließend wird die Probe bei 13000 rpm 5 Minuten lang zentrifugiert und der Überstand dekantiert. Der Extraktionsrückstand wird anschließend im Stickstoffstrom getrocknet. Danach wird 1 mL Wasser zugegeben und das Ganze solange gevortext (30 Minuten), bis sich das Karamellstück gelöst hat. Dann wird die Suspension 5 min bei 13000 rpm zentrifugiert. Die gebildete Fettschicht wird abgezogen. Von der flüssigen Phase werden 200 µL entnommen und mit 800 µL Wasser verdünnt und mittels HPLC (Geräteparameter siehe Kapitel III) gemessen (Injektionsvolumen: 5 µL).

7.2.2 Monin-Karamell-Sirup

Der Sirup wurde wie eine flüssige Probe behandelt (Probenvorbereitung siehe 8 auf Seite 24). Es werden 200 µL Sirup mit 800 µL Wasser gelöst und auf HMF und Furfurylalkohol untersucht. Die Analyse auf Furfural wird wie in Abbildung 7 auf Seite 22 beschrieben durchgeführt.

8 Analyse von Kaffee auf HMF, Furfurylalkohol und Furfural

Dazu wird ein herkömmlicher Filterkaffee von Tschibo analysiert. Zuerst jedoch wird die Extraktionskinetik der Analyten aus gemahlenem Kaffee aufgestellt. Als nächstes wird Rohkaffee (Robusta) geröstet und die Bildung der Furanderivate während der Röstung bestimmt. Der letzte Schritt besteht darin eine Tasse Filterkaffee zu analysieren.

8.1 Extraktionskinetik

Die Extraktionskinetik beschreibt den zeitlichen Verlauf der Extraktion des Analyten aus der definierten Probenmatrix. Es wird untersucht nach welchem Zeitraum der höchste Gehalt an Analyten im Extrakt gefunden wird. Die Konzentration wird nach 5, 10, 15 und 25 Minuten bestimmt. Es werden für jeden Messpunkt drei Proben analysiert.

8.1.1 Material

Für die Analyse wird Filterkaffee von Tschibo der Sorte "Feine Milde" verwendet. Die verwendeten Reagenzien und Geräte sind im Anhang angeführt.

8.1.2 Analysedurchführung

Es werden in Zentrifugenröhrchen ca. 100 mg Filterkaffee eingewogen. Dann pipettiert man 1 mL Wasser dazu und vortext 5 bis 25 Minuten. Im Anschluss wird die Probe fünf Minuten lang bei 13000 rpm zentrifugiert und mittels HPLC vermessen. Die Probenvorbereitung für die Bestimmung von Furfural wird wie in Abbildung 7 auf Seite 22 beschrieben durchgeführt.

8.2 Röstverlauf

Es wird beobachtet, wie sich die Konzentration der Analyten im Röstverlauf ändert. Die Kaffeebohnen werden in einem Haushaltsröster bei 210 °C geröstet. Die Analytkonzentrationen werden nach 2, 3, 4, 5 und 6 Minuten Röstens bestimmt.

8.2.1 Material

Es wird Robusta-Rohkaffee von Minas Austria verwendet. Die restlichen Reagenzien und Geräte sind im Anhang angeführt.

8.2.2 Analysedurchführung

Der Rohkaffee wird sortiert, wobei die fehlerhaften Bohnen entfernt werden. Man gibt ungefähr 10 g des sortierten Kaffees in den Haushaltsröster und stellt die Temperatur (210°C) und die gewünschte Zeit ein. Nach Ablauf der Zeit kühlt das Gerät automatisch die Bohnen.

Anschließend wird der geröstete Kaffee mit einer Kaffeemühle gemahlen und wie in den Abbildung 7 und 8 auf den Seiten 22 und 24 beschrieben weiterbearbeitet.

8.3 Untersuchung von Filterkaffee auf HMF, Furfurylalkohol und Furfural

8.3.1 Material

Die verwendeten Lebensmittel, Reagenzien und Geräte sind im Anhang angeführt.

8.3.2 Analysedurchführung

Die Probenvorbereitung erfolgt wie in den Fließschemen in Abbildungen 7 und 8 auf Seite 22 und 24 beschrieben. Zur Extraktion der Analyten aus dem Kaffee werden die Proben 5 Minuten lang gevortext. Die Proben werden unverdünnt gemessen.

8.4 Analyse einer Tasse Kaffee auf HMF, Furfurylalkohol und Furfural

Als Vergleich zur normalen Analyse von Filterkaffee, siehe Abschnitt(8.3) wird eine Tasse Filterkaffee zubereitet und analysiert. Es wird untersucht inwieweit sich der Filtrationsschritt und die erhöhte Extraktionstemperatur auf die Analytenkonzentrationen auswirkt.

8.4.1 Material

Eine Tasse Kaffee (Tschibo "Feine Milde") wird mit einer Filterkaffeemaschine von Severin zubereitet. Die restlichen Reagenzien und Geräte sind im Anhang angeführt.

8.4.2 Analysedurchführung

Zuerst wird die Extraktionstemperatur des Wassers bestimmt. Dazu wird das Wasser ohne dass es den Filter passiert in einer Tasse aufgefangen und die Temperatur gemessen. Dann werden ca. 8 g Kaffee in einen Kaffeefilter eingewogen und eine Tasse Kaffee zubereitet. Es werden 130 bis 170 mL Kaffeeextrakt aufgefangen. Der Auszug wird dann wie in den Abbildungen 7 und 8 auf Seite 22 und 24 beschrieben analysiert.

9 Modellsystem der Furfurylalkohol-Bildung

Als Modellsubstanzen werden Alanin und Saccharose herangezogen. Wobei Alanin deshalb verwendet wird, weil es die am häufigsten vorkommende Aminosäure im Kaffee ist und Saccharose, weil sie der häufigste Zucker ist. Rohkaffee enthält 6 bis 7 % Saccharose.

9.0.3 Material

Die verwendeten Reagenzien und Geräte sind im Anhang angeführt.

9.0.4 Analysedurchführung

Alanin und Saccharose werden im molaren Verhältnis von 1:10 (entspricht dem Verhältnis in Robusta-Kaffee) eingewogen und in einem Rundkolben mit etwas Wasser gelöst. Anschließend wird die Lösung eingefroren und lyophilisiert. Dadurch bekommt man eine homogene Mischung aus Alanin und Saccharose. In Tabelle (7) sind die Einwaagen und Stoffmengen angegeben.

Um die Bildung von Furfurylalkohol zu simulieren, werden ungefähr 40 mg der Saccharose-Alanin-Mischung in Vials eingewogen, mit Aluminiumfolie verschlossen und im Trockenschrank bei 235°C erhitzt. Danach werden die Proben ca. 20 Sekunden bei Raumtemperatur gekühlt und auf Eis gestellt um die Reaktionen abzustoppen. Dann wird 1 mL Wasser zugesetzt und solange gevortext bis sich alles gelöst hat. Vor der Messung wird die Lösung 1:5 verdünnt. Der Gehalt an Furfurylalkohol wird im Zeitverlauf von 2 bis 10 Minuten beobachtet.

Tabelle 7: Einwaage und Stoffmenge

Komponente	Alanin	Saccharose
Mol [mmol]	1	10
Soll-Einwaage [g]	0,0891	3,423
Ist-Einwaage [g]	0,0893	3,422
Mol [mmol]	$1,\!002$	$9,\!997$

10 Bestimmung von 5-Hydroxymethyl-2-furansäure (HMFA)

Dazu wurden mehrere Modellsysteme aufgestellt und auf auf eine mögliche HMFA-Bildung untersucht.

10.1 Kalibration

Um die Konzentration von HMFA in den Proben feststellen zu können, muss zuerst eine Kalibrationsgerade erstellt werden. Dafür wird eine Stammlösung (1,03 mg/mL Wasser) vorbereitet. Als Standard für die weiteren Experimente wird eine 1:10 mit Wasser verdünnte HMFA-Lösung verwendet, welche anschließend im Kühlschrank gelagert wird.

Die Kalibration erfolgt im Bereich von 1,03 bis 10,3 μ g/mL HMFA.

10.2 Generelle Analysedurchführung

Es handelt sich bei allen Experimenten um Reaktionen ohne Lösungsmittel. Die Ausgangsstoffe werden äquimolar eingewogen und in Vials auf einem Aluminiumheizer auf 240 °C erhitzt. Daraufhin wird 20 Sekunden auf einer Korkunterlage abgekühlt und anschließend auf Eis gekühlt um die Reaktion zu stoppen. Das Reaktionsgemisch wird in 1 mL Wasser gelöst. Danach wird die Losung 1:10 mit dem Laufmittel (5 mm TMAHS, 5 % MeOH) verdünnt und gebildetes HMFA bei 255 nm am HPLC- Gerät gemessen.

10.3 Glycerinaldehyd mit Na-Pyruvat

In vorhergegangenen Experimenten [3] hat sich gezeigt, dass Na-Pyruvat mit Glycerinaldehyd zu HMFA reagiert. Der Versuch wird wiederholt und die Bildung von HMFA im Zeitverlauf von 10 Sekunden bis 5 Minuten gemessen. Um festzustellen wieviel HMFA durch Umsetzung von Na-Pyruvat in den Kaffeebohnen entsteht, muss dessen Gehalt im Rohkaffee bestimmt werden.

10.3.1 Erstellung der Kalibration von Na-Pyruvat

Zunächst wird eine 1,01 mg/mL Standardlösung aus Na-Pyruvat in Wasser vorbereitet. Anschließend wird eine Verdünnungsreihe erstellt (verdünnt mit Wasser) und bei 210 nm die Kalibrationsgerade bestimmt.

10.3.2 Analyse Kaffeebohnen - Versuchsdurchführung

Die Rohkaffee-Bohnen werden mit flüssigem Stickstoff gefroren und sogleich in einem Mühle grob zerkleinert und in einer Kugelmühle weiter zu einem feinen Pulver gemahlen.

Danach wird die Wasseraktivitat (a_W) bestimmt.

- Gemahlener Rohkaffee: 0,526 bei 23,3 °C
- Rohkaffeebohnen: 0,494 bei 22,0 °C

Zur Na-Pyruvatbestimmung werden ungefähr 20 mg gemahlener Rohkaffee eingewogen und zwei mal mit Hexan gewaschen, um das Fett zu entfernen (1 mL Hexan, 5 min vortexen, 5 min zentrifugieren). Im Anschluss wird die Probe mittels Stickstoffbegasung getrocknet und in 1 mL Wasser gelöst. Die Probe wird 5 min zentrifugiert. Vom Überstand werden 100 μ L abgezogen und mit 900 μ L Wasser verdünnt.

10.3.3 Glycerinaldehyd und Alanin

Da in den Rohkaffeebohnen relativ wenig Pyruvat enthalten ist, wird überprüft ob Glycerinaldehyd mit Alanin zu Pyruvat reagiert und dieses wiederum mit Glycerinaldehyd zu HMFA.

Die Ausgangsstoffe werden äquimolar eingewogen und in Vials auf einem Aluminiumheizer auf 240 °C erhitzt. Daraufhin wird 20 Sekunden auf einer Korkunterlage abgekühlt und anschließend auf Eis gekühlt, um die Reaktion zu stoppen.

Das Reaktionsgemisch wird in 1 mL MeOH gelöst und gevortext. Danach wird die Lösung 1:10 mit dem Laufmittel (5mm TMAHS, 5 % MeOH) verdünnt. Die Reaktion verlauft sehr heftig, das Gemisch löst sich kaum in Methanol.

Der Versuch wird bei 150 °C wiederholt, wobei das Molverhältnis Glycerinaldehyd zu Alanin auf 2:1 verändert wird. Dieses Gemisch löst sich jetzt besser in Methanol.

10.3.4 Alanin + Saccharose

Es wird hierbei untersucht, ob Alanin mit der Saccharose bei 240 °C zu HMFA reagiert. Die Versuchsausführung wird wie im Abschnitt 10.2 auf der vorherigen Seite beschrieben durchgeführt.

10.3.5 Galacturonsäure + Pektin, Zugabe von Chlorogensäure

Pektine sind pflanzliche Polysaccharide, die eine stütz- und wasserregulierende Funktion haben. Die Galacturonsäure ist der Hauptbestandteil des Pektins. Sie wird α -1,4-glykosidisch zu einem Polysaccharid verknüpft. Die Versuchsausführung wird wie im Abschnitt 10.2 auf der vorherigen Seite beschrieben durchgeführt. Es werden zuerst einzeln Pektin und Galacturonsäure untersucht. Als nächsten Schtritt gibt man Chlorogensäure zu, um zu sehen, ob dadurch die mögliche HMFA-Bildung gefördert oder gehemmt wird.

