
Generic Verification Platform

Definition And Implementation Of A
Generic Verification Platform

For Integrated Circuit Systems

Master’s Thesis

at

Graz University of Technology

submitted by

Edwin Taferner

Institute for Software Technology
Graz University of Technology

A-8010 Graz, Austria

September, 12th 2010

c© Copyright 2010 by Edwin Taferner

Advisor: Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa
Advisor: Dipl.-Ing. Bernd Janger

Kurzfassung

Die Verifikation integrierter Schaltungen (IC) wird immer mehr zum Engpass der Pro-
dukteinführungszeit. Die sich ständig ändernde Technologie und die immer kompakteren und
komplexeren Designs stellen immer höhere Anforderungen an die Verifikation von IC Syste-
men. Eine durchgängige Verifikation während den Phasen der Produkt-Entwicklung muss die
zukünftige Fehlerfreiheit des Produkts in der Volumenproduktion sicherstellen.

Ein Vorschlag für eine systematische und strukturierte Vorgehensweise und Infrastruktur
für die Verifikation ist die generische Verifikationsplatform. Sie bietet eine produkt-unabhängi-
ge Umgebung (Datenstrukturen, Dateiformate) und unterstützt die Verifikation mit Software-
Tools wie Ausführungsautomatisierung. Durch diese einheitliche Verifikationsumgeben wird eine
hohe Wiederverwendbarkeit der Verifikationselemente als auch eine enorme Steigerung der Ef-
fizienz der IC Verifikation gewährleistet. Durch das entwickelte Automatisierungskonzept kann
die Verifikationszeit stark reduziert werden.

Der Einsatz der generischen Verifikationsplatform in einigen Projekten lässt auf eine viel-
versprechende Steigerung der Effizienz und Wiederverwendbarkeit schließen.

Schlüsselwörter: Verifikationsplatform, integrierte Schaltungen, System-on-a-Chip

Abstract

The improvement of efficiency in Integrated Circuit (IC) verification is an upcoming chal-
lenge the semiconductor industry is facing. The fast changing and shrinking technology of IC
systems let the verification process become the bottle neck of time to market. The IC system
verification is getting more and more time consuming because of the increasing compactness
and complexity of IC systems like System-on-a-Chip (SoC)

A generic verification platform is a possible solution to overcome these challenges, by provid-
ing a project independent verification environment (data structures, file formats) with support-
ing software tools, like execution automation, based on this environment. These well-defined
data structures and file formats decrease verification development time because of a high reuse
of software, which improves over time. The provided project independent automation concept
reduces verification time to a minimum.

The first projects using this generic verification platform concept confirm a very promising
reuse and increasing efficiency.

Keywords: Integrated Circuit, Verification, Platform, System-on-a-Chip

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und
inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Ort Datum Unterschrift

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources / resources, and that I have explicitly marked all material which has been quoted
either literally or by content from the used sources.

Place Date Signature

Contents

Contents ii

List of Figures iii

List of Tables iv

List of Acronyms vi

Acknowledgements vii

1 Introduction 1

1.1 Scope - Verification Platform . 1

1.2 Verification Environments . 2

2 Requirements 4

2.1 Requirements Elicitation . 4

2.1.1 Elicitation Techniques . 4

2.1.2 Technique Selection . 5

2.2 Concept Definition Requirements . 7

2.2.1 Data Structures . 7

2.3 Software . 9

2.3.1 Simulation . 10

2.3.2 Evaluation . 10

2.3.3 Production Test . 10

3 Status quo and Analysis 12

3.1 Verification Environments . 12

3.1.1 Digital Simulation . 13

3.1.2 Analog Simulation . 13

3.1.3 Evaluation . 13

3.1.4 Production Test / Characterization . 13

3.1.5 Conclusion . 14

3.2 Data . 14

3.3 Work Flow . 17

i

4 Technology Overview 18

4.1 Verification Platform . 18

4.2 Test Case/Data Management . 19

4.3 Test Description Languages . 20

4.4 Measurement Automation . 21

5 Specification 23

5.1 Platform Concept . 23

5.1.1 Overview . 23

5.1.2 Description of Components . 23

5.1.3 Capabilities . 25

5.1.4 Boundaries . 25

5.2 Directory Structure and File Formats . 25

5.2.1 Embedding into IP Directory Structure 25

5.2.2 Specs . 30

5.2.3 Plans . 38

5.2.4 Tests Content . 42

5.2.5 Results Structure . 50

5.2.6 Reports . 52

5.2.7 Verification Software . 52

5.3 Test Sequence Language . 53

5.3.1 Scope . 54

5.3.2 Test Data Definition . 55

5.3.3 Sequence Commands . 58

5.3.4 Variables . 65

5.3.5 Grammar Definition . 65

5.4 Verification Automation Concept . 69

5.4.1 Verification Platform Framework . 71

6 Results and Evaluation 77

6.1 Improvements . 77

6.2 Risks . 78

6.3 Feedback . 78

6.4 Impact . 79

7 Conclusion 80

Bibliography 83

A Verification Automation Concept 84

ii

List of Figures

2.1 Logical tool organisation . 11

3.1 SensorDynamics verification V-Model . 12

3.2 Data model . 15

3.3 Design verification work flow . 17

5.1 Platform concept overview . 24

5.2 SensorDynamics verification V-diagram . 25

5.3 Embedding of verification platform directory in IP directory structure 27

5.4 Tests directory structure . 28

5.5 Result directory structure . 29

5.6 Design Verification Matrix - Header . 31

5.7 Design Verification Matrix - specification parameters and test case definition . . 32

5.8 Design Verification Matrix - Simulation data . 33

5.9 Design Verification Matrix - Product level definitions 34

5.10 Design Verification Matrix - Results . 35

5.11 Design Verification Matrix - Parameter groups 36

5.12 Design Verification Matrix - Verification status 36

5.13 Design Verification Matrix - Chart tool . 37

5.14 Design Verification Matrix - GR charts . 37

5.15 Simulation plan spread sheet . 39

5.16 Evaluation plan spread sheet . 40

5.17 Lot list spread sheet . 42

5.18 Test Case directory content . 43

5.19 Relation of test files to entities of evaluation environment 43

5.20 External setup file format . 46

5.21 Result directory structure . 51

5.22 Sequence file - Relations . 56

5.23 Automation concept - see Appendix A . 69

A.1 Automation concept . 85

iii

List of Tables

5.1 Verification quantities . 33

5.2 Prefixes and abbreviations . 44

5.3 Units and abbreviations . 44

5.4 External setup conditions . 46

5.5 Compare operators . 59

5.6 Measurement quantities . 59

5.7 Measurement qualifiers . 61

5.8 Operator abbreviations . 61

5.9 Measurement operations . 62

5.10 Sequence language context free grammar rule set 66

5.11 Sequence language command rule set . 67

5.12 Sequence language header terminals . 67

5.13 Sequence language command terminals . 68

5.14 Sequence language general terminals . 68

5.15 Measurement elements description . 74

iv

List of Acronyms

AEC Automotive Electronics Council
ASIC Application Specific Integrated Circuit
ATE Automatic Test Equipment
ATG Automatic Test data Generation
ATML Automatic Test Markup Language

BNF Backus-Naur-Form

CC Critical Characteristic
CFG Context Free Grammar
Cpk Process Capability Index
CPU Central Processing Unit
Csh C-shell

DUT Device Under Test
DV Design Verification

EDA Electronic Design Automation

FPGA Field Programmable Gate Array

GPIO General Purpose Input Output
GR Gauge Repeatability
GRR Gauge Repeatability and Reproducibility
GUI Graphical User Interface

IC Integrated Circuit
IP Intellectual Property

JAD Joint Application Development
JLCC JTAG Like Control Chain

LabVIEW Laboratory Virtual Instrumentation Engi-
neering Workbench

v

NI National Instruments

PCB Printed Circuit Board
PXI PCI eXtensions for Instrumentation

RTL Register Transfer Level

SC Significant Characteristic
SD SensorDynamics
SI Système International d’unitès
SoC System-on-a-Chip
SWI Single Wire Interface

TB Test Bench
TC Test Case
TCDL Test Case Description Language
TCL Tool Command Language
TMS Test Management Solution

UART Universal Asynchronous Receive/Transmit

VCS Version Control System
VHDL Very-high-speed integrated circuit Hardware

Description Language
VSdE Virtuoso Specification driven Environment

WCAG Web Content Accessibility Guidelines

XML Extensible Markup Language
XSD XML Schema Definition

vi

Acknowledgements

I would like to thank SensorDynamics AG who provided me the opportunity for my master’s
thesis. My special thanks goes to Prof. Franz Wotawa and Bernd Janger who supported and
advised me during my research. My gratitude also goes to Oliver Gerler who proofread this
thesis.

Last but not least, I would like to thank my parents and my girlfriend for their love,
encouragement, emotional and financial support and understanding.

Edwin Taferner
Graz, Austria, August 2010

vii

Chapter 1

Introduction

The semiconductors industry as fast growing market is facing challenges like shrinking technolo-
gies, the compactness of Integrated Circuit (IC) systems (e.g. system-on-a-chip) or the pressure
to get the product to the market in time. The verification process takes up to fifty percent
of the project development time. As the complexity of IC systems increases, the verification
of these systems becomes more and more the bottleneck of time-to-market, since verification
becomes more complicated and may also be error-prone. To overcome the challenge of complex
System-on-a-Chip (SoC) verification, Electronic Design Automation (EDA) vendors provide
solutions for parts of verification, like simulation or laboratory automation. Combining these
solutions to a generic verification system is the next step to increase performance and decrease
time-to-market.

Integrated circuits design From the beginning, SensorDynamics (SD) AG has been using a
hierarchical approach in the IC design. Based on system specification, modules (Intellectual
Property (IP)) are defined, which are specified and subdivided into sub-modules. This approach
has the advantage of high reusability of the modules and an early start of verification. Therefore
a detailed and clear module specification is required early on.

Integrated circuit verification The hierarchical design approach enables an early verification
of sub systems, which leads to reduction of test time and reduction of debugging costs. Since
this early verification can only be done using simulations, and simulation models are not 100%
accurate, the verification after design and production is also very important. The evaluation of
the target system uncovers these inaccuracies and helps to improve the next generation of the
target system as well as the simulation models. Also the product needs to be tested in mass-
production, which is the last stage of verification. A subset of the defined tests for simulation
and evaluation are transferred to production test, where test time is a critical and costly factor
which needs to be optimized.

1.1 Scope - Verification Platform

SD wants to establish a systematic verification approach which covers all three main steps
in IC verification - Simulation, Evaluation, ATE Test - within an unified infrastructure. This

1

infrastructure should decrease time-to-market, improve verification efficiency and company pro-
cesses related to verification. The platform should provide transferability of verification data,
reproducibility and comparability of results and an automated approach to the verification
process.

Task A generic verification platform needs to be defined, which provides all information,
structures and data needed to verify/test an IC system. The verification data is subdivided into
Test Case (TC) (or tests), which can refer to one or more IC system requirement parameters.
Based on this defined verification platform a set of software tools is needed, which support and
facilitate the use and acceptance of the platform.

These supportive software tools will not do any verification on their own. The intention
of the tools is to provide data in a format a specific verification environment is able to use.
Furthermore the automation of verification, handling of measurement results or the analysis of
results could be done by software tools. The automation has to be limited to automated test
execution. An Automatic Test data Generation (ATG)[16] can not be implemented, because
of the high complexity of IC systems. Test data generation needs the know how of design
engineers.

1.2 Verification Environments

Integrated circuit verification is done in several stages: design verification (simulation), product
evaluation and production test.

Design Verification Design verification is using simulations on the analogue as well as the
digital side. Digital simulations are based on test benches, where design modules are embedded
and stimuli data is applied. Simulation results may be analysed fully automatically, since
these simulations are script based. Analogue simulations work differently to digital, stimuli are
applied to the design module, but results are analysed by the design engineer. SD has defined
an IP module design guideline, which also defines the simulations required for analogue and
digital modules.

Evaluation At evaluation the fundamental electrical characteristics (voltage, frequency, tem-
perature behaviour etc.) of an IC system are determined based on laboratory measurements.
This includes the check of electrical parameters versus specification, simulation and design
parameters on golden samples.

Production test Production test is the in-limit check of electrical characteristics(voltage,
frequency, temperature behaviour etc.) of an IC system using Automatic Test Equipment
(ATE). The major focus is put on decreasing of test time with high test coverage, since this is
the bottleneck and most expensive factor.

Verification result correlation The electrical characteristics (voltage, frequency, temperature
behaviour etc.) are compared between simulations, laboratory measurements and production

2

test results. This includes the comparison of electrical parameters measured in the labora-
tory versus the production test environment on golden samples at least at three temperatures
(product defined low, room and high temperature).

3

Chapter 2

Requirements

In this chapter the requirements to the verification platform are collected. The first section
discusses the elicitation of the requirements. The following sections describe the requirements
found via elicitation.

2.1 Requirements Elicitation

The phase of Requirements Elicitation is a significant part of a project. Insufficient knowledge
about target system requirements will lead to failure of any project and this can be counteracted
with a structured and well-defined requirements elicitation process. This section describes
some basic as well as advanced requirements elicitation techniques and the selection of these
techniques.

2.1.1 Elicitation Techniques

The most obvious approach to elicit target system requirements is taking Interviews. Inter-
views, in terms of requirements elicitation, could be done in different ways. Goguen and Linde
[19] differentiate three types of interviews. These are questionnaires, open ended interviews and
focus group interviews. Questionnaires can be well prepared, but may have the disadvantage
that the respondent does just think about asked questions. For this reason, dependent on the
content of the questionnaire, important requirements could stay covert. Open ended interviews
prevent this issue, because the respondent answers not to a specific question, but explains re-
quirements. For an acceptable output of this technique, the respondent needs to be encouraged
by the interviewer to provide information. Therefore this technique relies on the interviewing
quality of the requirement engineer. Different from above mentioned techniques, focus group
interviews do not have dialogue character. The focus group members for the interview are the
stakeholders of the project. The interaction inside the focus group could be on the one hand
helpful on the other hand obstructive. The interviewer gives some input to the group and leads
the discussion. To get a representative output from focus group interviews, the selection of the
focus group members is a critical factor.

For a rough, unstructured requirements information gathering, Brainstorming could be
the adequate approach. Raghavan et al. [35] describe brainstorming as “a simple group tech-

4

nique for generating ideas. It allows people to suggest and explore ideas in an atmosphere free
of criticism or judgement”. A brainstorming session consists of two phases, the generation and
the consolidation phase. In the first phase as many ideas as possible, related to the topic, are
collected without treatment. Afterwards the gathered ideas are structured and reviewed, to
achieve a significant quality improvment to the outcome of the generation phase and overall
outcome. The findings of this technique offer many different views of the target system. [35]

Discussion is a common and widely used technique for requirements elicitation. Assets
and drawbacks are similar to focus group interviews.

Joint Application Development (JAD) is intended to develop a common understanding
about what the target system shall look like. Raghavan et al. [35] state that “Using that process,
the developers help the users formulate problems and explore solutions, and the users gain a
feeling of involvement, ownership, and commitment to the success of the system”. Since this
technique is intended to be used with customers, JAD will not be described here. This concept
is also described by Wood and Silver [45].

The PIECES framework offers a set of categories, which should be treated by require-
ments elicitation. This framework represents a good starting point, if a requirements engineer
has no idea about requirements elicitation. The PIECES categories are Performance, Informa-
tion (and Data), Economy, Control (and Security), Efficiency and Services [35]. The category
Performance addresses throughput or response time, for example tasks per time. Information
and data covers input, output and stored data. The category Economy refers to costs and
profits, whereas Efficiency addresses the reduction of wasted time (machine as well as human).
The Control and Security category involves data safety and security, but also the control of
input and output data etc. The behaviour of the target system, in terms of communications
(to human as well as to machine), usability, compatibility, etc., is examined by the Service
category.

Since every project has different aspects, the PIECES framework needs to be tailored.
The framework provides guidance through the requirements elicitation process, especially for
analysis of former projects. Merchant [33] provides a checklist which supports the use of the
PIECES framework.

2.1.2 Technique Selection

To get a first overview of requirements, open ended interviews (no questionnaire) were done
with responsible engineers of design, test and product engineering department. With the help
of the adapted PIECES check list[33] a considerable set of requirements could be found. The
PIECES framework is a very useful tool, because system verification had already been done
before. With the PIECES check list significant requirements were found early in the elicitation
process. The adapted check list includes the following items:

• Performance

– Performance of currently used software

– Needed/favoured performance

5

• Information and Data

– Stored Data

∗ How is test/verification data stored?

∗ How should test/verification data be stored?

∗ Redundancies

∗ Revisions

∗ Data organisation

∗ Accessibility

∗ Existing (fixed) data formats

– Input/Output (referring software)

∗ Existing interfaces

∗ Type of exchanged data

• Economics

– Current costs known? Licensed software?

– Costs too high?

– Budget

• Control and Security

– Need security be considered?

– Access control

– Privacy

– Are there inconveniences because of control/security?

• Efficiency

– Redundancies at current verification process

∗ redundant input or output

∗ redundantly stored data

– test/verification execution

– test/verification automation

– improvement opportunities

• Service

– What software is provided at the moment?

– Functionality of currently used software?

– What kind of software should be provided? Functionality?

– Usability (Graphical User Interface (GUI), command line based)

– Has the required software to be compatible to existing data/software?

The outcomes of these interviews were used as a starting point for a brainstorming session.
The so uncovered requirements were collected and reviewed in a discussion with all stakeholders.
These requirements are described subsequently.

6

2.2 Concept Definition Requirements

The concept of a generic (multi-project) verification platform needs to be defined in detail,
with attention to the illustration of boundaries and capabilities. The concept has to define
data structures, data flow and control flow of verification.

There are general demands on the definition of the concept. The concept has to stay as
clear and simple as possible without reduction of capabilities. No multiple implementations of
basic software like file parsers etc. shall be allowed.

On top of all the requirements the following characteristics are to be achieved:

• Reproducibility of results

• Comparability of TC results of different environments

• Automation of system evaluation

• Transferability of TCs between environments

These characteristics need to be fundamental to all considerations.

2.2.1 Data Structures

A part of the concept is the definition of the directory and file structures inside an IP as well
as file content formats. The specified files need to describe the subsequent aspects.

• Description of test activities
The What, When and How of a test procedure.
E.g. wait 5ms then measure voltage on Pin x or apply stimuli to Pin y.

• Internal system configuration
Determined state of the Device Under Test (DUT).
E.g. Register x = value.

• External system configuration (at boundary of DUT)
E.g. Supply Voltage is 5 Volts.

• Measurement instrument setup proposal (optional)
Instrument name, type, measurement probe, etc.

• Connections of instruments and system proposal (optional)
Connections to the DUT and connections to test and/or evaluation Printed Circuit Board
(PCB).

