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Abstract

The scope of this master thesis is to develop statistical models for different
types of faults in a semiconductor fabrication plant. The methodology of
Classification and Regression Trees (CART) proves to be a suitable method
for analyzing the corresponding semiconductor equipment data. Moreover,
recent enhancements of CART like Random Forests or Boosting with trees are
highly accurate and useful for modelling purposes. The goal of the thesis
is to describe and use these statistical methods in practical classification and
regression problems. These problems include the prediction of the maintenance
date and time of an implanter tool, the modelling of arcing on the wafer
surface as well as predicting the thickness of the film deposited on the wafer.
The models allow a more efficient scheduling of maintenance operations, the
reduction of both scrap wafers and physical measurements.

The thesis is written in cooperation with austriamicrosystems AG.

Zusammenfassung

Der Aufgabenbereich der vorliegenden Masterarbeit ist es, statistische Mod-
elle für verschiedene Arten von Fehlern in der Halbleiterfertigung zu entwick-
eln. Die Methodik der Classification and Regression Trees (CART) eignet sich
zur Analyse der dazugehörigen Maschinendaten. Neuere Erweiterungen von
CART wie Random Forests oder Boosting with trees eignen sich darüber hin-
aus zur Modellierung. Das Ziel der Arbeit ist es, diese statistischen Methoden
zu beschreiben und in praktischen Klassifizierungs- und Regressionsproblemen
anzuwenden. Zu diesen Problemen gehört das Vorhersagen des Wartungszeit-
punktes einer Implanter-Maschine, das Modellieren des Phänomens von Arc-
ing auf der Waferoberfläche und das Vorhersagen der Dicke der aufgetragenen
Schicht auf den Wafer. Die Modelle ermöglichen effizientere Planbarkeit von
Wartungseingriffen, die Reduktion von Ausschusswafern sowie das Einsparen
physischer Messungen.

Die Masterarbeit wurde in Zusammenarbeit mit austriamicrosystems AG er-
stellt.
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Chapter 1

Introduction

The scope of this master thesis is to develop statistical models for several
different types of faults in a semiconductor fabrication plant. Typically, these
faults are related to advanced process control (APC) and fault detection and
classification on wafers (FDC).

The ability to schedule certain maintenance operations in an early production
state yields more efficient work flows, an increase in equipment uptime and
cost reduction. Typical goals of APC revolve around the reduction of certain
equipment faults that cause scrap wafers or the prediction of process results
such that less physical measurements are needed (virtual metrology).

As there are typically a large number of machine parameters that may or
may not influence equipment faults, a first step is to find out parameters that
are relevant to reduce complexity. Classification and regression trees as they
were developed by Leo Breiman and his colleagues in 1984 (see [6]) represent
a powerful statistical tool that turns out to be highly suitable for the above
situations. On the one hand, they offer the ability to get an intuitive insight in a
set of machine data to find out relevant information and on the other hand they
act as a foundation to several powerful statistical methods for classification and
regression problems.

This thesis deals with the use of classification and regression tree models and
their enhancements for several types semiconductor fabrication faults. The
chapters 2 and 3 give a theoretical overview of the statistical methods used.
Chapter 4 serves as a brief introduction to the wafer fabrication processes that
are investigated. Finally, the chapters 5, 6 and 7 show the utilized methodology
and results achieved by using tree-based statistical methods. Chapter 5 deals
with predictive maintenance on an implanter tool, chapter 6 describes the
construction of a statistical model for arcing on a wafer surface and chapter 7
is about virtual metrology on a PVD tool.

1
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Chapter 2

Classification and Regression
Trees

Classification and regression tree (CART) models were introduced in 1984 by
Breiman, Friedman, Olshen and Stone in their book ([6] Breiman et al. 1984).
It is a non-parametric method to model and predict a response variable y
by using a set of explanatory variables x1, ..., xp. The method provides an
overview of the structure of the data and dependencies among certain predic-
tors that are otherwise difficult to find out. The response variable y can be
either categorical (e.g. binary) or numerical. For categorical responses, the
method produces a classification tree which can be used for classifying new
observations, i.e. assigning them to a predicted class. In case of a continuous
response the result is a regression tree which assigns prediction values as in
ordinary least squares regression.

The basic idea behind a tree model is best introduced by an example as pre-
sented in figure 2.1.

The decision tree shown was used in an american hospital to identify high
risk heart attack patients. When such a patient is admitted, several ordered
and binary variables such as blood pressure and age are measured giving an
overview of the patients condition. The classification rule resulting from the
decision tree classifies patients as class F for not high risk and class G for high
risk depending on their answers of at most three questions. The patient moves
in the tree from top to bottom. At each node questions has to be answered
with yes or no. Depending on the answer the patient falls in the left or right
branch of the tree. After answering the questions every patient falls into one
specific terminal node where a respective risk class is assigned.

The goal of this chapter is to describe the mathematical methodology used to
construct such a classification rule for the tree. In the following we present a
detailed description of the underlying algorithm to build a tree model either
for categorical or numerical response variables, its implementation in R and
some recent improvements.

3
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Is the minimum systolic blood 
pressure over 24 hours > 91?

G

yes no

Is age > 62.5?

F

yes no

FG

yes no

Is sinus tachy-
cardia present?

Figure 2.1: A tree structured classification rule for identifying high risk heart
attack patients.

2.1 Binary recursive partitioning

We assume that there are n observations, p predictors x1, ..., xp and a cor-
responding response variable y. The algorithm used to build a corresponding
classification tree is called binary recursive partitioning. Our discussion follows
the overview of CART models in [2] Berk (2008) and their introduction in [6]
Breiman et al. (1984).

A tree model systematically partitions the space spanned by all the predictors
in a stagewise procedure into smaller and smaller subspaces until a certain
stopping criterion is met and then assignes a prediction value to the observa-
tions in the last subspace. This is either a predicted class for classification or a
simple constant value for regression, but we will deal with numerical responses
later.

At first we focus on the classification case with two classes, i.e. y ∈ {0, 1}. For
example for modelling certain kinds of machine problems the class labels can
represent erroneous and not erroneous output if no further information about
type or degree of the fault is available.

At the beginning, the whole dataset X is analyzed. The procedure now looks
for the best way to split the whole dataset into two subsets X1 and X2 so that
both are as class homogeneous as possible. We focus on details on this shortly.
Here, splitting means finding a treshold in the values of one of the predictor
variables and then partition the group of response values into two subgroups
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according to that treshold. Figure 2.2 exemplarily shows this idea with two
predictor variables x1 and x2.

Figure 2.2: Recursive Partitioning of a binary 0/1 outcome and predictor
variables x1 and x2.

Figure 2.2 shows a three-dimensional scatterplot with predictor variables x1

and x2 and the respective binary response. The vertical line at x1 = 3 produces
the first partition of the data. Now the values of the response y are partitioned
into 2 groups and the partitioning is determined by a value of the predictor
variable x1. The second partition is produced by the double horizontal line at
x2 = 6 but only within the group of response values for which the predictor
x1 is smaller than 3. Finally, the third partition is produced by the triple
horizontal line at x2 = −4, now only within the group of response values for
which x1 > 3 holds.

The CART method recursively constructs a series of partitions with split lines
perpendicular to the coordinate axis of the used predictors. But there is more
information in figure 2.2.

The partitions in the upper left and lower right corners are fully class homo-
geneous. So cases with x1 ≤ 3 and x2 > 6 are always of class 1 and cases with
x1 > 3 and x2 ≤ −4 are always of class 0. Reaching such kinds of homogenity
in the constructed partitions is the main goal of the procedure and also the
idea behind the partition construction itself.

As shown in the heart attack patient example the achieved partitioning of the
data can be illustrated in a tree diagram. A general tree structure is shown in
figure 2.3.

One follows the tree diagram from top to bottom, i.e. from the root node to
the terminal nodes. The root node contains the full data sample and then the
data is subsequently split using calculated values of certain predictors. Cases
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Figure 2.3: General structure of a CART model output.

with x1 > a go into the right partition and cases with x1 ≤ a go left and so
on.

In figure 2.3, every split beyond the first split at the root node means some sort
of interaction effect between the predictors as such splits are only performed in
a data region where one predictor is restricted to certain values (e.g. x1 > a).

The questions that now remain to fully understand the construction of such a
tree are the following:

1. How does one calculate the values of the predictors at which splits are
performed?

2. How is homogeneity achieved and maximised?

3. When is a node declared terminal?

2.1.1 Splitting nodes

All of the questions above are linked to the so called impurity of a node. The
goal is to partition the data such that the resulting partitions are as class
homogeneous as possible, i.e. as pure as possible. The best case is a node
that is fully class homogeneous, e.g. that only contains class 0 observations.
The impurity of a node on the other hand is at its maximum if 50% of the
observations in a node are class 0 and 50% are class 1 observations. Thus the
impurity of a node depends on its class proportions. The fundamental idea
behind splitting is to select a split so that the data in the resulting partitions
are purer than the data in the parent partition.



2.1. BINARY RECURSIVE PARTITIONING 7

Definition 2.1.1. Let Y be a random variable. The impurity I of a node A
is a function Φ of the probability P (Y = 1|A), i.e.

I(A) = Φ(P (Y = 1|A)),

with Φ ≥ 0,Φ(P ) = Φ(1− P ) and Φ(0) = Φ(1) < Φ(P ).

The impurity is a nonnegative symmetrical function with a minimum when
the node A is fully class homogeneous and a maximum when half of the ob-
servations in A are class 0 and the other half are class 1 observations. There
are several types of impurity functions (see [6] Breiman et al. (1984) for com-
parisons and discussion) but we focus on the Gini index (see figure 2.4).

Definition 2.1.2. The Gini index impurity function is given by

Φ(P ) = P (1− P ).
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Figure 2.4: The Gini index impurity function.

The goal is to find a value in one of the predictors that partitions the data so
that the resulting child partitions have an overall smaller impurity than their
parent partition.

When the binary recursive partitioning procedure tries to find a value at which
to split a node, it evaluates all possible split of all possible input variables
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and takes the one that reduces the impurity the most. The difference in the
impurity when a split s is performed on node A,

∆I(s, A) = I(A)−
(
P (AL)I(AL) + P (AR)I(AR)

)
,

where P (AL) is the probability of a case falling in the left child node and
P (AR) is the probability of a case falling in the right child node, is maximised,
i.e.

max
s,A

∆I(s, A).

The CART procedure takes the variable and split that maximally reduces the
impurity to define the new partition of the data.

There are several stop-splitting rules. The initial one is simple: when the
procedure reaches a node in which no significant decrease in impurity is possible
then do not split this node any further and declare it terminal.
More formal, set a treshold β > 0 and declare a node as a terminal node if

max
s,A

∆I(s, A) < β.

Another restriction that implies a stopping criteria is to set a minimum sample
size for each terminal node, i.e. a minimum number of cases in a terminal node.

The implementation of the CART procedure in R provides several stop-splitting
criteria, which will be discussed later when we focus especially on CART in R.

2.1.2 Classification and Prediction

When a tree is fully grown the terminal nodes are labeled with classes. The
class assigned to a terminal node is determined by majority vote: If the ma-
jority of cases in terminal node A are of class i, i ∈ {0, 1}, then A is labeled as
a class i terminal node.

This assignment points at the advantages of the procedure. First, with a ter-
minal node labeled for example class 1, one can follow the built tree structure
from top to bottom and see exactly under which data constellations and in-
teractions between variables, observations are of class 1. Second, the labelling
is used to predict the class of new observations with unkown response class.
This observation is dropped down the tree structure and after it falls into one
distinct labeled terminal node, this label becomes the class prediction of the
observation.

But when certain classes are assigned to a terminal node by majority vote,
errors are made if the node is not fully class homogeneous. For example if
the proportion of class 0 cases in a terminal node is 0.70 this is used as an
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estimation of the probability that a new case with unknown response falling
into that node is of class 0. The estimated probability for not being of class 0
is 0.30 and this is also the proportion of cases of class 1 being wrongly labeled.
We focus on the influence of such errors on the explanatory power of a CART
model later when model quality is discussed.

In summary, a CART model is able to model and illustrate the relationship
between the response y and a set of predictors x = (x1, ..., xp) and, with an
established model, it is possible to predict the outcome of a new observation
with an unknown response. Furthermore estimated probabilities of prediction
errors can be given.

2.1.3 Example

To simply examplify on how the procedure works in a real classification prob-
lem we use the data set frogs from the R library DAAG. The data set is the
result of a study of ecological factors that may affect the presence of a cer-
tain frog species in New South Wales, Australia. It contains 212 rows and 11
columns.

The binary response variable is pres.abs where 0 means frogs were absent and
1 means frogs were present. For ease of interpretation we limit ourselves to
the following 7 predictors: altitude (altitude in metres), distance (distance
in metres to the nearest extand population), NoOfPools (number of poten-
tial breeding pools), NoOfSites (number of potential breeding sites within a
2 km radius), avrain (average rainfall during spring period), meanmin (av-
erage minimum spring temperature) and meanmax (average maximum spring
temperature).

The resulting classification tree for pres.abs is shown in figure 2.5.

In the resulting model only two out of seven predictors were recognized to
be influential, i.e. significantly reduce node impurity, namely distance and
meanmin. The split that partitions the data the best is performed at a distance
value of 625 metres. For small distances (< 625m, right tree branch), meanmin
is important. It is split at 2.9 degrees. Two terminal nodes result. One is
labeled as class 0 node with 10 observations in the partition of class 0 and
2 observations being of class 1. The node is relatively pure. The resulting
misclassification rate of the terminal node is about 17% and its Gini index
impurity is

10

12
·
(
1− 10

12

)
=

5

36
= 0.13888...

Thus, in 10 out of 12 areas (about 83%) with small distances to the nearest
extand population and a low average minimum spring temperature frogs were
absent. Similar conclusions can be made for the remaining terminal nodes.
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Figure 2.5: Classification tree for the binary response variable pres.abs.

2.2 Pruning

An overall too large and complex tree is often not desirable. Sometimes one
wants to keep a tree simple because of interpretability issues or for preventing
the model to focus too much on idiosyncrasies of the given modelled dataset
and thus losing predictive power (this is called overfitting). Therefore it is
important to constrain the size of a tree by removing branches that do not
reduce heterogeneity sufficiently enough for the additional complexity. The
strategy to reduce the tree size is called pruning.

The following definition mentions costs for misclassifying a case. We will not
discuss the use of costs in a CART model in detail (see [2] Berk, section
3.5 for a discussion of costs). For our purposes it is sufficient to say that
misclassification weights or costs can be applied to the classes, i.e. for class
0 being the positive class (e.g. not faulty) the cost of misclassifying a class 0
observation as class 1 observation (a so called false negative) can be higher or
lower than misclassifying a class 1 as class 0 observation (false positive). This
can be useful in some practical problems. By default, false positives and false
negatives have equal costs.

Definition 2.2.1. Let K be the number of terminal nodes in a tree model, C
be the number of classes (C = 2 in the binary case), τ(A) be the class assigned
to node A by the model if A is terminal and πi be the prior probability of a
case being in class i, i.e. the proportion of class i in the given data set. Then
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we define

• L(i,j) as the loss matrix for incorrectly classifying a case of class i as
class j. L is a 2 × 2 matrix in the binary case and the cost for correct
classification (i.e. the entries in the main diagonal) are taken to be 0.

• the risk of node A as

R(A) =
C∑
i=1

P (I = i|A)L(i, τ(A))

with τ(A) chosen to minimize risk.

• the risk of the entire tree T as

R(T ) =
K∑
j=1

P (X ∈ Aj)R(Aj)

with P (X ∈ Aj) being the probability that case X falls in terminal node
Aj.

The risk of a node A in the binary case describes the probability of a class
0 case falling in A times the costs that follow plus the probability of a class
1 case landing in A times the costs. The risk R(T ) of the entire tree is also
called the expected cost of the tree T .

For pruning a tree, a penalty for complexity is introduced. This penalty de-
pends on the number of terminal nodes. It comes to the minimization of

Rα(T ) = R(T ) + α|T̃ |

with α ≥ 0 being the complexity parameter and |T̃ | is the number of terminal
nodes of the tree T .

Obviously the larger the value of α the larger is the penalty of complexity, i.e.
for each additional terminal node. Hence, α controls the size of a tree.

In [6], Breiman and his colleagues prove the following proposition.