10.4 Bestimmung von HMFA in geröstetem Kaffee

Um vergleichen zu können wieviel Prozent HMFA aus den Experimenten an der Bildung von HMFA im Kaffee beteiligt ist, wird dessen Gehalt in geröstetem Kaffee bestimmt. Dafür wird gemahlener Espressokaffee von Lavazza untersucht.

10.4.1 Durchführung

Der Kaffee wird 2 mal mit n-Hexan (1 mL + 750 mL) gewaschen um die Lipide zu entfernen. Die gewonnene Suspension wird nach jedem Waschschritt 10 Minuten lang zentrifugiert. Ein Großteil des Hexans wird abpipettiert. Anschließend wird unter Stickstoffbegasung der Kaffee getrocknet und mit 1 mL 40~% MeOH extra hiert. Der Extrakt wird mit Laufmittel 1:10 verdünnt und die HMFA-Konzentration gemessen.

10.5 Gluconsäure- δ -lacton, Glucuronsäure

Bei der Gluconsäure handelt es sich um eine Fruchtsäure. Rohkaffeebohnen enthalten zwischen 65 und 91 mg/ kg Gluconsäure [17]. Die Onsäure kommt unter anderem auch in Honig und Wein vor, beide enthalten etwas HMF [18].

Die Glucuronsäure ist Bestandteil der Glykosaminoglykane, die in pflanzlichen Fasern als Teil des Stützgerüsts vorkommen. Die Versuchsausführung wird wie im Abschnitt 10.2 auf Seite 30 beschrieben durchgeführt.

Bei der Analyse von Gluconsäure- δ -lacton als Reaktionsedukt wird eine geringe Konzentration an HMFA gefunden. Deshalb wird ein Zeit- und Temperaturprofil aufgenommen. Das Zeitprofil wird durchwegs bei 240 °C bestimmt.

10.5.1 Zeitverlauf der HMFA- Bildung

Es werden jeweils ein paar Milligramm der Substanzen in Vials eingewogen auf einem Aluminiumheizer auf 240 °C 10 Sekunden bis 4 Minuten lang erhitzt. Daraufhin wird 20 Sekunden auf einer Korkunterlage abgekühlt und anschließend auf Eis gekühlt um die Reaktion zu stoppen. Das Reaktionsgemisch wird mit 1 mL Laufmittel (5 mM TMAHS, 5 % MeOH) gelöst und unverdünnt gemessen.

10.5.2 HMFA- Bildung bei unterschiedlichen Temperaturen

Es werden jeweils ein paar Milligramm der Substanzen in Vials eingewogen und auf einem Aluminiumheizer auf 160 - 240 °C eine Minute lang erhitzt. Daraufhin wird 20 Sekunden auf einer Korkunterlage abgekühlt und anschließend auf Eis gekühlt um die Reaktion zu stoppen. Das Reaktionsgemisch wird mit 1 mL Laufmittel (5 mM TMAHS, 5 % MeOH) gelöst und unverdünnt gemessen.

Teil IV Ergebnisse

11 Kalibration

Zur Ermittlung der Analytkonzentrationen werden jeweils externe Kalibrationen mit Standardlösungen von HMF, HMFA, Furfurylalkohol und dem Furfuralderivat aufgestellt. Dabei wird der lineare Zusammenhang zwischen Konzentration und der Fläche der Peaks für die Aufstellung der Kalibration genutzt. Die Zuordnung der Substanzen erfolgt über die Retentionszeiten, da verschiedene Substanzen unterschiedlich mit der Säule interagieren und zurückgehalten werden.

Zur Bestimmung der Geradengleichung wird die Peakfläche gegen die bekannte Konzentration aufgetragen. Die Gleichungen werden bei der Validierung der Analysemethoden mithilfe des Programmes Validata berechnet.

Es ergibt sich folgende Formel 1 für Furfurylalkohol:

$$x = \frac{y + 2,51886}{4,80843} \tag{1}$$

Der Gehalt an HMF wird mit nachstehender Gleichung 2 bestimmt.

$$x = \frac{y + 6,21764}{16,88005} \tag{2}$$

Für die Ermittlung der Furfuralkonzentration wird die Gleichung 3 verwendet.

$$x = \frac{y - 23,36388}{15,94566} \tag{3}$$

11.1 Kalibrationsgeraden bei der Aufstellung eines Modellsystemes für die HMFA-Bildung

Zur Bestimmung der HMFA-Konzentration in den Proben wird Gleichung 4 herangezogen.

$$x = \frac{y + 0,3351}{8,7256} \tag{4}$$

Der Gehalt an Na-Pyruvat wird mit nachstehender Gleichung 5 bestimmt.

$$x = \frac{y + 0,2869}{5,6262} \tag{5}$$

12 Derivatisierung von Furfural

Die Derivatisierung von Furfural mit DNPH verläuft problemlos. Die Reaktion erfolgt schon bei Raumtemperatur, was die Analysen erleichtert. Das Derivat (Hydrazon) ist gut lagerfähig und zersetzt sich erst nach 1-2 Wochen Lagerung bei Raumtemperatur. Das Furfuralderivat setzt sich bei der Reaktion als roter Niederschlag ab. Dieser ist unlöslich in Methanol, Hexan und Ethanol, jedoch vollständig löslich in Acetonitril. Durch Lösen des Niederschlags färbt sich die Reaktionslösung intensiv gelb. Furfural wird vollständig zum Derivat umgewandelt. Nach der Derivatisierung wird kein freies Furfural mehr gefunden. In Abbildung 9 sieht man ein typisches Chromatogramm eines derivatisierten Furfurals.

Abbildung 9: Chromatogramm einer Furfuralderivatisierung; Laufmittel: 60% MeOH + 40 % Wasser

13 Lebensmittelanalyse

13.1 Malzkaffee

Für die Bestimmung der Analyten werden ungeführ 25 mg an Malz verwendet. Vor der Messung von HMF und Furfurylalkohol werden die Proben 1:10 verdünnt. Es wird etwas HMF (siehe Tabelle 8) gefunden, aber kein Furfural und Furfurylalkohol.

Tabelle 8: Gehalt an HMF in Malzkaffee

Konzentration $[\mu g/g]$	$_{38,4}$
Standardabweichung $[\mu g/g]$	$1,\!03$
Standardabweichung [%]	$2,\!69$

n = 3

13.2 Ananassaft aus Nektar

Die Analyse wird wie im Kapitel III auf Seite 20 beschrieben durchgeführt. Es wird etwas Furfurylalkohol (Konzentration siehe Tabelle 9), aber kein HMF und Furfural gefunden.

Tabelle 9: Gehalt an Furfurylalkohol in Ananassaft

Konzentration $[\mu g/mL]$	$_{3,28}$
$Standardabweichung [\mu g/mL]$	$0,\!11$
Standardabweichung [%]	$3,\!34$
n = 3	

13.3 Essig mit Himbeer-Aroma von Mautner Markhof

Bei der Untersuchung vom Essig wird etwas HMF, aber kein Furfurylalkohol und Furfural gefunden. Die Konzentration ist in nachstehender Tabelle (10) ersichtlich.

Tabelle 10: Gehalt an HMF in Essig mit Himbeer-Aroma

Konzentration $[\mu g/mL]$ 4,9Standardabweichung $[\mu g/mL]$ 0,11Standardabweichung [%]2,3n = 33

13.4 Aceto Balsamico di modena von Ponti

Es wird HMF (Tabelle 11) und Spuren von Furfural gefunden. Die Konzentration des Furfurals im Balsamico liegt aber unter der Bestimmungsgrenze $(3,56 \ \mu g/mL \ Messprobe)$.

Tabelle 11: Gehalt an HMF in Aceto Balsamico

Konzentration $[\mu g/mL]$	59,1
Standardabweichung $[\mu g/g]$	0,760
Standardabweichung $[\%]$	$1,\!29$
n = 3	

13.5 Blütenhonig von Imkerei Gössler vs. Blütenhonig von Spar

Der Blütenhonig von der Imkerei Gössler wurde am Bauernmarkt gekauft. Es wird dabei in beiden Proben etwas HMF gefunden. Die Ergebnisse sind in Tabelle 12 zusammengefasst.

Tabelle 15: HMF in Karamell-Sirup

Konzentration $[\mu g/mL]$	33,9
$Standardabweichung [\mu g/mL]$	1,71
Standardabweichung [%]	$5,\!04$
n = 3	

Tabelle 12: HMF- Gehalt in Honig

	Blütenhonig - Spar	Blütenhonig - Imkerei Gössler
Konzentration $[\mu g/g]$	2,52	2,61
Standardabweichung $[\mu g/g]$	0,0833	0,108
Standardabweichung [%]	3,31	4,13
n = 3		

13.6 Butterkeks von Spar

Ein Butterkeks wird nach den im Kapitel III beschriebenen Methoden auf HMF, Furfurylalkohol und Furfural untersucht. Es werden Spuren an HMF, aber kein Furfurylalkohol und Furfural gefunden. Die HMF-Konzentration ist in Tabelle 13 ersichtlich.

Tabelle 13: HMF-Gehalt in einem Butterkeks

Konzentration $[\mu g/g]$	2,45
Standardabweichung $[\mu g/g]$	0,0329
Standardabweichung $[\%]$	$1,\!34$
n = 3	

13.7 Karamellbonbon von Werthers Original

Es werden geringe Konzentrationen an HMF gefunden. Der Gehalt ist in Tabelle 14 ersichtlich.

Tabelle 14: HMF in Karamellbonbon

Konzentration $[\mu g/g]$	$1,\!33$
$Standardabweichung [\mu g/g]$	0,0471
Standardabweichung [%]	$3,\!54$
n = 3	

13.8 Monin-Karamell-Sirup

Es wird im Vergleich zu Honig und dem Sahnetoffee sehr viel HMF (Tabelle 15), aber kein Furfural und Furfurylalkohol gefunden. Es ist aber anzumerken, dass die Mindesthaltbarkeit des Sirups um zwei Jahre überschritten war.
13.9 HMF, Furfurylalkohol und Furfural in verschiedenen Säften

Es wurden nur pasteurisierte Säfte bzw. Saftkonzentrate untersucht, da für die Maillard-Reaktion eine erhöhte Temperatur und längere Lagerung eine große Rolle spielt. In der nachstehenden Tabelle 16 sind die Ergebnisse aufgelistet. Bei vier Säften (Cranberry, Rote Traube, Multivitamin, Pflaume-Limette) liegt der HMF-Gehalt über Bestimmungsgrenze von 1,76 µg/mL. Die restlichen gefunden Konzentrationen sind zu gering, um quantitativ bewertet zu werden. Alle Werten liegen jedoch über der Nachweisgrenze von 0,48 µg/mL. In Abbildung 10 werden die Ergebnisse einander gegenübergestellt. In keinem der Säfte wurde Furfurylalkohol der Furfural gefunden.

Bezeichnung ST [%] CHMF $[\mu g/mL]$ ST $[\mu g/mL]$ Aprikose (Pago) 0,8670,16018,510,5Cranberry (Pago) 1,770,187Rote Traube (Rauch) 7,311,280,0937Rote Traube (Höllinger) 1,920,09424,89Bier (Ottakinger) 0,698 $4,\!14$ 0,0289Pfirsich (Pago) 0,5514,120,0227Multivitamin Tropical (Pago) 1,950,05102,61Pflaume-Limette (Pago) 5,980,0358 0,599

Tabelle 16: HMF-Konzentration in verschiedenen Säften

n	=	-3

14 Analyse von Kaffee

Kaffee ist zu einem wichtigen Bestandteil der Kulturen geworden. Wegen der großen Bedeutung für den österreichischen Lebensstil, in Österreich trinkt man durchschnittlich 5 Tassen Kaffee am Tag, wird Wert darauf gelegt Kaffee genauer zu analysieren.

14.1 Extraktionskinetik

Die Kaffeeproben werden mit Wasser versetzt und die Extraktion der Analyten im zeitlichen Verlauf beobachtet. Es ergibt sich, dass sich nach 5 Minuten vortexen die Konzentration der gelösten Analyten sich kaum mehr ändert. Dies wird in der Abbildung 11 verdeutlicht. Gleichzeitig sieht man im Diagramm, dass in ungefilterten Kaffee fast 10 mal mehr Furfurylalkohol als HMF vorhanden ist. Bei einer Extraktionsdauer von 5 Minuten beträgt der Verlust bei HMF 11,9 % und bei Furfurylalkohol 9,52 %.