• Results

– Result data
E.g. 3 volts measured at Pin x

7

– Measurement instrument setup
E.g. Multimeter x (serial number) used

– Connections of instruments and system
E.g. Input A of Multimeter x connected to Pin x of DUT.

– Condition (environment)
E.g. Temperature: 25

The measurement instrument setup and connections of instruments and system
are optional, because this is dependent on the implementation of a TC. These items can be
added as proposals for the setup.

The Analysis needs to be separated from Results, because the interpretation may change
due to different application limits, process changes, etc. The limits, needed for Analysis, could
be either stored as a separate file (e.g. spreadsheet) or be part of one of the test specification
files.

It is required that the content of each file type has to be formally checkable.

A scheme for TC identification needs to be considered. A TC identifier does not need to be
unique through the whole system or all projects, but need to be unique inside an IP independent
from verification environment. Also a kind of TC grouping should be taken into account.

The format of a test cases list has to be defined, with a short description, TC identifier,
responsible engineer, etc.

The format and content of Verification Plans are to be specified. A verification plan
represents the order of TCs, out of the test cases list, which need to be executed to verify
system requirements. For each verification environment no, one or more plans can be created.
A verification plan needs to include at least

• TC identifier

• Examined system requirement(s)

– Requirement identifier (e.g. Name of parameter)

– Description of requirement(s) (e.g. parameter to test)

• IP name the TC is associated with

• Responsible engineer

• Optional

– Constraints

– Status

– Priority

– Sequence number

8

– Notes/comments

Dependencies of TCs need to be considered. Especially for optimising verification plans
(reducing execution time, increasing efficiency) this is essential.

All information and data of a TC has to stay human readable and has to be available
without tool assistance. This forbids the use of a data base.

Aside functional requirements the internal SD quality procedures QM25 for device evalua-
tion and golden sample preparation have to be taken into account[3]. The procedure regulates
the IC design validation and data correlation of verification environments. The QM25 proce-
dure is based on the Automotive Electronics Council (AEC) standards AEC-Q003 and AEC-
Q100-009, the Guidelines for Characterizing the Electrical Performance of Integrated Circuit
Products [12] and the Electrical Distribution Assessment [13]. Especially for reproducibility and
correlation of verification environments the QM25 procedure has to be considered.

2.2.1.1 Data Model

A conceptual data scheme, which includes content and relations of data, is needed. This scheme
visualises the association of files/file content in a TC as well as the relationship of TCs. Fur-
thermore the scheme reflects the target of verification plans (TCs collected and sequenced).

2.2.1.2 Revision Control

A Version Control System (VCS) has to be used, which influences the data structures. With
a VCS the data model gets one more dimension. For example a verification plan may refer to
a specific version of a TC or a stored result makes no sense with the current version of a TC.
Therefore it is important to consider revisions in the concept.

2.3 Software

There are several tools (software programs or scripts) needed based on the verification plat-
form concept, which have to be of administrative nature. For example a tool should initi-
ate a measurement, but not doing the measurement itself. Since the concept needs to stay
project independent also these supporting tool need to stay generic. Therefore it is essential
to specify well-defined interfaces to guarantee the distinction of verification platform (project
independent) and outside world (project or measurement instrument dependencies, etc.). From
economic point of view, any kind of purchase costs or license fee is restricted.

Based on the data model the control flow through a verification process, especially for tool
support, has to be defined. This includes the relationship of the involved entities (tools) to
data (e.g. Tool x processes TC description). Furthermore the control flow specification has
to distinguish executing and supporting tools, in terms of which is the master and which the
slave.

9

2.3.1 Simulation

Since simulation within IC design is usually done script based, the following simulation tools
need to be supported.

• Cadence R© Ocean script

• Tool Command Language (TCL)

• C-shell (Csh)

As Figure 2.1 shows, these tools need to be executed by the verification platform software.

2.3.2 Evaluation

For evaluation measurements a well-defined software interface needs to be designed. Evaluation
hardware and software will need to be able to read TC data. Typical evaluation systems are
based on National Instruments (NI) Laboratory Virtual Instrumentation Engineering Work-
bench (LabVIEW)

TM
[24], Python or C software modules. Since one of the main targets is

automation of the system evaluation, the following items need to be considered and defined

• Data flow

• Control flow (as described above)

• NI PCI eXtensions for Instrumentation (PXI) support

Especially for golden sample preparation it is required that the execution of TCs can be
done automatically (reproducibility).

2.3.3 Production Test

The interface to the ATE is a SD custom defined excel spreadsheet, therefore a TC data to ATE
test specification translator tool is needed. This tool converts TC data to specific spreadsheet
formats (in combination with the verification plan). This TC data to ATE test specification
translator has to be designed format independent, which means that if the ATE changes it
should be easy to adapt the tool.

Figure 2.1 shows how the platform should be separated from exemplary external software.

10

Platform

Verification platform tools

(Test case processing tools)

NI

LabVIEW

Tests

repository

Test list

Results

repository

Verification

plans

Ocean

script
TCL csh Python

Software data interface

Figure 2.1: Logical tool organisation

11

Chapter 3

Status quo and Analysis

This chapter analyses which data structures and tools are currently in use at SD. The first step
here was the examination of data and relations. This also include the observation of the work
flow from the early stages of a project to production test and how these processes influence the
verification of a project.

Based on requirements found in Section 2 the existing verification methodologies were ex-
amined, including the characteristics and differences of the verification environments.

3.1 Verification Environments

The procedures and methodologies of verification environments are described. Finding inter-
faces and relations between environments is the second focus in this section.

Figure 3.1: SensorDynamics verification V-Model

As Figure 3.1 shows, design and verification is performed from IP module level up to system
level. Simulation (design verification) is done in every stage of the project and evaluation and
production test is realised for the assembled product.

12

3.1.1 Digital Simulation

Digital design verification is basically done by simulation, using Very-high-speed integrated
circuit Hardware Description Language (VHDL) test benches at Register Transfer Level (RTL)
and gate level (synthesized VHDL code). The next step is to transfer the design, or parts of
it, to a Field Programmable Gate Array (FPGA) to also verify the design physically. The test
bench data from simulation is not used in physical verification(except top level simulation),
because these test benches are module/IP based, but physical verification works on higher
compound level. Digital verification data is not used by other environments as is, except
firmware. Configuration data (setup) of digital modules/IPs is transfered via scripts or manually
for evaluation and production test usage.

3.1.2 Analog Simulation

The basis for analog simulations are module/IP schematics and layouts (parasitic extraction).
There are different kinds of simulations done, the most important are

• typical parameter simulation

• Corner simulation
The designed analog circuit is simulated with a model of the production process, which
parameters are set to worst or best case. E.g. slowest behavior of transistors

• Monte Carlo simulation
A statistical method through modifying model parameters randomly. [7]

To be able to verify analog design parameters also on silicon (assembled product), the
designer need to consider a possibility to route these signals on a test bus or equal, which is
basically done via an external configuration interface JTAG Like Control Chain (JLCC).

3.1.3 Evaluation

Evaluation is the measurement of the products electrical characteristics, which is done with
laboratory equipment and mostly done semi-automatic at the end of measurement development.
The DUT is configured with data out of simulation and results are compared against simulation.
Since simulation models are not completely accurate, the configuration may not stay exactly
the same. For evaluation all parameters are verified in very detail, especially critical ones, to
get a clear knowledge of the DUTs behaviour.

3.1.4 Production Test / Characterization

Production test is done with the help of ATE, which is very flexible and with high perfor-
mance. Test time is a very expensive factor within the production of an Application Specific
Integrated Circuit (ASIC) or SoC, which implies that this needs to be as optimised as possible.
This is also the major difference to evaluation, where test time is not an important factor.
At production test measurements are done similar to evaluation, with the configuration data
verified by evaluation, but parameters are just checked if they are within their specified limits

13

and statistical data is analysed. As example the Process Capability Index (Cpk) is calculated,
which is a statistical benchmark of a production process and the design.

Characterisation of a DUT is done via results of production test and is only possible if
enough parts are tested to get statistical DUT parameter data.

3.1.5 Conclusion

Up to now the IC verification is done for each verification environment separately. Information
exchange is performed, but not a transfer of verification input data. A common data storage
for verification input data or results is not implemented at all.

Test execution automation for evaluation is done by each engineer on her/his own, if re-
quired. Since an automation is only done for a specific module of the project, evaluation is
never fully automated. Furthermore, up to now, no reuse of automation software could be
observed, neither between project nor engineers.

Since ATE test data (spread sheet) is not checked by software or an other verification
environment, the production test data is error-prone and needs debugging. The format of the
spread sheet should only be changed slightly, if required.

The script based simulation works very well and should not be touched at all.

To establish comparability of DUT parameters, a common view of the DUT and common
data source is needed. Since this is not implemented at the moment, comparability can not
be guaranteed. Verification data, input as well as output, is not collected at a single point,
but roughly collected for each verification environment inside the IPs directory structure. Fur-
thermore evaluation automation is done for each project differently, which leads to different
output formats and report styles. The test development needs to be started before evaluation
is finished, because automation of measurements is implemented again for each project, which
is very inefficient.

3.2 Data

Figure 3.2 shows the complete verification data model, with all data needed within the verifi-
cation platform. The figure is not an image of the current status, but the required data model.
This data model needs to be considered for the specification of the generic verification platform.

14

test data

test #: PK
responsible
list of parameters
ext_setup_id
seq_id
meas_setup_id
board_setup_id
depending on TCs

design parameter

name: PK
desciption
LowT_min
LowT_max
RoomT_min
RoomT_max
HighT_min
HighT_max
typical

1..*
1..*

internal setup

int_setup_id: PK
list of register setups
list of stream setups

external setup

ext_setup_id: PK
pin name - value list

1

1..*

register setup

reg_setup_id: PK
name
reg type: SFR | APB
reg name value list

stream setup

stream_setup_id: PK
name
type: JLCC|SPI etc.
bit name value list

0..*

1..*

0..*

1..*

eval plan

version: PK
exec list

sim plan

version: PK
exec list

test plan

version: PK
exec list

lot list

lot_id: xxxx.nnn
description of lot run

IP

name: PK
list of TCs
parameter list 1

*

exec data

exec_tc_id: PK
test #
exec responsible
effort
constraints
priority
status
sweep param list

1..*

1

1..*

0..*

1..*0..*

1..*

0..*

measurement setup

meas_setup_id: PK
desciption of measurement setup

board setup

board_setup_id: PK
stream setup list

0..1

1..*

1..*

1..*

0..1

1..*

stimuli pattern

pattern_id: PK
pattern

sequence of actions

seq_id: PK
info/description
test sequence
list of int_setups
list of patterns
setup definition

1

1

1..*

1

0..*

1..*
1..*

1..*

result

test #: PK
timestamp: PK
lot_id: PK
result_data
verif_environment
exec_responsible
seq_id
ext_setup_id
meas_setup_id
hw_info_id

0..*

1

HW info

hw_info_id: PK
DUT name
DUT serial
board version
board fpga version
board setup id

11..*

Temperatures:

LowT and HighT

project dependent

 (e.g -40; +85;+125)

RoomT: ~ 23°

register map

register name: PK
reg type
address

stream map

stream name: PK
bit name
logical register
bit position

setup definition

register maps
stream maps

1..*

1

1..*

1

1

*

1

1..*

Project

name: PK
list of spec parameters
list of IPs

1..*
1..*

spec parameters

Spec param #: PK
Symbol
Description
Condition
Lower limit
Typical
Upper limit
Unit
Type

*1

1..*

1

Figure 3.2: Data model

15

DUT requirements/specifications For verification the most important information are the
project requirements and parameter specifications, which defines what has to be tested. The
data model shows these data with following entities:

• Project

• IP

• spec parameter

• design parameter

Test data is any information required to run a single test. This includes external as well as
internal conditions of the DUT and is modeled in Figure 3.2 by the subsequent entities:

• sequence of actions

• external setup

• internal setup

• setup definition

• register/stream map

• register/stream setup

• stimuli pattern

• board setup

• measurement setup

Test execution data Each verification environment needs to execute different tests and there-
fore execution information, where overlaps are comparable. The data model shows these infor-
mation with

• exec data

• eval plan

• sim plan

• test plan

Result data At last results need to be stored with additional information to test results,
which is essential to ensure reproduceability.

• result

• lot list

• hw info

16

3.3 Work Flow

The project work flow refering to verification can be separated into three major steps, the
definition of requirements and specifications, the design phase and the evaluation and charac-
terisation of the project. The work flow diagram (see Figure 3.3), in terms of verification, starts
at the definition of requirement and specification parameters. The outcome are specification
limits, which are used for acceptance tests and information for implementation of design. After
and during design implementation simulations are done, where the results are crosschecked
against specification limits. Design parameters and corresponding limits are defined, which are
more tight than specification limits. These design parameters are evaluated and characterised
(test), but for production only a subset of these parameters are tested to guarantee functionality
of the product.

Figure 3.3: Design verification work flow

17

Chapter 4

Technology Overview

A rough market analysis was done to identify what is available related to IC verification plat-
forms, test activity description languages, test case management and measurement automation.

4.1 Verification Platform

This first section of this overview treats verification platforms provided by well known suppliers
such as Mentor Graphics, MathWorks or Cadence.

Calibre - Physical Verification Platform “Mentor’s IC verification and sign-off includes not
only traditional rule-based physical verification and parasitic extraction, but also new capabilities
and automated technologies that help improve yield by enhancing the design itself.”[32]

Mentors verification platform is meant to be used during design and especially before tape-
out (final design process stage - design is sent to manufacture). It offers tools for the verification
of the design (circuit verification) and of the IC layout (physical verification). Mentors platform
does not cover design evaluation nor production test, therefore this can not be used as a
complete solution.

Synopsis - Discovery Verification Platform “The Discovery
TM

Verification Platform is an
integrated portfolio of functional, AMS, formal and low-power verification tools. Discovery pro-
vides high performance, high accuracy and efficient interactions among best-in-class technolo-
gies, including mixed-HDL simulation, mixed-signal simulation, assertions, coverage, testbench
automation, verification IP, formal analysis, unified debug, equivalence checking and rapid pro-
totyping. Discoverys components support industry standards including SystemVerilog, SystemC,
VHDL, UPF, OpenVera, Verilog-A, Verilog-AMS, SPICE, and more.”[39]

Similar to Mentors platform Synopsis also provides a design verification platform, which is
used before tape-out. It does not cover evaluation or production test.

MathWorks - SystemTest “SystemTest
TM

software lets you develop and execute tests that
exercise MATLAB R© algorithms and Simulink R© models. It includes predefined test elements

18

that let you build and maintain standard test routines. You can map test variables into a result
set for analysis.”[30]

This framework is used for digital design verification, but as the verification platforms from
Mentor and Synopsis it does not handle verification of the ’real’ silicon (evaluation, production
test).

Cadence - Specification Driven Environment “The Cadence R© Virtuoso R© Specification-
Driven Environment is the advanced design and simulation environment for the Virtuoso custom
design platform. By supporting extensive exploration of multiple designs against their objective
specifications, Virtuoso Specification-Driven Environment sets the standard for fast, accurate
design verification.”[8]

The Cadence Virtuoso Specification driven Environment (VSdE) provides design and simu-
lation tools as well as the needed environment (data structures, etc.). Equal to above mentioned
verification platforms it just handles design verification.

Conclusion The described verification platforms are not the kind of platform SD is searching
for. An overall solution is needed which covers simulation (design verification), evaluation
and production test. It seems, that the term ’verification’ is just used in the sense of ’design
verification’, which is more or less simulation, by these EDA vendors.

4.2 Test Case/Data Management

An important part of a verification platform is the management of verification related data.
The most promising providers for this kind of solution are OptimalTest, GridTool and VI tech.

OptimalTest - Test Management Solution “OptimalTests new generation of Test Manage-
ment Solution (TMS) gives you unprecedented improvements in Yield, Test Time Reduction,
Reliability, Quality and Productivity based on our:

• Innovative advanced adaptive testing methodology

• Patented reference die technology

• Data Feed Forward/Data Feed Backward capability

• Centralized, engineering-oriented database designed for rapid data retrieval

• Unparalleled data integrity and actionable data throughout the IC lifecycle

• Unique open test-rule generator

• Open IT infrastructure and seamless connectivity

• Real-time automation and control

19

High performance test management at low cost of test allows you to adapt and correct your test
processes in real time and continuously improve and evolve products, processes, and operations
to compete more effectively.”[43]

OptimalTest’s TMS is a powerful and promising tool for production test data management,
but this is also the drawback of the solution; it is only meant to be used for production test.

GridTool - Datamaker “The Datamaker
TM

suite offers a complete end-to-end solution for
creating secure test and development data across multiple projects and test environments. The
Datamaker

TM
test data management solution is easy to use, easy to learn, flexible and fast.

The Datamaker
TM

tool set allows you to quickly create and store new, high-quality data. The
new data can be “tokenized” whereby, at create time, the data will be built with the specific data
you need to test your requirements.

GT Datamaker
TM

allows you to build test sets of data which can be published directly into
development or testing environments. The version of each test set can be easily upgraded,
allowing test cases which are built for one version to easily be used in later versions of an
application.”[21]

Datamaker
TM

would be a very powerful and well fitting solution, but is too overloaded for
SD’s needs and does not fit into the budget of the generic verification platform.

VI Tech - Enterprise Test Solution “Enterprise Test is a term that encompasses the re-
quirements, complexities, and best practices associated with todays product testing and char-
acterization. These include multiple and often disparate technologies; the large quantities of
data that are typically produced, analyzed, and shared; and the geographic and work distribution
of team members - from department managers and design engineers to test operators - across
departments and the globe.”[42]

Equal to OptimalTest’s TMS this solution is only useable for production testing.

4.3 Test Description Languages

To get a common understanding between all involved verification environments, a formal de-
scription of test data and activities needs to be introduced. There is a variety of well defined
and promising solutions available.

IEEE - Automatic Test Markup Language “Automatic Test Markup Language (ATML)
was born out of the thought that it is “the information” and a way to “communicate that
information” may be the way to improve upon the inefficiencies of testing in both time and
budget. The intent of ATML is to establish an open standard for this “information” as the
basis for test investments such that the description would be sufficient to allow transportability
of test programs between testers and to provide a means to communicate test outcomes up and
down the maintenance chain. The new XML-based standards for ATE and test information

20

data exchange are the ATML family of standards. ATML is emerging with widespread support
among test and measurement industry leaders as well as major government programs.”[36][1]

ATML is an industry standard for structuring and interchanging test data through different
kind of information systems, including results and analytical data (e.g. limit information). Since
ATML is based on the XML standard, test data is very well structured.

The drawback of introducing this IEEE standard is the demand for design engineers to
describe their defined verification routines (tests) in much detail, which will lead to rejection of
ATML. Parts of the standard should be considered for this definition of the generic verification
platform and in a next generation the complete IEEE ATML standard may be realised.