Proposition 2.2.1. Let T be a tree. For every value of α there exists a subtree
T (α) of T with minimal cost complexity, i.e.

Rα(T (α)) = minRα(T ).

2.3 Classification Model Evaluation

After fitting a classification tree model to a given data set one is interested in
its performance, i.e. its power to classifiy given observations correctly and the
size of the resulting model error.
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2.3.1 Confusion Table

A confusion table is used to get an overview of how well a CART model fits
the data used to build the tree (training data). It cross-tabulates the observed
real classes of the observations with the classes assigned by the model. Thus it
serves as an indicator for the goodness of fit and shows several types of errors.
A confusion table can also be used to assess a CART models forecasting power
by tabulating a model’s results produced with data not used to build the tree
but with known response classes (test data).

Table 2.1 shows the general structure of a confusion table for the binary clas-
sification case.

Class 0 predicted Class 1 predicted Model Error
Class 0 a b b/(a+ b)
Class 1 c d c/(c+ d)

Use Error c/(a+ c) b/(b+ d) Overall Error = b+c
a+b+c+d

Table 2.1: General structure of a confusion table. The letters in the cells are
counts of the respective cases.

First, a confusion table calculates the overall model error as the sum of misclas-
sified cases (off-diagonal entries) divided by the total number of observations.
If b+ c = 0 then the model provides a perfect fit with no cases being misclas-
sified.

Second, the table gives an overview of the number of false negatives (b) and
false positives (c). The fourth column shows the proportions of these two types
of incorrectly classified cases. Berk [2] calls these proportions the model error.
When the true class is known, they give information on how common it is for
the procedure to fail to identify it.

The entries in the fourth row of the table show the so called use error. When
an observation was assigned a specific class by the model, these proportions
give information on how common it is for this assignment to be wrong.

Furthermore, the proportions that mirror successful predictions can also be
viewed. The values a/(a+ b) and d/(c+d) are called sensitivity and specificity
(see [1] Altman & Bland, 1994) and are considered in some applications (see
for example [13] Hastie et al. 2001, section 9.2.5).

Confusion tables serve as an essential diagnostic tool and should be considered
for every classification problem.

2.3.2 Cohen’s Kappa

Another possibility to describe the overall rate of class agreement of a clas-
sification model is given by Cohen’s Kappa (see [7] Cohen, 1960). It is used
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to measure the agreement of two individual classification procedures. In our
case we are interested in measuring the agreement between the observed class
labels in our training sample and the class labels assigned by a classification
tree model.

The kappa coefficient depends on the values of a confusion table of proportions
as shown in table 2.2.

Class 0 predicted Class 1 predicted Total
Class 0 p11 p12 p1.

Class 1 p21 p22 p2.

Total p.1 p.2 1

Table 2.2: Confusion table of proportions. The value pii is the number of
observations in cell (i, i) divided by the total number of observations.

At first the observed level of agreement is computed:

po = p11 + p22

This will be compared to

pe = p.1p1. + p.2p2.

The Kappa coefficient is then defined as

κ =
po − pe
1− pe

.

The value of κ is always less or equal to 1 where 1 implies perfect agreement.
Sometimes it can even be negative which means very poor agreement. There
are different ways to interpret the values of Kappa. One possible interpretation
that seems useful is provided below (see e.g. [17] Landis & Koch (1977)).

• less than 0.20 = poor agreement

• 0.21 - 0.40 = fair agreement

• 0.41 - 0.60 = moderate agreement

• 0.61 - 0.80 = good agreement

• 0.81 - 1.00 = very good to (almost) perfect agreement
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Absence predicted Presence predicted Model Error
Absence 114 19 0.14
Presence 19 60 0.24
Use Error 0.14 0.24 0.18

Table 2.3: Confusion table for modelling the distribution of certain frogs in
New South Wales, Australia.

2.3.3 Example

We continue our example using the frogs data set to evaluate the classification
tree model whose graphical output is shown in figure 2.5. Table 2.3 shows the
resulting confusion table.

The model seems to perform quite good with an overall classification error
of about 18%. However, if frogs are present the procedure fails to correctly
identify them in about 1 out of 4 cases (model error of 0.24). Furthermore, if
presence of frogs is predicted, on average about 1 out of 4 predictions is wrong
(use error of 0.24).

Absence predicted Presence predicted Model Error
Absence 0.5377 0.0896 0.6274
Presence 0.0896 0.2830 0.3726
Use Error 0.6274 0.3726 1

Table 2.4: Confusion table of proportions for modelling the distribution of
certain frogs in New South Wales, Australia.

A look at Cohen’s kappa coefficient gives further information. The related
confusion table of proportions is shown in table 2.4. This results in a kappa
coefficient of about 0.62 which means good agreement.

In summary, the model seems quite acceptable.

2.4 Regression Trees

We will now focus on numerical response variables. The key difference between
the classification and the regression case lies in the splitting criterion.

Our data again consists of p input variables and a numerical response variable
y for N observations, so we have (xi, yi) for i = 1, ..., N and xi = (xi1, ..., xip).
In the classification case we had to maximize the reduction in the impurity,
thus CART had to solve

max
s

∆I(s, A) = max
AL,AR

(
I(A)−

(
P (AL)I(AL) + P (AR)I(AR)

))
.
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Exactly the same concept applies for the regression case, with the impurity of
a node now being the sum of squares in that node, i.e.

I(A) =
N∑
i=1

(yi − ȳ(A))2.

For a node A the deviance is given by

D(x̃, A) =
n∑
i=1

(yi − ȳ(A))2 −
( nx̃,A∑
i=1

(yi − ȳ1,x̃(A))2 +
n∑

i=nx̃+1,A

(yi − ȳ2,x̃(A))2
)

with x̃ being the treshold at which a split is performed. So we seek

max
x̃

D(x̃, A).

Again each observation is placed in one terminal node and is then assigned
with the mean of all values in that node. These conditional means serve as
fitted values for observations out of the training data and as predicted values
for new observations out of test data.

As there is no confusion table, the quality of fit is based on a summary statistic
such as the root mean squared error.

2.4.1 Formal representation

A given regression tree also has a formal representation (see [13] Hastie et al.
2001).

Suppose we have partitioned our data space into J regions R1, ..., RJ , thus
Rj describes the parameter space region defined by the jth terminal node,
j = 1, ..., J . Then a regression tree models the response y as constant in each
region. Thus, a tree T can be represented as

T (x,Θ) =
J∑
j=1

γj1{x∈Rj}

with γj being the conditional mean of the response values that is assigned to
terminal node j and tree parameters Θ = {Rj, γj}. Let f(x) be the estimated
relationship between predictors x and response y, then

x ∈ Rj ⇒ f(x) = γj.

With this a regression tree model can be formulated as



16 CHAPTER 2. CLASSIFICATION AND REGRESSION TREES

Y =
J∑
j=1

γj1{x∈Rj} + ε,

where ε is zero-mean noise.

2.5 Advantages and Limitations of CART

One advantage of the CART procedure is the possibility to show its output in
a tree diagram. The tree plot delivers a highly intuitive insight in the structure
of the data and shows effects of interactions in a natural way. With a given
tree structure one is also able to determine the most influential predictors. The
higher above in the tree structure a certain predictor is used for a split the
more reduction it yields in impurity or deviance and thus the more important
it is for describing the relationship with the response.

As outlined in [6] Breiman et al. section 2.7, some particular advantages of
the CART procedure are:

• It is very flexible and can be applied to any given data structure, i.e. it
does not rely on any assumptions about the distribution of the data as
it is non-parametric.

• It handles both numerical and categorical variables in a simple way.

• The final output has a simple and easy to interpret form and can be used
for predicting new data.

• The tree structure implicitly gives a variable importance ranking and
variable selection.

• The procedure also provides error estimates.

• It is very robust with respect to outliers.

However, there are also some shortcomings to deal with. First, there are no
formal mathematical results indicating that a CART model will find the correct
relationship between predictors and response from a given sample, even with
all predictors provided and well measured. For example a suboptimal split at
one level might allow better splits on lower levels that would not be performed
otherwise and thus such a split might result in a better overall tree structure.

Also, there is evidence that the procedure selects predictors in a way that
injects bias. The method tends to favour predictors with a larger number of
distinct predictor values.

Another problem of CART can be overfitting. As mentioned earlier, flexible
statistical modelling procedures such as CART sometimes tend to focus too
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much on idiosyncrasies of the given training data and thus they are too dataset
specific. Hence, the outcome often does not generalize well to new data and
predictive power is lost. This problem is mostly visible in unpruned trees and
trees where every observation has its own terminal node (a tree with as many
terminal nodes as observations is called saturated tree). Thus pruning and tree
size limitations can help to prevent overfitting. Further enhancements of the
CART methodology which are discussed later are also able to deal with the
problem.

As discussed in [13] Hastie et al. (2001, p. 272-4) a major problem of a tree
is its high variance. Small changes in the data can result in different splits
and thus in a different tree with different terminal nodes. This should be kept
in mind when interpreting tree results. The variance is basically due to the
hierarchical tree structure, as changes in data and errors in the top split affect
all splits below i.e. are carried down.

Furthermore, a small number of observations in a node can cause instability
in the results.

2.6 Unbiased Binary Recursive Partitioning

As mentioned above, one problem of the CART method is its selection bias
towards predictor variables with many possible splits. A solution to this prob-
lem is presented in the work of Hothorn and his colleagues ([14] Hothorn et
al. 2006). They presented a unified framework for an unbiased recursive
partitioning procedure based on hypothesis testing (conditional inference).

Their key idea for constructing interpretable tree structures not suffering of
bias toward certain predictors revolves around the separation of variable selec-
tion for a split and the splitting procedure itself. The selection of a variable
at which to perform a split is determined by the results of a hypothesis test,
i.e. a test of independence between any of the covariates and the response is
performed.

The procedure is summarized as follows (see [2], p. 137-8):

1. Test the global null hypothesis of independence between any of the p
predictors and the response.

2. Stop if the test cannot be rejected.

3. If the test is rejected select the predictor with the strongest relationship
to the response as the splitting variable.

4. Choose the best split as usual using only the selected predictor.

5. Iterate steps 1-4 until no further splits are indicated.
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As mentioned above the variable selection and the actual splitting procedure
is separated into steps 3 and 4.

All of the performed hypothesis tests are based on permutation distributions
where values of the response variables are randomly shuffled. For each pre-
dictor such a permutation test is performed under the null hypothesis of no
association. Thus a p-value follows for every predictor variable and an overall
p-value is also computed using methods of correction of multiple comparisons
(e.g. Bonferroni correction).

If the global null hypothesis is rejected the predictor with the strongest re-
lationship to the response is chosen (step 3). Here, ’strongest relationship’
means having the smallest p-value out of the single permutation tests.

Once a predictor is selected this way, a split is performed as described in the
above chapters or by utilizing the permutation test framework from above (see
[14] for details).

Hothorn and his colleagues also showed that such a procedure results in a
predictive performance similar to what can be found in optimally pruned trees
and therefore they implicitly offer a possible solution to the overfitting problem.

However, there are still some minor concerns. For example, it is still unclear
whether the method estimates the real relationship between the response and
the predictors, if there is any. Results also depend on the sample size. See [2]
for details.

A description of the method in R as well as its application on the frogs example
is presented in the following section.

2.7 CART in R

The initial CART methodology described earlier as well as the idea of unbiased
recursive partitioning have its implementations in R. The ideas of Breiman and
his colleagues were transformed to R and can be found in the rpart package (see
[31] Therneau & Atkinson (1997) for a description). The work of Hothorn et al.
is implemented in the party package. There are several more implementations
of tree models but we focus on these two.

2.7.1 The rpart package

rpart is an abbreviation for recursive partitioning and has to be loaded as a
separate R package. With it the user can fit tree models following the method-
ology described above.

Again, we use our example of the frogs data set and describe how the classi-
fication tree shown in figure 2.5 is built using rpart. The main command to
build a tree model is rpart. With
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> xtrain<-data.frame(altitude, distance, NoOfPools, NoOfSites,

avrain, meanmin, meanmax)

> library(rpart)

> mod<-rpart(pres.abs~., data=xtrain, method="class")

one fits a CART model to estimate the relationship between the response
variable pres.abs and all of the columns of a previously defined data frame
of predictors stored in xtrain. The notation is equal to lm and other model
fitting functions. The resulting rpart object is stored in mod. Generally,
the response can be either categorical (i.e. a factor, which should be declared
explicitly using as.factor()) or numerical as can be the predictors in xtrain.
Depending on the type of the response the routine automatically distinguishes
between a classification tree or a regression tree. One can also explicitly tell
the routine which kind of tree model to fit via method.

The rpart command takes further arguments, some of which are discussed
below (see [31] Therneau & Atkinson (1997) and the description in the R help
by Ripley for more).

• method: explicitly specifies which kind of tree to be build. THe first
option method="class" builds a classification tree, method="anova" re-
sults in a regression tree. If not specified, the routine guesses the right
method based on the type of the response.

• parms: lets the user specify optional parameters for the splitting func-
tion. A regression tree does not have further parameters, for classification
splitting a list can contain a vector of prior probabilities of a case being
in each class (component prior). They must be positive and sum up to
1 and the defaults are proportional to the data counts. With the loss

component one can specifiy a loss matrix which must have zeros on the
main diagonal and positive off-diagonal elements. The split component
specifies the split criterion to be used. It defaults to gini.

• cost: a vector of non-negative costs for variables in the model. These
are scalings for the variables to be applied when splits are determined.
The improvement on splitting on a variable is divided by its cost in order
to decide which split to choose. With this, the user can specify if certain
variables are more important than others based on previous knowledge.

• control: here further options that control details of the rpart can be
given as an object that is specified before one executes rpart.

The details that can be specified in the control object are the following:

• minsplit: the minimum number of observations in a node for which the
routine will even try to compute a split. The default value is 20.
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• minbucket: the minimum number of observations in a terminal node. It
defaults to minsplit/3.

• maxcompete: controls the number of competitor splits to be printed. For
example sometimes it is useful to see not only the variable that gave the
best split but also the second, third etc. best.

• maxdepth: controls the maximum interaction depth level of a tree with
the root node counted as depth 0.

• cp: sets the complexity parameter for pruning. A value of cp=1 will
always result in a tree with no splits. For the classification this corre-
sponds to the complexity parameter α as described above. For regression
models it has a direct interpretation: if any split does not increase the
overall R2 of the model by at least cp (with R2 defined as coefficient of
determination for linear models) then that split is not considered and
that branch is not split any further. The default value is 0.01.

The control object can be passed to the rpart command in the following way:

> modControl<-rpart.control(minsplit=20,

minbucket=round(minsplit/3), maxcompete=3, maxdepth=5, cp=0.01)

> mod<-rpart(pres.abs~., data=xtrain, control=modControl)

As mentioned above, the parameters minsplit, minbucket and maxdepth have
influence on the size of the tree in addition to what is specified in cp.

When a rpart model object is generated a tree output can be plotted by
simply using the plot command. Furthermore a plot needs to be texted with
the respective variable names using the text command. The plot in figure 2.5
on page 10 is generated with

> plot(mod, uniform=TRUE)

> text(mod, use.n=TRUE, all=FALSE)

With this a tree is plotted in a separate R plot window as usual. Basic plot
parameters like changing text size or adjusting margins can also be applied as
usual by using par commands.

2.7.2 The party package

The second R package suitable for fitting tree based classification and regres-
sion models is the party package for constructing conditional inference trees
and more. The core function of the package is ctree for constructing condi-
tional inference tree models according to the unbiased recursive partitioning
methodology described earlier. It basically has the same syntax as rpart.
With



2.7. CART IN R 21

> library(party)

> mod<-ctree(pres.abs~., data=xtrain)

a conditional inference tree model object for the frogs data example is created
(with xtrain as before). The plot command plots the model.

> plot(mod)

Here no texting is required. The resulting plot for our frogs example is shown
in figure 2.6.
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Figure 2.6: Classification tree using unbiased binary recursive partitioning for
pres.abs.

The variable ranking resulting from the party procedure differs slightly from
its rpart counterpart. It also recognizes NoOfPools as important. Further-
more, the corresponding p values are shown in every node.