Die extrahierte Konzentration von Furfural ist über die Zeit stabil, wie man in Abbildung 12 erkennt. Da die Standardabweichungen meist bei knapp unter 10 % liegen, kann kein aussagekräftiges Ergebnis über den theoretischen Verlust getroffen werden. Die Ergebnisse sind in Tabelle 17 zusammengefasst. In Abbildung 13 sieht man ein typisches Chromatogramm von HMF in Kaffee.

Tabelle 17: Ergebnisse der Extraktion von HMF, Furfurylalkohol (FA) und Furfural aus einer Kaffeeprobe (Extraktionsmittel: Wasser)

$\mathbf{F} \left[\mathbf{\mu} \mathbf{g} / \mathbf{g} \right]$ STнм	б [µg/g] Сба [µg	\mathbf{g} STFA $[\mu g/g]$
176 2	,28 1340	19,5
185 6	,68 1430	19,5
187 3	,96 1450	29,5
200 8	,66 1490	$17,\! 6$
ral [µg/g] STFurfu	$ral [\mu g/g]$	
3,64 1	,12	
3,10 0,	,581	
3,29 0,	,143	
3,41 0,	,482	
	F [µg/g] STHM 176 2 185 6 187 3 200 8 ral [µg/g] STFurfu 3,64 1 3,10 0, 3,29 0, 3,41 0,	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

n = 3

Abbildung 12: Extraktionskinetik von Furfural Konzentration [ug/g] 3+ 0 Zeit[min]

Abbildung 13: Chromatogramm der HMF- Extraktion aus Kaffee mit Wasser $(\lambda = 280 \text{ nm})$

14.2 Röstverlauf

Die Beobachtung des Verlaufs der Röstung bei 210 °C gibt Aufschluss darüber, wie Furanderivate entstehen. Die Diagramme in den Abbildungen 14 und 15 zeigen die zeitliche Änderung der Konzentration von HMF, Furfurylalkohol und Furfural. Das Maximum an HMF und Furfural erhält man nach 2 Minuten. Der Abbau verläuft langsam und nach 6 Minuten wird kein HMF und Furfural in den Proben gefunden. Die gemessenen Konzentrationen von Furfural sind sehr niedrig. Ab der 3 Minute liegen die Werte unter der Nachweisgrenze (1,04 $\mu g/mL$).

Im Gegensatz dazu findet man die höchste Konzentration von Furfurylalkohol nach 5 Minuten, wobei nach 6 Minuten nur mehr ein Drittel der maximalen Konzentration vorhanden ist. In Tabelle 18 werden die Werte zusammengefasst. Die hervorgehobenen Werte (3 und 4 Minuten) zeigen die Konzentrationen der, auf das Aroma bezogenen, besten Röstung. Abbildung 16 zeigt ein typisches Chromatogramm von Furfurylalkohol.

14.2.1 Sensorische Beobachtungen

Nach zwei minutiger Röstung riecht der Kaffee noch sehr stark nussig und hat eine hellbraune Farbe. Mit zunehmender Röstdauer wird der Kaffee dunkler und es entwickeln sich charakteristische Röstaromen. Die Proben nach 3-4 minutiger Röstung haben das beste Kaffeearoma. Nach 5 Minuten beginnen die Proben unangenehm verkohlt zu riechen.

Abbildung 14: Bildung von HMF und Furfurylalkohol beim Rösten (210 °C) von Robusta-Kaffee

Tabelle 18: Bildung von HMF und Furfurylalkohol beim Rösten (210 °C) von Robusta-Kaffee

	H	MF	Furfury	ylalkohol	Fur	fural
Zeit [min]	$C \ [\mu g/g]$	$\mathbf{ST}[\mathbf{\mu g}/\mathbf{g}]$	$C[\mu g/g]$	$\mathbf{ST}[\mathbf{\mu g}/\mathbf{g}]$	$C[\mu g/g]$	$\mathbf{ST}[\mathbf{\mu g}/\mathbf{g}]$
2	152	$3,\!66$	158	6,58	$3,\!51$	0,216
3	61,3	$1,\!63$	${\bf 564}$	26, 4	1,48	$0,\!122$
4	54,8	$0,\!612$	979	42,2	\mathbf{nd}	\mathbf{nd}
5	\mathbf{nd}	\mathbf{nd}	1340	37,3	\mathbf{nd}	\mathbf{nd}
6	\mathbf{nd}	\mathbf{nd}	369	11,0	\mathbf{nd}	\mathbf{nd}

Abbildung 15: Röstverlauf des Furfural-Gehaltes in Kaffee (Robusta)

Abbildung 16: Chromatogramm von Furfurylalkohol nach 3 minutiger Röstung $(\lambda=395 {\rm nm})$

14.3 Instantkaffee

Die Analyse von Löskaffee ist unproblematisch, da es sich sehr gut in Wasser löst und man die Probe nach der Zentrifugation gleich mit HPLC untersuchen kann. Es wird kein Furfural aufgefunden.

In der nachstehenden Tabelle sind die Ergebnisse zusammengefasst.

Tabelle 19: Gehalt an HMF und Furfurylalkohol in löslichen Kaffee HMF Furfurylalkohol

		0
mittlere Konzentration $[\mu g/g]$	869	267
Standardabweichung $[\mu g/g]$	$11,\!0$	11,4
Standardabweichung [%]	$1,\!27$	$4,\!29$

n=3

14.4 Tasse Kaffee

Es wird eine Tasse Kaffee zubereitet und auf den Gehalt an Furfurylalkohol, HMF und Furfural untersucht. Eine Standardtasse Kaffee hat ein Fassungsvermögen von 130 mL. Je nach Stärke des Kaffees werden durchschnittlich werden 6 bis 8 g eingesetzt [14].

Die gemessene Extraktionstemperatur liegt bei 75 °C. Die Temperatur in der Tasse nach der Extraktion beträgt 65 °C. Vom ersten bis zum letzten Tropfen der Extraktion vergehen ungefähr 2,5 Minuten. Die Analyse der Proben war bei der Bestimmung von HMF schwieriger, weil sehr viele Substanzen interferierten.

Aus den gemessenen Daten werden die Absolutwerte für eine Tasse bestimmt. Die Relativwerte beziehen sich auf den Gehalt der Analyten im Kaffeepulver (Tschibo "Feine Milde"). Die Werte sind in Tabelle 20 aufgelistet.

Tabelle 20: Konzentrationen von Furfurylalkohol, HMF und Furfural in einer Tasse Kaffee

Parameter	gemittelter Wert	\mathbf{ST}
Volumen der Tasse [mL]	145	
Temperatur [°C]	65,7	3,96
Einwaage [g]	9,07	
$\operatorname{Furfurylalkoholabsolut}\left[\mathrm{mg}/\mathrm{Tasse} ight]$	32,0	4,17
$ m Furfurylalkohol_{realtiv} ~[\mu g/g ~Kaffee]$	3350	400
${ m Furfural_{absolut}} \; [\mu { m g} / { m Tasse}]$	40,2	7,29
${ m Furfural}_{ m relativ} \; [\mu { m g} / { m g} \; { m Kaffee}]$	$4,\!50$	$1,\!62$
$\mathrm{HMF}_{\mathrm{absolut}} \; [\mathrm{\mu g}/\mathrm{Tasse}]$	1160	
$\mathrm{HMF}_{\mathrm{relativ}} \; [\mu\mathrm{g}/\mathrm{g}]$	172	

n = 3

15 Modellsystem der Furfurylalkohol-Bildung

Die Analyse der Proben war nach 10 minutiger Erwärmung bei 235°C nicht mehr möglich, da die Proben sehr stark zu schäumen begannen. Das Zeitprofil und die erhaltenen Konzentrationen sind in Tabelle 21 angeführt. Man sieht, dass aus den Reinsubstanzen relativ wenig Furfurylalkohol gebildet wird.

Tabelle 21: Gehalt an Furfurylalkohol im Modellsystem Saccharose + Alanin (bezogen auf die Einwaage der Mischung)

Zeit [min]	Konzentration $[\mu g/g]$	Standardabweichung $[\mu g/g]$
2	0	0
4	325	6,60
6	275	1,04
7	154	$2,\!56$
8	103	5,09
9	112	3,53

Im nachstehendem Diagramm in Abbildung (17) ist der Verlauf der Furfurylalkoholbildung dargestellt.

Abbildung 17: Zeit
profil der Furfurylalkoholbildung im Modelsystem Alani
n+Saccharose

16 Modellsystem der HMFA-Bildung

16.1 Glycerinaldehyd mit Na-Pyruvat

Aus den Peakflächen wird die Konzentration mittels Gleichung 4 bestimmt und gegen die Zeit aufgetragen. Der Umsatz wird auf die Mol eingesetzten Edukte bezogen (Werte siehe Tabelle 22). Aus Abbildung 18 ist ersichtlich, dass das Maximum der HMFA-Bildung nach 40 Sekunden erreicht ist. Der Gehalt an HMFA beträgt zu diesem Zeitpunkt $5,58\pm0,629$ g/kg Na-Pyruvat (4,3 mmol/mol). Danach wird HMFA langsam abgebaut.

Abbildung 18: Zeitlicher Verlauf des Umsatzes von HMFA aus Na-Pyruvat und Glycerinaldehyd (240 °C)

Tabelle 22: Zeitabhängige Bildung von HMFA aus Na-Pyruvat und Glycerinaldehyd

Zeit [sec]	Umsatz [%]
10	0,03
20	0,29
30	0,40
40	0,43
50	0,36
60	0,21
120	0,18
180	$0,\!13$
240	0,08
300	0,05

16.1.1 Bestimmung des Na-Pyruvat-Gehalts in Rohkaffee

Die Konzentration vom Na-Pyruvat wird mit Gleichung 5 berechnet. Die Kaffeebohnen enthalten durchschnittlich 17,6 \pm 4,12 mg/kg Pyruvat. Dies ist vergleichbar zu den Werten aus der Literatur [17], wo 4 – 18 mg/kg Pyruvat gefunden wird.

Abbildung 19: Strukturformel Glucuronsäure (wikipedia)

Abbildung 20: Strukturformel Gluconsäure- δ -lacton (ecc-kiel.de)

16.1.2 Berechnung des Anteils an HMFA aus Na-Pyruvat im Kaffee

Tabelle 23: Anteil HMFA aus Na-Pyruvat * an Gesamtkonz
entration von HMFA in Kaffee

Gehalt an Na-Pyruvat im Rohkaffee[mg/kg]**	4	18
maximale HMFA Konzentration [µg/mg Pyr]	5,58	5,58
Absolutkonzentration [µg] HMFA in Kaffee durch Na-Pyruvat	22,3	101
HMFA in Kaffee [mg/kg]	149	149
Anteil HMFA aus Pyruvat an der Gesamtkonzentration im Kaffee [%]	$0,\!0150$	0,0675

*Werte bezogen auf in der Literatur gefundene Daten für den Gehalt an Na-Pyruvat in Kaffee ** laut [17]

Aus den Werten in Tabelle 23 ergibt sich, dass Pyruvat mit ca. 0,1~% kaum an der HMFA- Bildung beteiligt ist.

16.2 Bestimmung von HMFA in geröstetem Kaffee

Es wird 149 ± 15 mg HMFA pro Kilogramm geröstetem Kaffee gefunden.

16.3 Gluconsäure- δ -lacton, Glucuronsäure

Bei dem Experiment mit Glucuronsäure (Abbildung 19) wird kein HMFA gebildet. Die Chromatogramme aus den Gluconsäure- δ -lacton Reaktionen zeigen eine geringe Konzentration an HMFA. Deshalb wird ein Zeit- und Temperaturprofil aufgenommen.

16.3.1 Zeitverlauf der HMFA- Bildung

Innerhalb der ersten Minute reagiert das Gluconsäure- δ -lacton sehr schnell zu HMFA (siehe Abbildung 21). Später flacht die Kurve ab und die Konzentration

steigt nach 4 Minuten auf 123 \pm 5,6 mg/kg Gluconsäure- δ -lacton. Die Ergebnisse der HMFA-Bestimmung sind in Tabelle 24 dargestellt.

