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Abstract

This master thesis is concerned with the growth-optimal portfolio framework for sequential

investment. In this setting, one is interested in finding portfolio strategies that asymptot-

ically achieve the best possible expected average growth rate in a set of reference a-priori

portfolio strategies. After laying out important preliminaries, we present optimal strate-

gies which work under rather general assumptions for the underlying processes of returns.

Next, distribution-free algorithms for empirical growth-optimal portfolio selection are pre-

sented, using methods from nonparametric regression and prediction by expert advice. An

application on real world commodity data (implemented in C++ code) shows the appli-

cability and effectivity of each of these algorithms. The results are promising, especially

for kernel and nearest neighbour algorithms.

Zusammenfassung

Diese Arbeit beschäftigt sich mit dem Konzept wachstumsoptimaler Portfoliostrategien

für sequentielle Investments. Ziel in diesem Modell ist das Finden von Portfolios, die

asymptotisch die bestmögliche erwartete durchschnittliche Wachstumsrate in einer fest-

gelegten Menge von a-priori Portfoliostrategien erreichen. Nach der Präsentation wichtiger

wahrscheinlichkeitstheoretischer Konzepte werden optimale Portfoliostrategien unter sehr

allgemeinen Anforderungen an die zugrundeliegenden Returns präsentiert. Danach wer-

den verteilungsfreie empirische Portfolioalgorithmen in diesem Modell erarbeitet, die unter

anderem Ergebnisse aus der nichtparametrischen Regression und der Vorhersage mit Ex-

perten verwenden. Eine Anwendung auf Rohstoffkurse (implementiert in C++) zeigt

die Vor- und Nachteile eines jeden dieser Algorithmen. Die Ergebnisse dieser Backtests

sind insgesamt sehr vielversprechend, besonders für die Kernel und Nearest-Neighbour

Algorithmen.
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Chapter 1

Introduction

The problem of choosing an optimal combination of investments has a long history closely

related to the theory of gambling (like most of todays financial models). [Markowitz, 1970]

developed a risk/return framework which found a lot of response by the academic and pro-

fessional community. Another portfolio concept, the idea of growth-optimal investment for

sequential investment decisions, appealed less to academics and has almost been neglected

by practitioners, to some extent because calculating this portfolio is difficult. Advances

in computer technology now allow to derive powerful algorithms to calculate growth-

optimal portfolios, making this framework interesting again. These new algorithms have

the special property that they do not assume a certain probability distribution on the

price processes, but try to establish optimality conditions with as little assumptions as

possible. The main focus of this thesis is on such distribution-free portfolio strategies and

algorithms. A second aspect covered is a test of these methods on a set of commodity

data to assess their applicability.

This leads to the following structure of the thesis: At the beginning, relevant general defi-

nitions and results from stochastics are presented, as well as the basics from nonparamet-

ric regression and prediction by expert advice, which are among the core distribution-free

methods in other areas. In chapter 3, the concept of growth-optimality is introduced and

important theoretical results are summarized. Special attention is drawn to the difference

of strategies for dependent and independent returns. The main focus, again, lies on re-

sults that are independent of specific distributions. A critical discussion of the properties

of growth-optimal portfolios finishes this part. Chapter 4 presents several selection al-

gorithms utilizing previous ideas and results. Concluding, several algorithms are applied

onto real world data, leading to a comparison of their benefits and drawbacks in chapter

5.

At this point, I am very grateful to my advisor, Prof. Dr. techn. Ernst Stadlober, who

1



2 Chapter 1. Introduction

patiently led me through the process of writing this thesis. I am thankful to Julia, who

supported me so much in the last months.

Finally, I am especially grateful to my parents, Peter and Annemarie Schitter, without

whom I would have never been able to undertake my studies. To them I dedicate this

thesis.



Chapter 2

Preliminaries

2.1 Stochastic Definitions and Results

2.1.1 Stochastic Processes and Convergence

One of the main interests in stochastics today is to model the behaviour of a random

variable over time. This is done by the theory of stochastic processes. The selection

of definitions and results presented here is limited to time-discrete stochastic processes,

as these are the ones of main interest for this thesis. A comprehensive and general

introduction to stochastic processes can be found in [Kallenberg, 2002], on which this

section also mainly relies.

Definition 2.1 (Stochastic Process). Define a probability space (Ω,A, P ), a σ-algebra Z
on a space Ξ and a set of indices T . A stochastic process is defined as a sequence of

random variables Xt : Ω → Ξ with t ∈ T such that for every t ∈ T the variable Xt is

A-Z-measurable.

The whole sequence and every of its sub-sequences have a (marginal) distribution. In

a time-discrete setting, one usually uses T ⊆ Z, which will be assumed throughout the

thesis. It should be noted, that the Xt can still be continuously distributed, which will

usually be assumed in the following. To compare the equalities of two random variables,

we use the concept of equality in distribution:

Definition 2.2 (Equality in distribution). Two random variables X and Y are said to

be equal in distribution, X
d
=Y , if

P (X−1(Z)) = P (Y −1(Z)) ∀Z ∈ Z.

3



4 Chapter 2. Preliminaries

We will also be interested in the asymptotic behaviour of functions of the stochastic

process over time. In a stochastic setting, special types of convergence need to be defined

in contrast to a deterministic setting, as the limit itself is usually stochastic:

Definition 2.3 (Convergence in distribution). A sequence of random variables Xn, n =

1, 2, . . . , is said to be converging in distribution to X, Xn
d→X, if

lim
n→∞

P (X−1
n (Z)) = P (X−1(Z)) ∀Z ∈ Z.

Definition 2.4 (Almost sure convergence). A sequence of random variables Xn, n =

1, 2, . . . , is said to be converging almost surely to X, Xn
a.s.→X, if

P ( lim
n→∞

Xn = X) = 1.

Remark 2.1. Almost sure convergence is stronger than convergence in distribution in the

sense that the former implies the latter, which is usually not true the other way round.

Remark 2.2. There are other types of stochastic convergence that are not mentioned

here, as they are not relevant in this paper.

2.1.2 Stationarity and Ergodicity

It is common to group classes of stochastic processes according to certain characteristics

(like Markov processes or the Brownian motion). Among the most important classes (as

there are a lot of fundamental results about them) is the rather general class of station-

ary and ergodic processes, that is briefly described in the following. Note that general

properties of these processes do not depend on a specific underlying distribution. The

following results are mainly collected from [Györfi et al., 2002] and [Kallenberg, 2002].

Definition 2.5 (Shift operator). The n-th shift operator θn on a vector x is defined as

θn(xi, xi+1, . . . , xi+k) = (xi+n, xi+1+n, . . . , xi+k+n)

for arbitrary i, k, n ∈ N.

Definition 2.6 (Stationary process). A stochastic process Xt is called stationary if for

every selection of integers n, k and t

θn(Xt, Xt+1, . . . , Xt+k)
d
= (Xt, Xt+1, . . . , Xt+k).
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Remark 2.3. This definition implies that sequences of equal length in this stochastic

process always have the same distribution, no matter from which position of the process

they are taken.

Definition 2.7 (Measure-preserving operator). On a probability space (Ω,A, P ), an op-

erator T : Ω→ Ω is called measure-preserving, if for all A ∈ A

P (A) = P (T−1A).

The following result shows a connection between discrete stationary random processes

and measure-preserving operators.

Lemma 2.1. For every stationary sequence Xt, t ∈ Z, there is a random variable X and

a measure-preserving operator T , such that

Xt = X(T tω).

Proof. Defining Zt = Xt(ω), identify ωt = X−1
t (Zt). Because of stationarity, θkXt(ω) =

Xt+k(ω) = Zt+k
d
=Zt = Xt(ω) for all k ∈ Z implies that P (ωt) = P (ωt+k) = P (θ−kωn).

Therefore, the shift operator is measure-preserving for stationary processes. By choosing

Z = X0 and T = θ, one immediately gets the result.

Definition 2.8 (Ergodic process). A stationary process is called ergodic, if its inherent

measure-preserving transformation T has the property that

T−1A = A⇒ P (A) = 0 ∨ 1 ∀A ∈ A.

Definition 2.9 (Stationary and ergodic process). A stochastic process is called stationary

and ergodic (s-a-e), if it has both the properties of stationarity and ergodicity together.

There is a central result for the class of ergodic processes, Birkhoff’s ergodic theorem,

which can be seen as a law of large numbers for this class of processes and highlights the

power and significance of s-a-e processes. A special case of this theorem for functions of

s-a-e processes will be presented here as well:

Theorem 2.1 (Birkhoff’s ergodic theorem for s-a-e processes). Let Xt be a stationary

and ergodic process with E(|X1|) <∞. Then

lim
n→∞

1

n

n∑
i=1

Xi = E(X1).
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Proof. See for example [Györfi et al., 2002].

Theorem 2.2 (Breimann’s generalized ergodic theorem for s-a-e processes). Let X =

{Xt}t=1,2,... be a s-a-e process and θn denotes the shift operator. Let f1(.), f2(.), . . . be a

sequence of real valued functions such that limn→∞ fn(X) = f(X) almost surely for some

function f(.). Assume E(supn |fn(X)|) <∞. Then

lim
n→∞

1

n

n∑
i=1

fi(θ
iX) = E(f(X)).

Proof. See [Breiman, 1957].

Remark 2.4. Stationarity and ergodicity indicates a strong dependence of a process over

time. Due to the previously stated laws of large numbers, very powerful results can be

achieved for models based on s-a-e processes by transforming similar results for the stan-

dard law of large numbers.

Remark 2.5. In practice, a lot of dependent time series that do not show a specific trend

and/or pass certain statistical tests for stationarity are treated as stationary and ergodic

for this reason.

2.2 Prediction by Expert Advice

We will see that portfolio selection can be closely related to predicting the outcomes of

a sequence. In machine learning, a similar problem regularly occurs (see for example

[Cesa-Bianchi and Lugosi, 2006]). From a given set of observations, one wants to deduce

- as general and accurate as possible - the next outcome. There is a whole range of theories

and special adaptations of this task for certain problems. Prediction by expert advice is

a generalization of many of these concepts and will be closer looked at here, serving as a

resource of ideas for portfolio algorithms later on.

2.2.1 The Basic Model

Think of the following framework of predicting: A forecaster has to make a decision for

an action according to a certain input. Each time the forecaster acts, it can evaluate

the success of its action and thereby ”learn” which reactions on which input where good

and which were not. Optimally, this should lead to a forecaster with a good reaction

to the given inputs after a certain learning period. If possible, the forecaster should

automatically adapt when the required reactions for certain inputs change.
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More formally, this can be described as follows: We want to sequentially predict a series

of outcomes y1, y2, . . . of a finite outcome space Y . The forecaster’s predictions p̂1, p̂2, . . .

belong to the convex decision space D, that is often - but not necessarily - a subspace of Y .

To make these predictions, the forecaster has access to a set of experts {fi,t ∈ D : i ∈ I}
for a given set of indices I. He does not know how reliable the single experts are, but he

calculates his own prediction according to those of the experts. After the real outcome is

revealed, the forecaster can see how reliable the experts’ and his own predictions were for

this specific case. He weighs this reliability by a nonnegative loss function

l : D × Y → R

usually used with either the prediction (l(p̂t, yt)) or the experts (l(fi,t, yt)). According to

the performance, he can choose to use the information given by the experts differently in

the next prediction, thereby adopting to what he just learned.

The forecaster’s goal is usually set to keep the cumulative regret for each forecaster i,

Ri,n = L̂n − Li,n (2.1)

with L̂n =
∑n

t=1 l(p̂t, yt) and Li,n =
∑n

t=1 l(fi,t, yt), as small as possible. Usually, this

means that the loss of the prediction should converge in the mean towards the loss of the

best expert

Rn =
1

n

(
L̂n − inf

i∈I
Li,n

)
n→∞−→ 0. (2.2)

There are surprisingly many possibilities to find a mixing of the experts that fulfills (2.2),

each with benefits and drawbacks.

Probably the simplest form of such a calculation is the weighted average forecaster, a

simple convex combination of the experts:

p̂t =

∑
i∈I wi,tfi,t∑
i∈I wi,t

. (2.3)

As D was assumed to be convex, the forecast is again in this space. Assume for now that

I = {1, 2, . . . , N} is finite. As the forecaster has access to a certain history of the expert’s

prediction, it makes sense to calculate the weights as a function of the past performance

of the experts, wi,t(Rt−1) with Rt−1 = (R1,t−1, . . . , RN,t−1). A very powerful choice for

this function is the so called exponential weight, given by

wi,t(Rt−1) =
exp(ηRi,t−1)∑N
j=1 exp(ηRj,t−1)
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for an arbitrary but positive parameter η. Using these weights in (2.3) together with

substitution by (2.1) delivers

p̂t =

∑N
i=1 exp(−η

∑t−1
j=1 l(fi,j, yi))fi,t∑N

i=1 exp(−η
∑t−1

j=1 l(fi,j, yi))
=

∑N
i=1 exp(−ηl(fi,t, yi))wi,t−1fi,t∑N
i=1 exp(−ηl(fi,j, yi))wi,t−1

. (2.4)

For this forecaster, the following upper bound of regret can be derived:

Theorem 2.3 (Upper bound for exponentially weighted average forecasters). Assume

that the loss function is convex in its first argument and that it takes values in [0, 1].

For any n and η > 0 and for all y1, . . . , yn ∈ Y, the regret of the exponentially weighted

average forecaster satisfies

Rn ≤
lnN

ηn
+
η

2
.

Proof. See [Cesa-Bianchi and Lugosi, 2006].

The upper bound is optimal for η =
√

2 lnN
n

, leading to

Rn ≤
√

2 lnN

n

which is obviously converging to 0 and therefore fulfilling (2.2). Still, every other choice

for η that leads to convergence is also feasible, like η = 1.

Generalizing this idea, one is interested in finding a forecaster in the class P of possible

sequences of forecasters, with the smallest possible regret for a fixed loss function l and

experts fi,n for i ∈ I, the so called minimax regret Vn(I),

Vn(I) = inf
P

sup
yn1 ∈Yn

(
n∑
t=1

l(p̂t(y
t−1
1 ), yt)− inf

i∈I

n∑
t=1

l(fi,t(y
t−1
1 ), yt)

)
.

An upper bound for the minimax regret shows the worst case regret of the forecasting

strategy, while a lower bound shows the best case regret. In the following section, an

explicit minimax regret of the logarithmic loss function in combination with the exponen-

tially weighted average forecaster will be derived.

2.2.2 Logarithmic Loss and Mixture Forecaster

Let the outcome space be Y = {1, . . . ,m} and let the decision space be the so called

probability simplex

D =

{
p = (p(1), . . . , p(m)) :

m∑
j=1

p(j) = 1, p(j) ≥ 0, j = 1, . . . ,m

}
.
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We will also assume that m experts predict according to the known past of outputs at

time t, yt−1
1 , assigning each outcome a probability:

ft = (ft(1|yt−1
1 ), . . . , ft(m|yt−1

1 )).

ft(i|yt−1
1 ) can be interpreted as the conditional probability of the occurrence of i at time

t. The forecaster therefore chooses at each time instance t a probability vector

p̂t = (p̂t(1|yt−1
1 ), . . . , p̂t(m|yt−1

1 )).

Continuing to interpret the experts and the forecaster as conditional probabilities, one

can write

fn(yn1 ) =
n∏
t=1

ft(yt|yt−1
1 ) and p̂n(yn1 ) =

n∏
t=1

p̂t(yt|yt−1
1 ).

Considering that the main operation here is multiplication, the choice of a loss function

based on the logarithm is rather natural:

l(p, y) = ln
1

p(y)
y ∈ Y , p ∈ D. (2.5)

This loss function is obviously aiming at assigning a high probability to the outcomes in

the sequence. Replacing the loss function in (2.2) by (2.5) gives

Rn =
1

n

(
n∑
t=1

ln
1

p̂t(yt|yt−1
1 )
− inf

i∈I

n∑
t=1

ln
1

fi,t(yt|yt−1
1 )

)
= sup

i∈I
ln
fi,n(yn1 )

p̂n(yn1 )
.