The plot also graphically shows the distribution of the response values in every
terminal node by various plot types. Therefore the package’s plot method can
be extended by so called panel functions. The most important panel methods
are:

> plot(mod, terminal_panel = node_terminal(mod))
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> plot(mod, terminal_panel = node_boxplot(mod))

> plot(mod, terminal_panel = node_hist(mod, freq=T,

horizontal=F))

> plot(mod, terminal_panel = node_density(mod, rug =T,

horizontal=F))

From top to bottom they are: an ordinary terminal node representation with
the number of observations and the mean of each node shown (node terminal),
a boxplot of the observations in the terminal node (node boxplot), a histogram
((node hist)) either with frequency or proportions as in the usual hist com-
mand and either rotated 90 degrees (horizontal=T) or as usual (horizontal
= F) and an estimated density curve (node density) either horizontal or not
and with (rug=T) or without (rug=F) rug representation showing the distribu-
tion of the response values as dots on a horizontal axis at the bottom of the
plot.

For controling the size of a ctree tree model, minsplit, minbucket and
maxdepth can be used as in rpart with a ctree control object. In addition,
the parameter stump=T returns a tree with only 3 nodes (a so called ”stump”,
a root node and one split). With parameters teststat and testtype one can
also specify the type of the test statistic and how to compute its distribution.
With mincriterion one can then specify the value of the test statistic or
1 − p–value that must be exceeded in order for a split to be performed. See
[14] Hothorn et al. (2006) for details on this.

2.8 Further Literature

After the initial publication of the theoretical framework of CART in [6] re-
search on the introduced models started slowly. A new approach to the idea
was given in 1993. The procedure of recursively partitioning the observations
by univariate splits is also used to derive a procedure different to CART called
C4.5 (see [21] Quinlan, 1993). It also performs an exhaustive search over all
possible splits and maximizes some information measure to achieve the best
partitioning but unlike in CART a C4.5 model is not limited to binary splitting
and therefore also allows multiple splits in the data.

As computer power generally increased so did research on the matter with
particular focus on node splitting and variable selection. The problem of bias
in variable selection was already known and discussed by Loh and Shih in
their work on split selection methods (see [20] Loh & Shih (1997) and [19] Loh
(2002)). Algorithms for tree construction called QUEST (for classification)
and GUIDE (for regression) are proposed to specifically minimize or eliminate
variable selection bias.

For classification trees, [26] Shih (1999) summarizes splitting criteria in families
and shows that the best splits based on split criteria are based on parameters
of the proposed families.
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Furthermore, [30] Su (2002) published a method for growing regression trees
under maximum likelihood aspects. Standard likelihood methods such as like-
lihood ratio tests are incorporated into each stage of the tree procedure.

Following the earlier work of Loh and Shih, the group around Torsten Hothorn
published several articels on their ideas of conditional inference trees and tree-
based models. Hothorn and colleagues [33] (2008) published a discussion on
model based recursive partitioning, linking tree models with parametrical mod-
els. In newer versions of the party package, these ideas are also implemented.
Furthermore, [28] Strobl (2006) focuses specifically on unbiased variable selec-
tion in classification trees with the Gini impurity function and discusses some
distributional characteristics.
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Chapter 3

Tree-based Methods

We now turn to methods that use the results of several classification or regres-
sion tree models in order to classify or regress. Therefore we make a transition
from focussing on procedures that produce a single set of results to methods
which use many sets of results to produce their output.

The idea of aggregating results of several models does have benefits. For ex-
ample the problem of overfitting the data can be averaged out as averaging
tends to balance out effects that come from idiosyncratic features of a given
data set. Furthermore it can reduce the variance that comes with a single tree
model and thus can produce more accurate and stable models. Thus this ap-
proach also offers a solution to CART’s instability problems while building on
the flexibility of the method. This is particularly beneficial if one is interested
in predicting the outcome of new data.

An alternative approach to enhance the predictive power is by constantly im-
proving the results of a single model over a series of steps, i.e. using some sort
of additive model. This approach can also take advantage of the flexibility of
a CART model and deal with some of its problems.

For modelling maintenance problems and defects occuring during wafer pro-
duction we use two such non-parametric methods based on the outcomes of
several CART models, namely Random Forests introduced by [4] Breiman
(2001) and Boosting whose idea goes back to [24] Schapire (1990). These
methods have proven to be very accurate for modelling both categorical and
numerical response variables while having the above discussed advantages over
CART.

3.1 Random Forests

A Random Forest consists of an ensemble (or a forest) of CART models. The
method builds on the idea of Bagging (see [3] Breiman, 1996) which stands
for “Bootstrap Aggregating”. With Bagging Breiman first used the approach

25
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of aggregating results of several tree models. It attempts to reduce the vari-
ance of CART’s fitted values in that it takes bootstrap samples of the given
observations, fits a large number of tree models from each sample and then
aggregates the results. For classification the result for one case is achieved
using majority vote with one vote per tree over all constructed trees in the
forest. For regression, a result for one case is achieved by averaging over the
outcomes of all trees. With this the prediction error is usually improved over
CART. We will not discuss Bagging any further. For our purposes it is enough
to say that Bagging forms the ideological foundation of Random Forests.

3.1.1 The basic algorithm

The basic idea of a Random Forest is in part already outlined above. The
procedure builds a large number of tree models, either classification trees for
classification problems or regression trees for regression problems. As in Bag-
ging, a Random Forest does not use all of the data cases for constructing each
tree but only a bootstrap sample for each tree. This is one reason for the term
”random”. The randomness comes on the one hand from taking not all but
only bootstrap samples of the data to build each tree and on the other hand
from using not all but only a random sample of predictors for determining each
split in each tree.

The method is also able to measure its own performance by using the samples
held back from constructing or ”training” a tree, i.e. the data cases not selected
by the bootstrapping. It uses them as ”test” data or out-of-bag (OOB) samples
to test the model’s predictive power and calculate error rates (OOB error).

In the following we will focus on the regression case but, as with CART, the
classification methodology is quite similar.

The basic steps of the Random Forest algorithm for the regression case are the
following (see [2] Berk, 2008):

Let the response be numerical, N be the number of given observations and
mtry be the number of predictors used for each split in each tree.

1. Draw a bootstrap sample of size N from the data (random sample drawn
with replacement).

2. Take a random sample of size mtry without replacement of the predictors.

3. Construct the first regression tree partition of the data, i.e. the first split
and repeat step 2 for each subsequent split in the tree. Do not prune.

4. Drop the OOB data down the tree and store the assigned value, i.e. the
mean of the terminal node in which the observation falls.

5. Iterate the steps 1 to 4 a large number of times, e.g. 500.
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6. Use only the predicted values assigned to each observation when that
observation was an OOB observation (i.e. not used to build the tree) to
calculate the MSE.

Because of aggregating results the procedure reduces variance and produces
more stable models. Furthermore the method does not overfit due to the law
of large numbers as is proved in [4] Breiman (2001).

Using not all but only a random sample of predictors to determine each split
is the main difference between Random Forests and Bagging. The additional
randomness yields fitted values that are more independent (see [2] Berk, 2008,
p. 194-5). When averaging results over a large number of more independent
trees, the accuracy of the outcome can be higher and thus the performance
gains can be more dramatic.

The random selection makes Random Forests be able to deal with a large
number of predictors. As it works with a large number of trees they all have
a chance to contribute anyway. It is even possible to have more predictors
than observations in a Random Forest model, i.e. p > N . Furthermore the
randomness allows that more different predictors are able to contribute to
splits than in CART. With a large number of trees each predictor is evaluated
at least several times and therefore will have several opportunities to define a
split with relatively few competitors compared to a single CART procedure.
Variables that play a certain role and create somewhat different partitions that
otherwise would not have been considered are able to participate. Thus more
information from the given predictors is brought into the fitting process.

A big disadvantage of the method is that compared to CART there is no
graphical output that visualizes all the results and lets the user identify variable
importance ranking, possible interactions and the general data structure in one
interpretable tree. Although there are several graphical methods that aim to
compensate this drawback, the procedure remains a black box.

3.1.2 The out-of-bag data

When drawing a bootstrap sample of size N with replacement from the data,
on average about one third of the samples are left out, i.e. not used to build
the corresponding tree as stated in [4] Breiman (2001). Each of the left out
observations or OOB samples is then used to test each tree to get internal
estimations of the model error. On average each data point is among the out-
of-bag sample around 36% of the time as mentioned in [18] Liaw and Wiener
(2002).

With these OOB cases there is no immediate need for cross-validation or a
separate set of test data to get an estimate of the test set error. For each
tree the respective OOB cases are dropped down and the estimated response
is compared to the observed response value. With this one gets an unbiased
internal estimate of the prediction error. Breiman argues that the OOB test
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set error is as good as the error estimation produced with a separate test data
set (see [4] p. 11). Furthermore, Breiman explains that the prediction error
observed using OOB cases approaches the true prediction error as the number
of trees goes to infinity.

3.1.3 Variable Importance

There are several different approaches as to how to measure variable impor-
tance in a Random Forest. Following the discussions in [2] Berk (2008), [23]
Sandri & Zuccolotto (2006) and [4] Breiman (2001, p. 23-4) the following mea-
sures for determining variable importance in the regression case are common.

• Measure 1: Use the decrease in the fitting measure to determine the
contribution to a model, i.e. measure the reduction in the deviance, each
time the predictor is used to define a split. The sum of these reductions
can then be used as importance measure for that particular tree. Then
the average of all reductions over all tree models in the random forest
describes the predictor’s importance. The importance measure Imp(1)

for the predictor xi is therefore defined as

Imp(1)
xi

=
1

k

∑
A

d(xi, A)1{xi∈A}

where A is a node in each tree, d(xi, A) is the reduction in the deviance
induced xi at node A and 1{xi∈A} is an indicator function which is equal
to 1 if xi is selected for a split at node A.

• Measure 2: In every grown tree in the forest, the out-of-bag data cases
are dropped down and the mean squared error is computed to assess the
model error. Then the values of predictor i are randomly shuffled and the
out-of-bag cases are dropped down again. The shuffled predictor should
now be on average unrelated to the response. Iterate this procedure for
each of the p predictors and compute

Imp(2)
xi

=
1

K

K∑
k=1

(MSE
(k)
i −MSE(k)), i = 1, ..., p

with K being the number of trees, MSE
(k)
i is the mean squared error

of the kth tree calculated using out-of-bag data when the ith predictor
values are shuffled and MSE(k) is the general mean squared error of the
kth tree without shuffling.

If desirable, one can normalize Imp(2)
xi

with the standard deviation of the
differences:
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Imp(2)∗
xi

=
Imp(2)

xi

sd({MSE
(k)
i −MSE(k)}Kk=1)

,

with the division not being done if the standard deviation is 0.

As observed in [29] Strobl et al. (2007), the first measure Imp(1) is biased
towards predictors with many possible splits while the permutation measure
Imp(2) is a more reliable indicator. However, in general it is recommended to
look at both of the measures, keeping the shortcomings in mind.

3.1.4 Partial Dependence

When the most important predictors are identified via variable importance
analysis, one is interested in the relationship between each predictor and the
response variable. A useful way to examine this are so called partial dependence
plots or marginal effect plots as discussed for example in [13] Hastie et al. (2001,
section 10.13.2), [2] Berk (2008, section 5.7) or [27] Siroky (2009, section 2).

A partial dependence plot for a model with continuous response is constructed
as follows:

1. Grow a random forest as usual.

2. Let x1 be the predictor of interest with ν distinct values (ν ≤ N) in the
training set.

3. Now for each of the ν values of x1 construct a new data set where x1

only takes on that value while leaving all other predictors untouched.

4. Predict the response using random forests for each of the ν data sets.
Average over each of the ν sets of response predictions to get ν single
predicted values.

5. Plot the average prediction against the ν values of x1.

6. Repeat the steps 2 to 5 for each predictor of interest.

The result of this procedure is a two-dimensional plot that shows how the
given predictor is related to the response averaged within the values of the
other predictors. A drawback of this approach is that interaction effects can
not be represented unless the corresponding interaction variable is constructed
in advance and used as a predictor.
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3.1.5 Example of Random Forests in R

For fitting Random Forest models for both classification and regression the
above methodology has its R implementation in the randomForest package by
Andy Liaw and Matthew Weiner (see [18] for an overview). The package is
based on the contribution of [5] Breiman and Cutler (2005).

The main command for fitting a model and creating a Random Forest object
is randomForest. We again use the frogs data example to outline the R

approach.

> library(randomForest)

> set.seed(101)

> mod<-randomForest(pres.abs~., data=xtrain)

saves a Random Forest model for pres.abs and predictor data frame xtrain

containing 7 predictors under the name mod. As in rpart the routine auto-
matically fits a classification or a regression model, based on the type of the
response variable. The above randomForest object has the following output.

Call:

randomForest(formula = pres.abs ~ ., data = xtrain)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 20.28%

Confusion matrix:

0 1 class.error

0 116 17 0.1278195

1 26 53 0.3291139

In this case, the results of the random forest model are similar to the compa-
rable rpart model which leads to the matrix values (114, 19, 19, 60).

The most important additional arguments are:

• ntree: specifies the number of trees in a forest. The default value is 500.
The number of trees necessary for good performance grows with the
number of predictors and predictions should be compared with models
of different size to determine the right value of ntree.

• mtry: the number of variables randomly selected as candidates for each
split in each of the ntree trees. The default value is

√
p for classification

and p/3 for regression with p being the number of predictors (i.e. the
number of columns in xtrain).
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• importance: a logical argument, specifies if importance should be calcu-
lated for each predictor during the fit. A ranking plot of the variable im-
portance can then be viewed with the varImpPlot() (e.g. varImpPlot(mod))
which shows the measures Imp(2)∗ and Imp(1) in a dotchart.

• nodesize: specifies the minimum size of the terminal nodes of each tree.
The default is 1 for classification and 5 for regression. With a larger
value, trees in the forest will get smaller.

• maxnodes: the maximum number of terminal nodes of trees in a forest. If
not specified, every tree is grown as large as possible (without pruning).

A created object of class randomForest then has several components that can
be addressed with $ (e.g. mod$...):

• type: the type of the response variable as determined by the procedure
i.e. regression, classification or unsupervised (if a response is
omitted).

• oob.times: number of times each case is used as out-of-bag data and
thus used in computing the OOB error estimate. The number should be
around 36% of ntree as stated in [18].

• mse: for the regression case only, this gives a vector of length ntree of
the mean squared errors for each tree.

• rsq: for the regression case only, this gives an R2 value where

R2 = 1− MSE

Var(y)

• confusion: for the classification case only, this gives a confusion matrix
of the prediction based on OOB data.

• err.rate: for the classification case only, this gives a matrix with ntree

rows and #classes+1 columns with error rates of the prediction on the
input data. The ith row describes the OOB error (column 1) and the
error rates in classifying each class.

Regarding the default values for mtry and ntree, [12] Genuer et al. (2008)
present some important observations made with a number of different datasets.
As for standard regression with N >> p, the OOB error is maximal for mtry=1
and then mostly decreases quickly and as soon as mtry >

√
p it remains

the same. The choice of mtry =
√
p always gives a lower OOB error than

mtry = p/3, thus the default value for the regression case proposed by the R

package seems to be suboptimal for some data sets. Furthermore, the default
value of ntree=500 turns out to be convenient but a much smaller value of
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ntree=100 often leads to comparable results. For high dimensional problems
(N < p) the default of mtry = p/3 always gives better results than mtry =

√
p.

For the standard classification case with N >> p the default values seem quite
optimal but for the high dimensional case (N < p) it may be worthwhile to
choose mtry larger than the default

√
p.

The optimal value of mtry that yields the lowest OOB error estimate can be
found with the command tuneRF. With

> mtry.array<-tuneRF(xtrain, pres.abs, mtryStart=1,

stepFactor=2, ntreeTry=500, improve=0.01)

> best.m<-mtry.array[mtry.array[,2]==min(mtry.array[,2]), 1]

> best.m

[1] 1

the OOB error estimates for different random forest models are calculated.
It starts with mtry=1, inflates mtry by stepFactor at each iteration and
generates a forest with ntreeTry trees. The improve value then specifies the
relative improvement in the OOB error that must be reached at least in order
for the search to continue. Here, tuneRF saves a 2 column matrix of the results
in mtry.array where the values of mtry are in the first and the corresponding
error rates in the second column. The optimal value is stored in best.m. In our
frogs example, the best value of mtry is 1. This leads to a slightly improved
error rate of 19.8%.

