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Abstract - Reservoir computing principles - and in particular - Echo State Networks (ESNs)

have been shown to work well for many different applications, such as chaotic time series

prediction, speech recognition or adaptive control. However, in some cases standard ESNs

show only poor learning performance. For this reason, several model extensions to classical

ESN learning have been proposed in the literature, such as filter neurons or tunable delay &

sum readouts, to name just a few.

Furthermore, ESN learning algorithms require appropriate regularization techniques, espe-

cially if large reservoirs are used. Clearly, ESN learning algorithms, which can also deal with

tunable model extensions as well as an automatic regularization would be of general interest.

However, jointly solving both requirements turns out to be analytically complex and thus,

this work utilizes the variational Bayesian (VB) inference framework, to obtain approximate

learning algorithms for three different ESN models. Using real-world handwriting trajecto-

ries, this thesis tries to find out, if and how the VB algorithms can improve ESN learning

performance.





Kurzfassung - Es wurde bereits mehrfach gezeigt, dass zahlreiche komplizierte Probleme, wie

beispielsweise die Vorhersage chaotischer Systeme, Spracherkennung oder Adaptive Regelung

mithilfe von Reservoir Computing Verfahren - und im Speziellen Echo State Networks (ESNs)

- gelöst werden können. Tatsächlich kann es jedoch in manchen Fällen vorkommen, dass

der klassische ESN-Ansatz nur wenig zufriedenstellende Ergebnisse liefert. Als Abhilfe wur-

den einige Erweiterungen zum Standard ESN-Modell, wie zum Beispiel Filterneuronen oder

trainierbare Delay & Sum Readouts vorgeschlagen.

Besonders wenn große Reservoirs zum Einsatz kommen, stellt sich zusätzlich heraus, dass

Regularisierung eine zentrale Rolle für erfolgreiches Lernen mithilfe von ESNs spielt. Es liegt

auf der Hand, dass Methoden, welche sowohl eine automatische Regularisierung als auch

das Lernen von erweiterten Modellparametern unterstützen, von besonders großem Interesse

sind. Unglücklicherweise sind derartige kombinierte Lernprobleme analytisch komplex, we-

shalb in dieser Arbeit approximative ESN - Lernalgorithmen demonstriert werden, die auf

dem Variational Bayesian (VB) Inference Konzept basieren. Des Weiteren soll am Beispiel

von Trajektorien-basierter Handschrifterkennung herausgefunden werden, ob und wie ESNs

durch die vorgestellten VB-Algorithmen verbessert werden können.
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Chapter 1

Introduction

In the past decades machine learning and probabilistic inference principles have advanced to

one of the most important research areas within the field of natural science and engineering.

A vast number of modern developments utilize intelligent or adaptive methods, such as cel-

lular phones, Internet search engines or navigation systems - to name just a few. Previous

research has already found lots of highly developed and useful methods, which can be used

for solving complex learning and inference tasks. However, many practical problems still

suffer from computational complexity or are mathematically intractable, so that fundamental

research in these fields is still of great interest.

Even if both learning and inference problems can be described in a similar manner within the

common framework of probability theory, a general distinction between them makes sense.

While machine learning typically aims to find models with a specific behavior based on any

synthetic or real world data, probabilistic inference deals with estimating parameters of a

well-known model, based on noisy observations. It becomes clear that in general, machine

learning is somehow more artificial than the problem of estimating quantities. In probabilistic

inference, parameters often find physical or mathematical interpretations, which is reflected

by the underlying model. Thus, estimating parameters is always limited to the quality of the

corresponding model. In contrast, complex learning algorithms are often based on so-called

black-box mechanisms, where model parameters do not necessarily need an interpretation

and are simply tuned such as to meet an arbitrary optimality criterion (training). In general,

such methods are used, if only little structural knowledge of the underlying system is avail-

able. For a good and detailed introduction into basic machine learning and inference theory,

the reader should refer to [1] and [2].

Neural networks (NNs), which can be considered as typical black-box models, gained a lot

of popularity as they were shown to work well for several practical regression and classifica-

tion problems, such as speech and phoneme recognition [3, 4], pattern classification [5] or

1



2 CHAPTER 1. INTRODUCTION

adaptive control [6]. [5, 1].