The forecaster that follows is the so called mixture forecaster:

p̂n(yn1 ) =
n∏
t=1

∑
i∈I fi,t(y

t
1)∑

i∈I fi,t−1(yt−1
1 )

.

Using the obvious property that
∑

yn1 ∈Yn
fi,n(yn1 ) = 1 the former formula reduces to

p̂n(yn1 ) =
1

N

∑
i∈I

fi,n(yn1 ).

Here fi,0(y0
0) = 1. The mixture forecaster in this case is just the uniform mixture of the

N experts. There is the following extension if I, and therefore the number of experts, is

countable. Choose πi for each i ∈ I such that
∑

i∈I πi = 1. Then we can get a mixture

forecaster for countable many experts by
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p̂n(yn1 ) =
∑
i∈I

πifi,n(yn1 ).

In the special case of the logarithmic loss function, the minimax regret can be found

explicitly. Observe here, that

Vn(I) = inf
p̂

sup
yn1 ∈Yn

ln
supi∈I fi,n(yn1 )

p̂n(yn1 )
.

The following theorem delivers the desired forecaster.

Theorem 2.4 (Minimax regret for logarithmic loss functions). For any class of experts

fi,n, i ∈ I, and integer n > 0, the so called likelihood forecaster

p̂∗n(yn1 ) =
supi∈I fi,n(yn1 )∑

xn1∈Yn
supi∈I fi,n(xn1 )

is the unique forecaster such that

Vn(I) = sup
yn1 ∈Yn

ln
supi∈I fi,n(yn1 )

p̂∗n(yn1 )
.

Moreover, p̂∗n is an equalizer; that is, for all yn1 ∈ Yn,

ln
supi∈I fi,n(yn1 )

p̂∗n(yn1 )
= ln

∑
xn1∈Yn

sup
i∈I

fi,n(xn1 ) = Vn(I).

Proof. See [Cesa-Bianchi and Lugosi, 2006].

Knowing the minimax regret and the best forecaster in a minimax sense facilitates the

analysis of a forecaster significantly, for example in the case of the Laplace mixture fore-

caster in the following example.

Example 2.1 (Laplace mixture forecaster). The Laplace mixture forecaster makes pre-

dictions on Y = {1, 2}, and is defined by

p̂n(yn1 ) =

∫ 1

0

qn1(1− q)n2dq

where n1 and n2 are the number of occurrences of 1 and 2 in yn1 respectively. This means,

we got a countable number of constant experts q and 1 − q and mix them by taking the

average according to the uniform distribution. For this forecaster, the following can be

stated:

Theorem 2.5 (Minimax regret of Laplace mixture forecaster). The Laplace mixture fore-

caster satisfies
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sup
yn1 ∈{1,2}n

(
L̂(yn1 )− inf

i∈I
Li,n(yn1 )

)
= ln(n+ 1).

Proof. See [Cesa-Bianchi and Lugosi, 2006].

Remark 2.6. Note that the methods described here are purely deterministic (even though

the experts can be interpreted as probabilities in the logarithmic loss case). Yet, these

methods can be used in a stochastic setting. Assume for example that the experts depend

on stochastic observations and methods. This idea will be of use in the next section, but

also later on.

2.3 Nonparametric Regression

2.3.1 Nonparametric Regression for Independent and Identi-

cally Distributed Observations

In regression estimation, one is usually interested in defining a functional dependence

between an observed vector X and a response variable Y , where the variables are all

assumed to be independent and identically distributed (iid). This means finding a function

depending on X that is a ”good” approximation of Y . In a nonparametric setting, this

requires a measurable estimator m∗(X) : Rd → R such that the so called L2-risk is

minimized (compare for example [Härdle, 1992]):

E(m∗(X)− Y ) = min
f :Rd→R measurable

E(|f(X)− Y |2).

The well known solution to this problem is the regression function

m(x) = E(Y |X = x). (2.6)

The difference to parametric regression estimation now lies in the fact, that the estimator

for m(x) is not dependent on a finite number of estimated parameters (like the moments

of the underlying distribution), but directly on the whole history of observations. This

means that for a given set of n observations Dn = ((X1, Y1), (X2, Y2), . . . , (Xn, Yn)), the

regression function estimate mn(x) of Yn+1 depends on the current observation Xn+1 and

the whole history Dn, therefore mn(x) = mn(Xn+1, Dn). This setting leads to more

flexibility and a better integration of the available data compared to parametric methods.

At this point, an estimator for mn(x) is needed, that either fulfills

• weak consistency: limn→∞E(
∫

(mn(x)−m(x))2µ(dx)) = 0, or
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• strong consistency: limn→∞
∫

(mn(x)−m(x))2µ(dx) = 0 a.s.

for a given distribution, as this means that the estimator converges toward the regression

function. If the estimator is weakly/strongly consistent for all distributions, it is called

weakly/strongly universally consistent.

One of the standard methods to serve as an estimator is the kernel-based prediction

method (which is more or less local averaging). Here, mn(x) can be written as

mn(x) =
n∑
i=1

Wn,i(x)Yi (2.7)

for some weights Wn,i(x) = Wn,i(Xn+1, Dn). The weight for Yi is smaller, the ”further”

Xi is away from Xn+1. A simple idea for choosing the weights is a naive kernel estimation

as follows:

mn(Dn, Xn+1) =

∑n
i=1 11{‖Xi−Xn+1‖≤r}Yi∑n
i=1 11{‖Xi−Xn+1‖≤r}

.

In this formula, r is the so called bandwidth. Its value decides which observations are

”similar” or ”near” enough to the current one to be considered in the local averaging. A

generalization of this idea is the so called Nadaraya-Watson kernel

mn(Dn, Xn+1) =

∑n
i=1 Kr(Xn+1 −Xi)Yi∑n
i=1Kr(Xn+1 −Xi)

where Kr(X −Xi) is an arbitrary function (the kernel function) for which the method is

weakly or strongly (universally) consistent and converges - preferably as fast as possible -

towards the regression function. Finding a useful kernel function is not an easy task, nor

is deciding the size of the bandwidth r > 0. r is a kind of smoothing parameter, which is

typical for many nonparametric regression estimates. Therefore, the regression estimate

itself in such a case also depends on r: mn,r(x).

Choosing smoothing parameters is a rather difficult task. The possible, undesired effects

of choosing r too large is over-smoothing, as many observations are considered in the local

average that are actually too far away. On the other hand, choosing r too small results in

under-smoothing, which means that there are often nearly no points over which to take

the average. Compare figure 2.1 and 2.2 for a visual representation of this problem.

Clearly, there is a need for a sound procedure to select the smoothing parameter. Several

ones have been proposed, mainly such which rely on estimating r from a ”training sample”

in a way that the fit of the estimate on the training sample is good (for extensive coverage

of these aspects, see [Györfi et al., 2002]). A more recent, alternative approach, that does



2.3. Nonparametric Regression 13

Figure 2.1: Simulated data with original regression function. Source: [Györfi et al., 2002].

(a) Over-smoothing (b) Good smoothing (c) Under-smoothing

Figure 2.2: Kernel regression estimate for figure 2.1 with increasing values for r. Source:
[Györfi et al., 2002].

not need an a-priori estimation for r or a training sample, will be introduced later in the

case of dependent observations.

However, even with the challenges at hand it can be shown that the following rather

general result holds, which assures the user of the usefulness of this method:

Theorem 2.6 (Weak consistency of kernel estimator for iid processes). Assume that the

observations are iid and that there are balls S0,r of radius r and balls S0,R of radius R

centered at the origin (0 < r ≤ R), and constant b > 0 such that

11{x∈S0,R} ≥ K(x) ≥ b11{x∈S0,r}

for the Kernel K(x), and consider the kernel estimate mn(x) introduced before with a

bandwidth function rn depending on the number of observations n. If rn → 0 and nrdn →
∞, then the kernel estimate is weakly consistent.

Proof. See [Györfi et al., 2002].
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Another paradigm is the so called k-nearest neighbour (k-NN) estimator. Here one applies

again local averaging, but only on the k ”nearest” points in the known history. More

specifically, reorder the history Dn to D(n)(x) = ((X(1), Y(1)), . . . , (X(n), Y(n))) according

to increasing values of ‖Xi − x‖. With this, define the kn-nearest neighbour estimate by

mn(x) =
1

kn

kn∑
i=1

Y(i)(x).

In our previous setup, this means taking again x = (Xn+1, Dn).

If the kth ordered point has the same distance from x as the (k + 1)th, one has a tie

and should therefore declare an applicable rule for choosing the appropriate point (like

using the one whose original index is the highest for example). In a theoretical setting,

it is usually sufficient to assume that ties occur with probability 0. This is done in the

following theorem, which proves the universal consistency of this concept:

Theorem 2.7 (Weak consistency of k-NN estimator). If kn → ∞ and kn
n
→ 0 then the

kn-NN estimator is weakly consistent for all distributions of (X,Y) where ties occur with

probability 0 and E(Y 2) <∞.

Proof. See [Györfi et al., 2002].

Remark 2.7. k-NN and Kernel estimators follow a similar concept, but have different

implications. It usually depends on the problem and data at hand to decide which of the two

is the better choice. The advantage of the kernel-based estimator lies in the fact, that one

can assign a different importance to historic observations according to their distance from

the current observation by choosing an appropriate kernel function. Furthermore, points

that are ”too far” away can be excluded, which should result in a better fit. However,

for little data, it can often happen that few or even no historic observations are close

enough to be considered, thus making the estimation obsolete. The k-NN estimator on

the other hand does exactly the opposite: While it always produces a valid estimation (as

it uses exactly k observations for the local average) it has the disadvantage of probably

using points too far away to serve as a good prediction. Precise analysis of the data and

a comparison of both methods therefore usually proves to be useful before either one is

finally applied.

2.3.2 Nonparametric Sequential Prediction for Dependent Ob-

servations

While in the classical regression case one is confronted with iid observations, in several

applications (especially in finance and economics) this assumption is too restrictive. In
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these areas, one usually looks at time series and wants to predict the next outcome from

the known past, taking into account possible dependencies over time (see for example

[Biau et al., 2010]). A combination of kernel estimation and expert advice will prove to

deliver a very robust method for this kind of time series prediction problems.

Consider the time series xn1 = (x1, x2, . . . , xn). One is interested to predict xn+1 from

the known past with the predictor gn(xn1 ). Ideally, one wants to minimize the cumulative

squared prediction error

Ln(g) =
1

n

n∑
t=1

(gt(x
n
1 )− xt+1)2.

[Algoet, 1994] shows that the best bound L∗ for any sequential prediction strategy g of

s-a-e processes is given by

lim inf
n→∞

Ln(ĝ) ≥ L∗ = E((X1 − E(X1|X0
−∞))2) a.s. (2.8)

Usually, the lower bound cannot be reached for finite n, but one can find strategies, such

that

lim
n→∞

Ln(ĝ) = L∗ a.s.

with respect to the class of all s-a-e processes. This means that if the underlying time

series is generated by a s-a-e process, the strategy asymptotically achieves the best lower

bound. Combining the basic ideas of the last sections, one can define the following

sequential prediction strategies:

Define an array of experts f
(k,l)
n , where k and l are positive integers, and the function

Ta(z) =


a if z > a

z if |z| ≤ a

−a if z < −a

Define further a radius rk,l for each pair (k, l) such that for fixed k

lim
l→∞

rk,l = 0. (2.9)

Then the kernel-based expert f
(k,l)
n at time n can be defined as

f (k,l)
n (xn1 ) = Tmin(nδ,l)

(∑
{k<t<n}Krk,l(‖xtt−k+1 − xnn−k+1‖)xt∑
{k<t<n}Krk,l(‖xtt−k+1 − xnn−k+1‖)

)
for a kernel function Kr(x).
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Further define an arbitrary probability distribution {qk,l}, arbitrary ηn > 0 and the

weights

wk,l,n = qk,l exp
(
−ηn(n− 1)Ln−1(f

(k,l)
n−1 )

)
.

Then the following holds:

Theorem 2.8 (Asymptotic optimality of the sequential kernel prediction for s-a-e pro-

cesses). Choose

ηn =
1√
n
.

Assuming that (2.9) is verified, the prediction scheme for the kernel weights defined above

running over all integers (k, l),

gn(xn1 ) =

∑∞
k,l=1wk,l,nf

(k,l)
n (xn1 )∑∞

i,j=1wi,j,n

asymptotically achieves the lower bound from (2.8) for the class of all s-a-e processes

where E(X4
0 ) <∞.

Proof. See [Biau et al., 2010].

Remark 2.8. The previous result holds if the xi are vectors by just using the Frobenius

norm in the Kernel function.

In quite the same way, we can define a nearest-neighbour based estimator with similar

properties. Consider again experts f
(k,l)
n for integers k and l. This time, choose pl ∈ (0, 1)

such that

lim
l→∞

pl = 0 (2.10)

and set l̄ = bplnc where b.c is the floor function. Introduce the set of the l̄ nearest

neighbours

Jk,l,n = {k < t < n : xtt−k+1 is among the l̄ observations in

(xk1, . . . , x
n−1
n−k) with smallest distance to xnn−k+1}.

Then the experts are defined for n > k + l̄ + 1 by
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f (k,l)
n (xn1 ) = Tmin(nδ,l)

1

l̄

∑
j∈Jk,l,n

xj+1


for δ > 0 if the sum is nonvoid and 0 otherwise. As before, define an arbitrary probability

distribution {q(k,l)}, ηn > 0 and weights

wk,l,n = qk,l exp
(
−ηn(n− 1)Ln−1(f

(k,l)
n−1 )

)
.

With these definitions, the following theorem holds:

Theorem 2.9 (Asymptotic optimality of the sequential NN prediction for s-a-e processes).

Choose

ηn =
1√
n
.

Assuming that (2.10) is verified, the prediction scheme for the nearest neighbour weights

defined above running over all integers (k, l),

gn(xn1 ) =

∑∞
k,l=1 wk,l,nf

(k,l)
n (xn1 )∑∞

i,j=1wi,j,n

asymptotically achieves the lower bound from (2.8) for the class of all s-a-e processes

where E(X4
0 ) <∞.

Proof. See [Biau et al., 2010]

Remark 2.9. These sequential prediction strategies for time series can of course be ex-

tended by looking at s-a-e time series that have observation and response variables as in

the general regression case. This means defining predictors gn(xn1 , y
n−1
1 ) in the same way

as before to predict yn. All of the above results hold for this case (see [Biau et al., 2010]

and [Györfi and Schäfer, 2003]).

Remark 2.10. In an applied setting one uses a finite set of experts, restricting (k, l) by

k = 1, . . . , K, l = 1, . . . , L.





Chapter 3

Growth-Optimality

After laying out basic ideas and important results from other areas, we are now turning

our attention towards portfolio theory. Here, one basically wants to ”optimally” distribute

money among a given choice of assets under different constraints. The fractions invested

in every single asset need to be predicted, which was the reason for investigating this

topic earlier. We will now lay out what is considered ”optimal” investment in the growth-

optimal framework and present core results of this theory. But first, we will look at

the game of coin tossing to understand the idea of growth-optimal strategies in an easy

setting.

3.1 The Kelly Strategy

It is well known that stochastics evolved mainly out of the interest in analyzing gambling

situations and trying to find optimal strategies for certain games. [Kelly, 1956] is supposed

to be the first to have introduced the growth-optimal strategies to sequential gambling

by adopting the concept of information rate from signal transforming. The question he

had in mind was the following: If a player gambles several times in a row in a favorite

game (that is, a game in which the expected return rate is positive), without drawing

any money away from the game, what is the optimal gambling strategy to maximize his

expected wealth in the long run? The objective was therefore to find a ”portfolio” of two

”assets”, where 0 ≤ b(1) ≤ 1 is the fraction of the gamblers money he should bet at each

try and b(2) = 1− b(1) is the money he should keep back.