The plot command for a randomForest object plots the error rates as stored
in the err.rate component. In the binary classification case, three curves
are presented, one for each error rate (OOB and class errors). In regression,
the mean squared errors for each tree are plotted as they are stored in the
mse component. With this plot one can determine the optimal number of tree
models to use in a random forest fit. The resulting plot is sometimes called
performance plot.

As already mentioned, the command varImpPlot() plots two different vari-
able importance measures of a randomForest object in a dotchart while the
command importance() prints the numerical values of the importance mea-
sures. The variable importance plot for our frog population example is shown
in figure 3.1.

A partial dependence plot is generated with partialPlot(). With the com-
mand

> partialPlot(mod, xtrain, x1)

a two-dimensional plot is generated showing the marginal effect of the predictor
x1 out of the data frame xtrain (usually the training data used to construct
the model) for the previously generated random forest model mod.

For our frogs example, the partial plots for distance and meanmin are shown
in figure 3.2.
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Figure 3.1: Variable importance plot of a random forest model for pres.abs.
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Figure 3.2: Variable importance plot of a random forest model for pres.abs.
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3.2 Boosting

We now turn to another tree-based procedure called boosting. The idea be-
hind boosting in general is the construction of additive regression functions
by taking a simple base learning algorithm or weak learner which performs
mediocrely satisfying and boosting it into an arbitrarily strong learning algo-
rithm ([25] Schapire, 1999: p. 1). The procedure aims to “combine the output
of many weak classifiers to produce a powerful committee.” ([13] Hastie et al.
2001: p. 299).

In case of regression problems, it does so by computing fitted values and their
errors using the base learner and then fits the errors in a subsequent model.
The achieved error estimations are then added to the estimated response values
from the previous iteration. For classification, the key lies in giving observa-
tions different weights based on their respective model errors from the previous
iteration. This results in focusing more on observations with greater errors.

Any learning functions can be used as base learner but we focus on tree mo-
dels. As Random Forests, boosting builds on the flexibility of CART models
but unlike Random Forests it does not require them to be the underlying
base procedure. The fundamental difference to Random Forests now is that
Boosting does not average results from several parallel CART models but uses
the tree results in series.

Boosting was originally designed for classification problems but can as well be
extended to regression. In the following we will discuss two different imple-
mentations of the boosting framework and their R implementations.

3.2.1 AdaBoost

There are several different approaches to the boosting idea, therefore there is
not one distinct procedure as in Random Forests. In its earliest stage, boosting
has its implementation in AdaBoost which dates back to the work of Schapire
(1990) (see [24]) and [9] Freund and Schapire (1995). In its original form, it
works for classification problems.

A ”weak” classifier is one that is only slightly better than random guessing.
AdaBoost now sequentially applies the weak classifier to repeatedly reweighted
data points and hence produces a series of weak classifiers Gm(x) for every iter-
ation m with m = 1, ...,M . The final prediction is then achieved by combining
all M .

We consider a binary response variable Y coded 1 or −1 given a vector of
predictor variables X with N observations. As stated in [13] Hastie et al.
(2001) the algorithm has the following general structure.

1. For each of theN observations initialize observation weights wi = 1/N, i =
1, ..., N .
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2. For m = 1 to M do

(a) Fit a classifier Gm(x) to the training data using the weights wi.

(b) Compute

errm =

∑N
i=1wi1{yi 6=Gm(xi)}∑N

i=1 wi

(c) Compute αm = log((1− errm)/errm).

(d) Set wi ← wi · exp{αmGm(x)}, i = 1, ..., N .

3. Output G(x) = sign[
∑M
m=1 αmGm(x)].

In theory, G could be any classification procedure but classification trees
are common and give favourable results. In 1996, Leo Breiman even called
AdaBoost with trees the ”best off-the-shelf classifier in the world” (see [3]
Breiman, 1996).

The classification error from pass m, errm, is logarithmically transformed into
αm which is then used to calculate the new case weights wi. The algorithm
”up-weights” or ”boosts” only those observations that were misclassified in the
previous pass. Hence, in every iteration AdaBoost focuses more on the cases
that were misclassified in the previous iteration. The final prediction then
results from a weighted vote of the M classifiers with weights αm.

3.2.2 Stochastic Gradient Boosting

The second implementation of boosting that is presented is more complex.
Before describing the algorithm we have a look at its structure in general.
Following [15] Kriegler (2007, page 21) the typical structure of a boosting
algorithm for regression problems is generally the same and is given below.
The framework is presented for regression problems but the type of boosting
that will be discussed applies this general structure for both regression and
classification problems.

1. For all observations initialize the fitted values to a scalar.

2. For each observation and a given loss function compute the error between
fitted and actual values.

3. Fit a model of these errors against the predictors and get fitted values
of the errors.

4. Compute the boosted fitted values by adding the predicted values from
the previous iteration to the fitted errors from step 3 generating a new
vector of predictions.

5. Iterate a large number of times.
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The difference to AdaBoost is that there is no actual ”reweighting” involved as
in iteration m the weak learner is fitted to the current residuals. This principle
also works for classification where a binary response is treated as a continuous
one.

With this in mind we are now able to approach a boosting method called
stochastic gradient boosting. It was introduced in 1999 by Jerome Friedman
and published in the two papers [10] Friedman (2001) and [11] Friedman (2002).

The following discussion focuses on the classification case with binary response
values yi coded as 0 or 1. However, the regression case essentially works the
same way and a description for continuous problems can be found in [15]
Kriegler (2007). Here, we follow [2] Berk (2008, section 6.4) and [11] Friedman
(2002).

Let x = {x1, ..., xp} be a set of explanatory variables and let n be the number
of observations in the training data sample. A given regression tree can be
written as

T (x,Θ) =
J∑
j=1

γj1{x∈Rj}

with tree parameters Θ = {Rj, γj} and j being an index of the terminal node of
the tree, Rj representing the parameter space region defined by the jth termi-
nal node and γj being the value assigned to each observation of the response
falling into the jth terminal node, i.e. the class label achieved by majority
vote. As already stated before, it follows

x ∈ Rj ⇒ f(x) = γj

with f(x) being the estimated relationship between x and y. Regression trees
now look for the choice of parameters that minimizes the loss:

Θ∗ = argmin
Θ

J∑
j=1

∑
xi∈Rj

L(yi, γj)

for a given loss function L which describes the error between the observed
response values yi and their corresponding estimates γj. Now, the key is to
minimize this loss function over several trees generated in a stagewise manner
using information from the previous iteration. So in every iteration m we seek

Θ∗m = argmin
Θm

n∑
i=1

L(yi, fm−1(xi) + T (xi,Θm))

with fm−1(xi) being the results from the previous iteration. Hence, in the
current iteration the new tree parameter set Θ∗m is calculated by minimizing
the loss between the response values and the ”boosted” fitted values. These
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are the fitted values from the previous iteration plus the current terminal node
predictions. Thus in every iteration a new regression tree is built using this
minimum loss aspect.

Friedman’s idea that leads to gradient boosting is to formulate the change in
the loss function as the fitting function f gets changed from one iteration to
the next as the negative gradient of the loss function:

gim = −
[
∂L(yi, f(xi))

∂f(xi)

]

The gim are called pseudo-residuals. During the procedure they are used as
response and a regression tree is fit to them in every iteration. The terminal
node predictions of these are again calculated by minimizing the loss and are
then used to update the fitted values.
After initializing f0(x) = argminκ

∑n
i=1 L(yi, κ), where κ is a constant, the

procedure works as follows:

For m = 1, ...,M iterate the following steps:

1. Out of the full training data sample {yi, xi}ni=1 select a random subsample
{yπ(i), xπ(i)}ñi=1 of size ñ < n with {π(i)}ni=1 a random permutation of
1, ..., n. This is the stochastic part of the method.

2. For observations i = 1, ..., ñ compute the above gradient gim as the work-
ing response.

3. Fit a regression tree {Rkm}Kk=1 with K terminal nodes to the gradients
using the selected observations.

4. For every terminal node k = 1, ..., K compute γkm, the optimal node
prediction of terminal node k from iteration m, such that

γkm = argmin
γ

∑
xπ(i)∈R

L(yπ(i), fm−1(xπ(i)) + γ)

where the fm−1(xπ(i)) are the response estimates from iteration m − 1.
Thus, the errors that minimize loss between the observed response and
the previous fitted values are sought.

5. Finally calculate the new fitted values as

fm(x) = fm−1(x) + ν · γkm1{x∈Rkm}

with 0 < ν < 1.
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The final fitted values will be achieved from the final vector of predictions.
In the binary response case, a 0 is assigned if the final predicted value ŷi =
fM(x) < 0.5, otherwise a 1 is assigned.

The step size for updating the fitted values from one iteration to the next,
0 < ν < 1, is called shrinkage and describes the learning rate of the algorithm.
In [10] Friedman found out that a smaller value (ν < 0.1) leads to better
results in terms of the generalization error. The purpose of including ν is to
prevent the method from over-shooting a more optimal solution.

The stochastic component from step 1 of the algorithm was introduced in
[11] Friedman (2002) and resulted in a marked improvement in predictions.
Without the stochastic part (and with ν = 1), the algorithm is simply called
gradient boosting (see [10] Friedman, 2001). In his work, Friedman states that
the introduced randomization substantially improves the non-randomized ver-
sion ”through the simple expedient of training the base learner on different
randomly selected data subsets at each iteration” ([11], p. 9). It also helps to
control overfitting. But he admits that the reason for the achieved improve-
ment is not clear. The improvements above are substantial for small samples
and with high variance base learners such as CART models. Small subsamples
generated through the randomization cause the variance of the base learner
to increase further and the correlation between the base learners at different
iterations to decrease. With this the variance of a combined model tends to be
reduced as the combined model ”in effect averages the base learner estimates”.

3.2.3 The Loss Function

In case of a continuous regression problem the usual loss function is the squared
error or Gaussian loss function:

L(yi, f(xi)) =
n∑
i=1

(yi − f(xi))
2.

Another possible loss function for continuous response variables is the Laplace
loss function:

L(yi, f(xi)) =
n∑
i=1

|yi − f(xi)|.

In case of a categorical response variable the loss function used is the so called
Bernoulli loss function. For such a response variable it is common to model
the class proportions. Thus, a logistic regression problem with categorical
response is written as

log
( pi

1− pi

)
= f(xi)

where f is the estimated relationship between predictors and response, xi
is the ith observation and pi is the class proportion for every observation
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(i = 1, ..., n). The left hand side in the above equation is called logit. This
results in the transformation

pi =
1

1 + exp(−f(xi))
.

With this, the values on the right hand side are constrained to [0, 1] and one
is able to model the class proportions.

The above relationship can also be written as

1

1− pi
= 1 + exp(f(xi)).

Using this and the calculation rules for logarithms one can rewrite the log
likelihood function of the Bernoulli distribution:

n∑
i=1

(
yi log(pi) + (1− yi) log(1− pi)

)
=

n∑
i=1

(
yi log

( pi
1− pi

)
+ log(1− pi)

)
=

n∑
i=1

(
yif(xi)− log

( 1

1− pi

))
=

n∑
i=1

(
yif(xi)− log(1 + exp(f(xi)))

)

Thus, the Bernoulli loss function or Bernoulli deviance is given by

L(yi, f(xi)) =
n∑
i=1

(
yif(xi)− log(1 + exp(f(xi)))

)
.

3.2.4 Variable Importance

The variable importance measure for boosted tree models is essentially based
on the same idea as the one for single trees. For boosting, the importance for
every single tree is just summed up over each iteration. In the classification
case importance of a variable is based on the amount of reduction of a node’s
impurity it yields when used for splitting that node. In the regression case
the reduction in the deviance is the key factor. So after a boosting model is
constructed the error reduction statistics are summed up over each tree model
for each predictor variable. Then this procedure yields a variable importance
ranking. In addition one can normalize the resulting values to place the mea-
sures of importance on a percentage scale.
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3.2.5 Problems of Boosting

Boosting is a very powerful method but the method also has some serious
drawbacks.

First, like random forests, a boosting model lacks a single interpretable output.
Single decision trees are very intuitive and highly interpretable. The model can
easily be visualized by its tree representation whereas a combination of several
such tree models can not. The main output just consists of model quality
values or cross-validation results. Graphical outputs of a boosting model are
limited to error plots, variable importance ranking plots or partial dependence
plots. For a description of such alternative approaches of interpretation, see
[13] Hastie et al. (2001, section 10.13). Thus, boosting remains a black box
method.

Second, overfitting remains a problem. As stated in [2] Berk (2008, section
6.5.1), overfitting is present in boosting as there is no mechanism for averaging
out this issue as in a random forest. Cross-validaton results or the use of
a separate test data set can make the user aware of this problem and give
guidance on when to stop the boosting process.

A problem for classification with stochastic gradient boosting is that there is
no distinction between false positives and false negatives because classification
problems are transformed into regression problems when residuals are defined.
Positive and negative residuals are treated equally. For regression problems,
weights can be applied to capture asymmetric costs as suggested in [15] Kriegler
(2007).

Finally, as with random forests, there are no satisfying proofs of consistency. It
is not clear if the functional relationship estimated by boosting also estimates
the true mechanism that links inputs and outputs.

3.2.6 Example of Boosting in R

There are several implementations of boosting in R. Out of the numerous pack-
ages we chose gbm for our analysis as it implements Friedman’s stochastic gra-
dient boosting machine. A detailed overview is given in [22] Ridgeway (2007).
In the following we give a brief introduction to the package.

The main command for fitting a stochastic gradient boosting model for both
classification and regression is gbm. It has the same syntax as lm and the
other modelling functions discussed above but also needs a loss function to
be specified. Some possible options for the loss function are gaussian for the
square error, laplace for the absolute error and bernoulli for classification
problems.

In case of the frogs data classification example, a stochastic gradient boosting
model is fit with the following commands.
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> library(gbm)

> mod<-gbm(pres.abs~., data=xtrain, distribution="bernoulli")

Here, the model is fitted with Bernoulli loss as loss function L. In this case
one has to keep in mind that pres.abs must not be declared as factor but
has to be numeric. The problem type is specified solely via the distribution

argument.

The most important additional optional parameters are

• n.trees: The total number of constructed trees in the model. This is
equivalent to the number M of iterations. The default is 100.

• interaction.depth: The maximum depth of variable interactions in
each tree. For example, a value of 2 yields a model with 2-way interac-
tions. The default is 1.

• n.minobsinnode: Specifies the minimum number of observations in each
tree’s terminal nodes. The default is 10.

• shrinkage: The shrinkage parameter ν which describes the stepsize for
updating the fitted values between iterations. The default value is 0.001.

• bag.fraction: Specifies the fraction of the training set observations
randomly selected for each iteration. This controls the stochastic part
of the algorithm. A value < 1 yields slightly different results with each
function call. It uses the R random number generator, thus set.seed

ensures that one run can be reconstructed. The default value is 0.5.

As with random forests there is not one interpretable graphical output as in
CART models. Therefore the plot method for a gbm object yields a partial
dependence plot as was described earlier. With

> plot(mod, i.var=1)

one produces a partial dependence plot of the first variable in the training set
against the response. As with a randomForest object, one can also produce a
performance plot. The command

> gbm.perf(mod, method="OOB")

produces an error rate plot for determining the optimal number of iterations
using generated OOB observations. Depending on the distribution, the result-
ing plot shows the number of boosting iterations against the corresponding
value of the respective loss function.
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Figure 3.3: Performance plot of a stochastic gradient boosting classification
model for pres.abs.

In our frogs example, it shows the number of iterations against the corre-
sponding Bernoulli deviance. In figure 3.3 a performance plot is shown with a
boosting model for pres.abs and M = 1000 iterations.

For our later analysis we use the caret package as a wrapper for gbm’s func-
tionality as it is more comfortable to use. See the appendix for a desription
on how to use boosting in the caret package.



Chapter 4

Process Characterization

4.1 The CVD and PVD Process

Chemical vapor deposition (CVD) is a single process that can be found multiple
times during wafer fabrication. Typically, a CVD process is used to deposit
a thin film of oxid or other materials on the surface of a wafer. To achieve
such a film deposition reactive carrier gases are used to transport precursors
of a desired material to the substrate. Chemical reactions with other gases
or decomposition lead to reaction products which are then deposited on the
surface. It is a highly versatile method because it can utilize a wide range
of different chemical reactants and reactions to achieve deposition of different
types of films.