Abbildung 21: Zeitverlauf der HMFA- Bildung aus Gluconsäure-
 $\delta\mbox{-lacton}$ (240 °C)

Tabelle 24: Mittelwerte der HMFA Konzentration aus Gluconsäure- δ -lacton (240 °C)

Zeit [sec]	Снмға [µg/g]
10	5,7
20	10
30	16
40	27
50	38
60	77
70	71
80	83
90	84
100	80
110	81
120	90
180	89
240	123

16.3.2 HMFA-Bildung bei unterschiedlichen Temperaturen

In der nachfolgenden Tabelle 25 sind die gefunden Konzentration an HMFA aufgezeigt. In Abbildung 22 wird der Verlauf der Bildung verdeutlicht. Ab 180°C beginnt das Gluconsäure-δ-lacton zu reagieren. Der Anstieg der HMFA- Konzentration erfolgt exponentiell.

Tabelle 25: Temperatur und Konzentrationsmittelwerte von HMFA (Zeit: 1 Minute)

Temperatur [°C]	Konzentration $[\mu g/g]$
160	0
180	8
200	17,9
220	$40,\!6$
240	72,8

16.3.3 Gluconsäure- δ -lacton (GL) mit Chlorogensäure (CS)

Die Reaktionsbedingungen werden durch Zugabe von Chlorogensäure acider gemacht. Es wird geprüft, ob die Senkung des pH-Wertes einen Einfluss auf die Bildung von HMFA hat.

Die Säule war schnell überladen, somit mussten ein paar Messwerte verworfen werden. Die Konzentration in $[\mu g/g]$ bezieht sich auf Gluconsäure- δ - lacton. In Tabelle 26 wird die HMFA Konzentration aus Gluconsäure mit den Konzentrationen nach Zugabe von Chlorogensäure verglichen und dann gegeneinander aufgetragen (siehe Abbildung 23). Man erkennt, dass durch Zugabe von Chlorogensäure nach 50 Sekunde deutlich mehr HMFA produziert wird. Nach 100 Sekunden werden 149 μ g/g HMFA, also fast doppelt soviel produziert.

Zeit [sec]	CHMFA in GL [μ g/g GL]	CHMFA in GL+CS [μ g/g GL]
20	10,4	4,10
30	16,1	
40	$27,\!1$	26,9
50	$37,\!8$	
60	76,7	$76,\! 6$
70	$71,\!1$	
80	82,9	146
90	84,5	
100	79,5	149

Tabelle 26: Einfluss von Chlorogensäure auf Gluconsäure- δ -lacton

16.3.4 Berechnung des Anteils an HMFA aus Gluconsäure- δ -lacton im Kaffee

Der Anteil an HMFA aus Gluconsäure- δ -lacton liegt bei 0,01% (siehe Tabelle 27). Chlorogensäure kann aber, wie im Abschnitt 26 erwähnt wird, die HMFA-Konzentration erhöhen. Um eine ungefähre Vorhersage treffen zu können, wird die Konzentration nach Zugabe von Chlorogensäure auf 4 Minuten extrapoliert (siehe Abbildung 24). Dabei geht man davon aus, dass sich die Trendlinie Gluconsäure- δ -lacton + Chlorogensäure sich ähnlich verhält wie die von reinem

Gluconsäure- δ -lacton. Nach 4 Minuten bilden sich theoretisch 232 mg HMFA /kg Gluconsäure- δ - lacton. Da in der Kaffeebohne der Anteil an Chlorogensäure groß ist, kann sich der Wert theoretisch auf 0,02% erhöhen.

Tabelle 27: Anteil HMFA aus Gluconsäure-
 δ -lacton an der Gesamtkonzentration HMFA in Kaffee

Gluconsäure-δ-lacton [mg/kg Kaffee]*	65	91
HMFA [mg/kg GL]**	123	123
HMFA [mg/kg Kaffee]	149	149
Anteil HMFA aus GL an der Gesamtkonzentration im Kaffee [%]	0,0101	0,0141
* laut [2]		

** max. Wert aus Tabelle 24

Teil V Gesamtdiskussion

17 Lebensmittelanalyse

Es wurden verschiedene Produkte, bei deren Herstellung höhere Temperaturen zum Einsatz kommen, untersucht.

Bei der Analyse der Säfte stellt man fest, dass diese nur geringe Konzentrationen an HMF enthalten. Während der kurzen Pasteurisation (10 bis 15 s bei 90 °C) bzw. der Konzentratherstellung wird demnach HMF gebildet. Die höchste Konzentration findet man in Pflaumensaft mit ca. 6 μ g/mL. Größere Mengen an HMF findet man in Malzkaffee (38,4 µg/g), Aceto Balsamico (59,1 µg/mL) und in Karamell-Sirup (33,9 µg/mL). Malzkaffee ist ein kaffeeähnliches Getränk, dass aus einer Mischung von gerösteten Getreidesorten (meist Gerste sonst auch Roggen und Weizen) hergestellt wird. Malz ist reich an Maltose und Eiweiß, was beim Rösten die Maillard-Reaktionen unterstützt. Trotz der Ähnlichkeit zum Kaffee wird nur wenig HMF und kein Furfurylalkohol und Furfural gefunden.

Aceto Balsamico wird aus Weintrauben, die durch Kochen eingedickt werden, hergestellt. Dem so gewonnenen Sirup wird Essig und Wein zugesetzt und in Holzfässern gefüllt. Der Balsamico wird offen am Dachboden gelagert. Dadurch ist er großen Temperaturschwankungen ausgesetzt. Der im Handel erhältliche billigere Aceto Balsamico di Modena wird aus eingedickten Traubensaft und Weinessig hergestellt. Aufgrund der sauren Bedigungen und dem hohen Zuckergehalt wird eine HMF-Bildung gefördert. Im Vergleich zu Traubensaft entsteht deutlich mehr HMF. Im Himbeer-Essig findet man weniger HMF (5 µg/mL).

Im Vergleich zu Karamellbonbons werden im Karamellsirup viel HMF gefunden, was neben der unterschiedlichen Herstellungsverfahren, sicherlich auch an der überschrittenen Haltbarkeitsdauer liegt.

Es wurden zwei Honigproben (Blütenhonig) untersucht, wobei eine direkt vom Imker und die andere im Handel gekauft wurde.

Honig bietet gute Bedingungen für die Bildung von HMF. Folgende Parameter fördern die Entstehung:

- freie Säuren
- hohe Zucker-Konzentrationen (insbesondere Fruktose)
- niedrige Wasseraktivität.

Die HMF-Konzentration kann als Indikator für Überhitzung, Stress (thermisch, Lichteinwirkung) verwendet werden. Es wird in beiden Proben etwas HMF gefunden. Beide Konzentrationen liegen im selben Bereich (ungefähr 2,5 μ g/g). Sie sind weit unter dem gesetzlichen Grenzwert von 40 mg/kg [19]. Somit kann man sagen, dass beide Proben frisch sind und ohne Hitzebehandlung hergestellt wurden.

Als Vertreter für Backwaren wurde ein Butterkeks untersucht. Dafür wurde der Keks mit einem Pistill homogenisiert. HMF wird in geringen Mengen $(2,45 \text{ }\mu\text{g/g})$ gefunden.

Außer in Balsamico wird in keinem der untersuchten Lebensmittel Furfural gefunden. Furfurylalkohol findet man in geringen Mengen in Ananassaft (3,28 μ g/mL), sonst aber in keinem der analysierten Produkte.

18 Kaffeeanalyse

18.1 Extraktionskinetik

Die Untersuchung der Extraktionskinetik soll Aufschluss geben, wielange eine Extraktion durchgeführt werden muss, bis sich das Gleichgewicht der Konzentration zwischen fester und flüssiger Phase eingestellt hat. Bei der Aufstellung des zeitlichen Verlaufes der Extraktion wird Kaffeepulver mit Wasser (Raumtemperatur) versetzt und gevortext. Nach bestimmten Zeitabständen werden die Proben auf den Gehalt von HMF, Furfurylalkohol und Furfural analysiert. Bereits nach fünf Minuten gehen ungefähr 90 % der Analyten in Lösung. Bei den nachfolgenden Experimenten wird deshalb, um Zeit zu sparen, nur 5 Minuten lang extrahiert. Die Konzentration von Furfural scheint über die Zeit stabil zu sein. Die Einschätzung des Verlustes oder der Stabilität ist jedoch schwierig, da die Standardabweichung jedes Messpunktes bei knapp 10 % liegt.

18.2 Röstverlauf

Zur Analyse wird Robusta-Kaffee verwendet. Die Röstung der rohen Kaffeebohnen wird mit einem Haushalts-Konvektions-Röster ausgeführt. Die Wärmeübertragung erfolgt durch den Kontakt mit der erhitzen zirkulierenden Luft. Dadurch erhält man nach kurzer Zeit ein homogen geröstetes Produkt. Die Konzentrationskinetik der Analyten wurde im Verlauf von 2 bis 6 Minuten bei 210 °C beobachtet. Theoretisch sollte die Konzentration der untersuchten Substanzen mit der Dauer der Röstung ansteigen.

Der Röstgrad korreliert aber nur bedingt mit der Konzentration der Analyten. Im Verlauf der Röstung entstehen viele reaktive Verbindungen, die unter den gegebenen Bedingungen (Temperatur, Sauerstoff, Säuregehalt) mit den Furanderivaten weitere Reaktionen eingehen können. Das bedeutet, dass je länger eine Röstung dauert desto weniger freie Analyten findet man. Die Substanzen zersetzen sich oder werden zu Melanoiden polymerisiert.

Beim zeitlichen Vergleich der Furfural- und HMF-Entwicklung sieht man, dass deren Bildung sehr ähnlich verläuft. Die maximale Konzentration findet man jeweils nach zwei-minutiger Röstung. Die Abnahme erfolgt ebenfalls annährend gleich. Dies entspricht dem von Hodge aufgestellen Reaktionsverlauf der Maillard-Reaktion, wo die Bildung von HMF und Furfural paralell dargestellt wird (siehe Abbildung 2 auf Seite 17).

Beim Vergleich der HMF-Konzentrationen der eigenen Röstung mit der im Handel erhältlichen Kaffee sieht man, dass die Gehalte im selben Bereich liegen. Bei der eigenen Röstung werden 152 µg/g HMF und in der Kaffeeprobe 200 µg/g gefunden. Der Gehalt im kommerziellen Produkt würde einer zweiminutigen Röstung entsprechen. Man muss aber einbeziehen, dass in der Industrie bei höheren Temperaturen geröstet wird und, dass bei der eigenen Röstung reiner Robusta-Kaffee untersucht wurde. Im Handel wird jedoch wegen seines herben Geschmacks nur wenig Robusta-Kaffee bei der Zusammenstellung Kaffeeblends verwendet.

Die Bestimmung der Furfural-Konzentration ist aufgrund der geringen Konzentrationen schwierig. Es werden kaum nennenswerte Konzentrationen (maximal: 3,51 µg/g) gefunden. Die Kinetik verläuft ähnlich zu der von HMF. Nach einem Maximum bei zwei Minuten sinkt die Konzentration kontinuierlich ab, bis nach 6 Minuten kein Furfural mehr gefunden wird.

Die Bildung von Furfurylalkohl ist im Vergleich zu HMF und Furfural nach hinten verschoben. Sie beginnt ab der zweiten Minute und findet ihr Maximum (1342 μ g/g) bei fünf Minuten. Der Abbau verläuft schnell. Innerhalb einer Minute werden zwei Drittel abgebaut. Furfurylalkohol ist leicht flüchtig, durch die Kovektion-Röstung wird die Verflüchtigung sicherlich unterstützt. In Hinblick auf die Toxizität könnte sich die Flüchtigkeit als problematisch für jene Arbeiter auswirken, welche der Röstabluft ausgesetzt sind.

18.3 Instantkaffee

Im Vergleich zum Filterkaffee wird im Instantkaffee sehr viel HMF (869 μ g/g) und weniger Furfurylalkohol (267 μ g/g) gefunden. Der HMF-Gehalt ist vier Mal höher, wobei gleichzeitig der Furfurylalkohol-Gehalt ein Fünftel der im Filterkaffee gefundenen Konzentration (1490 μ g/g) ausmacht. Den Unterschied in den Konzentrationen kann man sich einerseits dadurch erklären, dass durch die zusätzliche Prozessierung der leichtflüchtige Furfurylalkohol verschwindet, andererseits, sind die Röstparameter und der Kaffeeblend entscheidend für die Zusammensetzung des Produktes. Bei der Röstung von Arabicabohnen entsteht deutlich mehr HMF, als bei Robustakaffee [3]. Die Zusammensetzung der Inhaltsstoffe im Arabica begünstigt die Bildung von HMF. Beim Furfurylalkohol-Gehalt scheint es umgekehrt zu sein, hier ist die Konzentration in gerösteten Robustakaffee höher.