Test Case Description Language 2.0 “Test Case Description Language (TCDL) is an XML
vocabulary for describing test files and evaluation scenarios for such test files, intended to be
included in test suites for user interface guidelines such as Web Content Accessibility Guidelines
(WCAG) 2.0.”[38]

Similar to ATML this description language needs description of tests in large detail, but
ATML is already an industry (IEEE) standard, it would be prefered.

4.4 Measurement Automation

SD is basically using two technologies of software for laboratory measurements: National In-
struments LabVIEW

TM
and the Python programming language. Since SD does not want to

change these technologies, this section concentrates on improvement of the current systems or
complete systems using one of them.

National Instruments LabVIEW
TM

“National Instruments LabVIEW
TM

is a graphical pro-
gramming language that has its roots in automation control and data acquisition. Its graphical
representation, similar to a process flow diagram, was created to provide an intuitive program-
ming environment for scientists and engineers.”[17]

National Instruments LabVIEW
TM

is a very powerful programming language especially
in combination with laboratory equipment. National Instruments provides a measurement
automation environment called NI TestStand.

“NI TestStand is ready-to-run test management software designed to help you develop au-
tomated test and validation systems faster. You can use NI TestStand to develop, execute, and
deploy test system software. In addition, you can develop test sequences that integrate code
modules written in any test programming language. Sequences also specify execution flow, re-
porting, database logging, and connectivity to other enterprise systems. Finally, you can deploy
test systems to production with easy-to-use operator interfaces.”[25]

Unfortunately NI TestStand licenses do not fit to the verification platform budget and can
therefore not be considered.

21

Python The Python programming language is also a standard technology at SD. Since the
access of laboratory equipment is much more complicated compared to LabVIEW

TM
it is rarely

used, but some problems may be solved quicker by using a traditional programming language
instead of using a graphical language (such as LabVIEW

TM
). Laboratory measurement automa-

tion may be done using python, but measurements may stay in LabVIEW
TM

. Feasibility studies
about using Python for measurement automation came to the conclusion that it is useful, but
an in-depth knowledge of the programming language is required (multi-tasking, etc.).[9]

22

Chapter 5

Specification

This chapter specifies the generic verification platform in detail. Based on the information
found by requirements engineering and analysis of current situation, test data and directory
structure, embedding in IP, test identification, file formats etc. are defined subsequently.

5.1 Platform Concept

5.1.1 Overview

All verification environments (simulation, evaluation, production test) in the verification process
of integrated circuits need to have a common source of input data and a common sink for
results. Within the generic verification platform this is realised by three major entities: test
data, results and the DV-Matrix (Design Verification Matrix). As Figure 5.1 shows, simulation
and evaluation get their input data via the Verification Platform Framework, which may change
the format of data (but not the content) and handles the automation of verification (see Section
5.4.1).

5.1.2 Description of Components

Test data is divided into three parts, Tests, Plans and Test spec. Tests is the set of test
cases used for verification. Each test has a sequence file wherein the activities for the test
are described (see Section 5.3). Also pattern files, firmware files, scripts etc. are kept here.
The Test spec excel spread sheet is a SD’s custom defined format, which can be transfered to
ATE format. Within this spreadsheet all DUT setup data is kept. This has the considerable
advantage, that no format conversion is needed between different environments of verification.
This guarantees that the DUT setup is equal for each environment, which is essential for
evaluation and production test correlation. If results differ, one likely source of errors can be
excluded. Moreover the efficiency of production test ramp-up can be improved dramatically.
Plans define the order of test execution and all data belonging to execution (see 5.2.3).

Results the output of all simulations and measurements are collected in here. Test writes
its results to the Yield data base, which is a special ATE storage for production test results,
reports and any other related data.

23

Design Verification Matrix is an excel spread sheet for defining tests formally, defining test
names, storing limits and storing and correlating results. Since this spread sheet has to be
maintained manually, the only software which reads this spread sheet and distributes its data
is the verification platform framework(see 5.2.2.1).

Verification Platform Framework is the common interface for verification environments,
except production test environment which just uses Testspec. The tasks of the framework are
acquiring data, data format conversion and verification automation (see 5.4).

Test ATE

Production Test

and

Characterisation

DV_Matrix.xls

Test specification

Results

Diagrams

Correlation

Simulation

Analog sim

automation

csh

(run_sim)

Digital sim

automation

TCL

Ocean script

SimulatorSimulator

Test benchTest bench

Verification Platform Framework

Results

Yield

data

base

Report

1

4
3

2

5

x

y

Test data

Tests

sequence

patterns

fw

sw / scripts

Test_spec.xls

int_setup

ext_setup

patterns

<env>_plan.xls

execution sequence

sweep params

sw links

Evaluation

E
n
v
ir
o
n
m
e
n
t

c
o
n
d
it
io
n

Eval automation

Measurement

meas_data

Hardware layer (PXI, IO, etc)

P
ro
je
c
t

G
U
I

Device setup

Clean

up

device_setup

Log

(collector)

XML_interface

XML reader

Test runner

Project dependent

Measurement / Setup

Figure 5.1: Platform concept overview

24

5.1.3 Capabilities

The main task of the generic verification platform is to provide a common layer for any kind
of verification environment. The components are used to share input data and correlate result
data to guarantee a maximum of efficiency and transparency in all stages of integrated circuit
design verification. From block level circuit simulation up to high volume production test,
all parties involved in the verification process base their verification on the same data input
and output. This leads to a maximum of reproducibility and comparability in the verification
progress. Standardised data formats are fundamental for automation and tools support, which
is provided by the verification platform framework.

5.1.4 Boundaries

The generic verification platform provides the environment, interfaces and tools for integrated
circuit design verification, but is not implementing tests itself. It defines structures, formats
and provides templates for the definition of tests and specifies the data flow and control flow
for the execution of test implementations. The verification platform does not interpret the test
definitions or test activities, which is has to be done by the responsible engineer.

5.2 Directory Structure and File Formats

This section defines data structures and formats of the generic verification platform in detail.

5.2.1 Embedding into IP Directory Structure

SD projects are structured with IP modules hierarchically (see Section 1). Since verification
is done from lowest hierarchy level (block level) across compound levels up to the project top
level (all levels organised via IP modules), the embedding of the verification structure has to
be considered at every stage of the project. Figure 5.2 shows the relation of project hierarchy
to verification type.

Figure 5.2: SensorDynamics verification V-diagram

Each IP at any hierarchy level stores its verification data in a directory called verif at the top
level of the IP directory. This directory builds the root directory for any kind of verification data

25

related to this IP. The next directory level down separates the major parts of verification, which
are definitions (specs, plans, sweeps), verification data (tests) and results and post processing
data (results, reports). This level in the directory structure equals the structure of Cadence
VSdE[40], which may be used for analog simulations in future. Figure 5.3 shows the specified
directory structure with its content. Subdirectories and content are described subsequently.
Furthermore the verif directory contains the sw directory, where any software related to an
IP has to be stored, and a hw directory where PCB schematics, layouts or equal are stored.
Evaluation software needs to be separated into IP dependent and independent software with
high reuse.

specs Any kind of verification specification has to be stored here.

plans In here execution plans are stored, which describe the order of TCs and related infor-
mation.

sweeps This directory could be used as sweep specification storage. Sweep parameters are
defined in verification plans, but for complex analog, digital or mixed signal simulations more
information could be needed (e.g. Cadence VSdE[40]).

tests This directory collects the test data itself.

results All results of a test case execution are stored here. Each verification environment has
its own result directory inside.

reports The reports directory collects evaluated results of test cases, plots, diagrams etc.

sw All software related to verification need to be stored in the sw directory, where this is
subdivided into verification environment directories (e.g. eval).

hw PCB layouts and schematics developed for verification and all other hardware information
referring to verification have to be placed here.

26

tests

verif

<test name>

00010F_xtal

IP, Sub-Project, ...

Analysis of test result data (Plots, Diagrams...)

Test results

<IPname|DUT>sim_plan.xls

<IPname|DUT>_eval_plan.xls Evaluation plan

Simulation plan

<IPname>

reports

results

plans

<IPname|DUT>_test_plan.xls ATE test plan

<IPname|DUT>_test_spec.xls ATE test specification spread sheet

specs

<IPname|DUT>_DV_matrix.xls Design verification matrix

sweeps

<IPname|DUT>_sweeps.xls List of necessary / possible sweeps

Sweep data for eval, sim, etc. (optional)

eval

sim

test

e.g. test name for xtal frequency

00020I_total e.g. test name for total current consumption

sw

measurements

test_spec

int_names.nms

tb_names.nms

comm_def.txt

Internal setup - register and bit name definition file

Test bench setup - register and bit name definition file

Communication channel definition file

GUI

eval

sim

<Item name>

<DUT>

<DUT>

eval

sim

<DUT>

<DUT>

eval

hw

boards

<item name>

project name and version or only version (e.g. sd318_v1.2 ; V0; etc.)

project name and version or only version

project name and version or only version

project name and version or only version

Measurement item name

E.g. Board name and version

Figure 5.3: Embedding of verification platform directory in IP directory structure

27

tests

<test name>

00010F_xtal e.g. test name for xtal frequency

00020I_total e.g. test name for total current consumption

common common files

int_setup.txt

ext_setup.csv

tb_setup.txt Test bench settings (JLCC, SPI, etc)

Setup at DUT boundary

DUT setup

Internal DUT setupint_setup_<n>.txt

sequence.txt Description of test activities (mandatory)

pat_<*>.txt Stimuli pattern

meas_setup.txt

tb_setup.txt Test bench setup (JLCC, SPI, etc.) e.g. PCB setup

Measurement instrument setup; connections etc.

fw

tcl

...

Test firmware directory (optional)

tcl scripts

verif

IP, Sub-Project, ...<IPname>

Figure 5.4: Tests directory structure

28

eval

Test results

sim

results

<IPname|DUT>_lots.xls List of lots – History of test runs

dlog

setup_log

run_<time_stamp>_<lot>.txt

run_<time_stamp>_<lot>.xml

<test name>

lot_runs

result.txt

result_diagramm.xls

screen_shot.jpg

meas_setup

meas_setup_<*>

meas_setup_report.[txt|doc|pdf]

meas_setup_photo.jpg

e.g. diagram of scope data

<result_dir>: [<token>_]<YYYYMMDD>[HHMMSS]

<token>:

 typ

 parm_<parm_name(s)>

 corn

 mc

 rcx

<DUT>

<result_dir>

result.txt

<test name>

<result_dir>

setup.txt

setup.txt

e.g. screen shot of measurement software

<DUT>

station_setup.xml

project name and version or only version (e.g. sd318_v1.2 ; V0; etc.)

debug

<item name> <data>_<name> (e.g. 20100622_ATE_correlation)

dlog

run_<time_stamp>_<lot>.txt

lot_runs

project name and version or only version

verif

IP, Sub-Project, ...<IPname>

examples for result directory names:

 20100220120100

 20100225

 typ_20100221

 parm_vdd_20100115172355

 corn_20090430

Figure 5.5: Result directory structure

29

5.2.2 Specs

Any kind of verification related specification has to be stored in the specs directory. Although
the Design Verification (DV) Matrix is hybrid (mixture of definition and results) it should be
stored here, because specification parameter definition and verification parameter definition
should only be done in this document.

5.2.2.1 Design Verification Matrix

Since the DV Matrix is one of the essential components of the generic verification platform it
is described in this section in very high detail.

The DV Matrix is an excel spread sheet which combines the following data and functionality:

• project specification parameters

• specification parameter limits

• verification parameter definition

• verification parameter limits (temperature related)

• test name (relational key between verification environments)

• simulation results (incl. corner and Monte Carlo simulation[7] if available)

• evaluation and test (ATE) results

• automatically calculated verification status

• chart tools

The DV Matrix also provides the possibility of verification environment results correlation
in post processing. Evaluation and Test (ATE) measurements are done for five golden samples
for at least three temperatures, low, room and high temperature (project dependent)[3]. Each
measurement has to be repeated three times with power cycling at the beginning. This pro-
cedure should demonstrate the reproducibility of measurements and fulfills the requirements of
SDs internal quality procedure QM25 (AEC based)[3]. Post processing actions, like calculation
of Cpk [26] may be done in a separate work sheet.

The DV Matrix has to be created for each silicon version of a project (test chip 0, engineering
sample 1, etc.) as well as for all sub IP versions, because requirements may change in the time
line of a project (e.g. moving target, verification results of former versions show unsolvable
problems, etc.) or an IP is reused in a different project. Furthermore this approach guarantees
a high level of verification coverage through all project stages.

The subsequent screen shots show the DV Matrix template with some dummy data (screen
shots from left to right in the spread sheet, except header).

The header includes all basic information relating to the IP or the project. As Figure 5.6
shows the header includes a project/IP information summary as well as a summary of the file
content.

30

<Project Name - Dash> - DESIGN VERIFICATION MATRIX

Project: <Project Name - Dash> Number parameters: 8
Last update: 01.01.2000 Number of tests: 13
PM: <Name> By: <user>
Template: DV_Matrix_template_v0.2.xls Today: 22.07.2010
Spec Rev: <Name> Calender week: 30
Notes:
Testcase Root: ..\tests

Figure 5.6: Design Verification Matrix - Header

The initial part of the DV matrix is the Requirement parameter specification. Out of the
project specification/requirements document (negotiated with the customer) all project param-
eters need to be added in this first part, this needs to be done for IPs and their specification.
The column Type lists the type of the parameter e.g. Supply or General Purpose Input Out-
put (GPIO). CC/SC stands for Critical Characteristic (CC) and Significant Characteristic
(SC) (the definition of critical and significant can be found in the SD project management
handbook[4] and is not discussed here). Furthermore internal specification parameters need to
be defined here (e.g. design parameters). Numbering of spec param # is defined later on.

In the Design IP column the IP is defined corresponding to the requirement parameter with
an IP responsible. Functional requirements will be tested on top level IP, but other requirement
parameters may be fulfilled within sub IPs.

Test case # and Test case sub # are numbers used for unique identification of tests. The
four digits test case number may match with the spec param #, where sub tests have the equal
Test case # and a running Test case sub #. Test case sub# is needed for test cases which can
not be done within one single test (e.g. differential voltage). The test case sub # ’0’ identifies
the master test of these test cases. For example two voltages ’A’ and ’B’ need to be measured,
the master test calculates the difference A− B. Of course in simulation this could be done in
a single step, so just the master test (test case sub # = ’0’) is executed and results compared
with evaluation and production test.

The first character of the test item name indicates the verified quantity (capital letter
obligatory). Table 5.1 shows valid quantities. The second character of the name optionally
qualifies the quantity in detail (e.g. ’D’ for differential). The test item name should be selected
to transport at first glance the intention of the test/parameter. The name is furthermore
restricted to a length of ten characters (including prefix) with allowed characters [a..zA..Z0..9].
Test item description is just a very brief description of what this test does.

Test name needs to be an unique name of a test uniquely in the respective IP structure.
Furthermore grouping of tests (analog tests, digital tests, etc.) is required, which is done
through the test case #. The test name combines the test case #, the test case sub # and the
test item name, where the restrictions of the single items guarantee an unique test name with
a maximum length of fifteen characters.

<spec param#><verif param#><quantity><[qualifier]><param name>

31

sp
ec

 p
ar

am
 #

Symbol Parameter description Specified Condition / Notes min typ max Unit Type

C
C

/S
C

0000 F_XTAL x_tal clock room temperature 12.00 16.00 20.00 MHz
0001 I_CON_TOTAL total current consuption CPU active, RX/TX active 15.00 30.00 35.00 mA CC
0002 I_CON_SLEEP current consuption in sleep mode CPU inactive; interrupt unit active; x_tal on 1.10 2.40 3.50 mA CC

0003 I_CON_DSLEEP current consuption in deep sleep mode
only Interrupt unit active; clock inaktive; CPU
inactive

45.00 50.00 53.00 uA

0025 V_DIFF_AB voltage difference between A and B room temperature 3.00 5.00 10.00 mV

0026 RVDD RF supply voltage 3.00 3.30 3.55 V Sup SC

0027 SVDD Synthesizer supply voltage
Load current at SVDD pin to external load
(not allowed)

1.70 1.80 2.00 V Sup

0150 CPU_TIMER_CNTtimer 1 counter

Requirement parameter specification

IP name

R
es

p
o

n
si

b
le

T
es

t
ca

se
 #

T
es

t
ca

se
 s

u
b

 #

Test item name Test item description Test name

sd_top_ip abc 0000 0 F_XTAL x_tal clock 00000F_XTAL
sd_top_ip xyz 0001 0 I_total total current consuption 00010I_total
sd_top_ip abc 0002 0 I_sleep current consuption in sleep mode 00020I_sleep

sd_top_ip mno 0003 0 I_dsleep current consuption in deep sleep mode 00030I_dsleep

sd_ip_vout mno 0025 0 V_DIFF_AB voltage difference between A and B 00250V_DIFF_AB

sd_ip_vout mno 0025 1 V_outa voltage A 00251V_outa

sd_ip_vout mno 0025 2 V_outb voltage B 00252V_outb

sd_reg_r rsa 0026 0 RVDD RF supply voltage 00260RVDD

sd_reg_s rsa 0027 0 SVDD Synthesizer supply voltage 00270SVDD

sd_timer_1 sde 0150 0 D_timer timer 1 counter 01500D_timer
sd_timer_1 sde 0150 1 D_cntdown check timer counting down 01501D_cntdown
sd_timer_1 sde 0150 2 D_cntup check timer counting up 01502D_cntup
sd_timer_1 sde 0150 3 D_cntirq check timer IRQ ok 01503D_cntirq

Design IP
Automatic naming

do not editTest case specification

Figure 5.7: Design Verification Matrix - specification parameters and test case definition

For example 00000V vbg1; 02010F xtal out; 10099I itot; etc.

NOTE: At IP level the DV Matrix is used only up to Simulation, because neither evaluation
nor production tests are done at this level.

A simulation test bench may cover more than one test, therefore a simulation master column
has been introduced. Different to test case sub # this simulation master test is not necessarily
depending on other tests, but executes all these tests (see Figure 5.8).