A usual CVD system consists of a reaction chamber, thermal heating and
plasma energy sources to provide the energy needed for the desired chemical
reactions to occur, gas carrier and source materials. Normally the process is
performed at vacuum level.

At the beginning the used carrier gas picks up a quantity of the source materials
while flowing through them. Thereby materials are mixed and then injected
into the reaction chamber via a manifold. In the chamber the energy provided
by the external energy sources excites a chemical reaction. Thereby a uniform
flow over the substrate is mandatory to ensure a uniform film deposition.

In the case of austriamicrosystem’s HDP CVD the gas silan reacts with plasma
to achieve deposition. This type of CVD process is called plasma enhanced
CVD (PECVD) as it uses a plasma discharge to provide the excitation needed
for the chemical reactions. The plasma is produced in the chamber and is
brought to a certain level of density by using electromagnetic waves. These
waves are generated in a radio frequency generator (RF generator) and directed
into the chamber via multiple ways (top or side). Thereby the power from the
generator (RF power, in W) is crucial. Part of the power is reflected and can
not be used to enhance the plasma. This so called reflected power should be
kept as low as possible.

43
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In turn with the repeated deposition of oxid films, the edges of every film are
sputtered using argon ions such that a desired shape of every deposited film is
reached. RF bias power is used to excite and accelerate these argon ions. The
higher the RF bias power the more intense the sputtering is.

Figure 4.1 shows a cross-section of a CVD chamber as it is in use at austri-
amicrosystems.

The physical vapor deposition (PVD) process is another method to deposit a
thin film on a wafer surface. In contrast to the CVD process, it involves purely
physical processes rather than chemial reactions. Typically, a solid cathode
of aluminium is used as carrier for the material needed. The deposition is
achieved by bombarding the cathode with charged argon ions emitted from a
gas discharge. When these ions impinge on the cathode the collision sputters
substrate atoms. Subsequently, these atoms are deposited on the wafer surface
and create a metal film.

For more detailed information about the CVD and PVD sputtering processes
in general see [8] Elshabini-Riad & Barlow (1998).

Figure 4.1: Cross-section of the chamber of a CVD tool as it is in use at
austriamicrosystems.

4.2 The Implanter Process

Ion implantation is one of the most sophisticated processes during wafer fab-
rication and the required Ion-Implanter is a highly complex tool. Every tran-
sistor in an integrated circuit is formed by the results of ion implantation.

During the process, charged atoms or molecules of a certain species are created
in the ion source of an implanter. These ions are accelerated up to a few
hundred keV and impinged upon the wafer surface. The reason for this is that
the implantation of certain ions changes the physical and electrical qualities
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of crystals. The ions can be implanted with high accuracy of dose and energy
over many orders of magnitude. This can be controlled by the acceleration
voltage and a dose controller.

The tool consists of an ion source where the ionization takes place, a beam
line through which the ions are accelerated and directed, and an end station
chamber where the wafer is positioned. Part of the ion source is the filament.
This mechanical part is stressed during operation and has to be changed after
several days of usage. Figure 4.2 shows a diagram of an ion implanter as used
by austriamicrosystems.

A detailed description of the process of ion implantation can be found in [32]
Wolf (2003, chapter 12).

Ion source

Beam Line

End station chamber

Figure 4.2: Diagram of an ion implanter tool.
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Chapter 5

Prediction of Implanter
Maintenance

5.1 Introduction

Part of the ion source of an ion implantation tool at austriamicrosystems is
the filament. This mechanical part is stressed during the implanter operation
and breaks approximately every 5 to 14 days. When a filament break occurs, a
tool engineer has to change the broken part. This is a problem if the breaking
happens during a weekend. Knowledge of the exact date and time of this
moment in advance, i.e. before a weekend, would solve the problem. The part
would then simply be changed in advance. This would save costs and increase
the throughput of the ion implanter as idle times would be reduced. Therefore
we try to find a statistical model for predicting the occurrence of the filament
break.

The response variable is created using the exact dates of historical filament
maintenance occurrences. Thereby, in the given set of machine data every
row of the data set is assigned the exact number of hours until the next fila-
ment break, thus our response variable NextPM (next preventive maintenance)
is ”hours until the next maintenace occurs”. This is highly intuitive and pre-
dicted values are easy to interpret for engineers. As these are continuous values,
this is a regression problem.

5.2 Data analysis

The initial data set of given implanter machine data consists of ninitial = 6781
rows and pinitial = 18 machine parameters that were measured during the
actual ion implanting. The values are aggregated automatically by the machine
over the current beam set up and the beam set up changes every time a new
recipe is started on the machine. Thus, one entry in the data represents an

47
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automatically aggregated value of one of the 19 machine parameters measured
during one recipe run.

Figure 5.1 shows the response created from the initial data set plotted over
approximately 5 months or 7352 data points.

Figure 5.1: Hours until filament break over time.

The hours until the next maintenance decrease strictly monotonic until a fil-
ament break occurs and then jump up for the next filament lifetime cycle.
Obviously, there are gaps in some of the cycles. These gaps can either come
from the machine being shut down completely, i.e. no beam at all, or from the
machine being idle, i.e. with a beam running but without actual production.
The gaps that result from the machine being shut down affect the response be-
cause the response values should mirror the hours of the filament being healthy
with the beam in use up to the point where it breaks. Therefore the response
values have to be adjusted such that these shut down times are factored out.

Furthermore, we are only interested in a timeframe of about 150 hours before
a filament break for fitting a prediction model as there is no need for response
prediction further than that. The actual critical phase in which the model
should perform accurately then is 72 hours before the break as a prediction is
needed on fridays for the coming weekend. Therefore this is also considered
when cleaning the values of NextPM.

Figure 5.2 shows the response values with these adjustments factored in. Then,
n = 1812 data points remain. Figure 5.3 shows a histogram of the response.

The predictor matrix contains 18 non-constant predictors. In table 5.1 they
are listed along with a short description.
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Figure 5.2: Hours until filament break over time with adjustments factored in.
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Figure 5.3: Histogram of 1812 values of the response variable NextPM.

Out of discussions with the engineers, FIL I should be the most important pre-
dictor as it provides direct information about the filament. All power param-
eters (EXT I, SUP I, ARC I, BEAM) are also considered to be influential. On the
other hand, BEAM ENERGY, which is measured on the front end of the implanter
tool, should not have as much explanatory power. BEAM I RANGE only gives
information on how BEAM was measured (milli-, micro- or nano-ampere) and is
not relevant after normalizing the values of BEAM accordingly. SUP VOLTS is a
constant with value 1.2 and SCANNER PRESSURE is nearly constant with only 20
different values in the data set, thus we can omit them in our set of predictors.
The time elapsed between two different data points (Delta) was suggested by
engineers to also consider for modelling. A summary of the relevant predictors
and the response NextPM follows.
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Parameter Description
ION NAME Specifies the used element to implant
GAS Pressure of gas bottle for storing the elements
FIL I Power streaming over the filament
EXT I Power coming out of the source
EXT VOLTS Voltage of the extraction power
EXTRACTION Target value of EXT VOLTS

ARC I Power between filament and source chamber
ARC VOLTS Voltage of the arc power
SUP I Power filtered out of extraction power
SUP VOLTS Voltage of suppression power
X AXIS Geometry value of source and extraction blind
Y AXIS Geometry value of source and extraction blind
Z AXIS Geometry value of source and extraction blind
SOURCE PRESSURE Vacuum value, must correspond with GAS

SCANNER PRESSURE Pressure of the scanner
CHAMBER PRESSURE Pressure in the source chamber
BEAM Power of the ion beam
BEAM I RANGE Specifies unit in which BEAM is measured
BEAM ENERGY Total energy that reaches the wafer
ION NAME Specifies the target atomic mass unit
DELTA Time elapsed since last data point

Table 5.1: Tabular overview and descriptions of the variables measured on an
implanter tool.
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GAS FIL_I EXT_I EXT_VOLTS
Min. :1.539 Min. : 98.9 Min. : 0.000 Min. :20.07
1st Qu.:2.378 1st Qu.:122.9 1st Qu.: 0.310 1st Qu.:49.98
Median :3.049 Median :133.0 Median : 0.690 Median :49.98
Mean :3.252 Mean :133.3 Mean : 1.785 Mean :45.71
3rd Qu.:3.925 3rd Qu.:143.7 3rd Qu.: 2.670 3rd Qu.:49.98
Max. :6.398 Max. :173.0 Max. :17.720 Max. :65.03

EXTRACTION ARC_I ARC_VOLTS SUP_I
Min. :200.0 Min. :0.00271 Min. : 44.90 Min. :0.1200
1st Qu.:500.0 1st Qu.:0.07500 1st Qu.: 48.90 1st Qu.:0.1400
Median :500.0 Median :0.24300 Median : 64.90 Median :0.1900
Mean :457.3 Mean :0.64568 Mean : 62.47 Mean :0.3602
3rd Qu.:500.0 3rd Qu.:0.87900 3rd Qu.: 70.00 3rd Qu.:0.3600
Max. :650.0 Max. :8.51000 Max. :100.00 Max. :5.3100

X_AXIS Y_AXIS Z_AXIS SOURCE_PRESSURE
Min. :428.8 Min. :428.8 Min. : 15.3 Min. :2.000e-06
1st Qu.:467.1 1st Qu.:464.9 1st Qu.:382.2 1st Qu.:3.300e-06
Median :482.7 Median :478.6 Median :919.4 Median :5.000e-06
Mean :493.0 Mean :486.4 Mean :735.1 Mean :5.149e-06
3rd Qu.:518.8 3rd Qu.:503.7 3rd Qu.:989.4 3rd Qu.:6.400e-06
Max. :598.1 Max. :602.3 Max. :999.0 Max. :1.600e-05

CHAMBER_PRESSURE BEAM BEAM_ENERGY
Min. :1.700e-07 Min. :7.069e-06 Min. : 24.9
1st Qu.:1.700e-07 1st Qu.:7.339e-05 1st Qu.: 49.8
Median :9.700e-07 Median :1.743e-04 Median : 79.8
Mean :1.511e-06 Mean :2.783e-04 Mean :102.3
3rd Qu.:2.700e-06 3rd Qu.:3.008e-04 3rd Qu.:122.5
Max. :5.700e-06 Max. :2.500e-03 Max. :500.5

Delta ION_NAME NextPM
Min. :0.00000 11: 598 Min. : 1.95
1st Qu.:0.06667 31: 678 1st Qu.: 36.42
Median :0.27000 40: 27 Median : 62.52
Mean :0.43511 49: 479 Mean : 64.22
3rd Qu.:0.55000 75: 30 3rd Qu.: 89.74
Max. :7.51667 Max. :150.70
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ION NAME is a categorical variable indicating which atom species is used for
implantation, thus it is included as a factor variable. It has classes 11 (for
Bohr), 31 (Phosphor), 40 (Argon), 49 (Bohr-Flurid) and 75 (Arsen). The
summary statistic shows the number of data points for each class.

The next step is to further reduce the set of predictors and filter out the
subset that is most important for modelling the response. At first we look
at the correlation matrix of predictors and the response. Figure 5.4 shows a
lattice plot to visually identify high correlated predictors.
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Figure 5.4: Correlation matrix of the 18 non-constant parameters of ion im-
planter machine data. Red means high positiv linear correlation, white means
no linear correlation and blue means high negative linear correlation.

FIL I is positively related to the response with a correlation of 0.54 and
therefore seems important as was assumed by engineers. Three parameters
are redundant as they are highly correlated with others. The relationship of
SOURCE PRESSURE with GAS is known. EXT VOLTS and EXTRACTION obviously
have to show high positive correlation as EXTRACTION is just the target value
of EXT VOLTS. The high positive correlation of ARC I and EXT I is also clear as
they measure similar power streams. Therefore we can omit SOURCE PRESSURE,
EXTRACTION and ARC I from further modelling.

Thus, our remaining set of predictors contains 13 continuous and 1 categorical
variables. A look at the scatterplots in figure 5.5 of the remaining predictors



5.3. REGRESSION TREE MODELS 53

versus the response shows no other dependencies besides the positive relation-
ship with FIL I.
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Figure 5.5: Scatterplots of the remaining parameters against the response
NextPM.

The boxplots of the different species of atoms against the response (last plot
in figure 5.5) does not show significant difference of the first 4 species. The
class Arsenic (ION NAME class 75) shows significant differences, but as there are
only 30 data points among the 1812 observations and a few outliers, we do not
consider the difference as significant. Argon (ION NAME class 40) also has very
few observations, the most frequently used elements are Boron, Phosphorus
and Boron-Fluoride.

5.3 Regression Tree models

As next step we fit regression tree models to have a first look at variable
importance and the data structure itself. Figure 5.6 shows a rpart regression
tree model generated with our 14 uncorrelated predictors. A maximum tree
depth of 4 is used.
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Clearly, FIL I is the most important parameter. Even both of the second
level partitions are constructed using FIL I as split variable. The first split at
FIL I splits the data in two thirds where FIL I is smaller than 139.1 and one
third where it is larger. For the filament power larger than 139.1, the power
parameters EXT I and SUP I are eventually important. Based on the positive
relationship between NextPM and FIL I as observed in figure 5.5, the average
response values in this branch are larger. For FIL I < 148.4, EXT I splits 336
data points into partitions with an average response of 60.99 (156 cases) and
90.09 (180 cases). Thus, a smaller value of EXT I in this particular partition
relates to a longer filament lifetime.

Among values of FIL I smaller than 139.1 we eventually find EXT I and GAS

to be important, with GAS being important for data points where FIL I is
smaller than 115.2. Furthermore, if GAS is smaller than 6.22, the partition
consists of 183 values of the response with a mean of 31.4, so most of our
observations measured directly before a filament break come to rest in this
terminal node. On the other hand, if GAS is larger than 6.22, a terminal node
results with a clearly larger average NextPM value of 80.21. However, with only
14 observations in the node the conclusions are not as meaningful.

In the partition where EXT I is used for splitting 995 data points, the resulting
partitions are relatively different. For EXT I smaller than 0.3, a 270 data point
partition results where the average response value is clearly higher than in the
EXT I ≤ 0.3 branch. Thus this parameter constellation is related to a longer
filament lifetime.

In summary, judging from the rpart regression tree model, the most important
variables seem to be FIL I, EXT I and GAS.

A regression tree generated using unbiased recursive partitioning ideas is shown
in figure 5.7 with a maximum tree depth of 3.

In general, the results seem rather similar to figure 5.6. Again, FIL I is the top
predictor to perform a split on and EXT I and GAS are important in relevant
data regions. The plot again shows that a longer filament lifetime can be
achieved for smaller EXT I values in the respective data region (terminal nodes
11 and 12).

Furthermore, for values of FIL I between 115.1 and 139, ION NAME can be
found as important. In this partition, classes 40 (Argon) and 49 (Boron-
Fluoride) result in slightly larger values of NextPM than the other 3 classes
(terminal nodes 7 and 8). For very large values of FIL I, the voltage parameter
EXT VOLTS seems important and results in the largest response values (terminal
node 14).
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5.4 A Random Forest model

We are now ready to fit a model for NextPM with all 14 predictors and further
reduce our set of predictors by using the built in variable importance measures.
In the following we fit a random forest model. The predictor matrix is saved
in the data frame xtrain.

> library(randomForest)

> set.seed(1)

> mtry<-tuneRF(xtrain, NextPM, mtryStart=1, stepFactor=2,

ntreeTry=1000, improve=0.01)

> best.m<-mtry[mtry[,2]==min(mtry[,2]), 1]

> best.m

[1] 14

> mod.rf.1<-randomForest(NextPM~., ntree=1000, data=xtrain,

importance=TRUE, mtry=best.m)

The command creates a randomForest object with all of the 15 predictors
against NextPM. The fitted values are the result of averaging over 1000 regres-
sion tree models. The value of mtry is determined by the tuneRF command
and chosen to be the one that yields the smallest oob error. In the case above
it is 14 with the default value of mtry being p/3 = 4. The plot generated by
tuneRF in figure 5.8 shows that in terms of the oob error we are better off
choosing mtry = 14 or mtry = 8 as utilizing the default value.
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Figure 5.8: Numbers of variables to choose randomly for determining each
split in each tree model of the random forest and their corresponding OOB
error rate. A value of 14 gives the lowest error.
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The resulting model object is saved in mod.rf.1. The output following the
above commands is given below.