To grasp the concept, assume that the game is tossing coins with an unfair coin (thus

making it a favourable game), where the probability of head is given by 0.5 < p < 1 and

that of number is given by q = 1− p. The gambler receives double the amount of money

he bets if he gets head and looses the money he bets otherwise. He is allowed to play

19
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as many games as he likes with his initial capital S0. Now, how much money should the

gambler bet in each try on head? If he bets all his money (b(1) = 1) all the time, he will

be broke almost surely at some point, namely when the coin shows number for the first

time. We first write down his fortune Sn after n tries

Sn = S0(2b(1) + 1− b(1))H(1− b(1))L = S0(1 + b(1))H(1− b(1))L

where H and L are the numbers of wins and losses in the n bets. Looking at this

representation of wealth after n tries, one sees that wealth will grow exponentially fast,

that is

Sn
S0

= exp(nWn)

where Wn is called the average growth rate. It is prudent to try to maximize E(Wn)

instead of E(Sn) in the long run, which in this sense means asymptotically. A simple

argument is that maximizing E(Sn) means betting everything on head all the time, leading

to bankruptcy with probability one. Therefore, we calculate

W = lim
n→∞

1

n
ln

(
Sn
S0

)
= lim

n→∞

(
H

n
ln(1 + b(1)) +

L

n
ln(1− b(1))

)
which satisfies

W = p ln(1 + b(1)) + q ln(1− b(1))

with probability one by the law of large numbers. The maximum with respect to b(1) is

obtained straightforward by differentiating

d

db(1)
p ln(1 + b(1)) + q ln(1− b(1)) =

p

1 + b(1)
− q

1− b(1)

!
= 0.

Solving for b(1) with respect to the fact that 1 + b(1) + 1− b(1) = 2 delivers

1 + b(1) = 2p

1− b(1) = 2q

which is equivalent to b(1) = 2p − 1 or b(1) = 1 − 2q respectively. This strategy is thus

asymptotically the best strategy for this game if one can play infinitely many games as it

is generating the best average growth rate
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W ∗ = p ln(2p) + q ln(2q)

in the long run. This partition of wealth is called the Kelly strategy and achieves in this

game the highest expected average rate of growth. Such a strategy is therefore also called

growth-optimal. A nice consequence of this strategy is that the gambler will never bet all

of his money, thus not risking ruin.

3.2 The Growth-Optimal Portfolio Model

The main idea of [Kelly, 1956] was that of considering a model with exponential growth for

sequential gambling situations, as all winnings are reinvested every time. [Breiman, 1960]

expanded this idea to sequential investments in a portfolio selection context. In this

setting, one is concerned with the problem of optimally distributing at time n a given

amount of money Sn among d assets, whose prices at time n are denoted by

sn = (s(1)
n , · · · , s(d)

n ).

One is especially interested in the vector of growth factors

xn = (x(1)
n , · · · , x(d)

n )

which represents the growth of the assets over one period, given by

x(j)
n =

s
(j)
n

s
(j)
n−1

.

Note that growth factors and returns of an investment are not the same. The return r
(i)
n

of an asset is the percentage increase, therefore r
(i)
n = x

(i)
n − 1. If we now denote the

vector of the fractions of the money invested in the assets at time n (with no short selling

allowed) by

bn = (b(1)
n , · · · , b(d)

n ) ∈ B =

{
(b(1), . . . , b(d)) : 0 ≤ b(i) ≤ 1,

d∑
i=1

b(i) = 1

}
the given amount of money that results from a trading strategy B = {bi}i=1,2,... after one

period can be represented as

S1(B) =
d∑
j=1

b
(j)
1 s

(j)
1 . (3.1)
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By using the vector of growth factors and the fact that

Sk+1(B) = Sk(B)
d∑
j=1

b
(j)
k+1x

(j)
k+1

the wealth after n periods can be represented by

Sn(B) = S0

n∏
i=1

d∑
j=1

b
(j)
i x

(j)
i = S0

n∏
i=1

〈bi, xi〉 (3.2)

where 〈., .〉 denotes the standard inner product and S0 is the given initial wealth. Note

that we simply write Sn(b) if the strategy is constant over time with B = {b}i=1,2,....

The objective of a portfolio strategy in general is to find a series of a-priori portfolio

vectors that should usually maximize the return of the portfolio under given constraints.

Different setups have been proposed, some taking into account constraints to limit risk,

some taking into account time constraints. The proposed setups also differ in assump-

tions over the underlying distribution of the process that drives sn. The objective of the

portfolio strategies in this thesis is to achieve so called growth-optimality, in a sense as

derived by [Kelly, 1956] for gambling. In the case of investment, the exponential growth

of the sequential strategy is implied by the behaviour of risk-free assets that grow by

sequential compounding (compare also [Luenberger, 1998]). No one would invest money

without having a high chance to gain wealth on average, that is E(〈bi, xi〉) > 1. This

makes investing a ”favourable game”. Therefore the price process grows exponentially on

average,

s(j)
n = enW

(j)
n (3.3)

which gives the so called average growth rate W
(j)
n ,

W (j)
n =

1

n
ln s(j)

n (3.4)

for asset j and

Wn =
1

n
lnSn

for the portfolio. Note that a favourable game is equivalent to having a positive asymptotic

average growth rate. Using representation (3.2), the asymptotic average growth rate W

of the portfolio can be derived as
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W = lim
n→∞

Wn = lim
n→∞

1

n
lnSn = lim

n→∞

(
1

n
lnS0 +

1

n

n∑
i=1

ln 〈bi, xi〉

)
= lim

n→∞

1

n

n∑
i=1

ln 〈bi, xi〉 .

Assume now that we can recalibrate the portfolio vector each day based on the information

of the known past, bn = b(xn−1
1 ) at time n. Then, we are looking for a strategy B∗ =

{b∗i }i=2,3,... such that

lim sup
n→∞

1

n
ln

Sn(B)

Sn(B∗)
= lim sup

n→∞

1

n

n∑
i=1

ln
〈bi, xi〉
〈b∗i , xi〉

≤ 0 a.s.

for any strategy B that is different from B∗. This means that in the long run, there is

no admissible strategy B that can beat the strategy B∗ almost surely. An equivalent

definition is given by

lim sup
n→∞

1

n
lnSn(B) ≤ lim sup

n→∞

1

n
lnSn(B∗) a.s.

and also by

lim sup
n→∞

(
1

n
ln(Sn(B))− 1

n
ln(Sn(B∗))

)
≤ 0 a.s.

Such a choice B∗ of portfolio vectors is called the growth-optimal portfolio (sometimes

also log-optimum or Kelly portfolio). As this definition usually is too general and we do

not necessarily want to choose specific distributions of the returns to investigate, it is

useful to restrict results to a certain choice of the underlying processes of Xt, thus giving

rise to the following definition:

Definition 3.1 (Universal consistency). A portfolio strategy B∗ is called universally con-

sistent with respect to a class C of stochastic processes {Xn}∞n=−∞ if for each process in

the class and every strategy B that is different from B∗

lim sup
n→∞

1

n
ln

Sn(B)

Sn(B∗)
≤ 0 a.s.

The more general the class can be kept, the better. From a similar point of view, one

can also be interested in the behaviour of a strategy B with respect to a set of reference

strategies {B̄i}i∈I with I being the set of indices of the strategies. This implies the

following definitions:

Definition 3.2 (Deterministic superiority). We call a strategy B to be deterministically

superior with respect to a reference set of strategies {B̄i}i∈I and a class of processes C, if
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lim sup
n→∞

sup
B̄∈{B̄i}i∈I

(
1

n
ln(Sn(B̄))− 1

n
ln(Sn(B))

)
≤ 0

for all processes in C.

Definition 3.3 (Stochastic superiority). We call a strategy B to be stochastically superior

with respect to a reference set of strategies {B̄i}i∈I and a class of processes C if

lim sup
n→∞

sup
B̄∈{B̄i}i∈I

(
1

n
ln(Sn(B̄))− 1

n
ln(Sn(B))

)
≤ 0 a.s.

for all processes in C.

Remark 3.1. It is obvious that if a strategy is stochastically superior with respect to

all possible strategies and a class C, it is also universally consistent with respect to all

processes in C.

3.3 Universal Consistency for Independent and Iden-

tically Distributed Returns

[Breiman, 1961] further investigates the application of growth-optimality to gambling with

independent and identically distributed (iid) outcomes, coming to conclusions that can

be transferred to growth-optimal investments for iid returns. Note that if the returns are

iid, the growth factors are as well and vice versa. He arrives at a universally consistent

strategy for iid processes by stating the following result:

Theorem 3.1 (Universally consistent portfolio strategy for iid returns). Let the vectors

of growth factors Xi be iid and E((ln 〈b,Xi〉)2) < ∞. Then the growth-optimal constant

portfolio vector b∗ is given by

b∗ = arg max
b∈B

E(ln 〈b,Xi〉)

and the resulting strategy is universally consistent with respect to all iid processes (or

equivalently: with respect to all processes that are memoryless). The resulting maximal

asymptotic average growth rate is

W ∗ = E(ln(〈b∗, Xi〉)) a.s.

for arbitrary i.
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Proof. ([Györfi et al., 2007]) Look at the constantly rebalanced portfolio strategy B =

{bi = b}i=1,2,... and its average growth rate

1

n
lnSn(b) =

1

n

n∑
i=1

ln 〈b,Xi〉 =
1

n

n∑
i=1

E(ln 〈b,Xi〉) +
1

n

n∑
i=1

(ln 〈b,Xi〉 − E(ln 〈b,Xi〉)).

By the strong law of large numbers, the last part tends to zero almost surely,

n∑
i=1

(ln 〈b,Xi〉 − E(ln 〈b,Xi〉))→ 0 a.s.

as the returns are iid and E((ln 〈b,Xi〉)2) <∞. This implies that maximizing the average

growth rate

lim
n→∞

1

n
lnSn(B) = E(ln(〈b,Xi〉) a.s.

is equivalent to maximizing E(ln 〈b,Xi〉) for any i. Consequently,

b∗ = arg max
b∈B

E(ln 〈b,Xi〉)

and the maximal average growth rate is

lim
n→∞

1

n
lnSn(b∗) = E(ln 〈b,Xi〉) a.s.

Remark 3.2. This result has the consequence that even if the portfolio vector can be

chosen dynamically at each time step, the growth-optimal portfolio vector is constant over

time for iid returns.

In an applied setting for iid returns, the theorem implies that the problem of calculating a

growth-optimal portfolio can be adressed by estimating the expected logarithm of growth

factors of the strategy, which will be useful later on.

3.4 The Importance of Using the Logarithm

In the last sections, growth-optimality was defined by finding a portfolio strategy that

delivers asymptotically the best expected average growth rate of all possible strategies.

But why do we want to maximize the growth rate, that is more or less the logarithm

of wealth, and not wealth itself? The reason for this lies in the fact, that Sn(b) (B = b
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constant here) is not close to E(Sn(b)) if Sn grows exponentially, that is E(Sn) = E(enWn),

as shown in [Györfi et al., 2007].

The last proof indicates that together with the iid property

1 = lim
n→∞

P

(
−δ < 1

n
lnSn(b)− E(ln 〈b,Xi〉) < δ

)
= lim

n→∞
P
(
en(−δ+E(ln〈b,Xi〉)) < Sn(b) < en(δ+E(ln〈b,Xi〉))

)
for any δ > 0. This means that Sn(b) is close to exp(nE(ln 〈b,Xi〉)). Looking at

E(Sn(b)) = E

(
n∏
i=1

〈b,Xi〉

)
= exp(n ln 〈b, E(Xi)〉)

shows that E(Sn(b)) is close to exp(n ln 〈b, E(Xi)〉) on the other hand. Applying Jensen’s

inequality,

exp(n ln 〈b, E(Xi)〉) > exp(nE(ln 〈b,Xi〉))

implies that Sn(b) is less than E(Sn(b)). This shows that maximizing the average growth

rate is the right thing to do in the iid case. The same holds for the general case, though

the proof is much more difficult (compare again [Györfi et al., 2007]). In the setting of

sequential investment with exponential growth, this means that maximizing the aver-

age growth rate leads to a much higher (in fact infinitely higher) performance than any

strategy that maximizes wealth itself in the long run.

3.5 Universal Consistency for Stationary and Ergodic

Returns

Things become more complicated if returns are not iid any more. Here it is usually not

possible to achieve universal consistency. However, for a special kind of highly dependent

returns, namely s-a-e returns, we can indeed find a strategy that is universal with respect

to this class of processes. That means that the optimal portfolio strategy given the known

past performs at least equally as well as the portfolio strategy given the full (even un-

known) past for s-a-e processes in the long run. This is shown in [Algoet and Cover, 1988]

and [Algoet, 1994].

If we assume dependence among the returns, it makes sense to look at conditional expec-

tations. Transforming the strategy for iid returns, this results in the following theorem:
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Theorem 3.2 (Universally consistent strategy for s-a-e returns). Choose the portfolio

strategy B∗ = {b∗i }i=1,2,... that sequentially invests at time i according to

b∗i = arg sup
b∈B

E(ln 〈b,Xi〉 |X1, · · · , Xi−1) (3.5)

where (X1, · · · , Xi−1) is the known past. Then this strategy is universally consistent with

respect to the class of all s-a-e processes. Furthermore, for s-a-e returns, this strategy

achieves the maximal expected growth rate

lim
n→∞

1

n
Sn(B∗) = W ∗

where

W ∗ = E(max
b∈B

E(ln(
〈
b(X−1

−∞), X0

〉
)|X−1

−∞))

given the information about the full past.

Proof. [Algoet and Cover, 1988] or [Györfi et al., 2007].

Corollary 3.1. From the previous theorem, it follows immediately that the universally

consistent strategy with respect to stochastic processes with iid realisations is constant (as

these processes are memoryless) and this fact reinforces theorem 3.1.

With the previous results, the problem of finding a universally consistent growth-optimal

portfolio for the class of s-a-e processes can be adressed by finding an algorithm that

evaluates (3.5) for any s-a-e process.

3.6 Stochastic Superiority for General Returns

In the general case, when no restrictions on the processes generating the returns are

assumed, universal consistency cannot be established by any strategy any more. But

there is still a possibility to receive a rather strong result: The last section showed that

sequentially maximizing the conditional expected logarithm of growth factors given the

known past leads to achieving the maximal expected return knowing the infinite past

in the s-a-e case. Now we state a result due to [Algoet and Cover, 1988] that the same

strategy beats any other strategy that acts on the same information.

Theorem 3.3 (Stochastic superior strategy for any process). Let Ft = σ(X1, . . . , Xt) be

the sigma-algebra of the known past. Then the strategy B∗ = {b∗i (Fi)}i=1,2,... with
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b∗i (Fi) = arg sup
b∈B

E(ln 〈b,Xi−1〉 |Fi)

is stochastically superior with respect to every other strategy bi(Fi) and every process,

therefore

lim sup
n→∞

1

n
ln

Sn(B)

Sn(B∗)
≤ 0 a.s.

Here, {
S̄n(B,B∗) =

Sn(B)

Sn(B∗)

}
0≤n<∞

is a non-negative submartingale, that is

E(S̄t(B,B
∗)|S̄s(B,B∗) = s̄) ≥ s̄ ∀s < t.

S̄n(B,B∗) is converging almost surely to a random variable Y with E(Y ) ≤ 1.

Proof. See [Algoet and Cover, 1988].

Remark 3.3. This theorem shows that even though in the general case we cannot guar-

antee to achieve the highest possible growth rate of every strategy, we can at least count on

the fact that it is impossible to find a better strategy that relies on the same information

about the past.