18.4 Tasse Kaffee

Die Analyse einer Tasse Filterkaffees soll zeigen, inwieweit man durch den Konsum von Kaffee den Furan-Derivaten ausgesetzt ist. Weiters wird ermittelt ob im Vergleich zur Extraktion im Zentrifugenröhrchen, die Temperatur und der Filtrationsschritt einen Einfluss auf die Konzentration haben.

Aus den Messwerten geht hervor, dass die Konzentration an Furfurylalkohol doppelt so hoch ist wie bei der Extraktion in einem Zentrifugenröhrchen. Dies könnte daran liegen, dass die Extraktion in Zentrifugenröhrchen bei Raumtemperatur durchgeführt wurde und somit weniger Furfurylalkohol aus dem Kaffee herausgelöst wurde. Andererseits werden keine erhöhten Werte für HMF und Furfural gefunden. Das Experiment wird drei Mal durchgeführt. Die Reproduzierbarkeit ist bei der Kaffeezubereitung ist nicht sehr hoch, die Werte differieren stark.

19 Modellsystem für Furfurylalkohol-Bildung

Bei dieser Analyse sollte untersucht werden ob Furfurylalkohol unter ähnlichen Bedingungen entsteht wie HMF. Dafür wurde Saccharose gewählt, da relativ hohe Konzentrationen (67,1 mg/g Rohkaffee) [20] in Rohkaffee vorhanden sind. Als Stickstoffpartner wurde Alanin herangezogen. Saccharose und Alanin werden entsprechend dem Verhältnis in Robusta-Kaffee 10:1 eingesetzt.

Im Vergleich zur Röstung von Kaffee, ist die Entstehung von Furfurylalkohol leicht beschleunigt. Das Maximum im Modellsystem liegt bei 4 Minuten, bei der Röstung dagegen bei 5 Minuten. Dies liegt wahrscheinlich an den höheren Temperaturen bei denen das Experiment mit Saccharose und Alanin durchgeführt wurde. Der Abbau verläuft langsamer als bei der Kaffeeröstung. Nach 9 Minuten sind zwei Drittel umgesetzt worden. Im Vergleich zu Kaffee wird im Modellsystem wenig Furfurylalkohol (max. $325 \ \mu g/g$ Saccharose-Alanin-Gemisch) gebildet. Bei der Kaffeeröstung wird eine maximale Konzentration von 1340 $\ \mu g/g$ Kaffee gefunden. Die hohen Konzentrationen an Furfurylalkohol in Kaffee konnten durch dieses Modell nicht erklärt werden.

20 HMFA-Modellsystem

Es wurde versucht herauszufinden, aus welchen Vorstufen HMFA beim Rösten von Kaffee entsteht. Dabei wurde von Edukten mit einer Carbonxylgruppe am C1-Atom ausgegangen.

Bei allen Versuchen wurden ein paar Messungen mit Chlorogensäure als mögliche Untersützung der Reaktion durchgeführt, um zu sehen, ob durch Senken des pH-Wertes die HMFA-Bildung gefördert wird, wie es bei der HMF-Bildung der Fall ist. Bei den meisten Versuchen, außer bei Gluconsäure- δ -lacton und Glucuronsäure wurde durch Zusatz von Chlorogensäure die HMFA/HMF Bildung unterdrückt.

Als erster Versuch wurde Na-Pyruvat mit Glycerinaldehyd erhitzt, um zu sehen ob die Werte aus vorhergehenden Untersuchungen reproduzierbar sind. Dafür wurde ein Zeitprofil aufgenommen. Die maximale Konzentration wird nach 40 Sekunden erreicht und beträgt $5,58 \pm 0,629$ g/kg Na-Pyruvat.

Um die HMFA-Bildung auf die Gesamtbildung in Kaffee hochrechnen zu können, wurde der Gehalt an Na-Pyruvat im Rohkaffee und die HMFA Konzentration in handelüblichen gerösteten Kaffee bestimmt.

Pyruvat: $17.6 \pm 4.12 \text{ mg/kg}$ Rohkaffee

HMFA: $149 \pm 15,3 \text{ mg/kg Kaffee}$

Es ergibt sich, dass Pyruvat nur mit 0,1 %an der HMFA- Entstehung beteiligt ist.

Beim Versuch von Alanin mit Glycerinaldehyd wurde geprüft, ob sich aus Alanin Pyruvat bilden kann. Rohkaffee enthält ca. 3 g Alanin pro kg Kaffee, aber nur 4 - 18 mg/kg Pyruvat. Das gebildete Pyruvat sollte theoretisch mit Glycerinaldehyd zu HMFA reagieren. Es wurde kein HMFA gefunden, somit funktionierte wahrscheinlich der erste Schritt nicht.

Kaffee ist reich an Sacchariden und Aminosäuren. Doch Versuche mit Alanin als ein Aminosäurenvertreter und Saccharose (3,2 g/kg Kaffee) zeigten keine Bildung von HMFA. Als nächtstes wurde das pflanzliche Polysaccharid Pektin und dessen Monomer Galacturonsäure untersucht. Es entstand kein HMFA.

Als letzter Versuch wurden Gluconsäure- δ -lacton und Glucuronsäure untersucht. Laut den Chromatogrammen ist Glucuronsäure nicht an der HMFA-Bildung beteiligt. Bei der Analyse vom Gluconsäure- δ -lacton konnte etwas HM-FA gefunden werden. Es wurde ein Zeit- und Temperaturverlauf aufgenommen.

Die Bildung von HMFA beginnt ab 180 °C und steigt exponentiell mit der Temperatur (max. 240 °C) an. Das Maximun an HMFA wird bei 240 °C nach 4 Minuten erreicht und beträgt 123 mg/kg Glucuronsäure- δ -lacton. Durch Zusetzen von Chlorogensäure wird der Umsatz nach 100 Sekunden auf das Doppelte (von 79,5 auf 149 mg/kg Gluconsäure- δ -lacton) erhöht. Die Messwerte wurden extrapoliert (siehe Abbildung 24 auf Seite 50) und nach 4 Minuten erhält man eine Konzentration von 232 mg/kg Gluconsäure- δ -lacton. Gluconsäure- δ -lacton ist mit ca. 0,02 % (nach Zusatz von Chlorogensäure siehe Tabelle 26 auf Seite 49) an der Gesamtbildung von HMFA in Kaffee beteiligt.

Es wurde auch die Wasseraktivität von Rohkaffee bestimmt.

- Gemahlener Rohkaffee: 0,526 bei 23,3°C
- Rohkaffeebohnen: 0,494-0,493bei 22,0 °C

Die Wasseraktivität ist ein wichtiges Kriterien zum Einschätzen der Haltbarkeit bzw Lagerfähigkeit. Die meisten Mikroorganismen benötigen einen hohen aw- Wert (0,98 - 1) zum Wachsen. Zusätzlich wird durch den Wassergehalt die Röstdauer mitbestimmt. Als dritter wichtiger Punkt ist anzumerken, dass die Wasseraktivität die Maillard-Reaktion beeinflusst [2].

Teil VI Anhang

Rohdaten Α

Validierung A.1

Tabelle	28: Validierung von	HMF	
Ergebnis Validierung	HPLC		
Datum	20.09.2010		
Beschreibung	Validierung der HM	MF-Messung mittels	s HPLC-UV bei 280 nm
Bearbeiter	Tatjana Golubkova	ì	
	•		
$\# { m Messung}$	10	Einheit Konz.:	$\mu { m g}/{ m mL}$
$\# { m Rep.}$	2	Einheit Mess.:	mAU*s
$\# { m Konz.stufen}$	5		
Modell	Linear (normgered	ht)	
y[mAU*s] = 16,88005[m.	$AU^{s}/(\mu g/mL)$ *	$x [\mu g/mL]$ -6,217	'64[mAU*s]
Varianzcheck	95% Ok, 99% Ok		
Linearität	Ok		
Varianz unten	0,04		
Varianz oben	0,31		
VB(Steigung)	16,76	17	${ m mAU*s/(\mu g/mL)}$
VB(Achsenabschnitt)	-12,94	0,5	mAU*s
Reststd.abweichung	4,54	mAU*s	
Verfahrensstd.abweichung	0,27	$\mu g/mL$	
Rel. Verfahrensstd.abw.	0,54	%	

Nachweis- und Bestimmungsgrenze

	00		
	Leerwertmeth.	Kalibriermeth.	
Entscheidungsniveaus (VB)	0,95	0,95	
Nachweisgrenze	N/A	$0,\!48$	$\mu g/mL$
${ m Erfassungsgrenze}$	N/A	0,95	$\mu g/mL$
Bestimmungsgrenze		1,76	$\mu g/mL$

Tabelle 29: Validierung von Furfurylalkoho	1
--	---

Ergebnis Validierung	HPLC
Datum	15.09.2010
Beschreibung	Validierung der Furfurylalkohol-Messung mittels HPLC 277 nm
Bearbeiter	Tatjana Golubkova

# Messung	10	Einheit Konz.:	$\mu g/mL$	
# Rep.	2	Einheit Mess.:	mAU*s	
$\# { m Konz.stufen}$	5			

 $\label{eq:model} \begin{array}{c} \mbox{Modell} & \mbox{Linear (normgerecht)} \\ \mbox{y[mAU*s]} = 4{,}80843[mAU*s/(\mu g/mL)] * x \ [\mu g/mL] - 2{,}51886[mAU*s] \end{array}$

Varianzcheck	95% Ok, 99% Ok		
Linearität	Ok		
Varianz unten	0,72		
Varianz oben	$3,\!35$		
VB(Steigung)	4,72	4,9	$ m mAU*s/(\mu g/mL)$
VB(Achsenabschnitt)	-5,98	0,94	mAU*s
Reststd.abweichung	2,02		mAU*s
Verfahrensstd.abweichung	0,42		$\mu g/mL$
Rel. Verfahrensstd.abw.	$1,\!24$		%

Nachweis- und Bestimmungsgrenze

	${\rm Leerwertmeth}.$	Kalibriermeth.	
Entscheidungsniveaus (VB)	0,95	0,95	
Nachweisgrenze	N/A	0,8	$\mu g/mL$
Erfassungsgrenze	N/A	1,6	$\mu g/mL$
Bestimmungsgrenze		2,9	$\mu g/mL$

Tabelle 30: Validierung vom Furfu	ıralderivat
-----------------------------------	-------------

Ergebnis Validierung	HPLC		
Datum	30.09.2010		
Beschreibung	Validierung der Fu	rfural-Derivat Messung mit	tels HPLC bei 395 nm
Bearbeiter	Tatjana Golubkov	a	
# Messung	10	Einheit Konz.:	$\mu g/mL$
# Rep.	2	Einheit Mess.:	mAU*s
$\# \operatorname{Konz.stufen}$	5		
Modell		Linear (normgerecht)	
y[mAU*s] = 15,948	566[mAU*s/(µg/n	$[mL)] * x [\mu g/mL] + 23,3$	6388[mAU*s]
Varianzcheck	95% Ok, 99% Ok		
Linearität	Ok		
Varianz unten	0,33		
Varianz oben	0,97		

VB(Steigung)	15,16	16,73	$ m mAU*s/(\mu g/mL)$
VB(Achsenabschnitt)	7,3	$39,\!43$	m mAU*s
Reststd.abweichung	7,93	mAU*s	
Verfahrensstd.abweichung	0,5	$\mu g/mL$	
Rel. Verfahrensstd.abw.	2,6	%	

Nachweis- und Bestimmungsgrenze

	0 0		
	Leerwertmeth.	Kalibriermeth.	
Entscheidungsniveaus (VB)	0,95	0,95	
Nachweisgrenze	N/A	1,04	$\mu g/mL$
Erfassungsgrenze	N/A	2,09	$\mu g/mL$
Bestimmungsgrenze		$3,\!56$	$\mu g/mL$

Lebensmittelanalyse A.2

_

Tabelle 31: Furfurylalkohol in Ananassaft

Probe	Injekionsvolumen [µL]	Retentionszeit [min]	Area [mAu*s]	Konzentration [$\mu g/m$
1	5	2,451	80,35	3,45
2	5	2,451	75,38	$3,\!24$
3	5	$2,\!456$	76,83	$3,\!30$