Call:

randomForest(formula = NextPM ~ ., data = xtrain, ntree = 1000,

importance = TRUE, mtry = best.m)

Type of random forest: regression

Number of trees: 1000

No. of variables tried at each split: 14

Mean of squared residuals: 178.4557

% Var explained: 83.58

The model explaines nearly 84% of the variance of NextPM. Furthermore the
model yields a RMSE value of

√
177.35 = 13.3 hours. An error of this mag-

nitude is adequate for the purpose of predicting the filament lifetime for a
weekend.

However, in order to reduce the overall complexity of the model but keeping
the results similar to the full model we try some further analysis and para-
meter reduction. Following for example [27] Siroky (2009) we look at some
diagnostic plots available for a randomForest object.

Figure 5.9 shows the plot of the randomForest object where the number of
trees is plotted against the error rate. It is observable that a random forest
containing 1000 regresson trees is not necessary to obtain a small oob error.
In fact, even the default value of 500 is too much and about 300 trees seem
reasonable.

The variable importance plot is crucial for further reducing model complexity.
Figure 5.10 shows the variable importance plot with the two different variable
importance measures IMP(1) and IMP(2)∗.

Out of figure 5.10 the top 5 variables are FIL I, EXT I, SUP I, GAS and BEAM.

This basically coincides with the results from the regression tree models in
figure 5.6 and figure 5.7 as well as with the engineers’ assumptions as the power
parameters were supposed to be important in the first place. The pressure of
the gas valve as described by GAS is also among the top contributors. Based on
our observations from the regression trees, GAS is important for small values of
NextPM. On the other hand, the Delta as well as the voltage variables turn out
to make a small contribution. As expected, the contribution of BEAM ENERGY is
negligible. The different chemical elements used for implantation which were
factored as categories also do not play a major role as ION NAME is found in
the middle of the ranking.
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Figure 5.9: The number of trees in the random forest model and the corre-
sponding out-of-bag error rate of the full model mod.rf.1.
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Figure 5.10: Variable Importance plot for the mod.rf.1 random forest object
with all 15 predictors. The variable importance measures IMP(1) and IMP(2)∗

are shown.

We are now interested in the relationship between the most important pre-
dictors and the response. Therefore we have a look at the partial dependence
plots. Figure 5.11 shows the plots generated by the partialPlot command.

As already observed, the smaller FIL I the shorter the lifetime of the filament.
There seems to be a linear relationship between FIL I and the response. Thus
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Figure 5.11: Partial dependence plots of the top 5 contributing predictors out
of the full random forest model with 15 predictors.

small values of FIL I are the strongest indicator that a filament break is immi-
nent. GAS basically shows the same kind of dependence, but is far less relevant.
EXT I and BEAM show a decreasing dependence but as these values strongly de-
pend on different production recipes, interpretation is not as straight forward
as with FIL I and GAS. Finally, for values of SUP I between 0 and 0.5, NextPM
rapidly decreases, but as SUP I increases, the dependence changes and a slight
increase in NextPM is observable.

A random forest model fitted only with these 5 predictors and the default of
500 regression trees is stored in mod.rf.2. The best value for mtry is calculated
to be 4. The output is shown below.

Call:

randomForest(formula = NextPM ~ ., data = xtrain, importance = TRUE,

mtry = best.m, ntree = 500, na.action = na.omit)

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 4

Mean of squared residuals: 187.6866

% Var explained: 82.73

Obviously the result has not changed much which is very desirable. The
amount of variance explained is only 1% smaller than in the full model and
the RMSE is

√
187.68 = 13.7 hours. This model is much less complex and

is therefore to prefer over the full model. The oob error plot in figure 5.12
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shows that the default value of ntree = 500 tree models is enough as a slight
increase in the oob error can be observed at about 300.
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Figure 5.12: The number of trees in the random forest model and the corre-
sponding out-of-bag error rate of the reduced model mod.rf.2.

The resulting variable importance plot in figure 5.13 followed by the numerical
values of the importance measures show a slightly different order.
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Figure 5.13: Variable Importance plot for the random forest object mod.rf.2
with the top 5 predictors. The variable importance measures IMP(1) and
IMP(2)∗ are shown.
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%IncMSE IncNodePurity

FIL_I 298.27989 942453.3

EXT_I 116.71254 345661.7

SUP_I 62.37922 151629.6

GAS 137.46331 296511.6

BEAM 60.74335 199447.4

IMP(1) (%IncMSE in the table of numerical values) suggests that the model
could be further simplified by removing SUP I and BEAM. This yields a RMSE
of 15.6 hours and an explained variance of NextPM of 77%. Therefore the main
contributors are obviously FIL I, EXT I and GAS.

Figure 5.14 shows a trellis plot of these three predictors. The plot is read from
the lower left to the upper right plot. Six scatterplots of EXT I versus GAS for
different ranges of corresponding FIL I values are shown. The positive relation
between FIL I and EXT I is also observable in the linear correlation coefficient
of about 0.53 (see also figure 5.4) as is the slightly negative relationship of
FIL I and GAS (correlation coefficient of −0.37).
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Figure 5.14: Trellis plot of the 3 most important predictors of an implanter.

However, we keep our model with 5 predictors as a typical error rate of 13.7
hours is desirable.
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5.4.1 Test data results

With the built random forest model we are now able to test the model using a
test data set, i.e. a data set not used to build the model. This gives information
about the model’s real predictive power.

We use a test data set with implanter machine data from late September and
October 2010 with 674 data points which equals 2 filament lifetime cycles. As
our model is trained on lifetime cycles of 150 hours at most, we concentrate on
a period of 120 hours before a filament break as a prediction for longer periods
is not relevant. The response NextPM of the test data is shown in figure 5.15.
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Figure 5.15: Response variable NextPM of the test data set of 674 data points
or 2 filament lifetime cycles.

The test data is now used to predict the response while keeping the real test
response unknown to the model. We then compare the observed response to
the corresponding predicted values and calculate the test error. The command

pred<-predict(mod.rf.2, newdata=test, type="response")

calculates the predicted values to the test data saved in the data frame test

using the random forest model mod.rf.2 with the 5 most important predictors.
Figure 5.16 shows a graphical comparison of the observed response and the
fitted values generated by mod.rf.2.

The RMSE of the test data fit is 14.5 hours which is slightly larger than the
RMSE of the training data fit of 13.7. The R2

pseudo value of the test data fit is
80.5% where
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Figure 5.16: Graphical comparison of the real test response and the predicted
values, on top of each other (on the left, real response is blue) and against each
other (on the right).

R2
pseudo = 1−

1
ntest

∑ntest
i=1 (test$NextPM[i]− pred[i])2

Var(test$NextPM)

with ntest being the number of observations in the test data set.
The error can be further decreased by taking moving average values over the
last 5 fitted values instead of the fitted values itself. The resulting RMSE
reduces to 12.7 hours and R2

pseudo = 84.7%. In the critical period of 72 hours
before the actual filament break the RMSE is 12 hours only. The respective
plots can be seen in figure 5.17.

In summary, we have found a random forest model for predicting the remaining
lifetime of the filament in an implanter tool with a typical error of 12.7 hours
when taking moving averages over the last 5 fitted values and with a typical
error of 12 hours in the critical 72 hours time frame before the filament will
break.
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Figure 5.17: Graphical comparison of the observed test response and the mov-
ing average over the last 5 predicted values, on top of each other (on the left,
observed response is blue) and against each other (on the right).
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Chapter 6

Arcing on the Wafer Surface

6.1 Introduction

The problem of arcing on a wafer surface has increasingly become a critical
one since it can result in both damage on the wafer surface itself and on the
tool chamber. Arcing is mainly due to electrical discharging during certain
production steps but the main influential parameters are typically unknown.
Therefore the detection of arcing as fast and as reliable as possible is very im-
portant for avoiding damages and cost intensive maintenance activities. Figure
6.1 shows a magnification of an arcing defect on a wafer surface.

  

Figure 6.1: Arcing on a wafer surface as occured during a CVD process.

We focus on arcing occuring in a process chamber of a CVD tool. Since there
are no shades of arcing as it can only occur or not occur we model it as a clas-
sification problem. A wafer in class 1 shows arcing after defect measurement
and a wafer in class 0 does not, thus we have a binary response. In addition,
when creating a training data set for eventually fitting a classification model,
we tried to take only wafers as class 0 which do not show any other kind of
defect. This results in an inhomogeneous training data set.

67



68 CHAPTER 6. ARCING ON THE WAFER SURFACE

The data set consists of n = 106 data points.

The main problem with the data set is the data quality on austriamicrosystems’
CVD tool. Before the 25 tool variables are aggregated and the 40 predictors are
generated the tool variables are measured during several process steps. Often,
these measurements are inaccurate. For example, if the number of samples
collected is smaller than the number of samples that should have been collected
during the process window or if the time stamp for sample n is lower than the
time stamp for sample n− 1. These and other problems in collecting the data
naturally have a negative influence on the aggregated values, resulting in less
accurate data. Information about the quality of measurement is summarized
in the data quality value. It is calculated for every aggregated data sample. It
is a value between 0 and 1 where 0 means the worst possible data quality and
1 means best possible quality. In case of negative values, some entries in the
data sample are not available at all. However, the exact method of how this
value is calculated is confidential.

Naturally, a fluctuating data quality has a negative influence on modelling
both classification and regression problems. Therefore, one has to keep these
issues in mind when modelling the arcing problem.

6.2 Data analysis

We start with pinitial = 40 predictor variables and n = 106 data samples in our
training data set with 28 arcing (class 1) and 78 non-arcing (class 0) wafers.
This inbalanced proportion is due to the irregular occurence of the problem.
The data comes exclusively from the CVD tool’s chamber A as it is the only
chamber where arcing is a problem.

At first we have a look at the predictors. The tables A.1 and A.2 in the
appendix give a tabular overview.

Out of the CVD engineers’ experience with arcing, information about the dome
heater, especially DHside, and information about the radio frequency power
are considered influential for the problem. However, the reasons for arcing
remain largely unknown.
At first we remove high correlated predictors and therefore we have a look at
the correlation matrix. Figure A.1 in the appendix visualizes linear correlations
in a lattice plot.

There are no constant predictors in the data set. We remove predictors that
show an absolute value of pair-wise correlation of 0.8 or greater. 29 predictors
remain.
Out of these 29 we graphically compare non-arcing and arcing observations for
different predictors by using boxplots with confidence intervals for the medians.
5 predictors show an obvious significant difference between the classes (see
figure 6.2).
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Figure 6.2: Boxplots of the 5 predictors that show an obvious significant dif-
ference of non-arcing (left) and arcing (right) wafers in their medians.

All 5 predictors show a higher median in the arcing case. Clearly, DHside and
s15RFside.ref show the largest differences between classes.

By looking at the plot in figure 6.3 of the dome heater side indicator over time
of 35 wafers with a total of 8 arcing wafers, it is observable that when arcing
occured the value of the dome heater side temperature was at least above
157, in 6 out of 8 cases even above 158. It is suggested by engineers that the
reason for the numerous up-and-downturns are so called 3x-clean procedures
of the chamber. It seems, arcing is more likely to occur after a chamber clean
procedure which is done after 3 processed wafers. A similar conclusion can be
made by looking at the plot of RngWaferTemp over time of the same wafers. In
all arcing cases, the values of the predictor were at or above 15 after 3x-cleans.
Currently, the exact reasons behind arcing occurence after 3x-cleans remain
unclear. Figure 6.4 shows the corresponding plot of RngWaferTemp where the
effect is visualized. The arcing cases in both plots are marked as black dots.

Plotting both predictors against each other using all of the 106 data points
leads to the same conclusion. Figure 6.5 shows the plot with the arcing wafers
marked red as 1 and the non arcing wafers marked blue as 0. Arcing is more
likely to occur if both the dome heater side temperature and RngWaferTemp (or
WaferTemp as they are highly correlated) are large. If both are small, arcing
seems unlikely. Thus, RngWaferTemp also seems to contribute to the problem.
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Figure 6.3: Values of DHside over time of 35 wafers processed in chamber A
of the CVD01 tool during July 2010 with 8 cases of arcing (marked as black
dots).

Figure 6.4: Values of RngWaferTemp over time of 35 wafers processed in cham-
ber A of the CVD01 tool during July 2010 with 8 cases of arcing (marked as
black dots).
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Figure 6.5: The dome heater side temperature plotted against RngWaferTemp

with arcing wafers marked red as 1 and non arcing wafers marked blue as 0.
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6.3 Classification trees

The next step is to fit classification tree models to the data to get an insight
in data structure and predictor relationships. Figure 6.6 shows the graphical
output of an rpart model object.

Figure 6.6: Classification tree model created using the rpart R routine with
29 uncorrelated predictors.

As already supposed, DHside seems to be the most important predictor. The
split treshold of 157.5 is also observable in figure 6.3. All observations corre-
sponding to dome heater side temperature values smaller than this treshold
fall into the terminal node in the left branch. Obviously, no further reduction
in the node impurity is possible in this case. The proportion is 59 class 0
observations to 7 class 1 observations. Thus the node is clearly labeled 0 with
a misclassification error of about 10.6%. Furthermore we can observe that 7
out of the 28 arcing wafers, i.e. 25%, have a dome heater side temperature
value smaller than 157.5.

On the right hand side of the tree the reflected radio frequency power yields
the biggest reduction in impurity. For s16.18RFtop.ref parameter larger than
about 4.3, the standard deviation of the Argon flow seems to be important.
The remaining 19 arcing cases fall in the terminal node corresponding to a
gas flow value of 4.418 or larger. The terminal node is labeled as class 1 node
with a misclassification rate of 13% as 3 non-arcing wafers also fall in this data
partition.

For values of s16.18RFtop.ref smaller than 4.3, we find a terminal node
labeled class 0 with only non-arcing wafers and thus 0% misclassification rate.
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The plots in figure 6.7 and 6.8 give an additional graphical overview of the
data situation and further visualize the above tree structure.
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Figure 6.7: The dome heater side temperature plotted against
s16.18RFtop.ref with arcing wafers marked red as 1 and non arcing
wafers marked blue as 0. The dashed lines show the tresholds at which splits
are performed in the classification tree model.
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Figure 6.8: Further visualization of the splits in figure 6.6. Only data points
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The classification tree model yields the confusion table printed in table 6.1.
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Arcing predicted No Arcing predicted Model Error
Arcing 75 3 3.8%

No Arcing 9 19 32.1%
Use Error 10.7% 13.6% 11.3%

Table 6.1: Confusion table of the rpart classification tree model.

An overall model error of 11.3% seems acceptable but there is a problem. The
model misclassifies non arcing wafers in nearly one third of the cases, i.e. if a
wafer of class 0 is given to the model there is a probability of 32.1% that the
model wrongly classifies it as showing the arcing problem. In practical usage,
this leads to an increased number of false alarms. The remaining error rates
seem acceptable.

Furthermore, the model has a kappa coefficient of about 0.68 which is a good
agreement rate.

The classification tree generated by means of unbiased recursive partitioning
is presented in figure 6.9.

Again, the dome heater side variable and the reflected power variable are in
the tree with similar split tresholds. Terminal node 6 has the same class
proportion and cases as in the first tree model. However, now RngWaferTemp

plays a role for values of the dome heater side smaller than 157.41. A further
split is performed at a RngWaferTemp treshold of 15 as is already observable
in figure 6.4. This results in an entirely pure terminal node 3 of only class 0
cases and another terminal node labeled class 0 with a misclassification error
of about 30%. The only terminal node labeled as class 1 is the same as in the
rpart tree after splitting s16.18RFtop.ref at 4.16 (terminal node 7). The
further split at the gas flow parameter is omitted by the party method and
thus a terminal node with 21 arcing wafers and 8 non arcing wafers follows.

The results from the model evaluation change slightly. Table 6.2 shows the
confusion table.

Arcing predicted No Arcing predicted Model Error
Arcing 70 8 10.2%

No Arcing 7 21 25.0%
Use Error 9.09% 27.58% 14.14%

Table 6.2: Confusion table of the rpart classification tree model.