3.7 Critical Discussion

The growth-optimal portfolio theory is purely concerned with asymptotically maximizing

wealth in sequential investment. This means that one needs to have the possibility to

”play” as many games as one wants. In this setting, the theory guarantees that there is

no better strategy for this ”game” if the strategy is universal or that a proposed strategy

is better than a set of strategies if it is superior. Even though this seems to be a rea-

sonable objective for a portfolio strategy, this theory was controversially discussed among

economists and widely ignored by practitioners for a long time. This chapter critically

adresses these discussions in short, thereby providing valuable insights into the properties

and also shortfalls of the growth-optimal portfolio. A good overview of these points and

the academic work done in the field of growth-optimality can be found for example in

[Christensen, 2005].
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3.7.1 Growth-Optimal versus Efficient Portfolios

In the 1970s, Markowitz’s mean-variance portfolio was the dominating portfolio theory by

far. This framework assumed that only expected return and variance (or equivalently the

standard deviation) of the returns are important in making a portfolio choice. A strategy

b′t is said to dominate another strategy b′′t in this framework if

E(St(b
′
t)) > E(St(b

′′
t )) and V ar(St(b

′
t)) ≤ V ar(St(b

′′
t ))

or

E(St(b
′
t)) ≥ E(St(b

′′
t )) and V ar(St(b

′
t)) < V ar(St(b

′′
t )).

If a portfolio b̂t is not dominated by any other portfolio, it is said to be efficient. Usually,

this means that there are infinitely many possible portfolio choices that are efficient, and

each one is as good as the others. The results from section 3.4 already imply, that this

portfolio choice can usually not coincide with the growth-optimal portfolio, as it tries to

maximize the expected wealth instead of the expected growth rate, which we saw to be

two completely different objectives.

Now, it needs to be said that Markowitz was purely concerned with investments over

a single period, which is obviously a different objective than the sequential investment

framework of the growth-optimal portfolio. But it is usually true, that larger investors

recalibrate their investments very often. Therefore, it is interesting to look at a comparison

of the efficient and the growth-optimal portfolio for sequential investment. This was

investigated in a simple example by [Hakansson, 1971], which is recapitulated in short in

the following.

Example 3.1 ([Hakansson, 1971]). Assume that there are two risky assets with

x
(1)
t =

0 with probability 0.1

1.5 with probability 0.9

and

x
(2)
t =

1.15 with probability 0.9

2.65 with probability 0.1

Furthermore,

P (x
(1)
t = 0, x

(2)
t = 1.15) = 0.1,
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P (x
(1)
t = 0, x

(2)
t = 2.65) = 0,

P (x
(1)
t = 1.5, x

(2)
t = 1.15) = 0.8,

P (x
(1)
t = 1.5, x

(2)
t = 2.65) = 0.1.

The relevant variances and covariances are given by

V ar(x
(1)
t ) = V ar(x

(2)
t ) = 0.2025

and

Cov(x
(1)
t , x

(2)
t ) = 0.0225.

Therefore, the expected growth and standard deviation of the portfolio can easily be calcu-

lated by

E(St(bt)) = E(b
(1)
t x

(1)
t + b

(2)
t x

(2)
t ) = 1.35b

(1)
t + 1.30b

(2)
t

and

√
V ar(St(bt)) =

√
0.2025(b

(1)2

t + b
(2)2

t ) + 0.045b
(1)
t b

(2)
t .

Figure 3.1 shows the expected growth versus standard deviation of all admissible portfolios,

starting with bt = (0, 1) on the outer left going to bt = (1, 0) on the outer right of the curve.

The efficient portfolios are marked in blue.

The growth optimal portfolio is obtained by maximizing

E(lnSt(bt)) = E(ln(b
(1)
t x

(1)
t + b

(2)
t x

(2)
t ))

= E(ln(b
(1)
t (x

(1)
t − x

(2)
t ) + x

(2)
t ))

= 0.1 ln(1.15− 1.15b
(1)
t ) + 0.8 ln(1.15 + 0.35b

(1)
t ) + 0.1 ln(2.65− 1.15b

(1)
t ).

This is simply done by differentiating with respect to b
(1)
t and solving for the root. The

resulting growth optimal portfolio is given by the unique solution of

0.35075− 1.07237b
(1)
t + 0.462875b

(1)2

t = 0

that lies between 0 and 1. This is the vector b∗t = (0.3941, 0.6058), indicated by a black

dot in figure 3.1.
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Figure 3.1: Expected growth versus standard deviation of all admissible portfolios in
example 3.1. After: [Hakansson, 1971].

Figure 3.2: Expected average growth rate of all admissible portfolios in example 3.1.
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Analyzing this example, the following conclusions on the relationship between efficient

and growth-optimal portfolios can be obtained:

• The growth-optimal portfolio does not necessarily need to be efficient, and vice

versa. In this example, the growth-optimal portfolio is in fact not efficient. What is

even more, the ”worst” portfolio in the mean variance sense, namely the one with

all money in asset 2, has still a higher expected growth rate (about 22.3%) than

most of the efficient portfolios (portfolios with more than 68.9% in asset 1 have a

lower and sometimes even negative growth rate than that of the worst not efficient

portfolio). This can easily be seen from figure 3.2.

• Efficient portfolios can lead to ruin almost surely as they can have negative expected

growth rates. In this example, this involves all portfolios where more than 97.6%

of wealth is invested in asset 1, as can be seen in figure 3.2. For those, ruin in the

long run is almost sure, as

P (Sn = 0)→ 1 for n→∞

by the law of large numbers.

It should once again be noted, that the mean-variance approach is explicitly derived for a

single period investment decision. Still, this requirement is very rarely discussed and this

framework is often used when being clearly in a situation of sequential investment. The

previous analysis clearly points out that a growth-optimal approach is more desirable in a

sequential investment framework for the long run than that of the mean-variance theory.

3.7.2 Growth-Optimality in the Context of Utility Theory

Utility theory is probably one of the most important principles in economics today. We

quickly summarize important concepts here, for an extensive coverage of utility theory we

refer to common microeconomics textbooks like [Pindyck and Rubinfeld, 2009].

In short, utility theory states that a consumer assigns each possible basket X containing

an arbitrary amount of L commodities a certain value, expressed by a personal utility

function U(X). X can therefore be represented by a vector (x1, . . . , xL) where the i-th

element represents the amount of commodity i in the basket. A basket X1 is said to be

preferred to X2, if U(X1) > U(X2), here denoted by the relation X1 � X2. A consumer

is said to be indifferent between two baskets X1 and X2 if both have the same utility

U(X1) = U(X2) which we denote by X1 = X2. A utility function always implies a system
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of preferences. A set of preferences represented by the relation � has the property that

it is

• complete: Every two possible baskets can be compared, that is we have either

X1 � X2 or X2 � X1 (or both which is X1 = X2)

• and transitive: If X1 � X2 and X2 � X3 then X1 � X3.

Furthermore, there are the following requirements for standard utility functions:

• U(X) is assumed to be monotonically increasing in every commodity, as the con-

sumer prefers more to less.

• U(X) is assumed to be concave, as this reflects the fact that the utility added

decreases with the amount of goods possessed. (Getting one apple when having

one apple increases my utility enormously. But getting one additional apple when

already possessing 10,000 apples is no big deal and therefore increases my utility

only a little bit.)

The utility function in financial sciences usually refers to the utility to be gained from

a portfolio choice with payout 〈b,Xi〉. Here, the properties of the utility function reflect

the risk awareness of the investor:

• The investor prefers more money to less, therefore the monotonicity of the utility

function.

• The average investor is assumed to regret loosing one unit of money more than he

enjoys winning one unit. Therefore, the utility function is concave.

These seem to be agreeable assumptions, as - depending on the individual preferences -

an investor might not enter an investment with positive expected return if the probability

to loose a lot of money is in his view too high. The most important utility functions

used are the logarithm and the square root, but obviously there is an infinite choice of

possibilities.

Connecting this with the concept of growth-optimality, we implicitly state that we can

ignore the individual preferences of the investor in this framework. This is based on the

fact that on average we will make more money with this than with any other investment

strategy and the law of large numbers assures us to reach this goal.

Contrary to this argumentation, [Samuelson, 1963] and [Samuelson, 1971] show in a simple

model that arguing with the law of large numbers is not necessarily consistent with the
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axioms of utility theory presented earlier. More precisely, he considers the game of coin

tossing, where one looses one Euro if the guess is wrong and receives two Euros if the

guess is right. It seems reasonable that there are people who do not accept this bet as

they fear more loosing one Euro than they enjoy winning two Euros. But in a long row

of bets, the fortune of the gambler would obviously explode by the law of large numbers

as he wins one Euro on average per game. So, the more chances the gambler gets to bet,

the more likely he will enter the bet. That is, he should prefer more tries to less.

This can be translated into the following preference system:

X1 � X2 if P (Gain of X1 > Gain of X2) >
1

2
.

If strategy Xi represents betting i times, this should lead to Xi � Xi+1 for all i ≥ 1. Still,

depending on the gamblers risk awareness and how the game is designed, he could still

refrain from betting two times, as this still bears to much risk for him, making X1 = X2

- a contradiction to the previous statement! In this spirit, one can always think of a

way to construct a game which a given risk averse investor will not enter for a certain

number of tries. This shows that even though the law of large numbers ”guarantees” to

win more than with another strategy, it still depends on the preferences of the gambler if

this strategy is his personal favourite choice.

In a similar argument [Samuelson, 1971] states that a strategy that dominates in the long

run, does not necessarily dominate every strategy in a shorter time horizon.

[Markowitz, 1976] argued against Samuelson by stating - in yet another simple model -

that no long-term investor should have any other than the log-utility function, which is

the only one consistent with growth-optimality (as the average growth rate is exactly the

log-utility of the portfolio choice). It should be stressed here that both arguments are

valid in their respective frameworks and no final conclusion was reached by either one

on this topic. However, the theory of growth-optimality is specifically proposed to be

independent of utility theory. It simply states that a rational investor wants to achieve

the highest growth rate in the long run, not caring about individual preferences. This is

probably a bit exaggerated for private investors, but big institutional investors like hedge

and pension funds find this objective probably reasonable enough.

3.7.3 How Long is the ”Long Horizon”?

A question that arises naturally when talking about asymptotic strategies is: ”How long

is a long period of time here?”. Do I need to have a horizon of 20, 30 or 100 years to be

rather sure to attain more wealth by using this strategy than the others?
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To investigate this matter, [Thorp and Beach, 2006] propose to look at a market with one

asset and a risk free interest rate and to approximate the behaviour of the discrete returns

by a continuous process. The money invested in the savings account grows by an interest

rate r with probability 1, while the asset returns X = µ ± σ with equal probability 0.5

(that is, E(X) = µ and V ar(X) = σ2). In this case, the expected average growth rate is

given by

E(ln(1 + b(1)r + b(2)X)) = 0.5 ln(1 + b(1)r + b(2)(µ+ σ)) + 0.5 ln(1 + b(1)r + b(2)(µ− σ)).

Subdividing each time step into n independent time steps while keeping expectation and

variance proportional leads to an asset growth of Xi = µ
n
± σ√

n
, again with probability 0.5

each.

The accumulated wealth after one ”original” time step is then given by

S1(b) = S0

n∏
i=1

(
1 + b

(1)
t

r

n
+ b

(2)
t Xi

)
.

This is exactly the well known case of the binomial model in option pricing (as for example

presented in [Hull, 2006]) that converges toward a lognormal diffusion process for n→∞
with drift µ and variance σ2 for the asset part and growth r for the savings account part.

The expected growth rate of this portfolio is

W = E

(
lim
n→∞

ln

(
S1(b)

S0

))
= r + b(2)(µ− r)− σ2b(2)2

2

per time step for which µ and σ where originally defined. Note that by this approxima-

tion rebalancing would need to be done ”instantaneously” which is impossible in reality.

Therefore, it can only be seen as an approximation for the problem - but with valuable

insights. Maximizing this growth rate leads to

b∗ =

(
1− µ− r

σ2
,
µ− r
σ2

)
giving

W ∗ = r +
1

2

(µ− r)2

σ2
.

Note that in this setup short selling (that is b(i) ∈ R) is allowed. In this case, the return on

the growth-optimal portfolio (the logarithm of S∗n) is normally distributed and therefore

nW ∗ has expectation
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nµ∗ = n

(
r +

1

2

(µ− r)2

σ2

)
and standard deviation

√
nσ∗ =

√
n
µ− r
σ

.

If one is interested in the probability that the growth optimal portfolio reaches a certain

growth k in a given time N , we can simply standardize NW ∗ and use the standard normal

distribution function Φ(.)

P

(
NW ∗ −Nµ∗√

Nσ∗
>
k −Nµ∗√

Nσ∗

)
= 1− Φ

(
k −Nµ∗√

Nσ∗

)
. (3.6)

Figure 3.3: Optimal growth rate depending on r and µ.

Example 3.2. Assume a yearly interest rate r = 0.02, an expected yearly growth rate of

the asset of µ = 0.1 and yearly standard deviation σ = 0.15.

Then, in the given model, the probability that we achieve double wealth ek = 2 within the

next N = 10 years (which corresponds to around 2000 trading days) is almost 71%.

If we want to determine the time needed to achieve ek = 2 with a given probability, we

simply need to solve for N in (3.6). To have a 95% chance of reaching k = ln(2) the

investor needs 37.3 years in this setting.

Figures 3.3, 3.4 and 3.5 give further insight into the behaviour of this example. The dark

areas in the figures represent the optimal portfolios that do not require short selling.
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Figure 3.4: Time to have a 95% chance to achieve ek = 2 depending on r and µ.

Figure 3.5: Time to have a 95% chance to achieve ek = 2 depending on µ and σ.
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[Rubinstein, 1998] also dealt with this topic and answered the question in the context of

the famous Capital Asset Pricing Model (CAPM). For a reasonable choice of parameters

(again in the case of one risky and one riskless asset) he arrives at the conclusion, that it

needs over 105 years to have a 90% chance to outperform an account that grows with the

risk-less interest rate.

Empirical experiments however contradict these disappointing results for several strate-

gies in the growth-optimal framework, as is explained in section 5.2. Furthermore,

[Thorp and Beach, 2006] state that Thorp’s investment firm invested over twenty years

according to the principles of growth-optimality, thereby outperforming most benchmarks

by far. The analysis given so far in the literature on this topic therefore seems to be insuf-

ficient to capture the true time-related behaviour of growth-optimal strategies in investing

and could need further investigations.

3.7.4 Practical Calculation

Another point why Markowitz’ model found more acceptance among practitioners lies in

the fact, that the mean-variance portfolio problem is easy to solve under the assumption

of normally distributed returns and its calculation is easy (see [Markowitz, 1970]). Al-

though the assumption of normally distributed returns seems to be invalid in reality, it is

considered good enough for practical risk management purposes.

Calculating a growth-optimal portfolio on the other hand that delivers reasonable results

in reality is a much more complex task, thus it seemed not useful in practice for a long

time (see for example [Cover, 1991] and [Cover, 2002]). Together with the computational

complexity of possible algorithms as presented in section 4.6, these restrictions could be

among the reasons why the growth-optimal portfolio theory found less application in

practice than the mean-variance framework.



Chapter 4

Portfolio Algorithms

In the last chapter, the concept of growth-optimality was investigated as a reasonable

framework for sequential investment from a theoretical point of view. As usual, these

results cannot be applied immediately onto real world data. Algorithms are needed that

can then be measured by results and definitions (universal consistency, deterministic and

stochastic superiority) from the previous chapter. In this chapter several distribution-

free algorithms from the literature are presented that either rely on the findings of the

last chapter (approximating the expected logarithm of growth factors) or the bounds of

prediction strategies by expert advice.

4.1 Best Constantly Rebalanced Portfolio

One of the basic results of the last chapter states that it is more useful to maximize the log

of the portfolio growth factors than the growth factors themselves. This gives rise to the

very simple concept of the best constantly rebalanced portfolio. For this, one determines

the portfolio vector prediction at time n by

b̂n = arg max
b∈B

n−1∏
i=1

〈b, xi〉 .

This is equivalent to

b̂n = arg max
b∈B

n−1∑
i=1

ln 〈b, xi〉 (4.1)

because the transformation with the logarithm does not change the maximum, as the

log-function is monotonically increasing. One can easily see a very simple, deterministic

property of this strategy, as shown in [Cover, 1991]:

39
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Lemma 4.1 (Basic properties of the best constantly rebalanced portfolio). Denote by ej

the j-th basis vector, that is the vector that has 1 at the j-th place and 0 on all others.