On top level, sub IP requirement parameters are not simulated, because this has already
been done. The column Link to simulation result is used to indicate the test name on sub IP
level, which may not be equal to test name on top level (e.g. reused IPs) otherwise this column

32

Quantity Abbreviation

Voltage V
Current I
Frequency F
Power P
Ratio R
Gain G
Discrete/digital value D
Sensitivity S

Table 5.1: Verification quantities

Simulation master test
[test name]

(e.g. test bench with equal
options)

(fill only if not equal to Test
name)

Link to simulation result
[Test name]

(fill only for product level DV
- if not equal Test name)

S
im

u
la

ti
o

n
 m

in

p
ro

ce
ss

 t
yp

 L
T

ty
p

ic
al

 /
m

ea
n

o
r

P
A

S
S

 /
F

A
IL

p
ro

ce
ss

 t
yp

 H
T

S
im

u
la

ti
o

n
 m

ax

M
C

 s
ig

m
a

C
p

k

C
o

rn
er

 d
o

n
e

M
o

n
te

 C
ar

lo
 d

o
n

e

R
es

p
o

n
si

b
le

15.05 15.00 15.25 16.20 15.35 0.30 3.61 Y N gro
21.00 31.90 32.60 0.50 2.07 Y Y gro
1.50 2.44 2.90 Y N gro

48.56 49.20 49.10 49.01 51.00 1.30 1.00 Y Y gro
5.55 0.20 4.25 N Y oge

3.15 3.30 3.39 0.75 0.11 Y Y oge

1.75 1.86 1.89 0.03 1.56 Y Y oge
PASS sde

01500D_timer PASS sde
01500D_timer PASS
01500D_timer PASS

Simulation

Figure 5.8: Design Verification Matrix - Simulation data

stays empty.

The columns Simulation min to Simulation max are filled with corresponding simulation
results. process typ LT and process typ HT are the simulation results at typical production
process parameters at low and high temperature. For Monte Carlo simulations[34] the mean
value and the sigma are entered into the according columns. The Cpk[26] is automatically
calculated for correlation with production test/characterisation.

Product level definitions are needed for evaluation and production test. Parameter observ-
ability describes how the parameter can be measured and how to control this parameter has
to be described in Parameter controllability column. For example an internal signal could be
measured via a test bus and controlled with a JLCC bit. Based on simulation data, measure-
ment limits for evaluation and test are defined for low, room and high temperature (discrete
temperature values are project dependent).

As a last step at product level definition the responsible test engineer needs to review these
definitions for testability. If, up to here, everything is filled correctly measurement and data
can be set up and implemented.

33

LT limits: <low T> RT limits: <room T> HT limits: <high T>

Parameter
Observability

Test Description

Parameter
Controllability

Configuration

R
es

p
o

n
si

b
le

min max min max min max Unit
Param.
testable
on ATE

R
es

p
o

n
si

b
le

Measure on test bus JLCC configuration abc 13.70 16.40 14.10 16.50 13.70 19.20 MHz Y tfa
Measure on supply pin JLCC and CPU config xyz 20.60 33.50 20.80 33.70 20.95 33.50 mA Y tfa
Measure on supply pin JLCC and CPU config abc 1.30 3.05 1.35 2.90 1.50 3.07 mA Y tfa

Measure on supply pin JLCC and CPU config mno 47.00 50.30 48.00 49.70 48.50 52.00 uA N tfa

calculation of A - B No configuration. mno 3.20 7.78 3.30 7.90 3.35 8.00 mV N tfa
Measure output voltage

on Testbus.
JLCC configuration mno 20.00 30.00 20.00 30.00 20.00 30.00 mV Y tfa

Measure output voltage
on Testbus.

JLCC configuration mno V Y tfa

Measure Output
Voltage on RVDD Pin

No configuration. rsa 3.10 3.40 3.10 3.45 3.10 3.50 V Y tfa

Measure output voltage
on SVDD pin

No configuration. rsa 1.70 1.99 1.70 1.90 1.70 1.95 V Y tfa

Test review

Product level definitions

Figure 5.9: Design Verification Matrix - Product level definitions

Figure 5.10 shows how measurement results are entered into the DV matrix. Each measure-
ment needs to be done for five parts, three times and for low, room and high temperature. This
is a requirement to fulfill SDs QM25 quality procedure[3]. These are ninety measurements for
evaluation and test (not all results shown in Figure 5.10) in total.

In a separate worksheet the group definition needs to be done by the project leader. For
each group a start and end of (spec param #), a group name and a group description has to be
specified (see Figure 5.11).

The worksheet Status includes the current verification status of the product or IP. First
all results are compared versus Requirement parameter specification limits and against Product
level definition limits. A further status quantity is the appraiser variant Gauge Repeatability
(GR)[37], which is a measurement of the repeatability of measurements. For Gauge Repeata-
bility and Reproducibility (GRR) (also Gr&R)[37] the measurement needs to be executed twice
with new insertion of the DUT into the socket (if used). This results in ninety measurements
per environment (evaluation and test). Since this is not necessarily required by the QM25
procedure [3], it is not implemented but could be easily added to the spread sheet.

The correlation of simulation against evaluation is done for each temperature, where low
temperature evaluation results are compared against process typ LT (typical production process
at low temperature). Similar for room temperature against mean/typical and high temperature
against process typ HT. The limits for this comparison are calculated from the range between
high and low temperature, where the limit can be entered in percent (see “enter limit here”).

For the comparison of simulation against production test (ATE), the Cpk[26] value is used.
For simulation this is a calculated value and for production test it is a statistical value.

At last the GR and GRR values are calculated, but GRR values have no valid information
if the measurement is not executed twice with new insertions of the DUT.

Status colouring:

34

Evaluation Responsiblity

Meas 1 Meas 2 Meas 3 Meas 1 Meas 2 Meas 3 Meas 1 Meas 2 Meas 3 Meas 1 Meas 2 Meas 3 Meas 1 Meas 2 Meas 3

14.9 15.01 15 14.95 15.02 15.05 14.89 14.95 14.99 15.02 15.05 14.98 14.9 15.02 14.98

25 25.1 26 30.5 30.6 30.1 25 25.1 26 30.5 30.6 30.1 25 25.1 26

2.5 2.6 2.7 2.1 2 2.6 2.6 2.7 2.1 2.35 2.333333 2.316667 2.3 2.283333 2.266667

49 49.5 49 48.75 50 49.25 49.21429 49.17857 49.14286 49.10714 49.07143 49.03571 49 48.96429
5 4.6 5.9 6.066667 6.516667 6.966667 4.916667 5.295238 5.263095 5.230952 5.19881 5.166667 5.134524 5.102381 5.070238

25 25.6 24.9 25.06667 25.01667 24.96667 24.91667 24.86667 24.81667 24.76667 24.71667 24.66667 24.61667 24.56667 24.51667

20 21 19 19 18.5 18 20 19.57143 19.55357 19.53571 19.51786 19.5 19.48214 19.46429 19.44643

3.31 3.33 3.22 3.196667 3.38 3.289333 3.29 3.290667 3.291333 3.292 3.292667 3.293333 3.294 3.294667 3.295333

2 1.856 1.857 1.85 1.856 1.845 1.857 1.893 1.856 1.845 1.857 1.893 1.856 1.845 1.857

Low Temperature

Part1 Part2 Part3 Part4 Part5

Test Responsibility

Meas 1 Meas 2 Meas 3 Meas 1 Meas 2 Meas 3 Meas 1 Meas 2 Meas 3 Meas 1 Meas 2 Meas 3 Meas 1 Meas 2 Meas 3

15.26 15.29 15.25 15.3 15.32 15.29 15.22 15.29 15.27 15.3 15.24 15.26 15.32 15.28 15.27

30.5 30.6 30.1 25 25.1 26 30.5 30.6 30.1 25 25.1 26 30.5 30.6 30.1

2.25 2.233333 2.216667 2.2 2.183333 2.166667 2.15 2.133333 2.116667 2.1 2.083333 2.066667 2.05 2.033333 2.016667

48.92857 48.89286 48.85714 48.82143 48.78571 48.75 48.71429 48.67857 48.64286 48.60714 48.57143 48.53571 48.5 48.46429 48.42857
4 5.446429 4.857563 4.816492 4.77542 4.734349 4.693277 4.652206 4.611134 4.570063 4.528992 4.48792 4.446849 4.405777 4.364706

26 25.5 24.95 24.94779 24.94559 24.94338 24.94118 24.93897 24.93676 24.93456 24.93235 24.93015 24.92794 24.92574 24.92353

22 20.05357 20.09244 20.1313 20.17017 20.20903 20.2479 20.28676 20.32563 20.3645 20.40336 20.44223 20.48109 20.51996 20.55882

3.296 3.296667 3.297333 3.298 3.298667 3.299333 3.3 3.300667 3.301333 3.302 3.302667 3.303333 3.304 3.304667 3.305333

1.856 1.845 1.857 1.893 1.856 1.845 1.857 1.893 1.856 1.845 1.857 1.893 1.856 1.845 1.857

Part4Part1 Part2 Part3 Part5

Room temperature

Figure 5.10: Design Verification Matrix - Results

• Green: Pass

• Orange: Pass, but needs review (not all measurements done, GR above ten percent)

• Red: Fail (out of limits, GR above thirty percent)

With the chart tool, worksheet ’Charts’ (see Figure 5.13), the results of all environments are
visualized including limits. With the drop down box in the upper left corner the test is selected,
the box below selects the environments and DUT parts. Limits are displayed as discrete values
and in the chart.

35

Start End Groupname Description
0000 0049 ANA_RX analog receive
0050 0099 ANA_TX analog transmit
0100 0129 ANA_BG analog bandgap
0130 0159 ANA_LNA analog lna

0500 0549 DIG_CPU digital CPU
0550 0599 DIG_BIST digital BIST

0800 0899 EVAL_ONLY just internal evaluation
0900 0999 DEBUG debugging

Spec parameter groups
(need to be defined by PM)

Spec Param #

Figure 5.11: Design Verification Matrix - Parameter groups

enter limit here [%]

10 10

test_name:

S
pe

c
vs

. S
im

S
pe

c
vs

. E
va

l

S
pe

c
vs

. T
es

t

V
er

ifi
ca

tio
n

vs
. E

va
l

V
er

ifi
ca

tio
n

vs
. T

es
t

G
R

%
 m

ax
10

0
x

R
 /

T
ol

er
an

ce

lim
it

±1
0%

 o
f s

im
 r

an
ge

S
im

 v
s.

 E
va

l L
T

S
im

 v
s.

 E
va

l R
T

S
im

 v
s.

 E
va

l H
T

lim
it

±1
0%

 o
f s

im
 r

an
ge

S
im

 C
P

K
 v

s.
 T

es
t C

pk

LT RT HT LT RT HT

00000F_XTAL PASS PASS PASS PASS PASS 4.3436 0.03 PASS PASS FAIL 0.3611 FAIL 8.4711 8.5201 17.663 0 0 4.3436
00010I_total PASS PASS PASS PASS PASS 0 1.16 FAIL 0.2067 18.915 16.55 19.442 0 0 0
00020I_sleep PASS PASS PASS PASS PASS 0 0.14 FAIL 51.124 6.5591 56.985 0 0 0
00030I_dsleep PASS PASS PASS PASS PASS 0 0.244 PASS FAIL FAIL 0.1 12.815 42.581 0 0
00250V_DIFF_AB PASS PASS PASS PASS FAIL 0 0.425 46.128 23.538 5.3879 0 0 0
00251V_outa PASS PASS 0 6.71 6.5126 0.1346 0 0 0
00252V_outb
00260RVDD PASS PASS PASS PASS PASS 0 0.024 PASS 0.0111 60.458 1.1619 1.0167 0 0 0
00270SVDD PASS PASS PASS FAIL PASS 0 0.014 PASS 0.1556 47.885 38.308 0 0
01500D_timer PASS
01501D_cntdown PASS
01502D_cntup PASS
01503D_cntirq PASS

Verification Status
(Automatically calculated)

Results vs. Limits 100 x R / Tolerance

Gr&R %

100 x r&R / Tolerance

GR%

Figure 5.12: Design Verification Matrix - Verification status

The GR chart, worksheet ’GR Charts’ (see Figure 5.14), is a graphical output of the GR
values from Status worksheet. Colouring is equal to Status colouring.

36

select test for chart from list below

test_name:
00000F_XTAL

Chart data selection
Sim Y
Eval Y
Test Y

Part1 Y
Part2 Y
Part3 Y
Part4 Y
Part5 Y

Spec Limits min max Unit
LT limits 12 20 MHz
RT limits 12 20 MHz
HT limits 12 20 MHz

Verification Limits min max Unit
LT limits 13.7 16.4 MHz
RT limits 14.1 16.5 MHz
HT limits 13.7 19.2 MHz

00000F_XTAL

0

5

10

15

20

25

LT RT HT

M
H

z

USL UTL LTL LSL Sim_min Sim_typ
Sim_max Part1_Meas1_eval Part1_Meas2_eval Part1_Meas3_eval Part2_Meas1_eval Part2_Meas2_eval
Part2_Meas3_eval Part3_Meas1_eval Part3_Meas2_eval Part3_Meas3_eval Part4_Meas1_eval Part4 Meas1 eval
Part4 Mea2 eval Part5_Meas1_eval Part5_Meas2_eval Part5_Meas3_eval Part1_Meas1_test Part1_Meas2_test
Part1_Meas3_test Part2_Meas1_test Part2_Meas2_test Part2_Meas3_test Part3_Meas1_test Part3_Meas2_test
Part3_Meas3_test Part4_Meas1_test Part4_Meas2_test Part4_Meas3_test Part5_Meas1_test Part5_Meas2_test
Part5_Meas3_test

Figure 5.13: Design Verification Matrix - Chart tool

0 5 10 15 20 25 30 35 40

00270SVDD

00260RVDD

00251V_outa

00250V_DIFF_AB

00030I_dsleep

00020I_sleep

00010I_total

00000F_XTAL

01503D_cntirq

01502D_cntup

01501D_cntdown

01500D_timer

00252V_outb

T
es

t
n

am
e

GR % max

Figure 5.14: Design Verification Matrix - GR charts

37

5.2.2.2 Communcation Channel Definition

The communication definition file (comm def.txt) is used to define all channels that can be used
to configure the DUT. Furthermore a default channel can be specified for each memory type,
where memory type can be a Central Processing Unit (CPU) register as well as a bit stream
chain (e.g. JLCC).

[header]

IP Name: <ip name>

[channels]

<channel name> ; [<type name>;...]

The example below shows a comm def file, which defines SPI as default communication
channel for APB and SFR. JLCC is specified as default channel for ’Digital chain 0’ configu-
ration chain. Furthermore the file defines Universal Asynchronous Receive/Transmit (UART)
and Single Wire Interface (SWI) to be available interfaces.

[header]

IP Name: SD_IP_1

[channels]

SPI ; ABP ; SFR

JLCC ; Digital_chain_0

UART

SWI

5.2.3 Plans

During the verification process not each environment executes each test case. Furthermore
optimisations may be defined especially for production test (ATE) verification environment.

5.2.3.1 Simulation Plan

The simulation plan defines which tests need to be implemented and executed during design
simulation. Yellow columns (’Test name’ to ’Responsible’) in Figure 5.15 contain data linked
from DV matrix, blue coloured columns are simulation specific data.

The simulation specific data includes responsibilities as well as duration estimations and
simulation execution data (’test bench name’, ’regression file’ and ’command line’). The com-
mand line column specifies the command line for execution of the according test, which is
especially needed for repeating tests (reproducibility) and automation.

38

<IPname> - tests Do not edit grey fields!

Project: <Project Name - Dash> Number of requirement parameters: 8
Last update: 01.01.2000 Number of tests: 13
PM: <Name> By: <user>
Spec Rev: <Name> Notes:
Testcase Root: ..\tests

Lookup index 17 34 35 36

Test name
Verification parameter

desciption

Parameter Observability

Test Description

Parameter Controllability

Configuration

R
es

p
o

n
si

b
le

00000F_xtal Xtal frequency Measure on test bus JLCC configuration abc
00100I_total total current consuption Measure on supply pin JLCC and CPU config xyz
00200I_sleep sleep current consuption Measure on supply pin JLCC and CPU config abc
00300I_dsleep deep sleep current consuption Measure on supply pin JLCC and CPU config mno
02500VD_outab v_diff = ABS(v_A - v_B) calculation of A - B No configuration. mno
02501V_outa voltage A Measure output voltage on Testbus. JLCC configuration mno
02502V_outb voltage B Measure output voltage on Testbus. JLCC configuration mno
02600V_rvddreg regulator output voltage Measure Output Voltage on RVDD Pin No configuration. rsa
02700V_svddreg regulator output voltage Measure output voltage on SVDD pin No configuration. rsa

<name> - Simulation Plan

IP/Sub-Project: <name> Number of tests: 9
Update: 01.01.2010 By: <user> Implemented 1
Responsible: <Name> Today/CW: 22.07.2010 30 Link Errors: 0
Notes:
Results Root: Total effort: 4.5 days

Resp.
Execution

Effort
[days]

Constraint CW
Priority /

Sequence
Status Self check Test bench name

Regression file /
FW file

Command line

abc 0.5 22.05.2008 21 done boot_n_times.c -tcl ../scripts/test_00000.tcl
3.0
1.0

..\results\eval\

Figure 5.15: Simulation plan spread sheet

39

5.2.3.2 Evaluation Plan

This plan is very similar to the simulation plan. Equal to the simulation plan, the yellow
columns are linked from the DV Matrix and the blue ones are evaluation execution specific.

<IPname> - tests Do not edit grey fields!

Project: <Project Name - Dash> Number of requirement parameters: 8

Last update: 01.01.2000 Number of tests: 13

PM: <Name> By: <user>
Spec Rev: <Name> Notes:
Testcase Root: ..\tests

Lookup index 17 34 35 36

Test name Verification parameter desciption
Parameter Observability

Test Description

Parameter Controllability

Configuration

R
es

p
o

n
si

b
le

00000F_xtal Xtal frequency Measure on test bus JLCC configuration abc

00100I_total total current consuption Measure on supply pin JLCC and CPU config xyz
00200I_sleep sleep current consuption Measure on supply pin JLCC and CPU config abc
00300I_dsleep deep sleep current consuption Measure on supply pin JLCC and CPU config mno
02501V_outa voltage A Measure output voltage on Testbus. JLCC configuration mno
02502V_outb voltage B Measure output voltage on Testbus. JLCC configuration mno
02500VD_outab v_diff = ABS(v_A - v_B) calculation of A - B No configuration. mno
02600V_rvddreg regulator output voltage Measure Output Voltage on RVDD Pin No configuration. rsa
02700V_svddreg regulator output voltage Measure output voltage on SVDD pin No configuration. rsa

<name> - Evaluation Plan

IP/Sub-Project: <name> Number of tests: 9

Update: 01.01.2010 By: <user> Implemented tests: 4

Responsible: <Name> Today/CW: 22.07.2010 30 Link Errors: 0
Notes:
Results Root: Total effort: 6 days

Sweep parameters
Resp.