Bezeichnung	#	f	i [µL]	RT[min]	Area [mAu*s]	Chmf [$\mu g/mL$]
	1/1	5	5	$5,\!177$	36,06	$2,\!50$
	1/2	5	5	5,325	$36,\!99$	$2,\!56$
\mathbf{Essig}	2/1	5	5	5,166	$37,\!31$	$2,\!58$
	2/2	5	5	5,164	$35,\!66$	$2,\!48$
	3/1	5	5	5,160	35,70	$2,\!48$
	3/2	5	5	5,157	35,70	$2,\!48$
	1/1	5	1	5,325	196,1	59,9
	1/2	5	1	5,334	199,2	60,9
	2/1	5	1	5,192	193,7	59,2
	2/2	5	1	5,197	$193,\! 6$	59,2
Aceto Balsamico	3/1	5	5	5,331	981,2	$58,\!5$
	3/2	5	5	5,323	982,2	$58,\! 6$
	4/1	5	5	5,322	985, 9	$58,\!8$
	4/2	5	5	5,318	$989,\! 6$	59,0
	5/1	5	5	5,174	984,9	58,7
	5/2	5	5	5,168	980,8	$58,\!5$
	1/1	5	5	5,258	555,4	76,21
Karamell-Sirup	1/2	5	5	5,271	572,2	78,5
	2	5	5	5,237	$534,\!3$	$73,\!3$
	3	5	5	$5,\!233$	$590,\!9$	81,1

Tabelle 32: HMF 1

f... Verdünnfaktor; i... Injektionsvolumen; RT... Retentionszeit

Bezeichnung	#	i [µL]	RT [min]	Area [mAu*s]	Einwaage [g]	$ m Chmf[\mu g/mL]$
	1/1	5	5,176	$14,\!02$	0,2938	0,816
Honig-Gössler	1/2	5	5,161	$14,\!40$	$0,\!2938$	0,832
	2/1	5	5,171	$17,\!45$	0,3225	0,870
	2/2	5	5,170	17,71	0,3225	0,879
	1	5	$5,\!229$	36,00	0,1926	$5,\!15$
Honig-Spar	2	5	$5,\!233$	$42,\!48$	$0,\!2373$	4,93
	3	5	$5,\!228$	38,72	0,2103	5,07
	1/1	5	$5,\!280$	2,341	0,2066	$1,\!65$
	1/2	5	$5,\!285$	$2,\!257$	$0,\!2066$	$1,\!59$
	2/1	5	5,281	$2,\!695$	0,2063	1,88
${ m Keks}$	2/2	5	5,276	$2,\!666$	0,2063	1,86
	3/1	5	5,271	$2,\!271$	0,2018	$1,\!64$
	3/2	5	5,268	$2,\!224$	0,2018	$1,\!61$
	4/1	5	5,276	$2,\!434$	0,2108	$1,\!67$
	4/2	5	5,264	$2,\!356$	$0,\!2108$	$1,\!62$
	1/1	5	$5,\!228$	$27,\!80$	0,3023	$2,\!54$
	1/2	5	5,218	$28,\!22$	0,3023	$2,\!57$
	2/1	5	5,222	26,09	0,2668	2,70
Karamell-	2/2	5	$5,\!217$	25,78	0,2668	2,66
bonbon	3/1	5	5,231	$22,\!85$	$0,\!2708$	$2,\!33$
	3/2	5	5,232	$23,\!15$	$0,\!2708$	$2,\!36$
	4/1	5	5,227	$18,\!32$	0,2108	2,40
	4/2	5	5,230	18,09	0,2108	$2,\!37$

Tabelle 33: HMF 2

Bezeichnung	#	i[µL]	RT[min]	Area [mAu*s]	$CHMF[\mu g/mL]$
	1/1	5	5,132	8,246	0,857
	1/2	5	5,963	$16,\!62$	1,35
A prikose	2/1	5	4,905	8,406	0,866
	2/2	5	4,939	$11,\!83$	1,07
	3/1	5	4,926	3,945	$0,\!602$
	3/2	5	4,919	5,215	$0,\!677$
	2/2	5	4,916	$33,\!80$	2,37
	3/1	5	4,912	$25,\!23$	1,86
$\operatorname{Cranberry}$	3/2	5	4,959	$26,\!26$	1,92
	1/1	5	5,120	$15,\!83$	1,31
	1/2	5	4,970	$17,\!05$	1,38
	2/1	5	4,931	$13,\!34$	1,16
Rote Traube	2/2	5	4,934	$15,\!02$	1,26
(Rauch)	3/1	5	4,960	$14,\!05$	1,20
	3/2	5	4,964	$17,\!25$	1,39
	1/1	5	5,108	$25,\!50$	1,88
	1/2	5	4,953	24,86	1,84
	2/1	5	4,938	$25,\!47$	1,88
Rote Traube	2/2	5	4,931	$28,\!87$	2,08
$(H\"order)$	3/1	5	4,943	$26,\!62$	1,95
	1/1	1	5,336	6,240	0,738
	1/2	1	$5,\!193$	5,589	$0,\!699$
	2/1	1	5,193	4,705	0,647
Bier	2/2	1	5,188	5,094	$0,\!670$
	3/1	1	5,392	5,776	0,711
	3/2	1	5,392	5,968	0,722

Tabelle 34: Rohdaten der HMF-Bestimmung in Getränken

Verdünnungsfaktor = 5 bei 5 μ L Injektionsvolumen

A.3 Analyse von Kaffee

A.3.1 Extraktionskinetik

#	i [µL]	RT [min]	Area [mAu*s]	Einwaage [g]	CFurfural $[\mu g/g]$
-5/1	10	4,349	45,31	0,0926	$7,\!43$
5/2	10	4,334	$40,\!65$	0,0926	$5,\!85$
10/1	10	4,339	$42,\!29$	0,0912	$6,\!51$
10/2	10	4,339	$39,\!91$	0,0912	5,69
15/1	10	4,319	$43,\!07$	0,0999	$6,\!18$
15/2	10	4,310	43,71	0,0999	6,39
25/1	10	$4,\!329$	$44,\!82$	0,0996	6,75
25/2	10	$4,\!310$	$42,\!66$	0,0996	6,07

Tabelle 35: Rohdaten Extraktionskinetik Furfural

#	i[µL]	RT[min]	Area [mAu*s]	Einwaage [g]	Снмг[μ g/g]
-5/1	5	4,310	$50,\!10$	0,0965	173
5/2	5	4,284	$50,\!18$	0,0959	174
5/3	5	4,309	$51,\!58$	0,0959	179
5/4	5	4,366	$53,\!32$	0,0995	177
5/5	5	4,371	$52,\!95$	0,0995	176
10/1	5	4,389	$50,\!53$	0,0939	179
10/2	5	4,379	$51,\!11$	0,0939	181
10/3	5	4,460	$53,\!63$	0,0916	194
10/4	5	4,448	$51,\!91$	0,0916	188
10/5	5	4,386	$51,\!20$	0,0915	186
15/1	5	4,482	55,76	0,0961	191
15/2	5	4,489	$55,\!38$	0,0961	190
15/3	5	4,491	$54,\!88$	0,0977	185
15/4	5	4,507	$53,\!99$	0,0977	183
25/1	5	4,496	$57,\!59$	0,0922	205
25/2	5	4,466	$57,\!94$	0,0922	206
25/3	5	4,437	$54,\!90$	0,0978	185
25/4	5	4,477	$57,\!63$	0,0978	193
25/5	5	4,499	$56,\!85$	0,0903	207
25/6	5	4,550	$55,\!09$	0,0903	201

Tabelle 36: Extraktionskinetik HMF

	i [µL]	RT[min]	Area [mAu*s]	Einwaage [g]	CFurfural $[\mu g/g]$
5/1	5	5,367	117,3	0,0965	1290
5/2	5	5,432	120,3	0,0965	1320
5/3	5	5,505	121,3	0,0959	1340
5/4	5	5,605	123,2	0,0959	1360
5/5	5	5,663	130,7	0,0995	1390
5/6	5	5,666	129,9	0,0995	1390
10/1	5	5,724	123,3	0,0939	1390
10/2	5	5,727	123,1	0,0939	1390
10/3	5	5,768	122,1	0,0916	1420
10/4	5	5,786	123,1	0,0916	1430
10/5	5	5,762	125,3	0,0915	1450
10/6	5	5,813	1267,0	0,0915	1470
15/1	5	6,023	135, 5	0,0982	1460
15/2	5	$5,\!977$	134,4	0,0982	1450
15/3	5	5,780	129,0	0,0961	1420
15/4	5	5,894	134,5	0,0961	1480
15/5	5	6,030	143,3	0,0977	1550
15/6	5	$5,\!936$	141,3	0,0977	1530
25/1	5	5,887	129,6	0,0922	1490
25/2	5	$6,\!097$	135,8	0,0922	1560
25/3	5	$5,\!907$	135,3	0,0978	1470
25/4	5	$5,\!939$	138,4	0,0978	1500
25/5	5	$6,\!204$	136,4	0,0903	1600
25/6	5	6,040	$1301,\! 0$	0,0903	1540

Tabelle 37: Extraktionskinetik Furfurylalkohol

A.3.2 Röstverlauf

#	i [µL]	RT[min]	Area [mAu*s]	Einwaage [g]	CFurfural $[\mu g/g]$
2/1	10	4,145	$35,\!56$	0,104	3,66
2/2	10	4,250	$34,\!54$	0,104	3,36
3/1	10	4,271	$28,\!51$	0,103	1,57
3/2	10	4,290	$27,\!94$	0,103	1,40
4/1	10	4,280	$19,\!21$	0,101	nd
4/2	10	4,276	18,06	0,101	nd
5/1	10	4,290	19,71	0,103	nd
5/2	10	4,291	$20,\!50$	0,103	nd

A.4 Modellsystem Furfurylalkohol

Tabelle 39: Modellsystem Furfurylalkohol: Saccharose + Alanin C
Furfurylalkohol = (y + 2,51886)/4,80843

Röstzeit [min]	RT [min]	Area [mAu*s]	Einwaage [g]	CFurfurylalkohol $[\mu g/g]$
3	2,441	7,723	0,0467	228
3	$2,\!439$	7,962	0,0467	233
4	$2,\!451$	8,058	0,0334	329
4	2,451	7,758	0,0334	320
5	$2,\!441$	4,825	0,0378	202
5	$2,\!441$	4,771	0,0378	201
6	$2,\!446$	$7,\!223$	0,0370	274
6	$2,\!451$	$7,\!275$	0,0370	275
7	2,465	$3,\!519$	0,0412	152
7	2,475	$3,\!662$	0,0412	156
8	$2,\!446$	1,828	0,0454	100
8	$2,\!451$	$2,\!142$	0,0454	107
9	$2,\!446$	$1,\!669$	0,0397	110
9	$2,\!451$	1,859	0,0397	115

RT... Retentionszeit

A.5 HMFA

Verdünnung	Retentionszeit [min]	Area [mAU*s]	Konzentration $[\mu g/mL]$
1:100	7,872	$90,\!27$	10,3
1:111	7,865	$80,\!23$	$9,\!27$
1:133	7,883	$66,\!83$	7,73
1:200	7,898	$43,\!99$	$5,\!15$
1:400	$7,\!903$	$22,\!09$	$2,\!58$
1:1000	$7,\!900$	$9,\!126$	1,03

Tabelle 40: Werte für die Kalibration von HMFA bei 255 nm

		Glycer	rinaldehyd	Na-I	Pyruvat				
Probe	\mathbf{Zeit}	[mg]	[mmol]	[mg]	[mmol]	\mathbf{RT}	\mathbf{Area}	Снмға	Снмға
	[min]					[min]	[mAu*s]	$[\mu g/mL]$	[µg/mg Na-Pyr]
a 1	10	$10,\! 0$	0,111	$^{12},^{0}$	0,109	7,640	4,277	5,29	$0,\!440$
a 2	20	10,3	$0,\!114$	$^{13},\!0$	$0,\!118$	$7,\!640$	31,29	36,3	2,79
a 3	30	9,7	$0,\!108$	12,4	$0,\!113$	7,630	$51,\!61$	59,5	4,80
a 4	40	10,4	0,115	$12,\!1$	$0,\!110$	$7,\!685$	$53,\!92$	62,2	5,14
a 5	50	9, 6	0,107	12,5	$0,\!114$	7,868	$45,\!64$	52,7	4,22
a 7	60	10,3	$0,\!114$	12,2	$0,\!111$	$7,\!900$	$29,\!68$	34,4	2,82
a 8	120	10,3	$0,\!114$	12,2	$0,\!111$	$7,\!850$	$20,\!82$	24,2	$1,\!99$
a 9	180	10,3	$0,\!115$	12,2	$0,\!110$	$7,\!850$	$16,\!38$	19,2	1,59
a 10	240	10,0	$0,\!111$	12,2	$0,\!111$	7,700	9,358	11,1	0,910
a 11	300	9,0	0,108	12,2	$0,\!111$	$7,\!800$	7,661	$9,\!16$	0,750
a 12	10	9,8	0,109	12,1	$0,\!110$	7,872	4,188	5,18	0,430
a 13	20	9,9	0.,110	12,2	$0,\!111$	$7,\!846$	$47,\!18$	54,5	4,46
a 14	30	10,3	$0,\!114$	13,4	$0,\!122$	7,820	$58,\!17$	67,0	$5,\!00$
a 15	40	10,4	$0,\!115$	$12,\!1$	$0,\!110$	$7,\!824$	$63,\!32$	73,0	6,03
a 16	50	10,0	$0,\!111$	$12,\! 1$	$0,\!110$	$7,\!866$	$49,\!59$	57,2	4,73
a 17	60	9,9	$0,\!110$	12,6	$0,\!115$	$7,\!852$	$35,\!03$	40,5	3,22
a 18	60	10,2	$0,\!113$	12,4	$0,\!113$	7,858	$_{36,21}$	41,9	3,38
a 19	120	10,1	$0,\!112$	12,3	$0,\!112$	7,858	$28,\!29$	32,8	$2,\!67$
a 20	180	10,3	$0,\!114$	12,3	0,112	7,859	19,07	22,2	1,81
a 21	240	10,1	$0,\!112$	12,2	0,111	7,865	$11,\!93$	14,1	1,15
a 22	300	10,1	$0,\!112$	12,2	0,111	7,877	5,033	$6,\!15$	0,500