Define the empirical portfolio strategy B̂ = {b̂i}i=1,2,... by (4.1). Then Sn(B̂) exceeds the

arithmetic mean (for arbitrary weights αj ≥ 0,
∑d

j=1 αj = 1)

Sn(B̂) ≥
d∑
j=1

αjSn(ej)

the geometric mean

Sn(B̂) ≥

(
d∏
j=1

Sn(ej)

) 1
d

and the maximum of the individual stocks

Sn(B̂) ≥ max
j
Sn(ej).

Proof. These properties are simple consequences of the fact, that Sn(B̂) ≥ Sn(ej) for each

j = 1, . . . , d.

Thus, from a pure backward-looking perspective this strategy is probably the best we can

come up with at first. But it is also an estimation of the growth-optimal strategy for iid

returns, when considering the theoretical results from the last chapter. Remember that

the best sequential investment strategy for iid returns was given by

arg max
b∈B

µ(b) = arg max
b∈B

E(ln(〈b, xi〉)).

The usual estimate µ̂ for the expected value is nothing else than the arithmetic mean of the

given observations, which converges to the expected value as the number of observations

tends to infinity by the law of large numbers. Therefore,

b∗ ≈ arg max
b∈B

µ̂(b) = arg max
b∈B

1

n

n∑
i=1

ln(〈b, xi〉)

which is exactly the idea from the beginning of this section, because the additional fraction

here is not relevant for the maximization.

Under the assumption of iid returns this portfolio vector would need to be calculated only

once, as the growth-optimal portfolio in this case is constant over time. Still, it can be

useful to recalculate this vector at each time step, as the estimate gets better by each

added observation. The algorithm BCR − PREDICTi that follows is summarized in

algorithm 1.
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Algorithm 1: BCR− PREDICTi
Input: Vectors of growth factors xi1.
Calculate

b̂i+1 = arg max
b∈B

i∑
j=1

ln(〈b, xj〉).

Output: Portfolio vector b̂i+1.

Remark 4.1. This is a very simple method and tends to be not very effective. The esti-

mation of the expected value can be improved if further assumptions about the underlying

distribution of the return vector and its log-sum are imposed. As this task requires a lot

of assumptions and calculations, it can be assumed to be usually rather difficult. Further-

more, the results would tend to be very specific compared to the rather general results we

derive in this thesis and are therefore not investigated any more.

4.2 The EG Investment Strategy

Improving on the last algorithm and following [Cesa-Bianchi and Lugosi, 2006], we want

to directly have a closer look at the ratio

max
xn1

max
b∈B

ln

∏n
i=1 〈b, xi〉∏n
i=1

〈
b̂i, xi

〉
where the numerator represents the best constantly rebalanced portfolio strategy. We call

this ratio the worst-case logarithmic wealth ratio. If we find a strategy B̂ = {b̂i}i=1,2,...

for which this fraction converges towards 0, it would be deterministically superior to the

set of constantly rebalanced portfolios and all processes. We know that

1 + u ≤ exp(u) for u ≥ 0

as 1+u represent the first two summands of the taylor series expansion of exp(u), followed

by only positive summands when u ≥ 0. We can conclude that

ln(1 + u) ≤ u.

This leads to the following inequality:
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ln

∏n
i=1 〈b, xi〉∏n
i=1

〈
b̂i, xi

〉 =
n∑
i=1

ln

1 +

〈
b− b̂i, xi

〉
〈
b̂i, xi

〉


≤
n∑
i=1

d∑
j=1

(b(j) − b̂(j)
i )x

(j)
i〈

b̂i, xi

〉
=

n∑
i=1

 d∑
j=1

b(j) x
(j)
i〈

b̂i, xi

〉 − d∑
j=1

b̂
(j)
i

x
(j)
i〈

b̂i, xi

〉
 . (4.2)

We want to maximize this equation with respect to b, which would be much easier if the

right hand side of the inequality would be the negative value of the current. This can be

done by bounding the growth factors between two constants,

0 < c ≤ x
(j)
i ≤ C

for each i = 1, 2, . . . and j = 1, 2, . . . , d. An immediate consequence of this requirement

on the growth factors are the bounds

c ≤ min
j=1,...,d

x
(j)
i =

d∑
k=1

b(k) min
j=1,...,d

x
(j)
i ≤ 〈b, xi〉

for each i = 1, 2, . . . and arbitrary b ∈ B. With this we get

0 ≤ x
(j)
i〈

b̂i, xi

〉 ≤ C

c
. (4.3)

By defining a function l
(j)
i such that

l
(j)
i −

C

c
= − x

(j)
i〈

b̂i, xi

〉
and replacing it in (4.2) we get the desired result (as l

(j)
i is positive by (4.3)):
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n∑
i=1

 d∑
j=1

b(j) x
(j)
i〈

b̂i, xi

〉 − d∑
j=1

b̂
(j)
i

x
(j)
i〈

b̂i, xi

〉


=
n∑
i=1

(
d∑
j=1

b̂
(j)
i

(
l
(j)
i −

C

c

)
−

d∑
j=1

b(j)

(
l
(j)
i −

C

c

))

=
n∑
i=1

(
d∑
j=1

b̂
(j)
i l

(j)
i −

d∑
j=1

b(j)l
(j)
i

)
−

n∑
i=1

Cc
d∑
j=1

b̂
(j)
i︸ ︷︷ ︸

=1

−C
c

d∑
j=1

b(j)

︸ ︷︷ ︸
=1


=

d∑
j=1

n∑
i=1

b̂
(j)
i l

(j)
i −

d∑
j=1

b(j)

n∑
i=1

l
(j)
i .

Maximizing with respect to b means minimizing the second sum of the right side of this

equality. This is equivalent to choosing the vector b that has 1 on the place where
∑n

i=1 l
(j)
i

is minimal:

max
b∈B

ln

∏n
i=1 〈b, xi〉∏n
i=1

〈
b̂i, xi

〉 ≤ d∑
j=1

n∑
i=1

b̂
(j)
i l

(j)
i − min

j=1,...,d

n∑
i=1

l
(j)
i . (4.4)

The right hand side now has exactly the form of a regret function in the context of

prediction by expert advice. Interpreting l
(j)
i = C

c
− x

(j)
i

〈b̂i,xi〉 as the loss of an exponential

forecaster, we immediately get a portfolio algorithm (summarized in algorithm 2) by using

theorem 2.4:

b̂1 =

(
1

d
, . . . ,

1

d

)
,

b̂(j)
n =

b̂
(j)
n−1 exp

(
η

x
(j)
n−1

〈b̂n−1,xn−1〉

)
∑d

k=1 b̂
(k)
n−1 exp

(
η

x
(k)
n−1

〈b̂n−1,xn−1〉

) .
As the formula in the exp-function has the form of a gradient, this method is called

exponential gradient (EG) method (for an interpretation along these lines, see for example

[Helmbold et al., 1998]). For this strategy, we can use theorem 2.3 to establish an upper

bound for the worst-case logarithmic wealth ratio as it is bounded by the regret in equation

(4.4). By directly bounding the regret of this special forecaster, this result can even be

improved:
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Algorithm 2: EG− PREDICTi
Input: Vectors of growth factors xi1, last portfolio vector b̂i, bounds c and C.
Calculate

η =
c

C

√
8 ln d

i
.

for j ∈ {0, . . . , d} do
Calculate

b̂
(j)
i+1 =

b̂
(j)
i exp

(
η

x
(j)
i

〈b̂i,xi〉

)
∑d

k=1 b̂
(k)
i exp

(
η

x
(k)
i

〈b̂i,xi〉

) .
Output: Portfolio vector b̂i+1.

Theorem 4.1 (Deterministic superiority of the EG-Investment algorithm). Assume the

growth factors are bounded by constants

0 < c ≤ x
(j)
i ≤ C.

For the EG investment algorithm B̂ = {b̂i}i=1,2,... with

η =
c

C

√
8 ln d

i

the worst case logarithmic wealth ratio fulfills

max
xn1

max
b∈B

ln

 ∏n
i=1 〈b, xi〉∏n
i=1

〈
b̂i, xi

〉
 ≤ C

c

√
n

2
ln d.

This is equivalent to

lim
n→∞

max
xn1

max
b∈B

1

n
ln

(
Sn(b)

Sn(B̂)

)
≤ lim

n→∞

C

c

√
1

2n
ln d = 0.

This shows that the EG investment algorithm is deterministically superior with respect to

the set of constantly rebalanced portfolios and all processes.

Proof. See [Cesa-Bianchi and Lugosi, 2006].

The previous result is rather strong as it shows that this portfolio should perform asymp-

totically always as good as the best constantly rebalanced portfolio from the last section
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without adding much computational complexity. Still, we have no guarantee that it per-

forms well, as the constantly rebalanced portfolio itself does not need to perform well.

The next chapter will establish a first algorithm that is universally consistent.

Remark 4.2. As the EG-strategy is designed to compete with the best constant portfolio,

it is not surprising that it converges towards a constant portfolio itself as n gets large

(Note that η depends on n and converges to 0 as n→∞).

4.3 Universal Portfolios

In this section we investigate an algorithm that is inspired by the Laplace mixture fore-

caster from example 2.1. For this, consider the portfolio prediction

b̂1 =

(
1

d
, . . . ,

1

d

)
,

b̂n =

∫
·· ·
∫

B
bSn−1(b)db∫

·· ·
∫

B
Sn−1(b)db

.

This is more or less weighting each portfolio vector with its historic performance - the

better a constant portfolio did in the past, the more the strategy tends to use this vec-

tor. One can interpret this also as estimating an empirical distribution over the possible

outcomes of all portfolio strategies. That is, this strategy ”learns” in the long run the

real distribution of all possible constantly rebalanced portfolios and acts accordingly. The

following result is an immediate consequence of this observation:

Theorem 4.2 (Universal consistency of the universal portfolio with respect to iid pro-

cesses). Let the vectors of growth factors Xi
iid∼ F (x). Then the average growth rate induced

by the previous strategy B̂ = {b̂i}i=1,2,... achieves asymptotically that of the best constantly

rebalanced portfolio a.s.,

1

n
ln(Sn(B̂))→ max

b∈B
E(〈b,Xi〉) a.s.

It is therefore universally consistent with respect to the class of all iid processes.

Proof. See [Cover, 1991].

With this result, the proposed algorithm seems to be a powerful tool if the underlying

returns are assumed to be iid.

To understand the algorithm even better, look at the resulting wealth after n investment

periods (as did [Cesa-Bianchi and Lugosi, 2006]):
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Sn(B̂) =
n∏
i=1

〈
b̂i, xi

〉
=

n∏
i=1

〈∫
B bSi−1(b)db∫
B Si−1(b)db

, xi

〉
=

n∏
i=1

〈∫
B bSi−1(b)db, xi

〉∫
B Si−1(b)db

=
n∏
i=1

∫
B 〈bSi−1(b), xi〉 db∫
B Si−1(b)db

=
n∏
i=1

∫
B 〈b, xi〉Si−1(b)db∫
B Si−1(b)db

=
n∏
i=1

∫
B Si(b)db∫
B Si−1(b)db

=

∫
B
Sn(b)db

as the telescope products cancel out. This simple derivation shows that the universal

portfolio strategy delivers the average of all constantly rebalanced portfolios - a reasonable

choice if we want to beat the constantly rebalanced portfolios.

Following this line of thought, we can look at how well this portfolio performs in compar-

ison to the class of all constantly rebalanced portfolios. We will see that this can be done

by defining the forecaster p̂n induced by a fixed constantly rebalanced portfolio b̄,

p̂n(yn1 , b̄) = b̄(1)n1 · · · b̄(d)nd

where yn1 ∈ Yn = {1, . . . , d}n and ni is the number of occurrences of i in yn1 .

The wealth resulting from such a constantly rebalanced portfolio can then be rewritten

as

Sn(b) =
n∏
i=1

〈
b̄, xi

〉
=

∑
yn1 ∈Yn

n∏
i=1

xyii p̂n(yn1 , b̄)

=
∑
yn1 ∈Yn

p̂n(yn1 , b̄)
n∏
i=1

xiyi .

Substituting this part in the wealth of the universal portfolio (which is consisting of

constantly rebalanced portfolios) results in

Sn(B̂) =
∑
yn1 ∈Yn

∫
B
p̂n(yn1 , b)db

n∏
i=1

xiyi .

This shows that the universal portfolio strategy essentially is a mixture of Laplace mixture
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strategies as in example 2.1. It can therefore be treated along those lines, leading to the

following result:

Theorem 4.3 (Deterministic superiority of the universal portfolio algorithm). The ratio

of wealth of the universal portfolio strategy and the best constantly rebalanced strategy is

bounded by

sup
xn

sup
b∈B

ln
Sn(b)

Sn(B̂)
≤ (d− 1) ln(n+ 1).

Considering the asymptotic average growth rate, this gives

sup
xn

sup
b∈B

1

n
ln
Sn(b)

Sn(B̂)
≤ (d− 1)

ln(n+ 1)

n
.

Therefore,

lim
n→∞

sup
xn

sup
b∈B

1

n
ln
Sn(b)

Sn(B̂)
≤ 0.

This means that the universal portfolio strategy is deterministically superior with respect

to the set of all constantly rebalanced strategies and all processes.

Proof. See [Cesa-Bianchi and Lugosi, 2006].

4.3.1 Approximation by the Trapezoidal Rule

For practical purposes, the integrals in the universal portfolio strategy need to be solved

numerically. [Cover, 1991] does this by using the trapezoidal rule for the case of two

assets. It is rather obvious that this leads to

b̂n =

∑T
i=0( i

T
, 1− i

T
)Sn−1( i

T
, 1− i

T
)∑T

i=0 Sn−1( i
T
, 1− i

T
)

for d = 2 and T ∈ N nodes for the interpolation. Note that the equidistant weights

induced by using the trapezoidal rule cancel out.

Adding a third asset, it is important not to violate the property that the elements of b

must add up to 1. Therefore, we limit the second sum and get

b̂n =

∑T
i1=0

∑T−i1
i2=0 ( i1

T
, i2
T
, 1− i1+i2

T
)Sn−1( i1

T
, i2
T
, 1− i1+i2

T
)∑T

i1=0

∑T−i1
i2=0 Sn−1( i1

T
, i2
T
, 1− i1+i2

T
)

.

We generalize this to the d-asset case. For this, define the running index for sum k by

ik and the variable Ik =
∑k−1

j=1 ij. With this, an approximation for the integral with

equidistant nodes in the trapezoidal rule is given by
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b̂n =

∑T
i1=0

∑T−I2
i2=0

∑T−I3
i3=0 . . .

∑T−Id−1

id−1=0 ( i1
T
, . . . , id−1

T
, 1− Id−1

T
)Sn−1(( i1

T
, . . . , id−1

T
, 1− Id−1

T
))∑T

i1=0

∑T−I2
i2=0

∑T−I3
i3=0 . . .

∑T−Id−1

id−1=0 Sn−1(( i1
T
, . . . , id−1

T
, 1− Id−1

T
))

.

The resulting prediction algorithm UP − PREDICTi is given in algorithm 4. Note that

we need to use a matrix B of all portfolio vectors that occur in the application of the

trapezoidal rule. This matrix results from calling the function TRAP −MATRIX with

v = 1, Ik = 0, k = 1, the number of nodes T , b = (0, . . . , 0) and the number of assets d as

provided in algorithm 3.

Algorithm 3: TRAP −MATRIX

Input: Ik, k, T , a vector b and an integer d that stops the recursion as well as
access to the global variable v and global matrix B.

if k < d then
s = 0
for j ∈ {0, . . . , T − Ik} do

bk = j
T

TRAP −MATRIX(Ik + j, k + 1, T, b, d)

else
for j ∈ {0, . . . , d− 1} do

Set Bv,j = bj.

Bv,d = 1− Ik
T

v = v + 1
Output: No output.

Algorithm 4: UP − PREDICTi
Input: Vectors of growth factors xi1, integer T , matrix B and Si−1(b) for each row

b in B.
Let v be the number of rows in B and Bj the j-th row of B.
for j ∈ {1, . . . , v} do

Calculate
Si(Bj) = Si−1(Bj) 〈Bj, xi〉 .