Execution
Effort
[days]

Constraint CW
Priority /

Sequence
Status Measurement SW Link

dvdd:I:3.0;5.0;0.5 V
JLCC_reg1:L:0x00;0xFF D

abb 1.0 22.03.2010 13 done ..\sw\labview\meas_F.vi

abb 0.5 done ..\..\sw\sw\meas_I.py
vbat:I: 10;14;0.5 V abb 0.0 done ..\..\sw\sw\meas_I.py

aab 0.0 done ..\..\sw\sw\meas_I.py
opx 1.0 21.02.2010 8 ..\..\sw\labview\meas_V.vi
opx 0.0 21.02.2010 8 ..\..\sw\labview\meas_V.vi
opx 0.5 22.02.2010 9
jao 1.5 30.03.2010 14
jao 1.5 30.03.2010 14

..\results\eval\

Figure 5.16: Evaluation plan spread sheet

The ’sweep parameter’ is a special column for evaluation, which defines a parameter sweep
for a specific test. The syntax for a sweep is defined as

as Interval

<param name>:I:<start>;<stop>;<step>;<unit>

40

as List

<param name>:L:<val_0>;<val_1>;...;<val_n>;<unit>

Examples:

dvdd0:I:2.5;3.9;0.1 V

vdd:L:1.8; 2.5; 3.3 V

Columns ’Resp. Execution’ to ’Status’ are equal to simulation plan. ’Measurement SW
Link’ is the path to the test implementation for evaluation. For optimisation purpose the
column ’Predecessor’ may be used to define dependencies of tests by entering test names.

5.2.3.3 Production Test Plan

The production test plan is not described here with figures, since it is equal to evaluation plan
except for the columns ’Sweep parameters’ and ’Measurement SW Link’ which are not needed
within production test (ATE) execution.

41

5.2.3.4 Lot List

The lot list is used to uniquely identify verification execution runs (lot ID). The lot ID is stored
within each result file, which is used to gather all results from one single run. This mechanism
is required for report generation and to reproduce results.

Lot list

Lot ID Description
000.0001_RF_run RF tests done

Figure 5.17: Lot list spread sheet

The list shown in Figure 5.17 simply stores the lot identifier and a description.

5.2.4 Tests Content

Any data referring to a test is stored in the directory ’verif/tests/<test name>/’, which is
shown in Figure 5.18 with proposed content of a test. Each test needs to provide a Sequence
file, which describes the activities of this test formally using the sequence language (see Section
5.3). For special setups, which can not be represented in an excel spread sheet, an optional
int setup file is proposed. As shown in Figure 5.18 this can be done for internal, Test Bench
(TB) setup and external setup. It is also possible to store these setups in a common directory,
if the setups are used within more than one test. Special external setups are always stored in
this common directory. Other items like firmware or TCL scripts may be stored in separate
directories like ’fw’ or ’tcl’.

With the content of the tests directory and the test spec spread sheet, engineers should be
able to reproduce a result of a certain test.

As described above the sequence file specifies the actions during a test. For setup description
the test spec spread sheet or optional files are needed. As Figure 5.19 shows int setup specifies
the internal state of the DUT. Ext setup specifies the initial and after-reset conditions at DUT
boundary. Different to ext setup, patterns specifies not a single state, but also defines conditions
at DUT boundary. Meas setup describe the used instruments, connections and PCB setup, but
this should be a result documentation or proposal in tests directory. The test result has to be
independent from its implementation (see Section 5.2.5).

5.2.4.1 General Guidelines

Here some general guidelines and restrictions for all type of files are defined.

Comments ’#’ is the begin of a comment (except vector files), beginning from the ’#’ char-
acter up to the end of the line.

42

tests

<test name>

00010F_xtal e.g. test name for xtal frequency

00020I_total e.g. test name for total current consumption

common common files

int_setup.txt

ext_setup.csv

tb_setup.txt Test bench settings (JLCC, SPI, etc)

Setup at DUT boundary

DUT setup

Internal DUT setupint_setup_<n>.txt

sequence.txt Description of test activities (mandatory)

pat_<*>.txt Stimuli pattern

meas_setup.txt

tb_setup.txt Test bench setup (JLCC, SPI, etc.) e.g. PCB setup

Measurement instrument setup; connections etc.

fw

tcl

...

Test firmware directory (optional)

tcl scripts

verif

IP, Sub-Project, ...<IPname>

Figure 5.18: Test Case directory content

Measurement PCB

sequence.txt

meas_setup

pat_<*>.txt

DUTMeasurement

Instruments

Test case description (not entity related)

Test spec

tb_setup

int_setup

ext_setup

Figure 5.19: Relation of test files to entities of evaluation environment

Empty lines are allowed for all file types.

43

SI prefixes A general file format definition requires specification of unit prefixes to be used.
Table 5.2 shows the valid Système International d’unitès (SI) units, abbreviations and alterna-
tives.

Units Valid units can be found in Table 5.3 subsequently.

Name Abbrev. Alternative
Peta 1015 P e15
Tera 1012 T e12
Giga 109 G e9
Mega 106 M e6
Kilo 103 k e3
Milli 10−3 m e-3
Micro 10−6 u e-6
Nano 10−9 n e-9
Pico 10−12 p e-12
Femto 10−15 f e-15
Atto 10−18 a e-18

Table 5.2: Prefixes and abbreviations

Name Abbrev.
Volt V
Ampere A
Watt W
Voltampere VA
Second s
Hertz Hz
Ohm Ohm
Farad F
Henry H
Decibel dB or dBm

Table 5.3: Units and abbreviations

5.2.4.2 Internal Setup

The internal setup (int setup) is either specified in the test spec spread sheet (SD custom de-
fined ATE spread sheet) or in a separate file, where the file format is specified subsequently.
Since DUT setup could be done via CPU firmware (register access) or an external DUT con-
figuration interface, there are two upper-level setup types defined - REG and STREAM. REG
is used to specify any kind of registers, which need to be configured with the use of a firmware
running on an embedded CPU. The STREAM type is used to describe configuration data,
which is set up through external bit stream interfaces. The internal DUT setup needs two files:
the int setup and the names file, where registers (names and addresses) and streams (logical
register, bitnames and postions) are specified. The int setup only specifies the value of a certain
register or stream bit.

Template

[header]

IP Name: <ip name>

Test Name: <test name>

[<reg name>]

REG always set via CPU firmware

<register name>;<value>

[<stream name>]

via external interface

<logical register name>;<bit name>;<0|1>

44

The file is subdivided into sections, indicated by squared brackets. The header section is
obligatory for an int setup file, but [<name>] sections are optional. The type of the section
is project dependent, for example a SFR will be a REG (defined in names file). The example
below illustrates a possible int setup file.

[header]

IP Name: sd_ip_1

Test Name: 00010F_Xtal

[SFR]

timer_0;0xF1

[APB]

flywheel_conf;0xFF000000

[Digital_chain_1]

digital_conf_reg;bit_1;1

[analog_config]

regulator_config;supply_en;1

For the mapping of names to addresses or bit positions a further file type is introduced, the
names (int names.nms) file. This file contains the name-address pair for all CPU registers and
all bits of configuration streams. Furthermore here the section names are mapped to either
STREAM or REG, which is done once for a project.

names file

[header]

IP Name: <ip name>

[REG;<reg name>]

<register name>;<address>

<register name>;<address>

<register name>;<address>

...

[REG;<reg name>]

<register name>;<address>

<register name>;<address>

<register name>;<address>

...

[STREAM;multiplexer_settings]

<stream name>;<1st mux setting>;<2nd mux setting>; ... <n-th setting>

<stream name>;<1st mux setting>;<2nd mux setting>; ... <n-th setting>

<stream name>;<1st mux setting>;<2nd mux setting>; ... <n-th setting>

...

[STREAM;<stream name>]

<logical register name>;<bit name>;<bit position>

<logical register name>;<bit name>;<bit position>

<logical register name>;<bit name>;<bit position>

...

45

It is common to use multiplexers for configuration streams, therefore the names file includes
a section ’multiplexer settings’ which specifies the setting for all streams, if needed.

5.2.4.3 External Setup

Equivalent to the internal setup, the external setup (ext setup) is either specified in test spec
spread sheet or as a separate file in the ’verif/tests/common’ directory. This should only be
the case if setups cannot be represented in the test spec spread sheet.

[header]
IP Name : <ip_name>

setup1 setup2 … setup<n>
pin0 FV 4V MAX_I 500mA FV 4.1V MAX_I 500mA
pin1 FV 3.3V MAX_I 200mA FV 3.3V MAX_I 200mA
pin2
pin3
.
.
.
pin<n>

Figure 5.20: External setup file format

Figure 5.20 shows the ext setup format, where the header is similar to int setup. The syntax
of conditions can be found in Table 5.4.

Condition Desciption
NC not connected
FV < value > MAX I < value > force voltage with current limited
FI < value > MAX V < value > force current with voltage limited
LC < value > CONN TO < pin > connect capacitance to pin
LR < value > CONN TO < pin > connect resistance to pin
LL < value > CONN TO < pin > connect inductance to pin

DCH digital channel connected
ARB < patternref > pattern reference from sequence file
SINE < patternref > pattern reference from sequence file

Table 5.4: External setup conditions

46

5.2.4.4 Stimuli Patterns

Patterns are either provided by vector definitions or by signal specification. Vector definitions
can be processed by the ATE as is, but this vector format can only be used for digital signals.
Analog signals (e.g. sine waves) are defined with a signal specification. Since the vector file has
a fixed file format defined previously, comments are marked with ’//’ instead of the usual ’#’.

//

// header information

//

import tset <name>;

vector($tset, <p_name_0>, <p_name_1>, <p_name_2>, ... , <p_name_n>)

{

[repeat <n>] > <t_set> <v_pin_0> <v_pin_1> <v_pin_2> ... <v_pin_n> ;

[repeat <n>] > <t_set> <v_pin_0> <v_pin_1> <v_pin_2> ... <v_pin_n> ;

> <t_set> <v_pin_0> <v_pin_1> <v_pin_2> ... <v_pin_n> ;

> <t_set> <v_pin_0> <v_pin_1> <v_pin_2> ... <v_pin_n> ;

[repeat <n>] > <t_set> <v_pin_0> <v_pin_1> <v_pin_2> ... <v_pin_n> ;

halt > <t_set> <v_pin_0> <v_pin_1> <v_pin_2> ... <v_pin_n> ;

}

The vector signature defines which pins (as for ext setup) are used. The first parameter
defines the time set (indicated by ’$’), which is needed for signal generation and may change for
each vector specification. The time set needs to be specified in the vector file by the command
’import’. Since the time set is just needed at ATE the definition of a time set is not discussed
here, because it depends on the used ATE.

The optional command ’repeat’ can be used to apply the current set of pin values ’n’ times,
where a set of values consists of a single line. The command ’halt’ indicates the end of the
vector.

An example for a vector file can be found below.

import tset pads;

vector ($tset, reset, gpio0_0, gpio0_1, gpio0_2, gpio0_3)

{

// g g g g

// p p p p

// r i i i i

// e o o o o

// s 0 0 0 0

// e _ _ _ _

// t 0 1 2 3

repeat 2 > pads 1 X X X X ;

repeat 2 > pads 1 X X X X ;

repeat 2 > pads 1 X X X X ;

> pads 0 0 0 1 0 ;

> pads 0 0 1 0 1 ;

repeat 2 > pads 0 0 1 0 0 ;

repeat 29 > pads 0 1 0 0 0 ;

repeat 2 > pads 0 0 0 0 1 ;

> pads 0 0 1 0 1 ;

.

.

.

}

47

The second alternative for specifying stimuli patterns is the signal specification. The key-
word ’sig spec’ in square brackets indicates this alternative. The ’type’ of the signal is not
limited to special types, for example the signal can be of type ’SINE’ or ’SQUARE’, but also
other signal types. The keywords ’sampling rate’, ’frequency’, ’amplitude’ and ’offset’ need to
be specified for each kind of signal separately.

[sig_spec]

type;[SINE|ARBITRARY|SQUARE|...]

sampling_rate;<Hz>

frequency;<Hz>

amplitude;<V>

offset;<V>

5.2.4.5 Stream Pattern File

The stream pattern file combines configuration of DUT and read back, for comparison or storage
to a variable, in one pattern file. This pattern file is similar to internal setup files (int setup)
with the extensions of comparison or storage. The read back stream can be compared against
H (’1’), L (’0’) and X (don’t care) bit for bit. Furthermore a variable letter may be specified
to store a part or the complete read back stream (see Section 5.3.4 for detailed information on
variables). The bit name definition is done in the int names.nms file (’verif/specs/<DUT>/’).

NOTE: This comparison is just possible for STREAM types, which work like shift registers
(write and read at the same time).

[header]

IP Name: <ip_name>

Test Name: <test name>

[<stream name>]

logical register; bit name; write value; reference/read value/letter

variable letters may be R, S, T, V

<logical register>;<bit name>;<0|1>;<H|L|X|<pattern variable letter>

<logical register>;<bit name>;<0|1>;<H|L|X|<pattern variable letter>

<logical register>;<bit name>;<0|1>;<H|L|X|<pattern variable letter>

...

[<stream name>]

<logical register>;<bit name>;<0|1>;<H|L|X|<pattern variable letter>

<logical register>;<bit name>;<0|1>;<H|L|X|<pattern variable letter>

...

[<stream name>]

<logical register>;<bit name>;<0|1>;<H|L|X|<pattern variable letter>

<logical register>;<bit name>;<0|1>;<H|L|X|<pattern variable letter>

...

48

5.2.4.6 Description of Activities - Sequence

The sequence file describes the activities that need to be done by any test implementation.
Equal to the file formats above, sections (defined by squared brackets) are used here as well. The
section info is used for documentation and for informal description of test activities. Sections
int setup, ext setup and tb setup are used to specify required setups, which need to be placed in
the corresponding test directory. Furthermore pattern files may be used within the test. The
sequence section formally describes test activities, referring to sections specified above. The
sequence language (description of activities) itself is defined in Section 5.3 in detail.

[header]

IP Name: <ip name>

Test Name: <test name>

[info]

All additional information regarding TC execution.

[int_setup]

<int_setup_0>

<int_setup_1>

..

<int_setup_n>

[ext_setup]

<ext_setup>

[tb_setup]

<tb_setup_0>

[pattern]

<pattern_0>

[sequence]

defines sequence of TC execution -> sequence language

5.2.4.7 Measurement Setup

The measurement setup file needs to document the used measuring equipment and the connec-
tions between them. This setup only needs to be described once for a test run (if the setup
does not change). This description of the measurement setup guarantees the reproducibility of
each test. Below the format of the measurement setup file is provided.

[header]

IP Name: <ip name>

Test Name: <test name>

[<instrument name>]

<setup>

setup:

The setup is different for every instrument.

Therefore a detailed documentation of the used

instrument setup is required. The level of detail

49

is up to the engineer, but the test case execution has

to be reproducible! The basic instrument setup is

done by the executing engineer.

#

e.g. used measuring probe; measurement range; trigger level; etc.

#

[connections]

<instrument name>;<connector name>;<DUT pin name>

<instrument name>;<connector name>;<measurement PCB pin name>

instrument names need to match sections in instrument setup file

[pcb]

Setup of PCB described informally

e.g. Jumper J8 closed; Switch S1 on; etc.

5.2.4.8 Test Bench Setup

Equal to the DUT also parts of the PCB could be configurable by a stream interface (e.g.
JLCC). This could be specified either via test spec spread sheet or inside a TB setup file. The
file format is very similar to int setup file.

[header]

IP Name: <ip name>

Test Name: <test name>

[<stream name>]

<logical register name>;<bit name>;<0|1>

<logical register name>;<bit name>;<0|1>

<logical register name>;<bit name>;<0|1>

As for int setup also the test bench setup needs to be defined in a names file (see Section
5.2.4.2), which is named tb setup.nms (’/verif/hw/boards/<item>/’).

5.2.4.9 Station Setup

The station setup file specifies all included measurement equipment formally in Extensible
Markup Language (XML) file format. The structure of this setup file is described in Section
5.4.1.2 since it is related to evaluation automation.

5.2.5 Results Structure

All TC result data is stored in the verif/results directory of each IP. Inside this directory a
separate directory is created for each environment (e.g.eval), where each environment directory
follows the same structure inside. The <DUT> directory should be named according to the
tested device (e.g. version of product). The lot runs directory collects all data of automatic
measurement runs or simulation runs. meas setup stores the measurement setup reports. For
each executed test a separate directory is created to save its results (see Figure 5.21).

50

eval

Test results

sim

results

<IPname|DUT>_lots.xls List of lots – History of test runs

dlog

setup_log

run_<time_stamp>_<lot>.txt

run_<time_stamp>_<lot>.xml

<test name>

lot_runs

result.txt

result_diagramm.xls

screen_shot.jpg

meas_setup

meas_setup_<*>

meas_setup_report.[txt|doc|pdf]

meas_setup_photo.jpg

e.g. diagram of scope data

<result_dir>: [<token>_]<YYYYMMDD>[HHMMSS]

<token>:

 typ

 parm_<parm_name(s)>

 corn

 mc

 rcx

<DUT>

<result_dir>

result.txt

<test name>

<result_dir>

setup.txt

setup.txt

e.g. screen shot of measurement software

<DUT>

station_setup.xml

project name and version or only version (e.g. sd318_v1.2 ; V0; etc.)

debug

<item name> <data>_<name> (e.g. 20100622_ATE_correlation)

dlog

run_<time_stamp>_<lot>.txt

lot_runs

project name and version or only version

verif

IP, Sub-Project, ...<IPname>

examples for result directory names:

 20100220120100

 20100225

 typ_20100221

 parm_vdd_20100115172355

 corn_20090430

Figure 5.21: Result directory structure

51

5.2.5.1 Result File Format

The raw result data is stored in the result.txt file, which needs to fulfill the subsequent format.

[header]

lot_id: <lot_id>

time_stamp: <YYYY><MM><DD>[<hh><mm><ss>]

responsible: <executing engineer>

board_name: <board name>

board_version: <board version>

board_serial: <serial number>

board_fpga_name: <fpga name>

board_fpga_version: <fpga version>

fw_framework_name: <firmware framework name>

fw_framework_version: <firmware framework version>

meas_setup: <measurement setup>

test_spec: <test spec name and version>

[VALUES]

<test>;<cond1>;<cond_1_unit>;...<cond_n>;<cond_n_unit>;<value>;<unit>

OR (for 2 dimensional data)

<test>;<conditions>;<names>;<units and scales>

;x_val1;y1_val1;y2_val1 ...

;x_val2;y1_val2;y2_val2 ...

<conditions> : <cond1>;<cond1_unit>;...;<cond_n>;<cond_n_unit>;

<names> : <x_name>;<y1_name>;...;<yn_name>;

<units and scales>: <x_unit>;<y_unit>;<x_scale>;<y_scale>

NOTE: Leading ’;’ for CSV/Excel presentation of table.

5.2.6 Reports

Out of measurement and simulation results any kind of report could be created (textual, graph-
ical, etc.). Because of the well defined formats it is recommended to implement a report gen-
erator tool in future.