In its most simple form, the neural network does not have any recursive dependencies be-

tween any of the neurons (feed forward neural network, FFNN, [5]). More complex network

structures, such as the family of recurrent neural networks (RNNs), have recursive connec-

tions between the neurons (i.e. loops). As a result, when using general RNNs, the resulting

input-output relations are described by nonlinear dynamical functions, which are known to

be difficult from a mathematical point of view. Especially network training turns out to be

essentially more complex as in the simpler FFNN case. [7, 8]

1.1 Reservoir Computing

The fact that RNN training is a demanding problem, led to a novel neural information pro-

cessing concept called reservoir computing, which was independently explored in [9] (Echo

State Networks, ESNs) and [10] (Liquid State Machines, LSMs). In both cases RNNs are

used to create a large number of nonlinear dynamical base functions, given a certain input.

An additional output stage then constructs the output as a combination of these base func-

tions. The key difference to classical RNNs is that the complex problem of learning recurrent

neuron weights is omitted and only the weights in the output stage are trained. In the ESN

case, where the output is computed as a linear combination of the echo states followed by a

static nonlinearity, the network can be trained by solving a simple least squares problem1. A

more detailed overview about reservoir computing can be found in [11], covering liquid - and

echo state principles as well as other reservoir based RNN learning concepts. In the following

chapters, this thesis will focus on ESN-type reservoir computing principles. [9, 10, 11]

It has been shown that reservoir computing principles can handle many complex machine

learning problems such as nonlinear / chaotic time series prediction [9], adaptive nonlinear

system identification [12] or symbol classification tasks [13]. Additionally, Maass et al. have

proved that LSMs are in theory universal approximators under some conditions (see [10]).

However, all reservoir computing concepts have in common that the learning performance

strongly depends on the underlying reservoir, which is typically constructed randomly or by

applying heuristics [9, 11].

An important property of any nonlinear dynamical system is its memory capacity, quanti-

fying the influence of the input history on the systems output at a certain time instance.

A theoretical analysis of the standard ESN’s short term memory capacity is given in [14].

Furthermore, it was shown in [15] that the effective memory capacity for a given ESN can be

successfully extended by introducing additional time delays in the ESN’s output stage (i.e.

ESNs with delay & sum readouts). The authors show that several learning problems - such as

the prediction of the Mackey-Glass system - can be significantly improved by also optimizing

these time delays, for instance by applying the expectation-maximization (EM) algorithm

1Additionally, the least squares solution requires the static nonlinearity to be invertible.
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[16]. Chapter 4 will also use ESNs with tunable delay & sum readouts as an extension to

standard ESN learning.

While the training of ESNs can also be considered as a deterministic optimization problem,

applying the EM algorithm requires a well-defined statistical environment. For that reason

it sometimes might be useful, to reformulate a learning problem in terms of estimating the

model parameters such as to approximate the desired behavior as close as possible. In the

following chapters, this work will concentrate on developing Bayesian inference algorithms

for reservoir computing principles, so an adoption of the estimation-type perspective on the

general problem of learning seems natural. As already discussed in the beginning of this

chapter, the reader should keep in mind that in general, in case of performing black-box

learning, the estimated parameters do not necessarily have a (simple) physical interpretation,

if any.

Another important aspect in machine learning tasks is the problem of regularization. Espe-

cially, if the input data is noisy and the learning model is complex enough, overfitting occurs.

As one is looking for a trained model, which best describes the target function, regularization

becomes necessary to avoid ”learning the noise”. [5, 1]

Especially when working with ESNs, also numerical issues might require regularization con-

cepts [11]. Typically, ESNs are trained by computing linear least squares solutions and thus,

one has to deal with (maybe large) matrix inversions. Practically, these matrices might be

ill-conditioned (i.e., be close to singular), such that estimation results become inaccurate.