Calculate

b̂i+1 =

∑v
j=1 BjSi(Bj)∑v
j=1 Si(Bj)

.

Output: Portfolio vector b̂i+1 and Si(b) for each row b in B.
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4.3.2 Approximation by a Monte-Carlo Method

Even though rather simple to implement, the trapezoidal approximation of an integral

is usually not a reasonable choice, especially considering the computational costs in

higher dimensions (compare section 4.6). For high dimensional numerical integration,

Monte-Carlo methods are usually more appropriate. Recapitulating the basics (as in

[Hammersley and Handscomb, 1964], for example), in a Monte-Carlo setting one inter-

prets a standard multidimensional integral over a d-dimensional region R

IR =

∫
· · ·
∫

R

f(x)dx

as the expected value of f(X) of the uniformly on R distributed d-dimensional random

vector X. By the law of large numbers, the expected value can always be approximated

by taking observations of X, averaging them and multiplying with the volume of R.

Therefore, approximating IR can be done by simulating uniformly distributed random

vectors X1, . . . , Xn on R and calculating

IR ≈ V (R)
1

n

n∑
i=1

f(Xi)

where V (.) is the volume function. This method delivers better approximation error

bounds than the trapezoidal rule. In fact, this bound decreases by the factor 1√
n

for the

simple Monte-Carlo method as presented here.

For approximating the universal portfolio, we now need to simulate uniformly distributed

vectors in the unity simplex B. Fortunately, there is a well-known method to transform

uniformly distributed random vectors from the unit cube [0, 1]d into the unit simplex

(see for example [Devroye, 1986]). To do so, simulate d uniformly distributed variables

U1, . . . , Ud by using a Halton or Sobol sequence or similar methods. Order them increas-

ingly into U(1), . . . , U(d) and add U0 = U(0) = 0 and Ud+1 = U(d+1) = 1. The vector

b̃ = (U(1) − U(0), U(2) − U(1), . . . , U(d+1) − U(d))

is then uniformly distributed on the unit simplex. With this knowledge, the universal

portfolio prediction can be approximated by

b̂n+1 =

∑T
i=1 b̃iSn(b̃i)∑T
i=1 Sn(b̃i)

with T d-dimensional vectors b̃i. Note that the weights again cancel out as in the trape-
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zoidal rule. This concept leads to the function MC − PREDICTi, summarized in algo-

rithm 6 after getting T simulated portfolio vectors by using algorithm 5.

Algorithm 5: SIM

Input: Integer T and dimension d.
Produce Td uniformly distributed random variables U1, . . . , UTd.
Set U(0) = 0 and U(d+1) = 1.
for i ∈ {1, . . . , T} do

Order U(i−1)d+1, . . . , Uid increasingly into U(1), . . . , U(d).

Calculate b̃i = (U(1) − U(0), U(2) − U(1), . . . , U(d+1) − U(d)).

Output: T portfolio vectors b̃1, . . . , b̃T .

Algorithm 6: MC − PREDICTi
Input: Vectors of growth factors xi1 and b̃j, Si−1(b̃j) for j = 1, . . . , T .
for j ∈ {1, . . . , T} do

Calculate

Si(b̃j) = Si−1(b̃j)
〈
b̃j, xi

〉
.

Calculate

b̂i+1 =

∑T
j=1 b̃jSi(b̃j)∑T
j=1 Si(b̃j)

.

Output: Portfolio vector b̂i+1 and Si(b̃j) for j = 1, . . . , T .

4.4 A Kernel Based Algorithm with Expert Advice

Thinking back to the result in theorem 3.2, we saw that solving the problem of finding a

sequential growth-optimal portfolio selection procedure reduces to solving

max
b(.)∈B

E(ln
〈
b(xn−1

1 ), xn
〉
|xn−1

1 )

for each investment period. With the knowledge of the kernel regression estimate for s-a-e

processes, we have an idea how to estimate E(xn|xn−1
1 ). By letting the radius r depend

on a ”window”-length k and a ”precision”-parameter l as in section 2.3.2 and using the

Frobenius norm, we define
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Jk,l,n = {k < i < n : ‖xii−k+1 − xnn−k+1‖ ≤ rk,l}

and accordingly the experts

b̂(k,l)
n (xn−1

1 ) = arg max
b∈B

∑
j∈Jk,l,n−1

ln 〈b, xj+1〉 . (4.5)

Let

B̂(k,l)
n = (b̂

(k,l)
1 , . . . , b̂(k,l)

n )

and

B̂(k,l) = {B̂(k,l)
i }i=1,2,....

Then, the resulting portfolio vector prediction b̂n(xn−1
1 ) is the simple weighing of the

individual experts with their past performance and an arbitrary probability distribution

{qk,l}:

b̂n(xn−1
1 ) =

∑
k,l qk,lSn−1(B̂(k,l))b̂

(k,l)
n (xn−1

1 )∑
k,l qk,lSn−1(B̂(k,l))

. (4.6)

For this method, the following result can be shown:

Theorem 4.4 (Universal consistency of kernel algorithm with respect to s-a-e processes).

Let k, l run over all positive integers and let rk,l be strictly decreasing in l for fixed k, that

is

lim
l→∞

rk,l = 0.

Then the portfolio strategy (4.9) is universally consistent with respect to the class of all

s-a-e processes with E(| lnXj|) <∞ for j = 1, 2, . . . , d.

Proof. See [Györfi et al., 2006].

With this theorem, we have found a portfolio selection algorithm for the growth-optimal

portfolio, that works for the general class of s-a-e processes without further adaptation.

The algorithm KERNEL − PREDICTi for a one-step prediction at time i is given in

pseudo code in algorithm 7, assuming finite k and l, as well as ”sensibly” chosen rk,l.

Computational issues arising in this context will be adressed in section 4.6.
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Algorithm 7: KERNEL− PREDICTi
Input: Vectors of growth factors xi1 as well as rk,l, qk,l, b̂

(k,l)
i (xi−1

1 ) and Si−1(B̂(k,l))
for each (k, l), k = 1, . . . , K, l = 1, . . . , L.

for l ∈ {1, . . . , L} do
for k ∈ {1, . . . , K} do

Update and store

Si(B̂
(k,l)) = Si−1(B̂(k,l))

〈
b̂

(k,l)
i (xi−1

1 ), xi

〉
.

Collect all data points k < j < i in the set Jk,l,i, where

‖xjj−k+1 − x
i
i−k+1‖ ≤ rk,l.

if Jk,l,i = ∅ then

b
(k,l)
i+1 (xi1) =

(
1

d
, . . . ,

1

d

)
else

Calculate and store

b̂
(k,l)
i+1 (xi1) = arg max

b∈B

∑
j∈Jk,l,i

〈b, xj+1〉 .

Calculate

b̂i+1(xi1) =

∑
k,l qk,lSi(B̂

(k,l))b̂
(k,l)
i+1 (xi1)∑

k,l qk,lSi(B̂
(k,l))

.

Output: Portfolio vector b̂i+1.
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4.5 A Nearest Neighbour Based Algorithm with Ex-

pert Advice

Similarly to the way we came up with KERNEL − PREDICTi, it is rather natural

to apply the nearest neighbour idea from nonparametric regression to portfolio selection.

Therefore, we again define experts for each k and l. Choose for each l a pl ∈ (0, 1) such

that

lim
l→∞

pl = 0. (4.7)

Define further

l̄ = bplnc

and the set of l̄ nearest neighbours

Jk,l,n = {k < i < n : ‖xii−k+1 − xnn−k+1‖ is among the l̄ smallest values}

where ‖.‖ is again the well known Frobenius norm. With this new set we can define the

experts

b̂(k,l)
n (xn−1

1 ) = arg max
b∈B

∏
j∈Jk,l,n−1

〈b, xj+1〉 . (4.8)

Once more, let

B̂(k,l)
n = (b̂

(k,l)
1 , . . . , b̂(k,l)

n )

and

B̂(k,l) = {B̂(k,l)
i }i=1,2,....

Combine the experts using an arbitrary probability distribution {qk,l} by

b̂n(xn−1
1 ) =

∑
k,l qk,lSn−1(B̂(k,l))b̂

(k,l)
n (xn−1

1 )∑
k,l qk,lSn−1(B̂(k,l))

. (4.9)

Then, we can state the following:

Theorem 4.5 (Universal consistency of nearest neighbour portfolio algorithm with re-

spect to s-a-e processes). Assume (4.7) and assume that ties occur with probability 0.

Then the nearest neighbour portfolio scheme as defined in (4.9) asymptotically achieves
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the highest possible expected growth rate almost surely with respect to the class of s-a-e

processes such that E(| ln(X
(j)
i )|) <∞ for all assets j = 1, . . . , d.

Proof. See [Györfi et al., 2008b].

The resulting algorithm NN −PREDICTi for a one-step prediction at time i is given in

algorithm 8, assuming finite k and l and ”sensibly” chosen pl.

Algorithm 8: NN − PREDICTi
Input: Vectors of growth factors xi1 as well as pl ∈ (0, 1) for each l, qk,l, b̂

(k,l)
i (xi−1

1 )

and Si−1(B̂(k,l)) for each (k, l), k = 1, . . . , K, l = 1, . . . , L.
for l ∈ {1, . . . , L} do

for k ∈ {1, . . . , K} do
Update and store

Si(B̂
(k,l)) = Si−1(B̂(k,l))

〈
b̂

(k,l)
i (xi−1

1 ), xi

〉
.

for j ∈ {1, . . . , i} do

Calculate the Frobenius Norm Fj = ‖xjj−k+1 − xii−k+1‖.
Order the Fj increasingly from F(1) being the smallest to F(i) being the
biggest value. Calculate l̄ = bplic. Collect the set Jk,l,i = (F(1), . . . , F(l̄)).

if Jk,l,i = ∅ then

b̂
(k,l)
i+1 (xi1) =

(
1

d
, . . . ,

1

d

)
else

Calculate and store

b̂
(k,l)
i+1 (xi1) = arg max

b∈B

∏
j∈Jk,l,i

〈b, xj+1〉 .

Calculate

b̂i+1(xi1) =

∑
k,l qk,lSi(B̂

(k,l))b̂
(k,l)
i+1 (xi1)∑

k,l qk,lSi(B̂
(k,l))

.

Output: Portfolio vector b̂i+1.

4.6 Computational Complexity

As indicated in the critical discussion of growth-optimal models in section 3.7.4, calcu-

lating a growth-optimal portfolio is not an easy task. This was further confirmed when
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looking at the final algorithms as defined above. While the constantly rebalanced port-

folios are rather easy to obtain (the necessary optimizations can be done numerically,

for example by using Spelucci’s donlp21), the more advanced methods, namely the ker-

nel and nearest neighbour based algorithms, are much more complex. As discussed in

[Györfi et al., 2008a] and [Györfi et al., 2007], an efficient implementation is essential for

the applicability of an empirical portfolio selection method. We will examine each algo-

rithm individually:

• Algorithm 1: The best constantly rebalanced portfolio is the easiest algorithm

in this thesis and straightforward. At each prediction, one optimization is needed.

Depending on the efficiency of the optimization algorithm, this should be done fast.

• Algorithm 2: Even though theoretically better than the best rebalanced portfo-

lio, the EG-Investment Strategy is probably even faster than algorithm 1, as no

optimization is needed at all. It is linear in its arguments for each prediction and

therefore extremely fast.

• Algorithm 4 (using algorithm 3): Again, we do not need to optimize for the

universal portfolio. But the computational difficulty here lies in the numerical eval-

uation of an integral. Using the trapezoidal rule is not very efficient (especially as

it requires the use of a recursive function), but if the number of nodes is small, the

computational costs are bearable. Unfortunately the number of calculations - which

depends clearly on the number of summands in the approximation - explodes fast

as shown in figure 4.1 (even though it seems to stay sub-exponential). This method

is therefore not feasible for a bigger number of assets. This stays true even if the

wealth associated with each possible vector is stored at each time step, which saves

valuable time that would be needed for the recalculation of wealth.

• Algorithm 6 (using algorithm 5): With a Monte-Carlo approximation, the

integrals can be solved in however little time one wants. Obviously, the accuracy

of the approximation strongly depends on T - but so does the computational cost.

Valuable time can be saved again by simulating the portfolio vectors only once and

updating the associated wealth at each time step instead of recalculating it. A big

advantage here is that the time needed for calculation can be estimated easily as it

depends linearly on T , that is for double the amount of portfolio vectors one needs

twice the time to evaluate the integral.

1See http://www.mathematik.tu-darmstadt.de/fbereiche/numerik/staff/spellucci/DONLP2/.
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Figure 4.1: Number of summands for the trapezoidal rule over the unit simplex. Red
mesh represents number of summands for the trapezoidal rule over the unit cube.

• Algorithm 7: There are two crucial factors that determine the complexity of this

algorithm: First, the search for similarities in the local averaging is of quadratic

order as the comparison of n points with each other needs
(
n
2

)
= n(n−1)

2
calculations,

which is a well known result from the handshake lemma. Secondly, as the number

of similarities grows the numerical optimization gets more complex too, which is

the other time consuming step. This complexity depends strongly on the choice of

the radius function: The smaller the radius, the fewer similarities, the faster the

optimization. Unfortunately, there is no way to solve these two points efficiently -

one has always a tradeoff between runtime and precision. But one can at least reduce

the number of these calculations to a minimum by storing the historic growth of

the individual experts, thus calculating the history always only once. This analysis

indicates that radius function as well as K and L need to be chosen carefully. Ideally,

one tries several configurations before deciding which one to use.

• Algorithm 8: The nearest neighbour based algorithm poses the same challenges

as the kernel-based method. Additionally, one needs to sort the historic differences

of the norms at each step. This at least can be implemented sufficiently by using

an efficient sorting algorithm (of which many are available) and is thus a minor

problem.
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Besides considering these points before choosing an algorithm, it is also important to

choose a low-level programming language for the whole implementation, especially for

the complex algorithms 4, 7 and 8. The importance of this point is underlined by the

following: An implementation of the kernel based algorithm in the statistics software

R with an external optimization package needed over three weeks to run a backtest on

the commodities data for the strategy S2 that will be presented in chapter 5, while an

implementation in C + + needed around 10 hours only, i.e. a reduction of the runtime by

a factor of 50.





Chapter 5

Empirical Results

5.1 Evaluation of an Investment Strategy

In the last chapter, several algorithms were provided which can be applied in reality to

create an investment strategy. For practitioners, the practicability and effectiveness of

these algorithms on real-world data is important. Therefore, it is common to test such

strategies with a backtest on historic data sets. Given a time series of n real-world data

points and an a-priori algorithm PREDICTi that predicts at time i the portfolio vector

for i+ 1, this so called method BACKTEST is summarized in Algorithm 9.

Algorithm 9: BACKTEST

Input: Vectors of growth factors xn1 .
for i ∈ {1, . . . , n} do

bi+1 = PREDICTi.

Output: Portfolio vectors b2, . . . , bn+1.

After running the backtest, the portfolio returns resulting from the algorithm can easily

be calculated by setting

ri = 〈bi, xi〉 ∀i ∈ {2 . . . , n}.

These returns can then be analysed. It should of course be mentioned that the results of

such a backtest are highly hypothetical, as the following assumptions are made:

• There are no transaction costs. In reality, rebalancing a portfolio can be very

costly.

• Arbitrary numbers of assets can be bought for the price of their last quote

on each trading day (the price given by the historic time series). In reality, one

59
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can only buy for a price close to the observed one. Furthermore, buying a lot of

stocks at once changes prices considerably, which again means that stocks cannot

be bought or sold at the price of the last quote. Huge transactions can even lead to

charges for manipulating the stock market.

• Assets are arbitrarily divisible. This means that one can invest every desired

fraction of wealth into any asset, however small the fraction is. Although this is

nearly true with currencies, it can normally not be done with stocks. These have

to be bought in full pieces, meaning that one can only invest a multiple of the

given stock prices. If wealth is large, e.g. ten thousand times the price of the most

expensive stock, the assumption becomes more or less valid again.