5.2.7 Verification Software

Any kind of verification software needs to be stored in IP structure it belongs to. The common
path of verification software inside an IP is

<path to IP>/verif/sw/

where simulation and evaluation software is further separated into

<path to IP>/verif/sw/eval/

<path to IP>/verif/sw/eval/measurements/<measurement item>

<path to IP>/verif/sw/eval/GUI/<DUT> # configuration GUI

<path to IP>/verif/sw/sim/

52

NOTE: If the functionality of measurements needs to be changed (for example for a new
DUT version), they need to be copied, modified and saved with a different name. A VCS
should not be used for this purpose, because the affected measurement may be needed for the
evaluation of an other DUT or DUT version. The measurements VCS revision will likely not
be checked by engineer which causes debug time. The VCS can be used for the new created
measurement software as usual. The influence of changes on modules of one measurement to
others needs to be considered because of the hierarchical design of measurement software (e.g.
hardware drivers).

Implementation of measurements is not discussed in this document, because this is not
related to the generic verification platform concept.

5.3 Test Sequence Language

For a common format and a formal description of test activities a sequence language is intro-
duced, which is stored in the sequence.txt file (see Section 5.2.4.6). This language is formally
defined as Context Free Grammar (CFG) in Backus-Naur-Form (BNF) in Section 5.3.5, to
easily verify the syntax of the language. The structure of a sequence file is presented in the ex-
ample below. The available elements of the sequence language are described in the subsequent
sections.

[header]

IP Name: sd_ip_1

Test Name: 00010F_Xtal

[info]

All additional information regarding TC execution.

[int_setup]

init ’./int_setup_0.txt’

jlcc_01 ’./int_setup_1.txt’

[tb_setup]

tb_init ’./tb_setup_0.txt’

[pattern]

sti_001 ’./stimuli.txt’

pat_001 ’./stream_pat.txt’

[ext_setup]

ext_setup out of ’../common/ext_setup.csv’

ext_setup_001

[sequence]

reset ...

int_setup ...

measure ...

write_results ...

53

The sequence file is separated into sections specified by square brackets (e.g. [header]). The
header section contains general data like IP and test name. The info section gives an informal
description of the test activities and other comments referring to the test. All other sections
are defined in detail subsequently.

Formatting To guarantee a well structured format the following restrictions are defined:

• Sections need to be kept in order

1. header

2. info

3. int setup

4. tb setup (optional)

5. pattern (optional)

6. ext setup

7. sequence

• Each statement (section, command incl. data, etc.) in a single line

• White spaces are ignored

Although line break is usually not part of a grammar, it is used to guarantee a well structured
format. The CFG defines line break as ’\r?\n’, which also include Unix style line break.

5.3.1 Scope

This sequence language is indented to formally describe the test setup (DUT, PCB, etc.),
test input (stimuli pattern, DUT communication etc.) and the measurement activities and the
sequential order of these items. It is not meant to be a programming language for test execution
and will not be interpreted by tools of the generic verification platform.

Sequence language elements:

• Test setup (int/ext/tb/stimuli)

• measurement activities (measure/calculate/write to variable)

• pin to measure

• DUT communication (read/write incl. pattern download)

• flow description (order of statements)

Implementation details are not part of the sequence file.

54

5.3.2 Test Data Definition

The test data needs to be defined in separate sections for a clear overview of what is needed
within the test. There are four possible data sections (specified in square brackets):

• int setup

• ext setup

• tb setup

• patterns

There needs to be at least one int setup and exactly one ext setup defined inside a
sequence file, which guarantees a defined initial state of the tested system. Figure 5.22 shows
the relations of the sequence file to other verification platform files, but not to test spec spread
sheet which is a single data source instead of multiple files (referenced by label names).

55

[i
n
t_
s
e
tu
p
]

<
la
b
e
l1
>
 [
<
c
h
a
n
n
e
l>

<
n
a
m
e
>
]
’<
fi
le
>
’

[t
b
_
s
e
tu
p
]

<
la
b
e
l2
>
 [
<
c
h
a
n
n
e
l>

<
n
a
m
e
>
]
’<
fi
le
>
’

[p
a
tt
e
rn
]

<
la
b
e
l3
>
 ’
<
fi
le
>
’

<
la
b
e
l4
>
 ’
<
fi
le
>
’

[e
x
t_
s
e
tu
p
]

<
la
b
e
l_
a
>

[s
e
q
u
e
n
c
e
]

in
t_
s
e
tu
p
 <
la
b
e
l1
>

tb
_
s
e
tu
p
 <
la
b
e
l2
>

re
s
e
t
<
la
b
e
l_
b
>
 5
u
s

s
ti
m
u
li
<
la
b
e
l3
>

s
ti
m
u
li
<
la
b
e
l4
>

;
<
la
b
e
l_
a
>
 ;
 <
la
b
e
l_
b
>
 ;
 …

P
in
0
 ;
 F
V
 3
.3
V
 M
A
X
_
I
5
0
m
A
 ;
 …

P
in
1
 ;
 s
ig
_
s
p
e
c
;
..
.

P
in
2
 ;
 A
R
B
;
..
.

P
in
3

… P
in
N

[A
P
B
]

… [S
F
R
]

… [a
n
a
lo
g
_
0
]

…

[R
E
G
;A
P
B
]

… [R
E
G
;S
F
R
]

… [S
T
R
E
A
M
;a
n
a
lo
g
_
0
]

…

S
P
I;
 R
E
G

U
A
R
T

J
L
C
C
;
S
T
R
E
A
M

S
W
I

[b
o
a
rd
_
0
]

… [b
o
a
rd
_
1
]

…

[S
T
R
E
A
M
;b
o
a
rd
_
0
]

… [S
T
R
E
A
M
;b
o
a
rd
_
1
]

…

v
e
c
to
r(
P
in
2
;
P
in
3
;
…
)

{ ..
.

}[s
ig
_
s
p
e
c
]

ty
p
e
;…

fr
e
q
e
n
c
y
;…

..
.

in
t_

s
e
tu

p
.t

x
t

..
/.
./
s
p

e
c
s
/t

b
_
n

a
m

e
s
.n

m
s

tb
_
s

e
tu

p
.t

x
t

..
/.
./
s
p

e
c
s
/i
n

t_
n

a
m

e
s
.n

m
s

s
e
q

u
e
n

c
e

.t
x
t

..
/c

o
m

m
o

n
/e

x
t_

s
e
tu

p
.c

s
v

s
ti

m
u

li
.t

x
t

p
a
tt

e
rn

.v
e
c

..
/.
./
s
p

e
c
s
/c

o
m

m
_
d

e
f.

tx
t

N
O

T
E

:
F

il
e
n

a
m

e
s
 b

a
s
e
d

 o
n

 <
p

a
th

 t
o

 I
P

>
/v

e
ri

f/
te

s
ts

/<
te

s
t

n
a
m

e
>

/

C
o

m
m

o
n

 f
il

e
s

T
e

s
t

c
a

s
e

 f
il
e

s

S
p

e
c

if
ic

a
ti

o
n

s

Figure 5.22: Sequence file - Relations

56

5.3.2.1 int setup / tb setup

An internal or test bench setup can be simply specified as label and according file name pair.
Furthermore there is the possibility to define the part of the referenced file (with a communi-
cations channel specified), which should be used for this setup only.

[int_setup|tb_setup]

<label> [<comm channel> <name>] ’<file name>’

<comm channel>: Name of communications channel e.g. JLCC or SWI

<name>: name of setup in file

Examples:

[int_setup]

initial_0 ’int_setup_0.txt’

initial_1 ’\\10.1.2.16\proj\costumer\test_spec.xls’

xtal_on SPI SFR ’int_setup_1.txt’

all_regs JLCC analog_0 ’./test_spec.xls’

[tb_setup]

definition of test bench setup

pcb_0 ’tb_setup_0.txt’

The label is the reference of the setup used in the sequence later on, where the specified
setup can be applied. As already described for internal setup files (int setup see Section 5.2.4.2)
streams and registers are differentiated, where registers are accessed via firmware and streams
via an external configuration interface. These setups may be referenced by <name>, for ex-
ample [SFR] section of int setup file (<name> is ’SFR’). Furthermore the comm channel can
be specified, which needs to be defined in a communication definition file (see Section 5.2.2.2).

5.3.2.2 pattern

A pattern file, either stimuli or stream data, can be specified as

[pattern]

<label> <path to file> [<pin name>;<pin name>; ...]

Examples:

stim01 ’./patterns/pattern_file.vec’

stim02 ’./patterns/pattern_file.vec’ gpio_0 ; gpio_1 ; gpio_2

Equal to int setup and tb setup the label is used as reference in the sequence section. For
integrity reasons the pin names may be specified here, but do not need to. The stimuli pattern
itself is defined as pattern file (see Section 5.2.4.4).

57

5.3.2.3 ext setup

Here the name of the external setup, defined in ext setup.csv or Test-spec, is specified. The
external setup describes the setup at DUT boundary at the beginning of a test as well as after
a reset.

[ext_setup]

<label>

5.3.3 Sequence Commands

The test activities are described as single statements which are treated sequentially. The
statements below are valid inside a sequence section, which is defined as

[sequence]

5.3.3.1 reset

A reset could be done via an external setup label (name of setup in ext setup.csv or Test-spec)
or via a pin name and value tuple list. It is mandatory that the values of this list keep the
ext setup pin value format (e.g. FV 3.3V MAX I 50mA - see Section 5.2.4.3).

reset <ext_setup label>|(<pin_name value>[;<pin_name value>;...]) <duration>

Examples:

reset ext_label_01 50.0 ms

reset reset_pin FV 3.3 V MAX_I 50.0 mA 3.0 s

A reset must have a specific duration, which is defined as

<duration>: <float> [<SI prefix>]s

e.g. 5.5ms or 100.0e-6s

Valid prefixes can be found in Table 5.2. After the reset the DUT boundary setup, which
is specified in ext setup section, is recovered.

5.3.3.2 int setup / tb setup

An internal setup can simply be applied via the statement

int_setup <label>

which is equal for test bench setup

tb_setup <label>

where the label is specified in section [int setup] or [tb setup].

58

5.3.3.3 wait

This statement is used to wait for specific duration or on events.

wait <duration> | <pin state> | <register value>

Examples:

wait 1.0 ms

wait 1.0e-3 s

wait gpio_pin = 3.3V

wait clk_pin > 1 MHz

wait sfr_reg < 0x1F

The duration specification of the wait statement is equal to the reset duration. Furthermore
it is possible to wait for two different events: either a pin state or a register value. For waiting
on events the subsequent compare operators are valid:

Compare operator Description
= equal
> greater than
< less than
>= greater and equal than
<= less and equal than

Table 5.5: Compare operators

A wait statement for a pin state is defined as:

wait <pin name> <compare op> <value> [<SI prefix>]<quantity>

Example:

wait gpio0 >= 3.2V

Table 5.6 shows valid pin state quantities to wait on.

Quantity Abbreviation
Volt V
Ampere A
Watt W
Volt-Ampere VA
Hertz Hz
Ohm Ohm
Farad F
Henry H
Decibel dB or dBm
Phase noise dBc/Hz

Table 5.6: Measurement quantities

The wait statement for a register value is defined as:

wait <register name> <compare operator> <compare value hex>

59

Example:

wait timer_0_count > 0x8A

5.3.3.4 stimuli

Stimuli can be applied to pin(s) via the statement

stimuli <label>

NOTE: How the pattern is applied and to which pins it is applied is defined within the
pattern file itself.

5.3.3.5 measure

The measure statement is one of the key elements of the sequence section, but is not mandatory.
This statement is used to define measuring on one or more pins and defined as

measure <PinToMeasure> <type of meas> [<variable>] [<duration|timeout>]

<PinToMeasure> = <pin name1>[; <pin name2>; <pin name3>; ...]

<type of measurement> = [SI prefix]<quantity>[<qualifier>]

<variable>: e.g. LV:R:var_name:1 (see section ’Variables’)

<duration|timeout>: e.g. 3.0 ms (equal to duration for wait command)

Examples:

measure out_pin V

measure pin1; pin2; pin3 mApp

measure f_out MHz 10ms

measure gpio_1 Vrms LV:M:voltage:2

The result of the measurement may be stored in a variable (var name) or is implicitly written
into the result file if no variable is specified. The optional arguments duration and timeout may
be used for frequency measurements. Valid SI prefixes, quantities and qualifiers are specified in
tables 5.2, 5.6 and 5.7. An additional measurement quantity is Pattern, which may be recorded
(abbreviation ’pat’).

5.3.3.6 operation

Since not every parameter can be measured within one test, operations on results of tests need
to be done. These are specified as

operation <Op1> <operator> <Op2>

60

Abbrev Description
p peak
pp peak to peak
dc mean
rms root mean square

d differential
d may be combined with

other qualifiers above

Table 5.7: Measurement qualifiers

Examples:

operation 01011V_outa -ii 01012V_outb

operation 100 /md nop

operation 02001I_out1 //mid 3.14

where the Op may be a test name, which need to be a valid test name out of the DV matrix
(see Section 5.2.2.1) or a constant value.

Tables 5.8 and 5.9 show valid operators and operands.

Abbrev. Description
i indirect
d direct
M the measurement taken in this test
M1 A previous measurement number
M2 A previous measurement number
K a constant (double number)
nop no operand or no operator

Table 5.8: Operator abbreviations

The operation result is always implicitly written to the result file, because very complex or
nested calculations should not be done within this sequence language.

61

Operator Op1 Op2 Result
/ii M1 M2 M1 / M2
/id M1 K M1 / K
/di K M2 K / M2
/mi M1 nop M / M1
/im M1 nop M1 / M
/md K nop M / K
/dm K nop K / M
//mid M1 K M / M1 / K
//mii M1 M2 M / M1 / M2
//imd M1 K M1 / M / K
//iim M1 M2 M1 / M2 / M

*ii M1 M2 M1 * M2
*id M1 K M1 * K
*di K M2 K * M2
*mi M1 nop M * M1
*im M1 nop M1 * M
*md K nop M * K
*dm K nop K * M

-ii M1 M2 M1 - M2
-id M1 K M1 - K
-di K M2 K - M2
-mi M1 nop M - M1
-im M1 nop M1 - M
-md K nop M - K
-dm K nop K - M

+ii M1 M2 M1 + M2
+id M1 K M1 + K
+di K M2 K + M2
+mi M1 nop M + M1
+im M1 nop M1 + M
+md K nop M + K
+dm K nop K + M

%ii M1 M2 (M1 - M2) / M2 * 100
%id M1 K (M1 - K) / K * 100
%di K M2 (K - M2) / M2 * 100
%mi M1 nop (M - M1) / M1 * 100
%im M1 nop (M1 - M) / M * 100
%md K nop (M - K) / K * 100
%dm K nop (K - M) / M * 100

Table 5.9: Measurement operations

62

5.3.3.7 read / write

The two commands read and write can be used for any type of memory. These commands take
three arguments, the communication channel (hardware interface e.g. UART, SPI, etc.), the
memory name and the according data or pattern file which depends on the memory type.

write <comm channel> <mem name> <data>|<pattern label> [<variable>]

data: byte list (space separated)

e.g. 0x00 0x01 0x02

read <comm channel> <mem name> <data> <var letter> <variable>

<comm channel>: SPI|UART|JLCC|SWI|3WI|...

<mem name>: APB|SFR|XDATA|CODE|JLCC| ...

<data>: hexadecimal raw data (e.g. FF 01 C8)

<pattern label>: label defined in [pattern] section

<variable>: e.g. LV:R:var_name:1 (see section ’Variables’)

NOTE: JLCC can be a communication channel as well as a memory type, the JLCC
memory may also be written via CPU.

Examples:

write SPI SFR B8 00

write SPI ABP 10 00 WW WW VV VV GV:W:var1:2 GV:V:var2:2

read UART ABP 0C 04 RR RR LV:R:psw:2

write JLCC JLCC pattern_label # label defined in [pattern] section

read JLCC JLCC pattern_label # the pattern file defines what to read

For each memory type the data has the following structure

<start address> <raw data>

where the size of the start address depends on the memory type and the underlying CPU
addressing scheme (e.g. 8-bit SFR; 16-bit APB). The raw data needs to be according to the
software protocol, which is product dependent. The format of the pattern file is described in
Section 5.2.4.5 or may be an Intel HEX file [11].

5.3.3.8 force/release

The force command is used to set a pin to a specific value, where the value need to have the
ext setup definition format (e.g. FV 3.3V MAX I 50mA). To recover the initial external setup
the release statement with the corresponding pin list can be used.

force <pin> <value>[;<pin> <value>;...] [duration]

release <pin>[;<pin>;...]

63

Examples:

force UVDD FV 1.8V MAX_I 20mA

force RVDD FV 3.3V MAX_I 50mA ; UVDD FV 1.8V MAX_I 20mA 3.0s

release UVDD

5.3.3.9 Firmware Related Commands

For products with an embedded CPU it might be useful to implement a firmware framework
for verification. The subsequent commands are defined to communicate with such a framework.
The communication itself is not discussed here, since this is not project independent.

The ping command should be used to check if the DUT is ’alive’. A timeout or a trial count
may be specified optionally. The result is stored into a variable.

cmd_ping <var_letter> <variable name> [<timeout>|<num trials>]

Examples:

cmd_ping RR GV:R:ping_var:1

cmd_ping RR GV:R:ping_var:1 10

The next four commands are used to call functions, where the first step is setting a function
input, if required. Here the data is depending on the required function. The function can be
called via its name, whereas the resolution from function name to function pointer needs to be
done by a project dependent abstraction layer. It is required that functions can be stopped,
which is necessary if the function just sends data in a loop as example. At last the function
output can be stored into a variable.

cmd_set_func_input <hex byte data>

cmd_get_func_output <var letter> <variable name>

cmd_call_function <function name>

cmd_stop_func

Examples:

cmd_set_func_input 03 00 01 01

cmd_get_func_output WW WW LV:W:out_var:2

cmd_call_fuction test_func

The DUT firmware framework status can be read via the cmd get status byte, while the
content of this byte is not defined in this document. Likewise, the OK and version data can be
read, but are not defined here (project dependent).

cmd_get_status_byte <var letter> <variable name>

cmd_get_ok_byte <var letter> <variable name>

cmd_get_version <var letter> <variable name>

Examples:

cmd_get_status_byte WW LV:W:status:1

cmd_get_ok_byte VV LV:V:ok_var:1

cmd_get_version UU UU LV:U:version:2

64

5.3.3.10 write result

Writing a result is either implicitly done within the measure or operation command or with the
write result command, which takes a variable name as optional arguments.

write_result [<var letter> <variable name>]

Examples:

write_result # result of measurements, operation or equal

write_result WW LV:W:result_var[4:12]:2

5.3.4 Variables

Within the test activities variables are possibly needed, which are defined as

GV:<letter>:<name>[<num>:<num>]:<bytes>

LV:<letter>:<name>[<num>:<num>]:<bytes>

<letter>: A capital letter, which is not used for hex representation

logic states nor ’G’ and ’L’ (used for variable definition GV,LV).

<name>: Variable name. Valid characters: [a-z0-9_]

<bytes>: The length of the variable, which is not limited to one byte.