In such cases regularization is the only way to obtain stable solutions. In section 2.1.1 a

Bayesian formulation of regularization will be briefly discussed and further details regarding

ESN-specific regularization techniques will be provided in section 3.2.3. [1]

1.2 Variational Inference

In contrast to classical frequentist statistics, Bayesian estimation techniques assume model

parameters to be random, by introducing prior distributions for them [2]. Instead of analyzing

likelihood functions, posterior distributions over those parameters can be obtained via Bayes’

law. However, in many practical scenarios it is tedious or even impossible to calculate the

posterior distribution analytically. To handle such situations, several approximate inference

algorithms have been proposed. [2, 1]

Basically, existing methods can be divided into two classes (see [1] or [17]): stochastic and

deterministic approximation algorithms. Stochastic algorithms typically try to draw samples

from the target posterior distribution and perform inference based on the resulting density

representation. Such types of inference algorithms are often referred to as sampling or Monte

Carlo algorithms.

The second approach tries to find analytical expressions to approximate a target probabil-

ity density function. Well-known examples representing this class of algorithms are for in-
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stance the Laplace approximation, the expectation - propagation algorithm or the variational

Bayesian (VB) inference framework. The latter will play a central role within this thesis, as

it will be used to obtain approximate solutions for advanced ESN learning problems. Chapter

2 provides a brief introduction to the variational Bayesian inference framework. In chapter 3,

variational Bayesian algorithms for three constructive ESN learning scenarios will be derived,

allowing automatic Bayesian regularization as well as tunable ESN model extensions. [1, 18]

1.3 Handwriting Recognition

Classification of handwritten symbols and characters became one of the central problems in

the area of pattern recognition. Especially with the invention of PDA and tablet computers,

the development of novel information processing concepts came into focus of computer and

information science. Regarding handwritten symbol classification, two contrary concepts can

be identified [19]: off-line and on-line methods. Clearly, this distinction is made with re-

spect to the acquisition of the input data instead of the methodology used for classification.

Off-line classification is performed after the whole symbol or text has been acquired. Often,

gray-scale or color images of the written characters are used for recognition. It seems natural

that for this reason, especially algorithms from computer graphic and vision are used for pre-

processing and feature extraction. In a second step any classifier can be used for prediction

(i.e. Support Vector Machines, Neural Networks, ...). [19]

In contrast, on-line handwriting recognition aims to classify symbols while the user is writing,

which seems to be a more complex task due to different writing speeds, strong ambiguities

between parts of the symbols and so on. Typically, the data is represented by a trajectory

(i.e. dynamic handwriting data), describing the pen movement over time and thus, addi-

tional features can be used for classification (e.g., velocities, pen acceleration,...). On-line

handwriting systems can act on different levels of abstraction, regarding the input data. For

instance classifiers can directly work with the captured trajectories, as it is typically done in

combination with dynamic time warping algorithms [20], [21]. Several other techniques try

to extract certain features from the original data to find more compact descriptions of the

handwriting. For instance an automatic speech recognition system was successfully applied to

on-line handwriting data in [22]. Another approach is to find analytical models for trajectory

representation as described in [23].

In general, any classifier which can handle sequence labeling tasks can be used for the recog-

nition of handwriting trajectories. A common classifier used in the literature is the hidden

Markov model (see, e.g., [22]).

Beside handwriting recognition, also the identification of the writer is a common task in

pen-based information processing. Even if writer identification also has to perform some kind

of class-labeling with respect to the input data, the preprocessing as well as classification

methods can be quite different. As in handwriting recognition tasks, identification concepts

can be divided into off-line [24, 25] and on-line [26, 27] algorithms. [26]
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As echo state networks were shown to work well for typical sequence labeling tasks (see,

e.g., [28]), section 4 of this work aims to find out if and how ESNs can be used to classify

handwriting trajectories, whereas the problem of writer identification is not treated in this

work. For the former task, the advanced ESN learning algorithms from section 3 will be tested

against two independent handwriting data sets from the UCI Machine Learning Repository

[29] and using two different classification schemes. The reader should note that this thesis

does not aim to find a handwriting classifier which outperforms all previous methods. Instead,

a compact case study concerning ESN based handwriting recognition is provided. On the

other hand, the real-world handwriting data is used to evaluate variational Bayesian ESN

learning.