Despite those unrealistic assumptions, a backtest is a good indicator of the effectiveness

of a strategy (especially in liquid markets like the Dow Jones), even though one cannot

expect to achieve the same gains in a real-world environment (or needs to adjust the

model to take into account the restrictions mentioned above).

There are a lot of performance measures to evaluate a portfolio strategy. We will concen-

trate on the following ones as provided in the R package PerformanceAnalytics

([Carl and Peterson, 2010]):

• Daily standard deviation (volatility): This is a standard measurement of risk

given by the usual formula for the standard deviation

s =

√√√√ 1

n− 1

n∑
i=1

(ri − r̄)2

where ri, i = 1, . . . , n, are the daily returns and r̄ is their arithmetic average. One

would like to have as little variation as possible in the strategy, as this means a

rather constant return rate with little insecurity.

• Daily Sharpe ratio: While it is desirable to have little variation in the returns,

this is most likely not the only objective. Usually one would allow more variance

in return for higher returns. Therefore, it is useful (and common) to compare

investment strategies by the Sharpe ratio, that is the ratio of average return and

standard deviation

RSharpe =
r̄

s
. (5.1)
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A higher Sharpe ratio is naturally preferred, as this means high returns with low

volatility.

• Daily Sortino ratio: To define risk by standard deviation means that we desire

constant returns. But actually we do not care if there are high peaks in the positive

returns - only negative returns are an issue. Therefore, these positive returns should

probably be excluded when talking about risk, which gives rise to the definition of

the downside deviation: Collect the nδ ≤ n returns that are smaller than 0 in ∆

and define

δ =

√
1

n

∑
r∈∆

r2

where r̄δ is the arithmetic average of all returns in ∆. The Sortino ratio now picks

up the idea of the Sharpe ratio, only by using the downside deviation instead of the

standard deviation:

RSortino =
r̄

δ
. (5.2)

Again, a high Sortino ratio is preferred. Taking into account only negative returns

for the downside deviation (the arithmetic mean is again taken over all returns), the

Sortino ratio is more risk sensitive than the Sharpe ratio.

• Maximum drawdown: To describe the maximum drawdown, we first define the

peak in the cumulated wealth of a strategy B before a time T as the maximum

wealth up to T

P (T ) = max
j=1,...,T

Sj(B).

A drawdown at time T is the percentage loss incurred since the last peak before T ,

D(T ) = max

(
0,
P (T )− ST (B)

ST (B)

)
.

The drawdown is zero if ST (B) is the peak. Obviously, drawdowns are undesirable

but inevitable. Still, we would like them to be at least small. It is therefore useful

to look at the largest (the maximum) drawdown in the backtest until time T :

MD(T ) = max
t=1,...,T

D(t).
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A small maximum drawdown again indicates a rather constant growth from peak

to peak.

• Annualized return: The annual geometric average return per year in the backtest

is given as AR, which is nothing else than the yearly interest on the investment

strategy. Making this even more precise: If the backtest produced cumulated wealth

of SN(B) over N given years, then the annualized return is given by

AR = SN(B)
1
N − 1.

Apart from those measures, we will also give the daily average growth rate W , the per-

centage of months with positive returns PRmon and the percentage of years with positive

returns PRann. Obviously, one desires high values for all those three. Additionally, we

also provide information about the approximate runtime RT of the backtest on a Mac

with a 2.26 GHz Intel Core 2 Duo processor, as the time needed to calculate the portfolio

prediction could also be relevant when rebalancing (and therefore recalculation) is done

often.

For visual interpretation, we provide figures on the behaviour of the portfolio vector over

time, the time series of returns and cumulated growth (how would an original investment of

1 currency unit have turned out?) on log-scale as well as the time series of the drawdowns

D(t) for each strategy. In those last three figures, we will also draw a benchmark for

the strategy by adding the performance of the equally weighted portfolio, which is the

constantly rebalanced portfolio with b =
(

1
d
, . . . , 1

d

)
.

5.2 Backtests in the Literature

Several of the algorithms presented above have already been applied onto real world data.

The best constantly rebalanced portfolio over the whole period of historic returns (that

means the best constantly rebalanced portfolio in hindsight) usually serves as a benchmark

for the performance. Those backtests usually confine themselves to presenting the average

growth rate of the method.

[Cover, 1991] tested the universal portfolio strategy on two stocks from the New York

Stock Exchange which were picked for their volatility, yielding a wealth of almost 40

times the invested capital after 5651 trading days corresponding to an observed period of

approximately 22 years. It still falls short from the best constantly rebalanced portfolio

when calculated in hindsight, but performs much better than the individual stocks on

their own.
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[Helmbold et al., 1998] used the same data with the EG strategy, doing considerably

better with the same stocks than the universal portfolio (for a constant η = 0.05 in the

formula). In fact, they achieved 70 times the initial wealth with this strategy. For other

combinations of stocks they even achieved a wealth up to 110.2 times S0.

For testing the kernel and nearest neighbour based methods, [Györfi et al., 2008a] used

data from the stock and currency markets. The results are surprisingly good: For 36 stocks

from the New York Stock Exchange (from the same data set as used by [Cover, 1991] and

[Helmbold et al., 1998]), investing 1 currency unit by the different empirical portfolio se-

lection rules results in a wealth of 1.12 × 109 to 3.31 × 1011 currency units after 5651

trading days (approximately 22 years). This corresponds to an annualized return of 159%

to 234%, while the best constantly rebalanced portfolio in hindsight delivered an annual-

ized return of 29%. Similar results were obtained for 18 pairs of currencies. Investing one

currency unit into different exchange rates resulted in an accumulated wealth of 22.22 to

393.00 currency units after 3429 trading days, or an annualized return of 26.9% to 58.3%

percent. Even though this is much less than the results for the stocks, it has to be taken

into account that while stocks are investment products that usually gain in prices over

time, currency exchange rates are more or less swinging around a constant mean which

do not generate wealth on their own. This is also reflected by the result of the constantly

rebalanced portfolio, which only achieves an annualized return of 1.9% for the currency

data. Restricting the possible stocks to only the two most volatile ones shows here as well

to further increase profitability and also save computational costs.

5.3 A Test with a Selection of Commodities

Similar to the ones mentioned in the last section, we conduct a backtest on a selection

of commodities under the assumptions of arbitrary divisibility and no transaction costs.

Commodities are traded on a wide variety of markets and are usually difficult to use

for investors as they need to be stored and transported. To invest in commodities, one

usually uses financial derivatives like futures, which can be bought and sold without really

possessing the products. Futures allow investors to buy products in the future for a price

that is set today. They are especially convenient, as there are only small transaction costs

on big markets. A future’s price is closely linked to the price of its underlying asset, which

should allow the same conclusions for futures like those that we draw from the backtest

of the prices of the commodities (see for example [Hull, 2006]).
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5.3.1 Description of Data

Asset# Name Quoted by Unit
1 LME-Aluminium 99.7% London Metal Exchange US$/Metric Tonne
2 Coffee-Colombian (NY) Wall Street Journal US-Cents/Pound
3 LME-Copper, Grade A London Metal Exchange US$/Metric Tonne
4 Corn No.2 Yellow US Department of Agriculture US-Cents/Bushel
5 Cotton,1 1/16 Str Low US Department of Agriculture US-Cents/Pound
6 Crude Oil-Brent ICIS Pricing US$/Barrel
7 Gold Bullion LBM London Bullion Market US$/Troy Ounce
8 Natural Gas-Henry Hub Dow Jones Energy Service US$/Million British Thermal Units
9 LME-Nickel London Metal Exchange US$/Metric Tonne

10 Silver Fix LBM London Bullion Market US-Cents/
11 Soya beans, No.1 Yellow US Department of Agriculture US-Cents/Bushel
12 Soya Oil, Crude Decatur US Department of Agriculture US-Cents/Pound
13 Raw Sugar-ISO Public Ledger US-Cents/Pound
14 Gasoline Dow Jones Energy Service US-Cents/Gallon
15 Wheat No.2,Soft Red US Department of Agriculture US-Cents/Bushel
16 LME-SHG Zinc 99.995% London Metal Exchange US$/Metric Tonne
17 Cash - US$

Table 5.1: Overview over the commodities. Source: Reuters Datastream.

Table 5.1 gives a description of the 16 commodities that are used for the backtest. Ad-

ditionally, we use cash as the 17th asset with zero growth. The time series comprises a

range of 3900 trading days, starting with April 14th, 1995 and ending on March 23rd,

2010. The cumulated growth of the individual assets (except cash) can be found in figure

5.1.

Observe how the growth and volatility of the individual assets differ from each other. Also

observe that most of the assets have no notable growth over time, except for oil (asset

6), natural gas (asset 8), nickel (asset 9), gasoline (asset 14) and zinc (asset 16). At the

end of the time series we see a distinct downturn in most of the assets before they partly

recover again.

To get a reasonable function for the radius in the kernel-function, it is necessary to examine

the given data further. As the analysed data points cannot be considered in the analysis

of the backtest performance (in reality, they need to be ”known” in advance to be used),

we limit this analysis on the first 500 data points (or 12.8% of the sample). We call these

points the training sample and will exclude them from the performance review. Still, they

can be used to train the algorithms.

Calculating the norm of the differences for window lengths k = 1, 2, 3,

‖xi+ki − xj+kj ‖ ∀ i 6= j ∈ {1, . . . , 500− k}

where xi is the vector of the growth factors of the assets at time i and ‖.‖ is the Frobenius

norm, results in
∑3

k=1

(
501−k

2

)
≈
(

500
2

)
3 = 374250 data points for the differences. The fact
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(a) Empirical cumulative density function

(b) Empirical density function (gaussian kernel)

Figure 5.2: ECDF and EDF of the Frobenius norm of pairwise differences of length k
between the first 500 data points of the commodities time series.
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that we always use pairs of returns leads to this high number. Table 5.2 gives the α-

quantiles qα of these differences in steps of 10%, figure 5.2 shows the empirical cumulative

density functions (ecdf) and the empirical density functions (edf) of the given data.

Quantile q0.1(k) q0.2(k) q0.3(k) q0.4(k) q0.5(k) q0.6(k) q0.7(k) q0.8(k) q0.9(k) q1.0(k)
k=1 0.0530 0.0603 0.0656 0.0702 0.0744 0.0784 0.0823 0.0862 0.0903 0.0947
k=2 0.0907 0.0995 0.1060 0.1116 0.1166 0.1215 0.1263 0.1313 0.1365 0.1422
k=3 0.1199 0.1297 0.1370 0.1432 0.1489 0.1545 0.1599 0.1656 0.1717 0.1782

Table 5.2: Quantiles of Frobenius norm of differences between first 500 returns.

5.3.2 Description of the Backtests

To compare the proposed algorithms to each other, we run them with several setups and

evaluate their performance on the commodity data set. Note again that we use the whole

3900 trading days in the backtest, but as we used 500 days for the analysis of the assets

only the results of the last 3400 days will be evaluated in the performance analysis.

The best constantly rebalanced portfolio algorithm from algorithm 1 is straightforward,

as no variables need to be chosen in advance. We will denote this backtest by S1.

The EG method in algorithm 2 depends on η. With the theoretical analysis, we can

calculate a good η from the given data by using theorem 4.1. This is done in backtest S2.

Still, we also want to try to choose a constant η = 0.05 (as did [Helmbold et al., 1998]),

which leads to backtest S3.

For the universal portfolio, the algorithms differ by the way the integrals are approximated

and by the accuracy of the approximation. As argued further above, the trapezoidal rule

is not feasible for high dimensions. 17 assets would need an unusual high amount of

interpolation nodes, which is why we do not use this algorithm here. For the Monte-Carlo

method, we run a backtest with T = 50000 (backtest S4) und T = 200000 simulated

interpolation nodes (backtest S5). From the known theoretical error bounds, the latter

approximation should be twice as accurate as the former.

For the kernel method, we now need to choose how many percent of historic differences

we want to consider on average when calculating the portfolio. Taking into account that

we need to limit the number of experts (in our case we will choose L = 5, L = 10 or

L = 20 and K = 3) to confine the runtime of the algorithm, we decide to try a linear

radius function

rk,l = a1k + a2kl

for three different choices of a1 and a2 in the backtests S6, S7 and S8 as can be seen

from table 5.3. As we analysed the quantiles of the training sample above, we can also
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choose a radius function that uses the empirical quantiles qα(l)(k) in figure 5.2 and table

5.2 directly. This is done in the backtests S9 and S10 (with increasing accuracy L), again

as explained in table 5.3.

Finally, the nearest neighbour algorithm is applied by using a linear function pl that

chooses 2.5% to 50% of the nearest neighbours for the experts in S11 and S12 with

increasing accuracy L. We also try choosing pl in a way that uses more experts that

consider small numbers of nearest neighbours for strategy S13. All those backtests and

some of its properties are once again summarized in table 5.3.

Strategy S1 S2 S3 S4 S5
Algorithm 1 2 2 6 6

η - c
C

√
8 ln d
i

0.05 - -

T - - - 50000 200000

Strategy S6 S7 S8 S9 S10
Algorithm 7 7 7 7 7
(L,K) (5,3) (5,3) (5,3) (10,3) (20,3)
rk,l 0.02k + 0.006kl 0.04k + 0.008kl 0.06k + 0.01kl ql/(2L)(k) ql/(2L)(k)
Min α of quantile (k=1) 1.00% 3.00% 20.00% 5.00% 2.50%
Max α of quantile (k=1) 4.00% 33.00% 66.00% 50.00% 50.00%

Strategy S11 S12 S13
Algorithm 8 8 8
(L,K) (10,3) (20,3) (10,3)
pl

1
2L
l 1

2L
l 1

2L−l
Min number of NN 5.00% 2.50% 5.26%
Max number of NN 50.00% 50.00% 10.00%

Table 5.3: Choice of parameters for S1 to S13.

5.3.3 Numerical Results for Backtests Related to the Best Con-

stantly Rebalanced Portfolio

Algorithms 1, 2 and 6 can be subsumed as being related to the best constantly rebal-

anced portfolio, as they are constructed to compete with the (unknown) best constantly

rebalanced portfolio. Therefore, a first comparison of the results of the backtests S1 to S5

seems appropriate as they have the same scope. First we are interested in the behaviour

of the portfolio vector over time. For this we draw a heat map of the portfolio vectors

delivered by the relevant strategies, as can be seen for S1 in figure 5.3. The darker a

line in an asset row is, the higher the fraction of wealth invested into this asset is at

that time. We can clearly see that this strategy concentrates quickly on a few assets.

The performance of this strategy is summarized in figure 5.5. The results here are very

disappointing. After 3400 trading days we are approximately at the same wealth level as

at the beginning. Calculating the performance measures given in table 5.4, this strategy
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seems to be an inferior choice for portfolio selection as its performance is weak in every

respect considered here.

Looking at S2 and S3, we see by figure 5.3 that this algorithm leads to a more diversified

portfolio selection. Most of the time, the portfolio is almost equally distributed among

the assets (the dark line for asset 8 is misleading, as the maximum fraction here is only

0.12). Therefore, it is not surprising that S2 and S3 follow the equally weighted portfolio

in the performance charts in figures 5.6 and 5.7. There is nearly no difference between

the choice of a constant or variable η.

Finally, the universal portfolios backtests S4 and S5 differ only a little bit from the EG

algorithm’s results, as can be seen from figures 5.4, 5.8 and 5.9. The most significant

difference can be found in the runtime of the backtest, were the EG method is extremely

fast with around one second for the complete (!) backtest, while the algorithms 1 and 6

need several hours, as summarized in table 5.4. Enhancing the accuracy of the integral

approximation has nearly no effect at all, except an increase of runtime.

As all those backtests closely follow the equally weighted portfolio, it is not surprising

that they do not avoid the severe downturn in 2008 to 2010 in the assets. They also fail

to recover from that downturn until the end of the time series.

Summarizing, overall performance of S2 to S5 is not too good, but still significantly better

than S1. A positive aspect of S2 to S5 is that the portfolio vectors only change rarely and

changes are small, so rebalancing is done without much transactions.