Optional:

[<num>:<num>]: The bits may define just a part of a variable.

E.g. [3:0] for the lower nipple of a byte.

Examples:

read SFR register 0xB8 to RR (variable psw)

read SPI SFR B8 RR LV:R:psw:1

#write variable psw[3:0] to result file

write_result R LV:R:psw[3:0]:1

write global variable to APB register at address 0x0C00

write SPI APB 0C 00 TT TT TT TT GV:T:a_var:4

5.3.5 Grammar Definition

Since the sequence language defined above needs formal specification, which can be used for
checking sequence files, a CFG was developed.

“A context-free grammar consists of terminals, nonterminals, a start symbol and produc-
tions.” [5]

The terminals and nonterminals are not explicitly shown here. The start symbol is ’S’.

The subsequent tables 5.10, 5.11, 5.12, 5.13 and 5.14 show the CFG definition of the sequence
language.

65

S → header sec
info sec
int setup sec
[tb setup sec]
[pattern sec]
ext setup sec
sequence sec
END

header sec → HEADER SEC NAME
IP NAME ID
TN T NAME

info sec → INFO SEC NAME
int setup sec → INT SETUP SEC NAME

(LABEL [ID ID] ’FILE’ NEW LINE)+
tb setup sec → TB SETUP SEC NAME

(LABEL [ID ID] ’FILE’ NEW LINE)+
pattern sec → PATTERN SEC NAME

(LABEL ’FILE’ NEW LINE)+
ext setup sec → EXT SETUP SEC NAME

LABEL
sequence sec → SEQUENCE SEC NAME

(seq command NEW LINE)+
seq command → reset

| int setup
| tb setup
| wait
| stimuli
| measure
| operation
| write
| read
| force
| release
| write result
| fw ping
| fw set func in
| fw get func out
| fw call func
| fw stop func
| fw get status
| fw get ok
| fw get version

Table 5.10: Sequence language context free grammar rule set

66

reset → CMD RESET ID [EXT SETUP VALUE]
(SEMI COL ID EXT SETUP VALUE)* DURATION

int setup → CMD INT SETUP LABEL
tb setup → CMD TB SETUP LABEL
wait → CMD WAIT (DURATION | ID COMPARE OP

((NUM SI PREF QUANTITY)|HEX NUM))
stimuli → CMD STIMULI LABEL
measure → CMD MEASURE ID (SEMI COL ID)*

SI PREF QUANTITY QUALIFIER [VARIABLE] [DURATION]
operation → CMD OPERATION (T NAME|NUM) OPERATOR (T NAME|NUM|NOP)
write → CMD WRITE COM CHANNEL MEM NAME

[RW DATA] [LABEL] [VARIABLE+]
read → CMD READ COM CHANNEL MEM NAME RW DATA (VARIABLE)+
force → CMD FORCE ID EXT SETUP VALUE

(SEMI COL ID EXT SETUP VALUE)* [DURATION]
release → CMD RELEASE ID (SEMI COL ID)*
write result → CMD WRITE RES (RW DATA)* (VARIABLE)*
fw ping → CMD FW PING V LETTER+ VARIABLE [(DURATION|DIGIT+)]
fw set func in → CMD FW SET FUNC INPUT RW DATA
fw get func out → CMD FW GET FUNC OUTPUT (V LETTER)+ (VARIABLE)+
fw call func → CMD FW CALL FUNCTION ID
fw stop func → CMD FW STOP FUNCTION
fw get status → CMD FW GET STATUS BYTE (V LETTER)+ VARIABLE
fw get ok → CMD FW GET OK BYTE (V LETTER)+ VARIABLE
fw get version → CMD FW GET VERSION (V LETTER)+ VARIABLE

Table 5.11: Sequence language command rule set

HEADER SEC NAME → ’[header]’ NEW LINE
INFO SEC NAME → ’[info]’ NEW LINE
INT SETUP SEC NAME → ’[int setup]’ NEW LINE
TB SETUP SEC NAME → ’[tb setup]’ NEW LINE
PATTERN SEC NAME → ’[pattern]’ NEW LINE
EXT SETUP SEC NAME → ’[ext setup]’ NEW LINE
SEQUENCE SEC NAME → ’[sequence]’ NEW LINE

Table 5.12: Sequence language header terminals

67

CMD RESET → ’reset’
CMD WAIT → ’wait’
CMD INT SETUP → ’int setup’
CMD TB SETUP → ’tb setup’
CMD STIMULI → ’stimuli’
CMD MEASURE → ’measure’
CMD OPERATION → ’operation’
CMD READ → ’read’
CMD WRITE → ’write’
CMD FORCE → ’force’
CMD RELEASE → ’release’
CMD WRITE RES → ’write result’
CMD FW PING → ’cmd ping’
CMD FW SET FUNC INPUT → ’cmd set func input’
CMD FW GET FUNC OUTPUT → ’cmd get func output’
CMD FW CALL FUNCTION → ’cmd call function’
CMD FW STOP FUNCTION → ’cmd stop function’
CMD FW GET STATUS BYTE → ’cmd get status byte’
CMD FW GET OK BYTE → ’cmd get ok byte’
CMD FW GET VERSION → ’cmd get version’

Table 5.13: Sequence language command terminals

ID → ’[a− zA− Z][a− zA− Z0− 9] + (< [0− 9]+ >)?’
IP NAME → ’IP\sName :’
TN → ’Test\sName :’
T NAME → ’[0− 9][0− 9][0− 9][0− 9][0− 9][A− Z][a− z]+’
FILE → ’[a− zA− Z0− 9 \/ : .]+’
LABEL → ’[a− z][a− zA− Z0− 9]+’
NEW LINE → ’\r?\n’
SEMI COL → ’;’
NOP → ’nop’
END: → ’$’
DIGIT → ’[0− 9]’
HEX NUM → ’0x[0− 9A− Fa− f]+’
COM CHANNEL → ’[a− zA− Z][a− zA− Z0− 9]+’
MEM NAME → ’[a− zA− Z][a− zA− Z0− 9]+’
SI PREF → ’[PTGMkmunpfa]?’
QUALIFIER → ’(pp?|dc|rms)?(d)?’
QUANTITY → ’V A?|A|W |Hz|Ohm|F |H|dbc/Hz’
NUM → ’[+−]?[0− 9] + (.[0− 9]+)?(\s ∗ [eE][+−]?[0− 9]+)?’
COMPARE OP → ’(>=?| <=?| =)’
DURATION → NUM SI PREF ′\s+ s′

FV → ′FV \s+′ NUM ′\s+MAX I\s+′ NUM
FI → ′FI\s+′ NUM ′\s+MAX V \s+′ NUM
CONN TO → (′LC ′|′LR′|′LL′)′\s+′ NUM ′\s+ CONN TO\s+′ NUM
EXT SETUP VALUE → ′NC ′|FV |FI|CONN TO|′DCH ′|(′ARB′|′SINE′)′\s+′ ID
VARIABLE → ’[GL]V ′ : V LETTER : ID(′[′DIGIT+ : DIGIT+′]′)? : DIGIT+’
V LETTER → ’[H −KM − SU − Z]’
RW DATA → ’((HEX NUM HEX NUM])|(V LETTER V LETTER))

(\s+ ((HEX NUM HEX NUM)|(V LETTER V LETTER)))∗’
OPERATOR → ’((+| − | ∗ |%|/)(i[idm]|m[id]|d[im]))|(//(mi[id]|imd|iim))’

Table 5.14: Sequence language general terminals

68

5.4 Verification Automation Concept

Requirements of the generic verification platform are reproducibility and automation. Therefore
a detailed concept for automation was developed which guarantees implicitly that measurements
and simulations are reproducible. Furthermore the Test-spec data is checked to be correct which
decreases debug time at production test development. Figure 5.23 shows the concept which is
described subsequently.

Verification Platform Framework

Evaluation automation

d
e
v
ic
e
 s
e
tu
p
 d
a
ta

Hardware layer (PXI, temp chamber, IO, etc)

Environment

condition

Project - Device Setup

GUI

(optional)

env_cond

stream reg

JLCC APB

SFR

sweeps

HW Protocol

Sweep

impl.

Test

impl.

ext_setup

Result

log

Setup log

Log

(collector)

Tests

sequence

(int_setup name/

ext_setup name)

fw

sw / scripts

Analog sim

automation

csh

(run_sim)

<env>_plan.xls

Test_spec.xls

int_setup

ext_setup

patterns

User Interface

Temperature: Start: Stop: Step:

Execution plan

sweep params Responsible Meas SW link notes
00010F_xtal
00020I_total
00030I_sleep

Save setup

Report

Result vs. Limits

OK / NOK

1

4
3

2

5

x
y

Result

format

int_setups

Run info

XML file
Digital sim

automation

TCL

Ocean

script

SimulatorSimulator

Test benchTest bench

XML_interface

Current condition

Run

results

Stand

alone

usage

P
o
s
t

p
ro

c
e

s
s
in

g
DUT

1

2

8
5

3 4

99

9

return data

Test Device

setup

meas_datadevice_setup

XML reader

Measurement

handler

6

Cleanup

Humidity

setup

Temp

setup

...

...
HW Protocol

HW Protocol

HW Protocol

...
HW Protocol

station_setup.xml

7

Figure 5.23: Automation concept - see Appendix A

The components <env> plan.xls, test spec and tests repository are the common data storage
for all kinds of verification throughout a project. Content and structure of these components
can be found in Section 5.2.

User Interface The user of the verification automation software should not have to care about
test data, measurement software or suchlike. Therefore a user only needs to load a verification
plan (<env> plan.xls see Section 5.2.3) and select tests which need to be executed. Additional
data like environmental sweeps (temperature, humidity, etc.) or other parameter sweeps (e.g.
power supply sweep) may be specified. Environmental sweeps may be done by automation
software, but this can not be guaranteed especially for simulation. Parametric sweeps need to
be implemented in test software anyway, since this parameters are product dependent. This
implies that specified sweeps may be ignored if they are not implemented. The selected tests

69

and appropriate data is passed to Verification Platform Framework (Mark (1) in Figure 5.23),
where the test name and the link to measurement software are obligatory items.

Verification Platform Framework The main tasks of the framework are collecting and con-
verting data out of the common storage into appropriate formats on one hand and automation
of test execution on the other. For simulation the task is mostly automation, which is done by
sequentially calling external software with options, where the software link is passed from User
Interface. Since simulation is finished before the test-spec is created no data needs to be read
from it.

For evaluation, tests and according data need to be passed to evaluation automation soft-
ware. The interface defined between the verification platform framework and the evaluation
automation (2) is described in Section 5.4.1.1 in detail.

The optional Project - Device setup GUI needs to be created for each project and can be
used for debug and bring-up purposes. This GUI is not related to the verification automation
concept.

Simulation automation For digital as well as analogue simulation, scripts need to be imple-
mented which are callable from Verification Platform Framework. This is Csh on the digital
side and ocean script for analogue simulation. These scripts are not discussed in this document,
because they are project dependent (test implementation).

Evaluation automation The evaluation automation software takes as input the XML inter-
face, which includes all test data required for evaluation. Based on this data the measurement
handler sequentially executes all tests. The second input for software, is the station setup,
which describes the available measurement equipment (see Section 5.4.1.2) and its connections.

Environmental condition is project independent and therefore controlled by the measure-
ment handler.

Device setup needs to be implemented once for each project. Device setup includes DUT
internal setup as well as TB setup in software and hardware protocols.

Tests For each test an implementation has to be created using any programming lan-
guage as desired. The implementation needs to be callable by the measurement handler. The
implementation needs to include the test activities (described sequence file) and the result for-
matting. Optionally parametric sweeps may be implemented here, which can be specified in
the eval plan or by the user.

Hardware layer hides measurement equipment from test implementation, which should gain
a high degree of exchangeability of equipment where possible.

Result and setup log All results need to be stored in the results log and setup log (results
directory structure see Section 5.2.5 and Figure 5.3).

70

5.4.1 Verification Platform Framework

5.4.1.1 XML Interface Specification

The XML interface contains all test data needed for evaluation. Since this XML interface needs
to be checkable against a XML Schema Definition (XSD), created data needs to be a valid XML
document. Therefore the interface content is embedded in the subsequent tag.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<lot_run>

.

.

.

</lot_run>

Inside this lot run block the structure includes the following items.

• Run information

• Environmental conditions

• Measurement(s)

The XML interface needs to have one run information and one environmental condition
element, but there is no limitation for measurements.

Run information The run info XML element is used for documentation purposes as well as
for common information like base paths. This is required for reproducibility of measurement
results. Parts of this information are also stored in the measurement result files.

<run_info>

<lot_id>xxx.yyyy</lot_id>

<time_stamp>YYYYMMDDhhmmss</time_stamp>

<responsible>xyz</responsible>

<board>

<name>eval_board</name>

<version>v1.0</version>

<fpga_name>eval_fpga</fpga_name>

<fpga_version>v1.0</fpga_version>

</board>

<meas_setup>meas_setup_1</meas_setup>

<sw_link_root> path to measurements </sw_link_root>

<test_spec>

<path> path to test spec </path>

<version> path to test spec </version>

</test_spec>

<firmware_framework>

<name>gvp_fw</name>

<version>v1.0.0</version>

</firmware_framework>

</run_info>

71

All elements except firmware framework (not all products have an embedded processor) are
mandatory within the run info section.

Environmental conditions This section describes the conditions all tests need to run through.
Within this context environmental conditions are air temperature, air pressure, humidity. These
conditions are swept through all values of a specified list or an interval.

<env_cond_sweep>

<sweep id="0">

<name>Temperature</name>

<type>list</type>

<values type="t" unit="C">-40;25;85</values>

</sweep>

<sweep id="1">

<name>Temperature</name>

<type>interval</type>

<values type="t" unit="C">-40;85;5</values>

</sweep>

</env_cond_sweep>

The first element shows a list of temperatures, the second element specifies the identical
temperature range but a step size of five degree.

Measurement section The measurement element contains the information for a single test.
The measurement tag has an attribute called name, which needs to be equal to the test name
defined in the DV Matrix (see Section 5.2.2.1). The measurement element has a device setup
(optional) and a meas data element, which are defined in detail below.

<measurement name="00010V_sup">

<device_setup>

.

.

.

</device_setup>

<meas_data>

.

.

.

</meas_data>

</measurement>

Device setup The device setup includes the initial setup for a test, which includes the setup
of the DUT (internal setup - int setup) as well as the configuration of the measurement TB.
The device setup are either streams or registers (embedded processor registers).

<device_setup>

<streams>

<JLCC>

<chain name="chain_name1__00010-0">

<bit_stream>00000001011010001001000</bit_stream>

<mux>011</mux>

72

</chain>

<chain name="chain_name2__00010-1">

<bit_stream>0000000000100</bit_stream>

<mux>110;0110</mux>

</chain>

</JLCC>

</streams>

<registers>

<SFR>

<reg>

<address>0x8B</address>

<value>0x00</value>

</reg>

</SFR>

</register>

</device_setup>

Streams are separated by the type of configuration interface (e.g. JLCC). Within the type
element chains are defined with the name as attribute. The bit stream defines the data, where
the left most bit is sent first to the corresponding device. The mux element defines the setup
for possibly used stream multiplexer(s).

Registers are simply specified by an address/value pair and also differentiated by the type
of register (e.g. SFR, APB).

The order from top to bottom of device setup defines the sequence of the configuration. In
the example above streams are processed before registers and ’chain name1 00010-0’ before
’chain name2 00010-1’.

73

Measurement data Within this XML element the sw link element is mandatory, which is the
path to the measurement software relative to sw link root. This measurement software is the
implementation of the test (described in sequence file) and may not need additional information.

Element Description
pins to measure DUT pins that need to be measured.
ext setup Setup at DUT boundary (see Section 5.2.4.3).

The attributes ’name’ and ’num’ of the ’pin’ element identify the
pin at DUT boundary. The ’type’ attribute specifies the
kind of pin (e.g. FV - force voltage), where the values
and limitations are specified by value tags.

int setup Possibly the internal setup changes within the test implementation
(for example a parameter sweep of a CPU register)
This internal setup could be referenced by the implementation
via the attribute ’id’.

sweep Within a single test it is possible to implement external or
internal setup sweeps (e.g. supply voltage, register values, etc.).
These are defined within this element, where either a list or
interval is specified equal to environmental conditions
(see example below).

operation A test may consist of an operation on the result of other tests only
(e.g. differential voltages). Possible operations are specified in
Table 5.9.
’op1’ and ’op2’ need to be valid test names (defined in DV matrix).

stimuli ref This element includes needed stimuli pattern file paths, which are
referenced by the ’name’ attribute.

Table 5.15: Measurement elements description

<meas_data>

<sw_link>’path to test implementation’</sw_link>

<pins_to_measure>

<pin>gpio1_5</pin>

</pins_to_measure>

<ext_setup name="ext_setup__A">

<pin name="vdd" type="FV">

<value type="FV" unit="V">3.3</value>

<value type="MAX_I" unit="mA">50</value>

</pin>

<pin name="iovdd" type="FV">

<value type="FV" unit="V">3.3</value>

<value type="MAX_I" unit="mA">50</value>

</pin>

</ext_setup>

<int_setup id="0"> <!-- id is running number -->

.

.

.

74

</int_setup>

<sweep type="int" id="0">

<int_setup id="0">

<registers>

<SFR>

<reg>

<address>0x8B</address>

<type>list</type>

<value>0x00; 0x01; 0x02; 0x04; 0x08 </value>

</reg>

</SFR>

</registers>

</int_setup>

</sweep>

<operation>

<opcode>-ii</opcode>

<op1>00011V_sup_n</op1>

<op2>00012V_sup_p</op2>

</operation>

<stimuli_ref>

<stimuli name="Stimuli__00010-0">

<path>’path to stimuli file’</path>

</stimuli>

</stimuli_ref>

</meas_data>

5.4.1.2 XML Station Setup

Similar to the XML interface the station setup also needs to be a valid XML file to be XSD
checkable. Therefore all elements are embedded in following the body.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<setup version="1.0">

.

.

.

</setup>

Station The stations are differentiated by the type of their connection to the measurement
host. A station has slots which represent measurement equipment. A test implementation (mea-
surement software) may reference the described measurement equipment by the alias specified
in the XML slot element (e.g. Timing01). The ’type’ tag needs to be the the real name of the
measurement equipment, which could be read out by software or from the equipment display.
Below examples for specified stations can be found.

<station type="PXI" id="LB02-PXI-002">

<slot id="2" type="TIMING">

<required>no</required>

<name>PXI1Slot2</name>

<alias>Timing01</alias>

<type>NI-5122</type>

75

</slot>

<slot id="3" type="AWG">

<required>False</required>

<name>PXI1Slot3</name>

<alias>AWG01</alias>

<type>NI-5421</type>

</slot>

</station>

A PXI station may have an additional attribute ’id’ which identifies the equipment uniquely,
this is foreseen for future purposes to reduce to one station setup file (for all products), where
just the ’required’ tag needs to be changed.