Tabelle 41: Messwerte und Konzentration aus der Reaktion von Na-Pyruvat mit Glycerinaldehyd

Tabelle 42: Verdünnungsreihe und gemessene Werte zur Kalibration von Na-Pyruvat

Verdünnung	Retentionszeit [min]	Area [mAu*s]	Konzentration $[\mu g/mL]$
1:1000	$2,\!430$	$5,\!606$	1,01
1:400	$2,\!429$	$14,\!03$	2,53
1:200	$2,\!432$	$27,\!64$	5,05
1:133	$2,\!434$	$42,\!48$	7,58
1:111	$2,\!432$	$50,\!20$	9,09
1:100	$2,\!433$	$57,\!21$	10,1

Probe	Einwaage [mg]	RT [min]	Area [mAu*s]	Chmfa $[\mu g/mL]$	Chmfa $[\mu g/g]$
i 1	26,5	8,077	2,912	3,72	140
i 2	$9,\!10$	8,172	$0,\!9851$	1,51	166
i 3	$11,\!6$	8,141	1,074	1,61	139

Tabelle 43: Gehalt an HMFA in Lavazza Espresso Kaffee

Probe	\mathbf{Zeit}	Einwaage	\mathbf{RT}	\mathbf{Area}	Снмға	Chmfa
	sec	[mg]	[min]	[mAU*s]	$[\mu g/mL]$	$[\mu \mathbf{g}/\mathbf{g}]$
m1	10	17,6	7,677	0,4879	0,094	5,4
m10	10	21,6	7,686	0,8108	0,131	6,1
m11	20	15,4	$7,\!240$	0,7006	0,119	8,0
n1	20	11,2	7,833	0,9442	0,147	13
n2	20	12,0	7,857	2,801	0,359	30
m2	30	13,9	7,626	1,000	0,194	14
m12	30	15,4	7,730	0,9432	0,146	10
n3	30	$13,\!5$	7,853	3,808	0,475	35
n4	30	11,7	7,816	2,184	0,289	25
m4	40	15,3	$7,\!637$	$3,\!113$	0,395	26
m13	40	15,4	7,726	2,708	0,349	23
n5	40	13,1	7,838	3,431	0,432	33
n6	40	12,2	$7,\!845$	2,558	0,332	27
m5	50	16,4	$7,\!614$	5,083	$0,\!621$	38
m14	50	13,7	$7,\!699$	4,180	0,517	38
m6	60	12,2	$7,\!633$	7,379	0,884	72
m15	60	20,7	7,704	6,322	0,763	37
n7	60	11,5	$7,\!831$	7,788	0,931	81
m19	70	$12,\! 6$	$7,\!692$	7,875	0,941	75
n20	70	13,7	$7,\!847$	7,813	0,934	68
n21	70	13,5	$7,\!819$	7,330	0,878	65
n40	70	$13,\! 6$	$7,\!850$	6,163	0,745	55
n41	70	12,4	$7,\!837$	7,941	0,948	76
n42	80	12,5	$7,\!836$	9,385	$1,\!114$	89
n43	80	12,3	$7,\!849$	7,656	0,916	74
m20	80	$5,\!60$	7,710	3,555	0,446	80
n22	80	10,2	$7,\!827$	7,533	0,902	88
n23	80	12,1	7,821	$11,\!18$	$1,\!319$	110
n24	90	12,4	$7,\!825$	$10,\!29$	$1,\!218$	98
n25	90	12,3	$7,\!828$	7,253	0,870	71
m21	90	12,4	7,712	4,450	0,548	44
m22	100	17,1	7,715	9,305	1,105	65
n26	100	13,2	7,799	$10,\!54$	$1,\!247$	94
n27	100	12,2	$7,\!813$	$13,\!88$	$1,\!630$	130
n28	110	13,2	$7,\!800$	8,952	1,064	81
m19	110	$12,\! 6$	$7,\!697$	3,105	0,394	31
m7	120	12,9	8,000	7,108	0,853	66
m16	120	11,1	$7,\!684$	8,532	1,016	92
n8	120	14,0	7,790	$10,\!67$	$1,\!261$	90
n9	120	11,2	7,787	8,170	0,975	87
m8	180	16,8	$7,\!620$	8,533	1,016	60
m17	180	22,4	$7,\!683$	$12,\!45$	1,465	65
n10	180	11,4	7,797	9,367	$1,\!112$	98
n11	180	12,2	7,773	8,200	0,978	80
m9	240	$9,\!80$	$7,\!605$	$10,\!55$	$1,\!248$	130
m18	240	12,2	$7,\!685$	$12,\!37$	1,456	120

Tabelle 44: Konzentrationsverlauf bei ansteigender Temperatur - Gluconsäure- $\delta\text{-lacton}$

Probe	Temperatur	Einwaage	\mathbf{RT}	Area	Chmfa	Снмға
	[°C]	[mg]	[min]	[mAU*s]	$[\mu g/mL]$	$[\mu \mathbf{g}/\mathbf{g}]$
m25	160	12,3	nd	nd	nd	nd
m31	160	14,2	\mathbf{nd}	\mathbf{nd}	\mathbf{nd}	\mathbf{nd}
m27	180	$16,\!8$	7,742	0,8613	0,137	8,16
m32	180	15,7	7,727	0,7473	0,124	7,9
m28	200	15,4	7,758	1,929	0,259	16,8
m33	200	$12,\! 6$	7,729	1,744	0,259	18,9
m29	220	13,0	7,716	5,760	0,699	53,7
m34	220	$14,\!1$	7,704	$3,\!808$	0,475	33,7
n 31	220	20,7	7,633	4,149	0,514	16,1
n 32	220	12,2	7,828	$6,\!130$	0,741	44,2
n 15	220	$14,\!4$	7,807	$1,\!683$	0,231	29,1
n 30	220	13,2	7,827	4,754	0,583	29,0
m15	240	11,7	7,825	$2,\!637$	0,341	24,8
${ m m6}$	240	11,4	7,831	$7,\!914$	0,945	50,7
n7	240	$11,\!5$	7,805	8,180	0,976	84,9
	77 1			ЪД	•	

Tabelle 45: Konzentrationsverlauf bei ansteigender Temperatur - Gluconsäure- $\delta\text{-lacton}$

Probe	\mathbf{Zeit}	Einwaage [mg]		\mathbf{RT}	Area	Снмға
	\mathbf{sec}	GL	\mathbf{CS}	[min]	[mAU*s]	$[\mu g/g GL]$
o 1	20	$14,\! 6$	10,9	8,058	0,1870	4,1
o 2	40	$13,\!4$	$10,\! 6$	8,051	2,970	28,3
o 7	40	$12,\!4$	10,0	8,027	2,436	$25,\! 6$
o 3	60	$12,\!8$	11,0	8,003	8,225	76, 6

B Geräteliste

Zentrifuge Biofuge pico Heraeus, Nr. 280383, Kendro Labarotory products

- Software HP ChemStation for LC, HP 1100 HPLC Rev: A.06.03[509], Hewlett-Packard 1990-1998
- HPLC Hewlett Packard 1100 Serie, QuatPump, Degasser, Als Therm, Col Comp
- Waage Mettler Toledo AG 245
- Heizer Heidolph MR 3001K

Thermostat Heidolph EKT 3001

Mühle IKA Werke Typ A 11 basic

Kugelmühle Retsch

Wasseraktivität Testo 650 Serienn
r: 01243375/609Version Österreich

Lyophilisator Savant Modul SNL216V (Holbrook, New York, USA)

Säule Agilent Technologies LiChrospher 100 RP-18e 125 x 4 mm, 5 μ m

Wasseraufbereitungssystem Millipore Simplicity 185; 18,2 M $\Omega/$ cm (Molshiem, Frankreich)

Kaffeemaschine Severin Art. KA $9671\ 800\ W$

C Probenbeschreibung

${ m Tomatenketchup}$	Spar Österreichische Warenhandels-AG Salzburg			
	500g; MHD: 15.01.2011; L015 02:12			
	Zutaten: Tomaten (230g/100g Ketchup), Trinkwasser, Zucker,			
	Weingeistessig, Salz, mod. Maisstärke, Gewürzaroma, Xanthan,			
	Natriumbenzoat			
Pflaumen-Karotten-	Pago International GesmbH, Österreich			
Limettengetränk	0,2 L; MHD: 12.07.2011; 1N			
-	Zutaten: Saftgehalt min 40%; Wasser, Pflaumenmark aus			
	Pflaumenmarkkonzentrat (27,3 %), Fruktose, Karottensaft aus			
	Saftkonzentrat der scharzen Karotte (9,8%), Limettensaft aus Limettensaft-			
	konzentrat (2,9 %), nat. Aromen, Vitamin C, E, Provitamin A			
Multivitamin Tropical	Pago International GesmbH, Österreich			
	0,33 L; MHD: 16.12.2010 ; Pro 31.03.2010			
	Zutaten: Apfel (62,3 %) und Orangensaft (10%) aus Fruchtsaftkonzentrat,			
	Guaven (5%) und Marillenmark (5%), Trauben (5%), Birnen (5%),			
	Ananas (5%) und Zitronensaft aus Fruchtsaftkonzentrat $(1,5\%)$, Bananen			
	(0,5%), Mango $(0,4%)$ und Pfirsichmark $(0,2%)$, Papayasaft aus			
	Papayasaftkonzentrat $(0,1\%)$, Vitamin C, B6, B1, B12 und E, Niacin,			
	ProVit. A, Phanthothansäure, Folsäure, Biotin			
Ottakringer Helles	Ottakringer Brauerei AG, Wien-Austria			
	Vollbier $5,2\%$ vol Alc.; 01.2011, LO 106			
	Zutaten: Wasser, Gerstenmalz, Hopfen, Hopfenextrakt			
schwarzer	Spar Österreichische Warenhandels AG, Salzburg Österreich			
Johannisbeer-Nektar	MHD: 28.05.2011; 19:17 1A			
	Zutaten: Wasser, schwarzer Johannisbeersaft, Zucker, schwarzer			
	Johannisbeersaftkonzentrat, Zitronensäure, Vitamin C			
Ananassaft	Spar Österreichische Warenhandels AG, Salzburg Österreich			
	MHD: 30.03.2011; BE-SA 15:01			
	Zutaten: Wasser, Ananassaftkonzentrat, Zucker, Zitronensäure			
Fresh Cola	Spar Österreichische Warenhandels AG, Salzburg Österreich			
-----------------------	--			
	MHD: 16.10.2010-A; 10010419			
	Zutaten: Wasser, Zucker, Kohlensäure, Farbstoff: Ammonsulfit, Zuckerkolör,			
	Phosphorsäure, Aroma, Aroma: Koffein			
Coca-Cola	Coca-Cola HBC Austria GmbH, Wien			
	MHD: 13.03.2011; L14J 05:45 WP			
	Zutaten: Wasser, Zucker, Kohlensäure, Farbstoff Zuckerkolör E150d,			
	Säurungsmittel E 338, nat. Aroma, Aroma: Koffein			
Tschibo "Feine Milde"	Eduscho GmbH, Hamburg, Deutschland			
	MHD: 14.01.2012			
Hornig "Spezial"	J. Hornig GmbH, Österreich			
-	MHD: 29.02.2012; L214 10			
Malzkaffee	Alnatura Produktions- und Handels GmbH, Deutschland			
	$\operatorname{Gerstenmalz}$			
Kaffeefilter	Spar Österreichische Warenhandels AG, Salzburg Österreich ungebleicht			
	ungobietent			