Chapter 2

The Variational Bayesian Inference

Framework

In statistics, parameter estimation deals with the problem of inferring model quantities from

noisy observations. In the following, y will denote the observed data set (i.e., the model

output) and the model quantities of interest (i.e., parameters) will be collected in the vector

θ. Often, the underlying relation between the observed data y and the parameters θ is known

and thus one aims to find the set of parameters θ̂, which best describes a particular realization

of y. Clearly, the procedure of estimating parameters always introduces uncertainty due to

the observation noise perturbing y. Basically, there exist two main classes of estimation

techniques. The first one is referred to as frequentist estimation and corresponds to the

classical view of probability theory. The second approach tries to find parameters based on

Bayes’ law and thus somehow stands in conflict with the classical frequentist approach. In

Bayesian estimation, overall parameter distributions are inferred from the observation, instead

of single point estimates. As a consequence, useful information regarding the statistics of the

estimate is implicitly obtained. Also typical machine learning problems such as model selection

or regularization can be realized via Bayesian inference techniques. As a consequence, it seems

rather natural that for this thesis a Bayesian treatment of parameter inference would make

sense. [2], [17], [1]

2.1 Introduction to Bayesian Inference

In contrast to classical frequentist statistics, where the model parameters θ are considered to

be deterministic quantities of the underlying model, Bayesian inference also allows stochastic

relations by assuming θ to be random. It is clear that this formulation of parameter estimation

can handle a much broader class of problems as the relation between the observable variable

y and θ is simply specified by their joint probability density function p(y,θ) and thus, can

handle a deterministic as well as a statistical treatment of θ. The joint density can be written

7
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as

p(y,θ) = p(y|θ)p(θ), (2.1)

where p(y|θ) denotes the conditional density of y given θ and the second term p(θ) models

the prior distribution of θ. In a similar manner, this factorization can be done with respect

to p(y):

p(y,θ) = p(θ|y)p(y) (2.2)

Thus, by setting equation 2.1 equal to 2.2, one obtains

p(θ|y) =
p(y|θ)p(θ)

p(y)
, (2.3)

which is known as Bayes law. Note, that the quantity p(θ|y) now denotes the posterior

distribution over θ, given the observation y. In equation 2.3, θ is considered as a hidden

variable, characterized by its prior distribution p(θ). Furthermore, p(y|θ) is often called the

likelihood function, as it describes ”how likely” y is seen under a particular realization of θ.

[2, 1]

Using equation 2.3, estimates θ̂ can be obtained by evaluation of the posterior function. A

simple and intuitive approach is to perform a maximum a posteriori (MAP) estimation [2]:

θ̂ = arg max
θ

p(θ|y)

= arg max
θ

p(y|θ)p(θ)
(2.4)

Note, that the denominator p(y) in equation 2.3 can be neglected as it does not depend on

the optimization parameter θ. In many cases, closed form solutions for the MAP estimate

can be found by setting the derivative of the objective function to zero. Typically, this is

done in the log-domain, to obtain simpler analytical expressions:

∂

∂θ
(ln p(y|θ) + ln p(θ)) = 0 (2.5)

In general, the MAP estimate has to be found using numerical optimization techniques. [2, 1]

2.1.1 Bayesian Regularization

Performing Bayesian inference requires knowledge of the underlying statistical model in terms

of p(y|θ), p(θ) and p(y). Given a likelihood function, which describes the relation between

the observed data y and realizations of the hidden data θ, it is clear that the resulting esti-

mate θ̂ depends on the choice of the distribution p(θ). Especially when performing machine

learning tasks, prior knowledge of θ is often not available as the model parameters do not

correspond to quantities from reality. In contrast, parameter priors can be seen as additional
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constraints on the parameter values, which eventually allow to implement regularization to

prevent overfitting. [1]

In this section the problem of finding appropriate prior distributions over θ is briefly discussed

using the Bayesian inference framework.

Typically, the structure of a density function can be controlled by certain shape parameters.