S1 S2 S3 S4 S5
RT (runtime in hours) 3.5000 0.0003 0.0003 2.0000 8.0000
W (daily average growth rate) 0.0000 0.0004 0.0004 0.0004 0.0004
s (standard deviation of daily returns) 0.0283 0.0102 0.0091 0.0091 0.0091
RSharpe (Sharpe ratio of daily returns) 0.0137 0.0440 0.0462 0.0460 0.0460
RSortino (Sortino ratio of daily returns) 0.0151 0.0461 0.0468 0.0467 0.0467
MD(3400) (max. drawdown in 3400 days) 0.7425 0.4950 0.4883 0.4889 0.4889
AR (annualized returns) 0.0000 0.1054 0.1002 0.1001 0.1000
PRmon (% of months with positive returns) 0.4936 0.5962 0.5833 0.5833 0.5833
PRann (% of years with positive returns) 0.6154 0.6923 0.6923 0.6923 0.6923

Table 5.4: Performance measures of S1 to S5.



70 Chapter 5. Empirical Results

Figure 5.3: Portfolio vectors of S1, S2 and S3.

Figure 5.4: Portfolio vectors of S4 and S5.
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Figure 5.5: Performance chart of S1.

Figure 5.6: Performance chart of S2.
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Figure 5.7: Performance chart of S3.

Figure 5.8: Performance chart of S4.



5.3. A Test with a Selection of Commodities 73

Figure 5.9: Performance chart of S5.
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5.3.4 Numerical Results for the Kernel Backtests

S6 S7 S8 S9 S10
RT (runtime in hours) 0.5000 10.0000 28.0000 11.0000 21.0000
W (daily average growth rate) 0.0010 0.0014 0.0015 0.0015 0.0015
s (standard deviation of daily returns) 0.0168 0.0251 0.0284 0.0245 0.0238
RSharpe (Sharpe ratio of daily returns) 0.0680 0.0663 0.0657 0.0726 0.0726
RSortino (Sortino ratio of daily returns) 0.0747 0.0767 0.0780 0.0829 0.0827
MD(3400) (max. drawdown in 3400 days) 0.4544 0.5373 0.5386 0.5194 0.5181
AR (annualized returns) 0.2878 0.4102 0.4558 0.4554 0.4411
PRmon (% of months with positive returns) 0.5577 0.5705 0.6346 0.6026 0.6026
PRann (% of years with positive returns) 0.7692 0.6923 0.6923 0.6923 0.6923

Table 5.5: Performance measures of S6 to S10.

The kernel algorithm is much more complex than the algorithms considered before. It

is not approximating a constantly rebalanced portfolio, but explicitly searching for de-

pendencies in the time series provided. One crucial factor for this method - as already

explained before - is the choice of the radius function. A reasonable goal is to select on

average a specific amount of nearest points in the time series (for example the 10%, 20%

and 30% nearest points). Therefore, we used the analysis of the quantiles to determine

radius functions that use little percentages on average and some that use more (S6 to S8).

As we know the empirical distribution of the relevant norms from table 5.2, we can also

directly relate to those when giving the radius function (S9 and S10). We would expect

those strategies to get more and more effective from S6 to S10.

Investigating S6 to S8, this seems to be the case. Considering more historic returns leads

to a higher performance. It also leads to higher volatility, but the growth in volatility

is not as big as that in the growth rates (as can be seen from the standard deviation s

and Sharpe ratio in table 5.5). Cumulated growth is reasonably good, especially for S7

and S8 with a final wealth of 103.82 and 159.14 respectively after the 3400 trading days.

This relates to a daily average growth rate of around 0.0015. As mentioned earlier, this

is much less than growth rates from backtests on stocks. But commodities should rather

be compared to currency investments, as they too have no relevant growth of their own

over time. For this, the results are quite good, as the backtest with a kernel algorithm

on currencies in [Györfi et al., 2008a] resulted in an annualized return of 26.9% to 58.3%

compared to an annualized return of 45.58% for S8.

S9 and S10 directly use the empirical quantiles and one would expect them to perform

better than the strategies that rely on a linear interpolation of those quantiles. Still,

growth of S9 is slightly worse than that of S8, but significantly better than that of S10,

which is surprising at first as S10 has more experts to choose from. But a closer look
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at the experts reveals that S9 already had the best experts and S10 was averaging over

more, but worse experts. Even though weights should be lower for those, they are still

considered, thus leading to an inferior growth rate. This could be called ”bad luck” and of

course be different for other data. However, one can see from table 5.5 that performance

measures that take into account volatility s would prefer both S9 and S10 over S6 to S8.

This is most likely the positive consequence of the improved accuracy of those two setups.

A closer look at the final wealth of the experts in table 5.6 and 5.7 reveals no systematic

best choice of the radius, as the best experts jump from big to small radius and from long

to short k. This variation of the best expert is probably due to the fact that the radius

function only chooses on average a certain number of neighbours - in the individual case

the number of chosen neighbours in the history can vary. Thus, this method is usually

not as ”stable” as the nearest neighbour based approach that can be seen in the next

section. This finding is in line with [Györfi et al., 2008a].

The maximum downturn is again severe and it is disappointing that the kernel method

also fails to avoid the downturn in 2008 to 2010. At least the portfolio recovers and

reaches a new peak after a short time. It would probably help the performance if such

an event would have already appeared in the time series before - in the given time series

there is almost constant overall growth of the assets until 2008, thus there is no reference

observation for such an event.

Concerning the development of the portfolio vector, we see that a method considering

a small radius is more diversified than that with a large radius. This can be linked to

the fact that small radius functions only take few values into account when averaging,

especially if the history is short. The more observations there are, the more points go

into the average. In general, we see that the portfolio vectors change significantly from

time to time. More precisely, they begin to jump especially between Asset 8, 14 and 15.

Clearly, we can see that the portfolio vectors have not such a stable development as in

the backtests with S1 to S5.

S6 S7 S8
l/k 1 2 3 1 2 3 1 2 3
1 3.211 4.215 4.594 4.312 40.961 33.372 169.534 117.515 9.046
2 3.958 9.937 2.490 12.593 152.379 158.778 426.836 34.618 7.404
3 3.787 12.356 24.338 208.208 470.746 47.235 732.061 12.794 12.125
4 2.413 76.361 54.290 122.857 70.199 8.897 780.966 16.845 8.616
5 11.466 39.149 414.912 426.836 34.618 7.404 437.833 4.688 6.516

Table 5.6: Cumulated growth of experts for S6 to S8.
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S9 S10
l/k 1 2 3 l/k 1 2 3

1 4.571 65.379 11.377
1 14.047 82.580 13.705 2 14.047 82.580 13.705

3 56.323 19.872 14.068
2 28.410 30.866 17.466 4 28.410 30.866 17.466

5 137.479 63.510 15.241
3 218.751 83.989 113.910 6 218.751 83.989 113.910

7 738.789 203.528 54.011
4 159.521 242.962 32.022 8 159.521 242.962 32.022

9 134.850 210.225 74.081
5 44.024 82.550 204.635 10 44.024 82.550 204.635

11 170.672 170.652 75.041
6 289.370 282.760 118.636 12 289.370 282.760 118.636

13 237.871 114.160 129.682
7 233.797 564.200 128.038 14 233.797 564.200 128.038

15 182.821 236.891 467.869
8 111.025 127.392 130.615 16 111.025 127.392 130.615

17 559.229 159.824 120.964
9 842.858 284.157 189.909 18 842.858 284.157 189.909

19 1181.850 65.538 180.288
10 2437.800 187.200 63.644 20 2437.800 187.200 63.644

Table 5.7: Cumulated growth of experts for S9 and S10.

Figure 5.10: Portfolio vectors of S6, S7 and S8.
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Figure 5.11: Portfolio vectors of S9 and S10.

Figure 5.12: Performance chart of S6.
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Figure 5.13: Performance chart of S7.

Figure 5.14: Performance chart of S8.
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Figure 5.15: Performance chart of S9.

Figure 5.16: Performance chart of S10.
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5.3.5 Numerical Results for the Nearest Neighbour Backtests

The nearest neighbour based backtests differ in the choice of the percentage of nearest

neighbours considered in the local average. For S11 and S12, we chose two equidistant

grids (10 and 20 values) within 2.5% to 50%, whereas we concentrated on a smaller range

between 5% and 10% for S13. We relate this to the findings of [Györfi et al., 2008a] that

the nearest neighbour based method is more robust and usually has its best experts in a

smaller to medium percentage range.

Again as in the kernel analysis, the portfolio vector jumps quite a lot, concentrating on

the same three assets (8,14,15) as in S6 to S10. Increasing the accuracy L is again not

leading to a higher growth rate, but to less volatility and a better Sharpe and Sortino

ratio. This is again in line with the analysis for the kernel method. The concentration

on the lower percentages of nearest neighbours does also not really improve the average

growth rate too much, but reduces volatility even more. Furthermore, time needed for

the backtest is reduced significantly by using S13, as the optimization is done over less

points in every step. It should still be noted that this ”guess” of pl is working for the

current time series, but need not necessarily be the best choice in other cases.

Looking at the experts, we see that our guess of having the best experts in the lower

percentages was correct. In general, the nearest neighbour based experts perform better

than the kernel experts, which we relate again to the better robustness of the nearest

neighbour method.

Disappointingly, the nearest neighbour based algorithms also fail to avoid the downturn

in the years from 2008 to 2010, leading to a high maximum downturn. Again, this is most

likely linked to the fact that no such severe downturns occur simultaneously in all assets

in the given time series before 2008.

All in all, the results of the nearest neighbour based method are satisfying. Especially

the decreasing volatility (that is also reflected by a high percentage of months and years

with positive returns) is a benefit of this method, as is its robustness.
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S11 S12 S13
RT (runtime in hours) 22.5000 41.0000 11.0000
W (daily average growth rate) 0.0017 0.0017 0.0018
s (standard deviation of daily returns) 0.0302 0.0294 0.0283
RSharpe (Sharpe ratio of daily returns) 0.0712 0.0720 0.0780
RSortino (Sortino ratio of daily returns) 0.0849 0.0858 0.0920
MD(3400) (max. drawdown in 3400 days) 0.5038 0.4981 0.4793
AR (annualized returns) 0.5406 0.5369 0.5815
PRmon (% of months with positive returns) 0.6282 0.6410 0.6090
PRann (% of years with positive returns) 0.8462 0.8462 0.8462

Table 5.8: Performance measures of S11 to S13.

S11 S12 13
l/k 1 2 3 l/k 1 2 3 l/k 1 2 3

1 185.148 1852.010 630.599 1 174.526 1868.840 1314.810
1 181.397 1283.710 2197.020 2 181.397 1283.710 2197.020 2 392.351 586.074 4400.730

3 192.314 387.175 520.293 3 223.274 145.688 690.682
2 152.041 904.421 494.871 4 152.041 904.421 494.871 4 149.002 350.973 253.894

5 48.215 250.469 450.562 5 91.694 985.783 345.734
3 124.640 129.192 353.672 6 124.640 129.192 353.672 6 117.990 921.908 545.870

7 291.954 449.297 298.316 7 36.369 219.462 104.808
4 283.544 942.455 627.947 8 283.544 942.455 627.947 8 164.683 315.504 306.740

9 154.539 1580.180 677.777 9 125.724 193.536 268.308
5 65.850 230.619 329.179 10 65.850 230.619 329.179 10 215.373 16.844 93.434

11 115.394 230.236 488.746
6 89.631 263.053 847.906 12 89.631 263.053 847.906

13 84.451 216.400 1178.810
7 92.912 89.862 961.162 14 92.912 89.862 961.162

15 184.673 84.015 262.801
8 179.620 91.206 157.726 16 179.620 91.206 157.726

17 179.378 68.543 124.504
9 441.209 29.178 83.661 18 441.209 29.178 83.661

19 280.237 37.012 51.822
10 237.670 45.780 54.062 20 237.670 45.780 54.062

Table 5.9: Cumulated growth of experts for S11 to S13.
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Figure 5.17: Portfolio vectors of S11, S12 and S13.

Figure 5.18: Performance chart of S11.
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Figure 5.19: Performance chart of S12.

Figure 5.20: Performance chart of S13.
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5.3.6 Summary of All Numerical Results

After comparing the numerical results in groups, we now turn to the big picture, repre-

sented by the comparison of our measures of all backtests in figure 5.21.

Looking at the runtime first, we see increasing runtime with increasing complexity as

expected. However, even the longest run of 41 hours for the whole backtest of S12 is

reasonable, as this represents the time needed for 3900 individual prediction steps. Hav-

ing run the backtest once in a ”preparation” phase that may take some time, one can

make single new predictions based on the weights resulting from the previous backtest

rather fast. This means that even more accuracy (and therefore more runtime) would be

appropriate for a real-world application.

Daily average growth rates for S1 to S5 are very small compared to those taking into

account dependencies. The difference here is significant. Within the individual methods,

parameter choice changes growth only slightly (except for S7 where the radius function

was definitely chosen too restrictive).

Standard deviation varies quite a bit, even within the groups. Higher accuracy seems

to lead to less volatility, as reflected by the pairs (S9, S10) and (S11, S12). With this,

enhanced accuracy also leads to a higher Sharpe and Sortino ratio.

Maximum drawdowns are not significantly different from backtest to backtest. Unfortu-

nately, no setup was able to avoid the largest downturn in the crisis years 2009 and 2010,

as was already mentioned several times earlier. Still, if we look at the development of

the drawturns in the performance charts of the backtests as given above, we see that the

complex algorithms used in S6 to S13 usually have deeper downturns than S1 to S6. On

the other hand they have high peaks and usually recover quickly.

The annualized return is just another measurement of the growth rate. It can be inter-

preted as the annual interest gained on the investment. Therefore, the same consequences

can be drawn as for the growth rate.

Looking at the ratio of positive returns, annually and monthly, we see that this ratio in

general increases with increasing complexity. This analysis gives an information about the

time horizon an investor should have when investing according to the proposed setups.

The higher the percentage of positive returns, the more likely a positive return is within

one year/one month. Going into even more detail, figure 5.22 and 5.23 show the monthly

and yearly returns over the backtest period. For S6 to S13 we can clearly see that negative

months are only a bit negative, while positive months have high positive returns. This is

even stronger for the annual returns for every year of these strategies. A one or two year

investment horizon seems therefore appropriate for these strategies.
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Chapter 6

Conclusion

In this thesis, we have investigated results of the growth-optimal portfolio theory. We

have shown how to construct sequential growth-optimal portfolio strategies and how to

establish five algorithms in this framework. A critical discussion of this idea showed that

while the concept of growth optimality is not compatible with some specific economic

paradigms, it seems a valuable investment strategy by itself. Following this theoretical

analysis, the presented algorithms were applied to a real-world data set, namely returns

of 17 commodities over 3900 trading days from April 14th, 1995 to March 23rd, 2010. A

thorough analysis of the results showed a lack of effectiveness for the simpler algorithms

that are constructed to approximate the best constantly rebalanced portfolio. On the

other hand, the more complex kernel and nearest neighbour based algorithms showed a

promising performance. These results are mostly in line with findings from other papers

for backtests with different assets.

While the concept of growth-optimality has been around for quite some time, the theory

still lacks several explanations that would need closer attention. One important aspect to

investigate is the question how to (in whatever sense) optimally choose parameters in the

kernel and nearest neighbour algorithms. Another possible point would be to assess the

rate of convergence of the different methods, as fast convergence towards the best expected

growth rate is obviously desirable and therefore preferred. A third important question

that is often raised in the literature is how to handle transaction costs (see for example

[Györfi et al., 2007]). The performance of the backtests looks fantastic, but daily returns

are only in 1/10 of a percent range. Considering that the kernel and nearest neighbour

based algorithms require a lot of rebalancing with transactions costs being rarely less than

0.5% of the trading volume, one can easily imagine how fast this profit is vanishing.

Considering these points, growth-optimal portfolio theory looks like a promising field for

further research and an interesting aspect for practitioners.
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