<station type="GPIB">

<slot id="07" type="Power Supply">

<required>yes</required>

<name>PS01</name>

<alias>PS01</alias>

<type>Agilent E3631A</type>

</slot>

<slot id="9" type="THC">

<required>yes</required>

<name>THC01</name>

<alias>THC01</alias>

<type>TP 04310</type>

</slot>

</station>

<station type="USB">

<slot id="01" type="FTDI">

<required>yes</required>

<name>FTPOE1B9A</name>

<alias>SPI</alias>

<type>FT2032LM</type>

</slot>

<slot id="02" type="FTDI">

<required>yes</required>

<name>FTPODKR5A</name>

<alias>JLCC</alias>

<type>FT2032LM</type>

</slot>

</station>

76

Chapter 6

Results and Evaluation

The introduction of a generic verification platform offers improvements and opportunities, but
also implicates risks. This section provides an overview of achievements, drawbacks and risks
of the generic verification platform. Furthermore the impact to SDs IC verification process is
discussed.

6.1 Improvements

The major improvements by introducing the generic verification platform are the tremendous
increase of software reuse, the enhancement of verification data quality and the high increase
of efficiency which saves time and costs.

In the course of the status quo analysis nearly no reuse of evaluation software could be
observed. With the implementation of the Verification Automation Concept (see Section 5.4)
the reuse can be increased by a multiple. A concrete percentage rate can not be provided,
since the analysis of status quo has not been done in that high detail for evaluation software
reuse. Furthermore, there is not enough empirical data about verification software reuse of
the provided Verification Automation Concept. A high reuse implies also an improvement of
software quality, performance and functionality, since it will be used within different projects
with individual requirements. Verification software like laboratory equipment drivers, will be
reviewed by engineers which may uncovers errors. The observed multiple implementations of
equal software can also be reduced to a minimum.

The considerable increase of reuse is also supported by the defined data structures and file
formats. Supporting software like report generation or results analysis is possibly implemented
in the future, which may be used by many projects.

Because of the common data storage, verification data is less error-prone. Equal input
data is used for all verification environments, which reduces debug time and improves quality
of verification data. With the specification of data formats and structures, two of the major
requirements, comparability and transferability, can be provided. Furthermore, the verification
data structure and formats improve efficiency of engineers at the specification of TCs as well
as for the search for previous results. The common use of the generic verification platform may

77

also improves the quality of project modules (IPs) by the enhancement of data quality and the
reuse of the data within different project. Furthermore different requirements to modules may
improve the module itself as well as its documentation.

The defined DV Matrix provides a summary of the used verification data and results. Such
a document has not been used at all within the previous verification process. The use of the
DV Matrix offers an overview of the verification process and makes the management easier for
project leaders. It may also be used for the acceptance procedure with customers.

6.2 Risks

As already mentioned above the major achievement of the specified structures and formats
is the transferability of verification data, which may also involves some risks. If the equal
verification data is used by all verification environments, equal results may be produced. These
equal results do not guarantee that the executed test is correct and proves the achievement
of customer requirements as example. It is likely that the quality of test data is increased,
but this does not imply that the quality of the DUT can be increased. Since all verification
environments use the equal data, probably less errors of the DUT are uncovered. Therefore it
is essential that the saved time of test data debugging is used to check transfered data against
description and requirements. These checks may be done quicker than the debugging, which
will save costs. Existing verification software will need adoption to the specified data structures
and formats, which may cause debug time.

The use of automatic software may lead engineers to loose their sense of responsibility
for executed tests. By the high reuse of verification software the feeling of responsibility will
decrease over time and may also end in a loss of verification accuracy. Engineers may get a
feeling of “That’ll go off all right” if verification software has already been used within other
projects. But the reused software may not cover the requirements of the currently needed
verification software.

The possibly loss of product quality and the decreasing sense of responsibility of engineers
needs to be managed by project team leaders or group leaders.

6.3 Feedback

The first implementation of the Verification Automation Concept promises a high increase
in efficiency in evaluation test execution. This can be enhanced by an improvement of the
implementation performance. Because of the hierarchical design, which provides a very generic
usage, the performance does not satisfy engineers.

The DV Matrix has been used for two new projects and became a SD standard document.
The DV Matrix has been inspected by SDs quality and product engineering departments who
decided to accept the DV Matrix as standard document for all new projects. Furthermore a
very promising feedback of users can be observed.

78

The specified data structures and file formats were accepted by the users, because of the
promising increase of efficiency and reuse of verification software.

6.4 Impact

The use of the generic verification platform has many advantages. The major requirements
are fulfilled which are comparability, reproducibility, transferability and automation. This is a
tremendous improvement to the previous verification process. Since only parts of the verification
platform are used up to now, the overall impact to SDs IC verification can not be estimated. To
give a concrete percentage rate at least five projects need to implement the specified verification
platform and use and improve the created software. With the empirical data of the implemented
projects, the weaknesses of the generic verification platform may be uncovered and resolved. Up
to now, no concrete issues have been uncovered. Possible drawbacks and risks of the verification
platform are discussed in Section 6.2.

79

Chapter 7

Conclusion

The definition of a generic verification platform has been successfully completed. The verifi-
cation platform provides the required generic, well-defined verification approach. The defined
structures and file formats guarantee the required reproducibility, transferability and compara-
bility. This generic approach will lead to a high degree of reusability of verification software.
The developed automation concept provides an efficient, time and cost saving approach to
verification.

SD has implemented the general specification of the generic verification platform for two
new LF communication products. For these projects the full directory structure has been
implemented as well as the design verification matrix (DV matrix). The matrix has only been
filled up to the verification parameter definition, since the design is currently in production.
For this reason no conclusion about parameter correlation can be done.

The automation concept is implemented in LabVIEW
TM

for an existing project SD340 (mul-
tichannel RF transceiver), where the concept has been inspected and satisfies the requirements.
Therefore the automation framework is also used for the two new LF communication products.
The considerable effort put into the definition of the generic verification platform has turned
out to pay off, since a very high reuse can be observed within the three projects. The quality of
the Test-spec spreadsheet has been improved by rechecking it via the laboratory automation,
which was very valuable for SD340 production test issues solving.

The future work for this project is on one hand the development of supportive tools like
structure checking scripts, a report generator and software for increasing usability and user
acceptance. To raise the definition of the generic verification platform to a higher level of
maturity, the implementation of IEEE standard 1671 (ATML) may be considered which will
increase the detailedness of test data if this is needed. The use of the generic verification
platform should be mandatory for all new projects, since this will increase reuse and efficiency
considerably. It is essential, that the use of a standardized verification platform does not release
engineers from their responsibility of an accurate and faithful verification (test definition) of
their design and evaluation.

80

Bibliography

[1] IEEE Standards Coordinating Committee 20. IEEE standard for automatic test markup
language (ATML) for exchanging automatic test equipment and test information via XML.
Technical report, IEEE, 3 Park Avenue, New York, NY 10016-5997, USA, 2009.

[2] Mellik A. Automated XML-based test modelling for mixed-signal circuits. Technical
report, Department of Electronics, TTU, Ehitajate tee 5, 19086 Tallinn, Estonia, 2006.

[3] SensorDynamics AG. QM25 - device evaluation and golden sample preparation. 2009.

[4] SensorDynamics AG. Project management handbook. 2010.

[5] Alfred V. Aho, Monica Lam, Ravi Sethi, and Ullman Jeffrey D. Compilers - Principles,
Techniques & Tools. Pearson Education, Inc., second edition, 2007.

[6] Alfredo Benso, Stefano Di Carlo, Paolo Prinetto, and Yervant Zorian. A hierarchical
infrastructure for SoC test management. In IEEE Design & Test of Computers, pages
32–39, 2003.

[7] Kurt Binder and Dieter W. Heermann. Monte Carlo Simulation in Statistical Physics.
Springer-Verlag Berlin Heidelberg New York, 4th edition, 2002.

[8] Cadence. Virtuoso specification driven environment. http://www.cadence.com/rl/

Resources/datasheets/VirtuosoSpecDriven_ds.pdf, February 2010.

[9] Matthew H. Cahn and Mark F. Russo. Python and automated laboratory system control.
Technical report, The Association for Laboratory Automation, 2007.

[10] Eugene Charniak. Parsing with context-free grammars and word statistics. Technical
report, Department of Computer Science, Brown University, Rhode Island, 1995.

[11] Intel Corporation. Hexadecimal Object File Format Specification, A edition, 1988.

[12] Automotive Electronics Council. AEC - Q003 Guidelines for Characterizing the Electrical
Performance of Integrated Circuit Products, July 2001.

[13] Automotive Electronics Council. AEC - Q100-009 Electrical Distribution Assessment, B
edition, August 2007.

[14] Jonathan David. Efficient functional verification for mixed signal IP. In Behavioral Mod-
eling and Simulation Conference, pages 53 – 58, 2004.

[15] Hiren D. Desai. Test case management system (TCMS). Technical report, Research
Engineer, Science and Technology, BellSouth Telecommunications Inc, Atlanta, GA, 1994.

81

http://www.cadence.com/rl/Resources/datasheets/VirtuosoSpecDriven_ds.pdf
http://www.cadence.com/rl/Resources/datasheets/VirtuosoSpecDriven_ds.pdf

[16] J. Edvardsson. A survey on automatic test data generation. In Proceedings of the 2nd
Conference on Computer Science and Engineering, pages 21–28, 1999.

[17] Chance Elliott, Vipin Vijayakumar, Wesley Zink, and Richard Hansen. National Instru-
ments LabVIEW: A programming environment for laboratory automation and measure-
ment. Technical report, The Association for Laboratory Automation, 2007.

[18] Gregor Erbach. Tools for Grammar Engineering. http://acl.ldc.upenn.edu/A/A92/

A92-1039.pdf, April 2010.

[19] Joseph A. Goguen and Charlotte Linde. Techniques for requirements elicitation, 1993.

[20] Chris Gorringe, Teresa Lopes, and Dan Pleasant. ATML capabilities explained. Technical
report, EADS Test & Services, Teradyne Inc., Agilent Technologies Inc., 2007.

[21] Grid-Tools. How do grid-tools use data creation and data generation techniques? http:

//www.grid-tools.com/solutions/test_data_creation.php, March 2010.

[22] D. Grune and Ceriel J.H. Jacobs. Parsing techniques a practical guide. Ellis Horwood
Limited http://citeseer.ist.psu.edu/grune90parsing.html, Chichester, England, 1990.

[23] IEEE. IEEE guide to software requirements specification, 1993. Std 830-1993.

[24] National Instruments. Introducing NI LabVIEW 2009. http://www.ni.com/labview/,
November 2009.

[25] National Instruments. What is NI TestStand. http://zone.ni.com/devzone/cda/tut/p/

id/6073, March 2010.

[26] Samuel Kotz and Norman L. Johnson. Process Capability Indices. Chapman & Hall, first
edition, 1993.

[27] Donn Jr. Le Vie. Writing software requirements specification. http://www.techwr-l.com/

techwhirl/magazine/writing/softwarerequirementspecs.html, 2009.

[28] P. Lu, D. Glaser, G. Uygur, S. Weichslgartner, K. Helmreich, and A. Lechner. Mixed-Signal
Test Development using Open Standard Modeling and Description Languages. Techni-
cal report, Friedrich-Alexander-University Erlangen-Nuremberg, Paul-Gordan-Str 5, 91052
Erlangen, Germany.

[29] Ralf Lumel. Grammar Testing. Springer Berlin/Heidelberg, 2001.

[30] MathWorks. Systemtest 2.5. http://www.mathworks.com/products/systemtest/, January
2010.

[31] Ian McSweeney and Aristides Garces. Software requirements specifications document,
2004.

[32] MentorGraphics. IC verification and signoff using calibre. http://www.mentor.com/

products/ic_nanometer_design/verification-signoff/, January 2010.

[33] Sylnovie Merchant. The pieces problem-solving framework and checklist. Technical report,
Department of Management Information Science. California State University, Sacramento,
http://www.csus.edu/indiv/m/merchants/pieces.pdf, December 2009.

82

http://acl.ldc.upenn.edu/A/A92/A92-1039.pdf
http://acl.ldc.upenn.edu/A/A92/A92-1039.pdf
http://www.grid-tools.com/solutions/test_data_creation.php
http://www.grid-tools.com/solutions/test_data_creation.php
http://citeseer.ist.psu.edu/grune90parsing.html
http://www.ni.com/labview/
http://zone.ni.com/devzone/cda/tut/p/id/6073
http://zone.ni.com/devzone/cda/tut/p/id/6073
http://www.techwr-l.com/techwhirl/magazine/writing/softwarerequirementspecs.html
http://www.techwr-l.com/techwhirl/magazine/writing/softwarerequirementspecs.html
http://www.mathworks.com/products/systemtest/
http://www.mentor.com/products/ic_nanometer_design/verification-signoff/
http://www.mentor.com/products/ic_nanometer_design/verification-signoff/
http://www.csus.edu/indiv/m/merchants/pieces.pdf

[34] Christopher Z. Mooney. Monte carlo simulation. Sage publications, Inc., Thousand Oaks,
California, 116th edition, 1997.

[35] S. Raghavan, G. Zelesnik, and G. Ford. Lecture notes on requirements elicitation. Edu-
cational Materials. CMU/SEI-94-EM-10. Software Engineering Institute. Carnegie Mellon
University, Pittsburgh, PA, 15213, 1994.

[36] Mike Seavey and Tamara Einspanjer. ATML: What “it” is, what “it” is not, and an
example of how “it” can be applied. Technical report, Northrop Grumman Corporation,
Defensive Systems Division, 600 Hicks Road, Rolling Meadows, Illinois 60008-1098, 2005.

[37] SiliconFarEast.com. Gauge repeatability and reproducibility (GR&R). http://www.

siliconfareast.com/grr.htm, April 2010.

[38] Christophe Strobbe. Test Case Description Language 2.0: Specification and guide.
Katholieke Universiteit Leuven, http://www.bentoweb.org/refs/TCDL2.0.html, March
2010.

[39] Synopsis. Discovery verification platform. http://www.synopsys.com/Solutions/

EndSolutions/DiscoveryVerification/Pages/default.aspx, January 2010.

[40] Cadence Design Systems. Virtuoso Specification-driven Envrionment User Guide, January
2006.

[41] Gordon F. Taylor and Steven M. Blumenau. A pragmatic test data management system.
In International test conference, pages 338–344, 300 Baker Ave, Concord MA 01742-2174,
USA, 1991.

[42] VI Technology. Enterprise your test. http://www.vi-tech.com/solutions/

enterprisetestsolutions/default.aspx, March 2010.

[43] Optimal Test. Test management solutions. http://www.optimaltest.com/, February 2010.

[44] Kevin Thompson and Ladd Williamson. Hardware verification with the unified modeling
language and vera. Technical report, Cypress Semiconductor, 2008.

[45] Jane Wood and Denise Silver. Joint Application Development. Wiley, New York, 1995.
ISBN 0471042994.

83

http://www.siliconfareast.com/grr.htm
http://www.siliconfareast.com/grr.htm
http://www.bentoweb.org/refs/TCDL2.0.html
http://www.synopsys.com/Solutions/EndSolutions/DiscoveryVerification/Pages/default.aspx
http://www.synopsys.com/Solutions/EndSolutions/DiscoveryVerification/Pages/default.aspx
http://www.vi-tech.com/solutions/enterprisetestsolutions/default.aspx
http://www.vi-tech.com/solutions/enterprisetestsolutions/default.aspx
http://www.optimaltest.com/

Appendix A

Verification Automation Concept

84

Verification Platform Framework

Evaluation automation

d
e
v
ic
e
 s
e
tu
p
 d
a
ta

Hardware layer (PXI, temp chamber, IO, etc)

Environment

condition

Project - Device Setup

GUI

(optional)

env_cond

stream reg

JLCC APB

SFR

sweeps

HW Protocol

Sweep

impl.

Test

impl.

ext_setup

Result

log

Setup log

Log

(collector)

Tests

sequence

(int_setup name/

ext_setup name)

fw

sw / scripts

Analog sim

automation

csh

(run_sim)

<env>_plan.xls

Test_spec.xls

int_setup

ext_setup

patterns

User Interface

Temperature: Start: Stop: Step:

Execution plan

sweep params Responsible Meas SW link notes
00010F_xtal
00020I_total
00030I_sleep

Save setup

Report

Result vs. Limits

OK / NOK

1

4
3

2

5

x

y

Result

format

int_setups

Run info

XML file
Digital sim

automation

TCL

Ocean

script

SimulatorSimulator

Test benchTest bench

XML_interface

Current condition

Run

results

Stand

alone

usage

P
o
s
t

p
ro

c
e

s
s
in

g

DUT

1

2

8
5

3 4

99

9

return data

Test Device

setup

meas_datadevice_setup

XML reader

Measurement

handler

6

Cleanup

Humidity

setup

Temp

setup

...

...
HW Protocol

HW Protocol

HW Protocol

...
HW Protocol

station_setup.xml

7

Figure A.1: Automation concept

85

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	1 Introduction
	1.1 Scope - Verification Platform
	1.2 Verification Environments

	2 Requirements
	2.1 Requirements Elicitation
	2.1.1 Elicitation Techniques
	2.1.2 Technique Selection

	2.2 Concept Definition Requirements
	2.2.1 Data Structures

	2.3 Software
	2.3.1 Simulation
	2.3.2 Evaluation
	2.3.3 Production Test

	3 Status quo and Analysis
	3.1 Verification Environments
	3.1.1 Digital Simulation
	3.1.2 Analog Simulation
	3.1.3 Evaluation
	3.1.4 Production Test / Characterization
	3.1.5 Conclusion

	3.2 Data
	3.3 Work Flow

	4 Technology Overview
	4.1 Verification Platform
	4.2 Test Case/Data Management
	4.3 Test Description Languages
	4.4 Measurement Automation

	5 Specification
	5.1 Platform Concept
	5.1.1 Overview
	5.1.2 Description of Components
	5.1.3 Capabilities
	5.1.4 Boundaries

	5.2 Directory Structure and File Formats
	5.2.1 Embedding into IP Directory Structure
	5.2.2 Specs
	5.2.3 Plans
	5.2.4 Tests Content
	5.2.5 Results Structure
	5.2.6 Reports
	5.2.7 Verification Software

	5.3 Test Sequence Language
	5.3.1 Scope
	5.3.2 Test Data Definition
	5.3.3 Sequence Commands
	5.3.4 Variables
	5.3.5 Grammar Definition

	5.4 Verification Automation Concept
	5.4.1 Verification Platform Framework

	6 Results and Evaluation
	6.1 Improvements
	6.2 Risks
	6.3 Feedback
	6.4 Impact

	7 Conclusion
	Bibliography
	A Verification Automation Concept