For instance, a one dimensional Gaussian distribution is fully described by its mean and

variance. In such cases, the notation of the prior distribution can be extended as

p(θ) ≡ p(θ|α),

where α is a vector, containing so-called hyperparameters, e.g., mean and variance in the

example above. Within a fully Bayesian treatment, hyperparameters are also considered to be

random and thus require a corresponding hyperprior p(α) [1]. The joint probability density

over all variables is given by

p(y,θ,α) = p(y|θ)p(θ|α)p(α),

and furthermore, assuming α to be known, the posterior distribution over the parameters θ

can be written as

p(θ|y,α) =
p(y|θ)p(θ|α)

p(y|α)
. (2.6)

Note that varying α directly influences the structure of the parameter prior p(θ|α) and thus

the estimation results of θ. It is obvious that estimation of θ, coupled with an automatic

determination of the hyperparameters would be of great interest. Note that in a strict

sense, priors should not depend on the observed data, which stands in conflict with inferring

the hyperparameters from y. In machine learning, however, an automatic determination of

appropriate priors could be used as an elegant mechanism to obtain regularized solutions.

This method is often referred to as empirical Bayes [1]. The joint posterior over α and θ

can be found by applying the factorization

p(θ,α|y) = p(θ|y,α)p(α|y), (2.7)

where

p(α|y) =
p(y|α)p(α)

p(y)
. (2.8)

Equation 2.8 denotes the posterior over α given y and the term p(y|α) in the numerator is

known as the marginal likelihood or evidence function, which is often used to estimate the

hyperparameters α. Unfortunately, equations 2.7 and 2.8 cannot be evaluated analytically for

many practical problems and thus, appropriate approximation techniques have to be utilized

(e.g., the evidence approximation). [1, 18]
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2.2 Generalizing Bayesian Inference

As already discussed in the previous sections, an analytical evaluation of the posterior function

is often not tractable. In such cases, approximate inference algorithms can be used to obtain

estimates. In this section, an analytical inference framework is introduced, which combines

exact as well as approximate parameter estimation under one global optimality criterion.

For simplification reasons, the parameters θ and hyperparameters α are no longer modeled

explicitly but are collected in a single set of hidden variable z.

2.2.1 The Variational Free Energy

Given a probabilistic model p(y,z), it can easily be shown that the logarithm of the evidence

function ln p(y) satisfies the decomposition [18]

ln p(y) = L [q(z)] + DKL [q(z)‖p(z|y)] (2.9)

for any valid probability density function q(z). In equation 2.9, L [q(z)] forms a lower bound

on ln p(y) and is given by

L [q(z)] =

∫

q(z) ln
p(y,z)

q(z)
dz. (2.10)

The second term denotes the Kullback-Leibler(KL) divergence between the density q(z) and

the posterior p(z|y) and is defined as

DKL [q(z)‖p(z|y)] =

∫

q(z) ln
q(z)

p(z|y)
dz. (2.11)

The KL divergence measures the dissimilarity between two probability density functions and

is often referred to as the relative entropy [17]. Clearly, DKL [q‖p] is not symmetric with

respect to q and p and hence does not define a valid metric. However, the divergence is

only zero, if q and p are identical. It follows that in this particular case, the density function

q(z) is equal to the posterior function p(z|y) and furthermore, the lower bound L [q(z)]

becomes tight (i.e., equals the log-evidence function). Thus, the model posterior over z

given the observation y can be found by maximizing the lower bound with respect to q(z).

The quantity

F [q(z)] =

∫

q(z) ln
q(z)

p(y,z)
dz = −L [q(z)] (2.12)

is the negative lower bound L [q(z)] and is often called the variational free energy1 [17].

Clearly, minimizing F [q(z)] with respect to the density q(z) is identical to maximizing

L [q(z)] and thus,

q̂(z) = arg min
q(z)∈Q

F [q(z)] , (2.13)

1The term variational free energy originates from statistical physics [18].
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where Q is the set of all valid density functions over z. Without further restrictions on

Q, the estimated density q̂(z) will exactly match the true posterior p(z|y). It is important

to see that in its most general formulation, variational Bayesian inference produces exact

representations for the posterior functions given a particular observation y. Obviously, this

formulation is useless if one tries to find appropriate estimates of the hidden variables z if the

true posterior is too complex as to evaluate it analytically. In such cases, the goal is to find

densities of simple structure, which approximate the true posterior as well as allow straight-

forward evaluation to obtain estimates. Using the variational inference framework, this can

be done by restricting the density q(z) to be of special structure. One intuitive approach is

to use parameterized functions and to estimate these parameters instead of searching for free

form solutions, as it will be seen later in this chapter. [1, 18, 17]