The overall error has increased to about 14.1%. The misclassification of non
arcing wafers has imporved but the use error became larger. The error that is
made when a wafer is predicted non arcing has nearly doubled to about 27.6%.
In practical usage, this means that the prediction of non arcing wafers is less
reliable.

The value of Cohen’s kappa is 0.64 and thus only slightly smaller than in the
rpart model. However, it still means good agreement.
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DHside
p = 0.003

1

≤ 157.411 > 157.411

RngWaferTemp
p = 0.026

2

≤ 15 > 15

n = 43
y = (1, 0)

3
n = 23

y = (0.696, 0.304)

4

s16.18RFtop.ref
p = 0.027

5

≤ 4.167 > 4.167

n = 11
y = (1, 0)

6
n = 29

y = (0.276, 0.724)

7

Figure 6.9: Classification tree model created using the party R routine with
29 uncorrelated predictors.

In summary, the classification tree models offer an acceptable fit but there is
room for improvement.

6.4 A Stochastic Gradient Boosting model

We are now ready to apply stochastic gradient boosting to the arcing classifi-
cation problem. For constructing a corresponding R model we use the caret

package (see [16] Kuhn, 2008) as a wrapper for the gbm package. A description
of the functionality of the caret package can be found in the appendix.

We start with a full model using all 29 predictors to get an overview of variable
importance measured with boosting’s built in method. The 20 most important
predictors are listed below with their importance values scaled between 0 and
100.
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DHside 100.000
OuterLeakRate 77.588
s16.18RFtop.ref 61.232
RngWaferTemp 46.315
DHtop 26.598
DEPRFside 24.016
s16.18RFtop 23.913
DEPRFbias.ref 23.839
sdDEPRFbias 20.960
s15RFside.ref 19.884
sdARtop 19.420
DEPCHPress 16.322
DEPRFside.ref 15.664
DEPRFtop 13.213
InnerLeakRate 12.810
s15RFside 12.114
s15RFbias.ref 10.942
DEPRFtop.ref 10.856
s15RFtop 9.392
DurDep 9.151

As supposed, the dome heater side temperature is the most important predic-
tor. s16.18RFtop.ref as well as RngWaferTemp are also important as sup-
posed from the classification tree models. Furthermore, the outer helium leak
rate indicator has influence. A difference between classes is already observable
in figure 6.2.

Now we fit a model with the 4 most important predictors found above and
sdARtop as observed to be important in the classification tree. An excerpt of
the output resulting from the caret package’s train function with gbm as the
underlying boosting method is shown below.

106 samples

5 predictors

interaction.depth n.trees Accuracy Kappa Accuracy SD Kappa SD Selected

1 100 0.841 0.564 0.0953 0.25

1 500 0.841 0.572 0.0686 0.174

2 100 0.823 0.508 0.0613 0.15

2 500 0.84 0.56 0.0435 0.14

3 100 0.869 0.671 0.0484 0.0991

3 500 0.84 0.575 0.0579 0.148

4 100 0.87 0.675 0.081 0.162 *

4 500 0.831 0.556 0.0501 0.129

The stochastic gradient boosting model uses a shrinkage parameter of 0.075 as
this value turned out to give adequate results better than the default value of
0.001. For calculating accuracy and Cohen’s kappa values we use 8 fold cross-
validation. We tried interaction depths of 1 to 4 and 100 or 500 iterations.
The train function now finds the model parameter constellation that yields
the highest average classification accuracy over all cross-validation passes. The
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best overall model uses a variable interaction depth of 4 and 100 tree models,
i.e. 100 boosting iterations.

A resulting average accuracy of 0.87 (i.e. 13% model error) calculated over
all cross-validation runs seems highly satisfying as does the average kappa of
0.675. The standard deviations of these values also seem acceptable, although
the kappa values are somewhat instable over different cross validation passes.
However, using an interaction depth of 3 and 100 iterations yields nearly the
same accuracy (0.869) and lower standard deviations but is less complex. Thus
an interaction depth of 3 seems recommendable.

The boosting performance plot on the left hand side in figure 6.10 shows the
change in the deviance (Bernoulli deviance) over iterations.

Figure 6.10: Performance plot and plot of model accuracy values for different
interaction depths and iterations of a boosting classification model for arcing
with 5 predictors.

Clearly, the remarkable improvements in the deviance come early. The less
complex model with only 100 iterations seems suitable. The second plot in
figure 6.10 shows the change in accuracy for different model parameters.

As seen before, the less complex model with an interaction depth of 3 yields
nearly identical results at 100 iterations but with more stability in both accu-
racy and kappa values.

For evaluating the model fit itself, we have a look at the confusion table in
table 6.3.

The confusion table of the boosting model shows a clear improvement over
the single classification tree model. The overall error of 1.88% seems highly
adequate with only 2 false negatives, i.e. wafers predicted as showing arcing
when they do not in truth. Thus, the problem of false alarms improved a lot.
The variable importance plot of the model object is given in figure 6.11.
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Arcing predicted No Arcing predicted Model Error
Arcing 78 0 0%

No Arcing 2 26 7.1%
Use Error 2.5% 0% 1.9%

Table 6.3: Confusion table of the stochastic gradient boosting model with 5
predictors.

Importance

RngWaferTemp

sdARtop

s16.18RFtop.ref

OuterLeakRate

DHside

0 20 40 60 80 100

●

●

●

●

Figure 6.11: Variable importance plot of the stochastic gradient boosting
model with 5 predictors.
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Obviously, RngWaferTemp does not contribute at all in this reduced model so
the model can be further simplified by omitting this predictor. Thus, the 4
most important predictors are

DHside
OuterLeakRate
s16.18RFtop.ref
sdARtop

The boosting model using only these 4 predictors has cross validation results
similar to the model using 5 predictors. The best model uses an interaction
depth of 4 and 500 tree models. This results in an accuracy of about 0.85 (i.e.
model error of 15%) and a slightly lower kappa value of 0.58. Thus, the model is
slightly weaker, but the difference is not dramatical. However, the best model
needs more iterations to achieve its results (500 compared to 100) which yields
a higher complexity. It seems using 100 instead of 500 iterations does not result
in a dramatic decrease in model quality, although the performance plot of a
100 iteration model compared to a 500 iteration model exhibits a difference.
See figure 6.12 and figure 6.13.
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Figure 6.12: Performance plot comparison of boosting classification models for
arcing with 4 predictors.
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Figure 6.13: Plot of model accuracy values for different interaction depths and
iterations in a boosting classification model for arcing with 4 predictors.

Arcing predicted No Arcing predicted Model Error
Arcing 78 0 0%

No Arcing 0 28 0%
Use Error 0% 0% 0%

Table 6.4: Confusion table of the stochastic gradient boosting model with 4
predictors.

The confusion table can be seen in table 6.4. The model yields a perfect
confusion table and thus a perfect fit of the data as all wafers from the training
data set are classified correctly. However, the cross-validation results suggest
an overfitting of the data as the calculated accuracy and kappa statistics are
not as favourable.
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6.4.1 Test results

Results from applying the model on real test data are not as good as the model
quality values and confusion tables suggest. The main problem of the model
is the high proportion of false alarms (i.e. false negatives) for arcing as already
assumed.

For testing the arcing classification model we used a test data set containing
76 data points (6 lots of wafers) where only 6 wafers show the arcing defect.
Classifying these data yields the confusion table shown in table 6.5.

No Arcing predicted Arcing predicted Model Error
No Arcing 60 10 14.0%

Arcing 2 4 33.3%
Use Error 3.2% 71.4% 15.8%

Table 6.5: Confusion table of generated using a test data set with 76 data
points: 70 class 0 and 6 class 1 wafers.

As mentioned earlier, the unbalanced data set is due to the infrequent oc-
curence of arcing. Clearly, the biggest problem are the false negatives. If arc-
ing is predicted by the model, about 7 out of 10 predictions are false alarms.
On the other hand, 2 arcing wafers are not predicted as such by the model
(false positives). It is worth to mention that in 2 out of the 6 tested lots the
model works perfectly, predicting every wafer correctly. In two lots, the arcing
wafers are predicted correctly while other wafers were false alarms (1 and 2
false alarms) and in the remaining two lots the model does not recognize the
arcing wafers at all while producing false alarms (4 and 3 false alarms).

The overall model error is not very meaningful as the data situation is too
imbalanced. In part, the problems are clearly related to the data quality is-
sue. An improvement in data quality should generally improve the model and
increase accuracy. The highly imbalanced data situation may also have a neg-
ative influence. However, the problems may also originate from the boosting’s
problem with overfitting as cross-validation and test data results barely mirror
the goodness of fit of the training data. Compared to the boosting model,
a random forest classification model fitted to the same data yields somewhat
different results with the test data.

6.4.2 Comparison with a Random Forest model

In theory, the problem of overfitting is not as visible in random forest as it
is in boosting (e.g. see [4] Breiman, 2001). Thus, we fit a random forest
classification model for comparison.

Again, we use the top 4 most important predictors, i.e.
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DHside
OuterLeakRate
s16-18RFtop-ref
sdARtop

The confusion table constructed using the training data to evaluate the model
fit itself is shown in table 6.6.

No Arcing predicted Arcing predicted Model Error
No Arcing 78 0 0%

Arcing 0 28 0%
Use Error 0% 0% 0%

Table 6.6: Confusion table of the random forest classification model with 4
predictors constructed using the training data.

Like the stochastic gradient boosting model it yields a perfect confusion table,
i.e. it perfectly fits the training data. However, a better information about
model quality gives the confusion table constructed using the out of bag data
given in table 6.7.

No Arcing predicted Arcing predicted Model Error
No Arcing 72 6 7.7%

Arcing 13 15 46.4%
Use Error 15.3% 28.6% 17.9%

Table 6.7: Confusion table of the random forest classification model with 4
predictors constructed using the out of bag data.

The model error of about 18% calculated using out of bag cases is slightly
higher than the 15% achieved in the boosting model with the same 4 pre-
dictors using cross-validation. Furthermore, in addition to the 4 predictors
used, RngWaferTemp does not give any further improvement as the resulting
confusion table is the same.

Judging from the out of bag error estimates, the false alarms are reduced as
only 6 wafers are classified as having arcing when they do not. The main
problem are the false positives, i.e. the model does not recognize arcing wafers
as such. Out of the 28 arcing wafers, the model does not recognize 13 arcing
wafers (46.4%).

However, the two models are best compared using the test data set. Table 6.8
shows the confusion table.

The overall test error is better than for the boosting model, but the imbalanced
class proportions have to be kept in mind. More importantly, the random forest
model has less false alarms as a non arcing wafer is wrongly classified as having
arcing only 5 times compared to 10 times in the boosting case. Thus, it has
fewer false negatives. However, there is still a problem with the false positives.



6.5. SUMMARY 83

No Arcing predicted Arcing predicted Model Error
No Arcing 65 5 7.1%

Arcing 3 3 50%
Use Error 4.4% 62.5% 10.5%

Table 6.8: Confusion table of the random forest classification model with 4
predictors constructed using test data.

The model fails to recognize an arcing wafer in 3 cases, i.e. 50%. Here the
random forest model performs worse than its boosting counterpart.

In summary, the random forest model has a slightly lower overall model error
than a stochastic gradient boosting model with the same predictor set. Fur-
thermore, it produces less false alarms. However, it has a higher proportion of
false positives.

6.5 Summary

In summary, we found classification models for the problem of arcing on a wafer
surface that perfectly classify the data used to construct the model where the
outcome is known. Through statistical analysis, the main influential predictors
were found. The models are able to recognize wafers showing arcing but in
test phases they are either prone to producing false alarms or fail to recognize
defect wafers. Clearly, one reason for these problem are data quality issues and
a highly imbalanced data situation but methodical issues such as overfitting
may also play a certain role.
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Chapter 7

Modelling Film Thickness on a
PVD tool

7.1 Introduction

Equipment qualification and tool monitoring is a cost and time consuming
procedure for semiconductor manufactoring and especially for metal film de-
position with a PVD tool. Therefore an accurate knowledge of the thickness
of the deposited film without actual measurement (virtual metrology) is highly
desirable.

After the PVD film deposition process the wafers are moved to metrology tools.
The measurements were done over the course of several weeks. The thickness
of the film deposited on the wafer surface is measured on five sites. Every
wafer is assigned its mean film thickness. We are now interested in modelling
this mean film thickness using tool parameters. The film thickness is measured
in nanometre (10−9 metres).

7.2 Data analysis

For modelling we use a set of n = 209 data points. During the process, 17
predictors are calculated out of tool parameters. A table of all predictors
(table B.1), summary statistics as well as a correlation matrix (figure B.1) can
be found in the appendix.

First we have a look at the response variable Thickness. Its left skewed
distribution is shown in figure 7.1.

85
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Figure 7.1: Histogram of the mean thickness of film deposited in two different
process chambers of a PVD tool.

The data set contains data from two different PVD process chambers (cham-
ber 3 and chamber 4). Figure 7.2 shows a comparison of Thickness for the
different chambers.
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Figure 7.2: Comparison of the mean deposited film thickness between two
different process chambers.

The plots show a difference between the two process chambers in both the
boxplot comparison and the distributions shown in the histograms. Thus we
add chamber as a categorical predictor.

7.3 Regression Trees

First we look at regression tree models to get an impression of the structure
of the data and variable importance. Figure 7.3 shows the graphical output of
an rpart object. The model uses 1 categorical and 10 continuous predictors.
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Figure 7.3: Regression tree model using 11 uncorrelated predictors for the
mean deposited film thickness on a PVD tool.

targetlife contributes the most. For very small values (< 27.5, left branch)
the deposited film is thinner. In this data partition, the capacitive manome-
ter parameter m6manometer is important. However, only 37 cases fall in this
branch. The bigger part of the data (172 cases) is found in the right tree
branch. For values of targetlife between 27.5 and 500, i.e. typically small
values to values slightly above average (see the summary statistics in the ap-
pendix), the film thickness is around its mean of 852.4 (77 cases). The re-
maining greater thickness values can be found in the right-most branch (95
cases). About half of all cases (105) show a targetlife greater than 500 and
m4iongauge ≤ 37.3. The film thickness is at its highest level with this data
constellation.

The tree in figure 7.4 created using the party algorithm also recognizes targetlife
as the main contributor in first and second level splits.

The 37 data cases with a thickness value well below average are again separated
from the rest (terminal nodes 3, 5 and 6). Among these cases, the predictor
m6dccurr is used for further splitting. However, it splits only 26 cases.

For thickness values around average in the right branch of the tree the proce-
dure separates the data by the process chamber (61 cases in node 8). In cham-
ber 4, the deposited film is thicker than in chamber 3. Finally, if targetlife
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Figure 7.4: Regression tree model using the party routine and 11 uncorrelated
predictors for the mean deposited film thickness on a PVD tool.

is slightly above average (greater than 485), the resulting film thickness is the
greatest (117 cases, terminal node 11).
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7.4 Random Forest Model

We continue with a random forest model. The output of a random forest using
all 11 predictors is shown below.

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 2

Mean of squared residuals: 56.22696

% Var explained: 72.63

The model has an amount of explained response variance of about 73% and
a resulting RMSE of 7.5 nanometres which seems acceptable. A linear model
using the same set of predictors yields a coefficient of determination (R2) of
59% and a root mean squared error of about 9 nanometres. Thus the random
forest model seems to perform better than a comparable linear model.

The model can be further simplified by using only 200 tree models instead of
500. The resulting change in the model quality is not significant as suggested
by figure 7.5.
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Figure 7.5: The number of trees against the corresponding OOB error rate of
a random forest model for the mean film thickness.

The partial dependence plots of the random forest model are shown in figure
7.6.

The partial dependence plots show the positive relationship of targetlife and
the response. m6dccurr is negatively related, however when interpreting the
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Figure 7.6: Partial Dependence Plots of the 2 most important continuous
predictors of a random forest model for the mean film thickness.

plot one has to keep in mind the difference between the two process chambers.
The values of m6dccurr are larger for process chamber 3.

However, judging from the variable importance plot in figure 7.7, the influence
of the categorical predictor chamber is insignificant.
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Figure 7.7: Variable Importance Plot of a random forest model with 3 predic-
tors for the mean film thickness.
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This is due to the fact that the underlying regression tree models separate the
data values corresponding to their chamber difference by splitting the data
accordingly. Thus, in contrast to a linear model, there is no need of a further
categorical differentiation in our random forest model. This clear advantage
of the tree-based method yields further model simplification. The output of a
random forest model with 2 predictors is shown below.