D Abkürzungsverzeichnis

Abs	Absorbance
С	Konzentration
\mathbf{CS}	Chlorogensäure
f	Verdünnungsfaktor
FA	Furfurylalkohol
GL	Gluconsäure- δ -lacton
HMF	5-Hydroxymethyl-2-furfural
HMFA	5-Hydroxymethyl-2-furansäure
i	Injektionsvolumen
m	Masse
mAU	Milli Absorption Units
MHD	${\it Mindesthaltbarkeitsdatum}$
\min	Minuten
$\mathrm{Mol}\%$	Molprozent
rpm	Umdrehungen pro Minute
RT	Retentionszeit
sec	Sekunden
\mathbf{ST}	${\it Standardabweichung}$
TMAHS	${\it Tetramethylammoniumhydrogensulfat}$

E Poster

5- Hydroxymethyl-2-furansäure ERARBEITUNG EINES MODELLSYSTEMS ZUR BILDUNG IN GERÖSTETEM KAFFEE

T. Golubkova, M. Murkovic

Institut für Biochemie Technische Universität, Graz, Österreich

Einleitung

Während des Röstens von Kaffee entstehen viele unterschiedliche Maillard- Produkte, darunter auch 5-Hydroxymethyl-2-furfural (HMF) und 5-Hydroxymethylfuransäure (HMFA). HMF entsteht aus der Reaktion von Aminosäuren mit reduzierenden Zuckern oder aus säurekatalysierter Dehydratisierung von Hexulosen. Weitere Produkte, die hohe Konzentrationen an HMF enthalten sind zum Beispiel getrocknete Birnen, Karamell, Fruchtsäfte und Honig. Die Röstprodukte sind teilweise gesundheitsschädlich. HMF ist nach neuesten Forschungen nicht akut toxisch (LD50 3.1 g/kg bei Ratten[1]) oder karzinogen. Es hat aber dennoch genotoxisches Potential [2]. HMF wird in den Nieren zu HMFA und weiteren Komponenten abgebaut und über den Urin ausgeschieden [2].

Das Ziel des Projekts war es, herauszufinden aus welchen im Kaffee vorkommenden Komponenten HMFA bei der Röstung gebildet wird, um damit dessen Bildung erklären zu können.

Abbildung 1: 5-Hydroxymethyl-2-furfural

Abbildung 2: 5-Hydroxymethyl-furansäure

Experimentelles

Bei den Experimenten handelt es sich um Reaktionen ohne Lösungsmittel, um den beim Rösten von Kaffee vorliegenden niedrigen aW-Wert (0.526 bei 23°C) zu simulieren. Die Versuche werden mit und ohne Chlorogensäure (Absenkung des pH-Werts) durchgeführt.

Ausgangstoffe für die Experimente:

- 1. Glycerinaldehyd + Na-Pyruvat
- 2. Alanin + Glycerinaldehyd
- 3. Alanin + Saccharose
- 4. Pektin
- 5. Galacturonsäure
- 6. Glucuronsäure
- 7. Gluconsäure- δ -lacton

Die Experimente wurden nach folgendem Schema durchgeführt.

Abbildung 3: Generelle Versuchsdurchführung

Um die HMFA-Bildung aus den Modellreaktionen auf die Gesamtbildung im Kaffee hochrechnen zu können, wurde der Gehalt an HMFA/HMF in handelsüblichem geröstetem Kaffee bestimmt.

Der gemahlene Kaffee wird 2 mal mit n-Hexan gewaschen, um die Lipide zu entfernen. Die gewonnene Suspension wird zentrifugiert. Ein Großteil des Hexans wird dekantiert. Anschließend wird unter Stickstoffbegasung der Kaffee getrocknet und mit 1 mL 40 % MeOH extrahiert. Der Extrakt wird mit Laufmittel (5mM TMAHS + 5 % MeOH) 1:10 verdünnt und die HMF/HMFA Konzentration mittels HPLC bestimmt.

HPLC Analyse

Ergebnisse

Das Ziel war es die Vorstufen aus dem HMFA beim Rösten von Kaffee gebildet wird zu finden. Dabei wurde von Edukten mit einer Carbonyl- bzw. Carbonxyl-

Parameter der HMF/HMFA-Bestimmung mit HPLC

Laufmittel	5 mM TMAHS + 5 % Methanol
Injektionsvolumen	1 µL
Flussrate	$0.6 \mathrm{ml/min}$
Detektion	255 nm
Retentionszeit HMFA	$7.6 - 7.8 \min$
Retentionszeit HMF	$6.9-7.3 \mathrm{~min}$
Säule	LiChrospher 100 RP/18 125x3 mm $$

gruppe am C1- Atom ausgegangen.

Bei allen Versuchen wurden zusätzlich Messungen mit Chlorogensäure als mögliche Unterstützung der Reaktion durchgeführt, um zu sehen, ob durch Senken des pH-Wertes die HMFA-Bildung gefördert wird, wie es bei der HMF-Bildung der Fall ist. Bei den meisten Versuchen, außer bei Gluconsäure- δ -lacton und Glucuronsäuren wurde durch Zusatz von Chlorogensäure die HMFA/HMF Bildung nicht gefördert.

Aus den Messungen betreffend der HMF/HMFA Konzentration im Kaffee ergeben sich folgende Werte:

- HMFA: 149 \pm 15 mg/kg Kaffee
- HMF: $399 \pm 116 \text{ mg/kg}$ Kaffee

Als erster Versuch wurde Na-Pyruvat mit Glycerinaldehyd erhitzt. Die maximale Konzentration wird nach 40 Sekunden erreicht und beträgt 5.58 ± 0.63 g/kg Na-Pyruvat. Rohkaffeebohnen enthalten durchschnittlich 18 ± 4 mg/kg freies Pyruvat. Es ergibt sich somit, dass freies Pyruvat mit weniger als 0.1 % an der HMFA-Entstehung beteiligt ist.

Bei der Analyse von erhitztem Gluconsäure- δ -lacton konnte etwas HMFA gefunden werden. Es wurde ein Zeit- und Temperaturverlauf aufgenommen. Die Bildung von HMFA beginnt ab 180 °C und steigt exponentiell mit der Temperatur (max. 240° C). Das Maximum an HMFA wird bei 240 °C bei 4 Minuten erreicht und beträgt 123 mg/kg Gluconsäure- δ -lacton. Der Zusatz von Chlorogensäure fördert die HMFA-Bildung. Nach 100 Sekunden werden doppelt soviel HMFA (149 mg/kg Gluconsäure- δ -lacton) gefunden. Gluconsäure- δ -lacton ist mit ca. 0.02 % (nach Zusatz von Chlorogensäure) an der Gesamtbildung von HMFA in Kaffee beteiligt.

Zusammenfassung der Bildung von HMF/HMFA in den Modellreaktionen (240 °C)

Ausgangsstoffe	HMFA-Gehalt	HMF-Gehalt
Glycerinaldehyd + Na-Pyruvat	+++	+
Alanin + Glycerinaldehyd	-	-
${ m Alanin} + { m Saccharose}$	-	+++
Pektin	-	+
Galacturonsäure	-	+
Glucuronsäure + Chlorogensäure	-	++
Gluconsäure- δ -lacton+ Chlorogensäure	++	-

+++ starke Bildung, ++mittlere Bildung, + schwache Bildung, - keine Bildung

Abbildung 4: Einfluss der Chlorogensäure auf die HMFA-Bildung

Bei der Analyse der anderen Substanzen wurde kein HMFA gebildet, aber wie erwartet wurde bei der Reaktion von Alanin mit Saccharose, viel HMF gebildet (300 mg/kg).

In diesem Projekt wurde versucht ein Modellsystem für die Bildung von HM-FA bei der Röstung von Kaffee zu finden. Die gefundenen Ausgangssubstanzen machen nur einen kleinen Teil an der Gesamtproduktion aus, demnach ist es noch unklar wie der Großteil der HMFA in Kaffee gebildet wird.

[1]Ulbricht, R.J., Northup, S.J., Thomas, J.A., 1984. A review of 5-hydroxymethylfurfural (HMF) in parenteral solutions. Fund. App. Toxicol. 4, 843–853.

[2] Murkovic M., Bornik M., Formation of 5-hydroxymethyl-2-furfural(HMF) and 5- hydroxymethyl-2-furoic acid during roasting of coffee, Mol. Nutr. Food Res. 2007,51,390 - 394, 2007 WILEY-VCH Verlag Gmbh & Co KgaA

Literatur

- H.D. Belitz, W. Grosch, P. Schieberle, Lehrbuch der Lebensmittelchemie, Springer, 5. Auflage (2001)
- [2] ICO 2009
- [3] Murkovic M., Bornik M.A, Formation of 5-hydroxymethyl-2-furfural (HMF) and 5-hydroxymethyl-2-furoic acid during roasting of coffee, Mol.Nutr. Food Res. 51 (2007) 390-394
- [4] Murkovic M., Pichler N., Analysis of 5-hydroxymethylfurfural in coffee, dried fruits and urine, Mol.Nutr. Food Res. 50 (2006) 842-846
- [5] Daglia M., Papetti Al, Gregotti C., In vitro antioxidant and ex vivo protective activities of green and roasted coffee. J. Agric. Food chem. 48 (2000) 1449-1454.
- [6] Hodge J., Chemistry of Browning Reactions in Model Systems, Northern Regional Research Laboratory, Peoria, III., Agricultural and Food Chemistry, Vol. 1, No. 15 (1953) 928 - 943
- [7] Oliva-Teles M.T., Delerue-Matos C., Alvim-Ferraz M. Determination of free furfuryl alcohol in foundry resins by chromatographic techniques, Analytica Chimica Acta 537 (2005) 47-51
- [8] Sicherheitsdatenblatt gemäß Verordnung (EG) Nr.1907 (2006)
- [9] Merck Chemicals Datenblatt: 804015 Furfurylalkohol
- [10] Sujatha PS., Monitoring cytotoxic potentials of furfuryl alcohol and 2-furyl methyl ketone in mice, Food Chem Toxicol. (2008); 46(1) 286-292
- [11] Cocker J., Gregg CN., Groves J., 2-Furaldehyde, HSE. Risk assessment document Vol:EH72/6 (1997) 72
- [12] Merck Chemicals Datenblatt 104013 Furfural
- [13] 5-(Hydroxymethyl)-2-furfural, NCI by Technical Resources International, Inc, under Contract No. NO1-CP-56019 (12/1994)
- [14] http://www.mimacasa.at/wissenswertes/tippszurkaffeezubereitung/
- [15] Khabarov Yu.G., Kamakina N.D., Gusakov L.V., A new spectrophotometric method for determination of furfural and pentoses, Russian Journal of Applied Chemistry, 2006, Vol. 79/1, 103-106
- [16] Chinnici F., Masino F., Antonelli A., Determination of Furanic Compounds in Traditional Balsamic Vinegars by Ion-Exclusion Liquid Chromatography and Diode-Array Detection, Journal of Chromatographic Science, Vol. 41 (2003) 305-310
- [17] Bähre, F., Meier, G., New nonvolatile acids in coffee, Dtsch.Lebensmittl. (1999) 399-402

- [18] Fallico B., Arena E., Zappala M., Degradation of 5-Hydroxymethylfurfural in Honey, Institute of Food Technologists Vol. 73, Nr. 9 (2008)
- [19] RICHTLINIE 2001/110/EG DES RATES vom 20. Dezember 2001 über Honig, Amtsblatt der Europäischen Gemeinschaften (2002)
- [20] SOUCI-FACHMANN-KRAUT, http://www.sfk-online.net
- [21] Bagdonaite K., Viklund G., Skog K., Analysis of 3-aminopropionamide: A potential precursor of acrylamide, J. Biochem. Biophys. Methods 69 (2006) 215 - 221
- [22] Murkovic M., Derler K., Analysis of amino acids and carbohydrates in green coffee, J. Biochem. Biophys. Methods 69 (2006) 25 - 32
- [23] Chinnici F., Masino F., Antonelli A., Determination of Furanic Compounds in Traditional Balsamic Vinegars by Ion-Exclusion Liquid Chromatography and Diode-Array Detection, Journal of Chromatographic Science, Vol. 41 (2003) 305 - 310