Type of random forest: regression

Number of trees: 200

No. of variables tried at each split: 2

Mean of squared residuals: 57.92231

% Var explained: 71.8

Essentially, the model quality values do not change at all. We still have a
RMSE of about 7.5 nanometre and a explained variance of about 72%. Fur-
thermore, the model uses only 200 trees. The plot of the observed response
against the fitted values is shown in figure 7.8.
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Figure 7.8: Observed mean film thickness against fitted values of a random
forest model.

Basically, the model performance has improved for smaller thickness values
and remained roughly the same for values above average.

Figure 7.9 shows the observed response values along with fitted values. The
specification limits for all quantities are plotted as dashed blue lines.
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Figure 7.9: Observed film thickness values along with predicted values of a
linear model. The dashed blue lines are specification limits.

As with the linear model, the random forest model predictions do not exceed
the specification limits when the observed response values also do not, i.e. the
model does not produce false alarms. Thus, it also gives the possibility to
check if the tool is under control or not.
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7.5 Summary

In summary, we have found a model for the thickness of film on a wafer de-
posited during the PVD process. We found a difference between two process
chambers and the 2 most important continuous predictors. In comparison to
a linear model, a random forest model performs better using the same set of
predictors. The tree-based approach makes a categorical differentiation be-
tween the two process chambers redundant. The best model explains about
72% of the variance of the film thickness and has a root mean square error
of 7.5 nanometre. With the models it is possible to check if the tool is under
control or not.
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Appendix A

Arcing on the wafer surface

The data for modelling the arcing problem is collected directly from austriami-
crosystem’s CVD tool from the tool event ”wafer started” until the tool event
”wafer finished” with a frequency of one second. The data collection consists
of 25 tool variables which are traced during wafer processing. The raw data is
then aggregated as mean, max, min, slope, area and/or standard deviation are
calculated for relevant process steps or intervals of the tool recipe. Out of the
25 tool variables a set of 40 indicators (calculated summary data) are generated
for every wafer. Thus one row in the data set represents aggregated values of
40 indicators for one processed wafer. The names of these indicators contain
the aggregation method used (e.g. Mean), an optional term which indicates an
optional cut of the time window over which the summary data is calculated
(e.g. Tb1e1 for 1 second cut at the start and at the end of the process), the
process step or process step window in which the value is calculated and the
name of the tool variable.

A.1 Table of variables

Table A.1 and table A.2 give an overview of the names of the indicators along
with a description. Furthermore, all indicators have abbrevations by which
they are referred to. These abbrevations serve as predictor names in the created
models.
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A.2 R summary of predictors

DurDep s16.18CHPress s16.18RFside s16.18RFside.ref
Min. : 55.06 Min. :1999 Min. :1978 Min. :13.22
1st Qu.: 89.13 1st Qu.:2101 1st Qu.:2002 1st Qu.:17.37
Median : 89.98 Median :2399 Median :2013 Median :25.90
Mean : 90.27 Mean :2494 Mean :2065 Mean :24.63
3rd Qu.: 91.02 3rd Qu.:2888 3rd Qu.:2136 3rd Qu.:30.38
Max. :117.15 Max. :3536 Max. :2374 Max. :38.83

s16.18RFtop s16.18RFtop.ref s15CHPress s15RFbias
Min. : 988 Min. : 3.000 Min. :2136 Min. :1228
1st Qu.:1001 1st Qu.: 4.000 1st Qu.:2411 1st Qu.:1501
Median :1006 Median : 6.500 Median :4104 Median :1506
Mean :1017 Mean : 7.009 Mean :3439 Mean :1514
3rd Qu.:1027 3rd Qu.: 7.958 3rd Qu.:4183 3rd Qu.:1510
Max. :1095 Max. :22.667 Max. :4586 Max. :2018

s15RFbias.ref s15RFside s15RFside.ref s15RFtop
Min. : 1.167 Min. :2899 Min. : 0.000 Min. :1253
1st Qu.: 1.757 1st Qu.:3096 1st Qu.: 1.500 1st Qu.:1302
Median : 2.438 Median :3109 Median : 2.571 Median :1306
Mean : 5.628 Mean :3104 Mean : 7.488 Mean :1305
3rd Qu.:10.000 3rd Qu.:3116 3rd Qu.:14.554 3rd Qu.:1309
Max. :26.286 Max. :3141 Max. :19.667 Max. :1324

s15RFtop.ref DepCHPress DHgsh DHside
Min. :5.000 Min. :5983 Min. :128.7 Min. :148.1
1st Qu.:5.714 1st Qu.:6034 1st Qu.:134.7 1st Qu.:154.6
Median :6.000 Median :6054 Median :135.8 Median :156.5
Mean :6.116 Mean :6055 Mean :135.5 Mean :156.1
3rd Qu.:6.571 3rd Qu.:6082 3rd Qu.:137.2 3rd Qu.:158.0
Max. :7.727 Max. :6185 Max. :138.2 Max. :159.8

DHtop ARside ARtop SIH4top
Min. :127.0 Min. :111.0 Min. :16256 Min. :12388
1st Qu.:128.4 1st Qu.:111.0 1st Qu.:16257 1st Qu.:12408
Median :129.1 Median :111.0 Median :16258 Median :12408
Mean :129.3 Mean :111.0 Mean :16258 Mean :12407
3rd Qu.:130.1 3rd Qu.:111.0 3rd Qu.:16260 3rd Qu.:12408
Max. :134.1 Max. :111.1 Max. :16263 Max. :12409

InnerLeakRate OuterLeakRate DEPRFbias DEPRFbias.ref
Min. :11.55 Min. : 48.53 Min. :3501 Min. :10.24
1st Qu.:14.21 1st Qu.: 72.60 1st Qu.:3506 1st Qu.:52.86
Median :15.94 Median : 80.97 Median :3507 Median :54.58
Mean :15.69 Mean : 81.44 Mean :3507 Mean :44.93
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3rd Qu.:16.87 3rd Qu.: 91.72 3rd Qu.:3509 3rd Qu.:56.13
Max. :19.73 Max. :127.86 Max. :3514 Max. :59.33

DEPRFside DEPRFside.ref DEPRFtop DEPRFtop.ref
Min. :3100 Min. : 5.920 Min. :1301 Min. :4.393
1st Qu.:3106 1st Qu.: 6.423 1st Qu.:1304 1st Qu.:4.837
Median :3107 Median : 6.577 Median :1306 Median :4.934
Mean :3107 Mean : 6.833 Mean :1305 Mean :4.915
3rd Qu.:3109 3rd Qu.: 6.747 3rd Qu.:1307 3rd Qu.:5.021
Max. :3117 Max. :11.381 Max. :1310 Max. :5.407

DEPWaferTemp WaferTemp RngDHgsh RngDHside
Min. :468.4 Min. :468.5 Min. :2.000 Min. : 3.000
1st Qu.:496.5 1st Qu.:494.0 1st Qu.:3.000 1st Qu.: 8.000
Median :498.9 Median :496.3 Median :4.000 Median : 9.000
Mean :495.7 Mean :493.8 Mean :4.057 Mean : 8.755
3rd Qu.:505.0 3rd Qu.:502.3 3rd Qu.:4.000 3rd Qu.: 9.000
Max. :541.7 Max. :541.4 Max. :7.000 Max. :13.000

RngDHtop RngWaferTemp sdARside sdARtop
Min. : 4.00 Min. : 0.00 Min. :0.00000 Min. : 0.000
1st Qu.:17.00 1st Qu.:15.00 1st Qu.:0.00000 1st Qu.: 5.269
Median :18.00 Median :15.00 Median :0.00000 Median : 7.716
Mean :18.27 Mean :13.32 Mean :0.03625 Mean : 7.448
3rd Qu.:20.00 3rd Qu.:16.00 3rd Qu.:0.00000 3rd Qu.:10.504
Max. :21.00 Max. :49.00 Max. :0.25155 Max. :13.338

sdSIH4top sdDEPRFbias sdDEPRFside sdDEPRFtop
Min. : 0.000 Min. :13.20 Min. :11.68 Min. : 6.626
1st Qu.: 0.000 1st Qu.:17.54 1st Qu.:13.35 1st Qu.: 9.684
Median : 1.421 Median :18.71 Median :14.80 Median :10.493
Mean : 5.371 Mean :20.24 Mean :16.78 Mean :10.455
3rd Qu.: 2.393 3rd Qu.:20.59 3rd Qu.:16.11 3rd Qu.:11.243
Max. :143.567 Max. :35.70 Max. :32.15 Max. :13.773
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A.3 Correlation matrix
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Figure A.1: Correlation matrix of all predictors of the arcing problem as
lattice plot.



Appendix B

Modelling Film Thickness on a
PVD Tool

For modelling the film thickness on a PVD tool, the values of the predictor
variables come directly from the PVD tool.

B.1 Table of variables

Table B.1 gives an overview of the names of the indicators along with a descrip-
tion. Furthermore, all indicators have abbrevations by which they are referred
to. These abbrevations serve as predictor names in the created models.
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B.2 R summary of predictors

targetlife m4manometer m4dccurr m4dcpwract
Min. : 0.0 Min. :2946 Min. :19.95 Min. :10975
1st Qu.: 89.0 1st Qu.:2985 1st Qu.:21.00 1st Qu.:11429
Median : 410.0 Median :2996 Median :22.06 Median :11556
Mean : 471.6 Mean :2995 Mean :22.28 Mean :11464
3rd Qu.: 804.0 3rd Qu.:3005 3rd Qu.:23.33 3rd Qu.:11572
Max. :1110.0 Max. :3051 Max. :25.00 Max. :11573

m4iongauge m4trgtsense m4wfrtemp m6manometer
Min. : 1.00 Min. :453.0 Min. :286.0 Min. :2058
1st Qu.: 13.35 1st Qu.:482.0 1st Qu.:293.8 1st Qu.:2104
Median : 32.71 Median :503.2 Median :294.8 Median :2115
Mean : 53.18 Mean :502.5 Mean :295.3 Mean :2113
3rd Qu.: 90.57 3rd Qu.:526.5 3rd Qu.:295.2 3rd Qu.:2125
Max. :172.91 Max. :561.1 Max. :323.9 Max. :2152

m6dccurr m6dcpwract m6wfrtemp m9manometer
Min. :12.73 Min. :24.31 Min. :286.4 Min. :2137
1st Qu.:14.77 1st Qu.:24.93 1st Qu.:293.8 1st Qu.:2164
Median :16.84 Median :26.00 Median :294.0 Median :2171
Mean :18.48 Mean :28.56 Mean :294.9 Mean :2173
3rd Qu.:22.23 3rd Qu.:32.13 3rd Qu.:295.0 3rd Qu.:2181
Max. :25.29 Max. :32.77 Max. :322.5 Max. :2209

m9dccurr m9dcpwract m9iongauge m9wfrtemp
Min. :18.86 Min. :11070 Min. : 1.000 Min. :286.6
1st Qu.:20.00 1st Qu.:11502 1st Qu.: 9.417 1st Qu.:293.0
Median :21.00 Median :11555 Median :21.143 Median :294.1
Mean :21.21 Mean :11501 Mean :33.096 Mean :294.5
3rd Qu.:22.00 3rd Qu.:11572 3rd Qu.:59.727 3rd Qu.:295.2
Max. :24.00 Max. :11573 Max. :95.320 Max. :320.2

timestmp
Min. : 1.599
1st Qu.:20.222
Median :21.269
Mean :21.409
3rd Qu.:22.985
Max. :29.695
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B.3 Correlation matrix
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Figure B.1: Correlation matrix of all predictors of film thickness modelling as
lattice plot.



Appendix C

The Caret R package

The caret R package introduced by Max Kuhn (see [16] Kuhn, 2008) offers
a simple framework for several different classification and regression methods.
The focus of the package lies on model training and tuning using numerous
statistical techniques. It also contains methods for pre-processing training
data, assessing variable importance and model visualizations.

The package serves as a wrapper for the different original packages that contain
methods for modelling. We use the caret functionality as a wrapper for the
gbm package to carry out stochastic gradient boosting.

C.1 The train command

The main command of the package is train. It allows to access the functions
of the gbm package or any other package available and creates a corresponding
model object.

The following creates a stochastic gradient boosting classification model for
our frogs data example from the DAAG library.

> xtrain<-data.frame(altitude, distance, NoOfPools, NoOfSites,
avrain, meanmin, meanmax)

> pres.abs<-as.factor(pres.abs)
> library(caret)
> mod<-train(pres.abs~., data=xtrain, method="gbm")

This performs stochastic gradient boosting as implemented in the gbm pack-
age with the binary response variable pres.abs and a predictor data frame
xtrain with 7 predictors. The resulting gbm object can be accessed via
mod$finalModel.

For tuning the model and finding the best model parameter constellation,
the caret package allows the user to create a grid of parameter values and
calculates the results over all the values of the grid. With
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> gbmGrid<-expand.grid(.interaction.depth=(1:4),
.n.trees=c(100, 500), shrinkage=0.075)

a grid of different parameter values is stored in gbmGrid. In this example,
the interaction depth of the boosting algorithm runs from 1 to 4, the number
of iterations is either 100 or 500 and the shrinkage rate is chosen to be 0.075.
Thus, a grid with 8 parameter combinations results. The train command then
finds the parameter combination that yields the best model quality value, e.g.
classification accuracy or Cohen’s Kappa for classification or R2 for regression.

These values can be calculated using resampling methods such as bootstrap-
ping or cross validation. For example, the control command

> modControl<-trainControl(method="cv", number=10)

can be used to evaluate a model using 10-fold cross validation.

For our frogs example the command

> mod<-train(pres.abs~., data=xtrain, method="gbm",
tuneGrid=gbmGrid, trControl=modControl, metric="Accuracy")

yields the following output.

> mod

Call:

train.formula(form = pres.abs ~ ., data = xtrain, method = "gbm",

tuneGrid = gbmGrid, trControl = modControl, metric = "Accuracy")

212 samples

7 predictors

summary of cross-validation (10 fold) sample sizes:

191, 192, 190, 190, 190, 191, ...

cv resampled training results across tuning parameters:

interaction.depth n.trees shrinkage Accuracy Kappa Accuracy SD Kappa SD Selected

1 100 0.075 0.782 0.508 0.0891 0.229 *

1 500 0.075 0.735 0.42 0.0635 0.151

2 100 0.075 0.74 0.436 0.0488 0.093

2 500 0.075 0.721 0.395 0.0681 0.142

3 100 0.075 0.74 0.433 0.0702 0.153

3 500 0.075 0.702 0.354 0.0664 0.121

4 100 0.075 0.778 0.513 0.0512 0.116

4 500 0.075 0.712 0.379 0.0531 0.0981

Accuracy was used to select the optimal model using the largest value.

The final values used in the model were interaction.depth = 1, n.trees = 100 and shrinkage = 0.075.

The best model is chosen by means of classification accuracy (metric).
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C.2 Other useful commands

For classification problems, the function confusionMatrix can be used to
summarize the results:

> confusionMatrix(predict(mod, xtrain, type="raw"), pres.abs)

Confusion Matrix and Statistics

Reference
Prediction 0 1

0 119 21
1 14 58

Accuracy : 0.8349
95% CI : (0.7779, 0.8822)

No Information Rate : 0.6274
P-Value [Acc > NIR] : 2.775e-11

Kappa : 0.6404

Sensitivity : 0.8947
Specificity : 0.7342

Pos Pred Value : 0.8500
Neg Pred Value : 0.8056

Prevalence : 0.6274
Detection Rate : 0.5613

Detection Prevalence : 0.6604

’Positive’ Class : 0

The output shows the actual confusion table (transposed) along with an ac-
curacy measure (Accuracy, number of correctly assigned divided by all obser-
vations), Cohen’s kappa (Kappa), sensitivity and specificity values and other
statistical measures.

The generic function varImp can be used to analyze the effect of the predic-
tors on the model. It gives a variable importance ranking of all predictors
used scaled between 0 and 100 where 100 is the importance of the most impor-
tant predictor. The overview is based on the variable importance calculation
method of the underlying model type. Furthermore, the command varimpplot

yields a graphical output of the variable ranking.

For a detailed description of various other useful functions in the caret package
see [16] Kuhn (2008).
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