2.2.2 The Mean Field Approximation

The most common restriction on q(z), which was shown to have several useful properties is

given by the assumption that each of the hidden variables zi ∈ z is statistically independent

from each other. As a consequence, q(z) fully factorizes and can be rewritten as

q(z) =
∏

zi∈z

q(zi). (2.14)

Using this factorization (i.e., the mean field factorization), the variational free energy is

separately minimized with respect to each of the q-factors on the right-hand side of equation

2.14. In many cases, it makes sense to keep the statistical dependencies between some of the

hidden variables. For instance, when estimating a vector quantity, it might be useful to jointly

estimate each of the vector entries, which would be realized by assuming a non-factorizing

density for this quantity. For this reason, a more general formulation of the mean field

approximation as described in [1] will be used for further considerations. The approximating

density can then be written as

q(z) =
I−1∏

i=0

q(zi). (2.15)

In equation 2.15, I denotes the number of disjoint and statistically independent subsets

zi ∈ z with zi ∩ zk = ∅ for i 6= k. Obviously, equation 2.15 provides a more flexible

restriction on q(z) as it also allows to model statistical dependencies, if required. [1]

Basically, there are two possibilities to obtain the variational q-factors. In many cases, the

free energy minimization allows to find unconstrained free-form solutions. By doing so, the

structure of the q-factor is determined automatically, as it will be discussed later in this

chapter. In some cases, however, it makes sense to additionally restrict the q-factors to be of

a certain class of parameterized functions. For instance one can assume the q-factors to be

Gaussian, such that the posterior would be approximated by minimizing the variational free
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energy with respect to each factors mean and variance (see section 2.2.3).

Considering the single factor q(zj), the variational free energy can be rewritten as

F [q(z)] =

∫

q(z) ln
q(z)

p(y,z)
dz

=

∫

q(zj)

∫

q(zi6=j) ln

[
q(zi6=j)q(zj)

ln p(y,z)

]

dzi6=jdzj

=

∫

q(zj)
[

ln q(zj)− Ei6=j [ln p(y,z)]
]

dzj + const

= −H [q(zj)]− Ez [ln p(y,z)] + const,

(2.16)

where zi6=j = ∪i6=jzi, H [q(zj)] denotes the entropy of the density function q(zj) and

Ei6=j [ln p(y,z)] is the expectation over ln p(y,z), taken with respect to q(zi),∀i 6= j.

Thus minimizing the variational free energy with respect to a factor q(zj) can be done by

minimizing the term

F̂ [q(z)] = −H [q(zj)]− Ez [ln p(y,z)] (2.17)

or equivalently

F̂ [q(z)] = DKL [q(zi)‖p̂(y,z)] . (2.18)

with ln p̂(y,z) = Ei6=j [ln p(y,z)] + const. A similar notation and further details can be

found in [1].

Equations 2.17 and 2.18 provide a starting point for further task-specific derivations. The

latter is typically used, if one searches for free-form solutions, as the optimal factor q̂(zj) can

be analytically determined as [1]

ln q̂(zj) = Ei6=j [ln p(y,z)] + const. (2.19)

If equation 2.19 cannot be evaluated for any reason, the q-factors can be restricted to param-

eterized analytical forms (e.g., Gaussian densities). In such cases, equation 2.17 can be used

to find shape parameters such as to minimize the variational free energy and thus minimize

the dissimilarity between the true and the approximate density. Furthermore, it is important

to note that generally, the computation of each factor requires knowledge of all other factors.

Due to these implicit dependencies, the factors have to be estimated in an iterative fashion.

[1, 18]

2.2.3 A Simple Example

Now, a simple example should demonstrate the variational Bayesian approach for parameter

estimation. Therefore, the simple linear model from equation 2.20 is used.
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y = wT X + ξ (2.20)

The 1 × N -dimensional output y is constructed as a sum of P weighted base functions,

collected in the data matrix X of size P ×N plus a 1×N -dimensional Gaussian noise vector

ξ ∼ N (0,Σ). The hidden data vector w of length P has a corresponding prior distribution

p(w) = N(0, α−1I), where α can be seen as an inverse variance. Furthermore, α is assumed

to be deterministic and known for this example. The corresponding graphical model2 is

illustrated in figure 2.1.

αw

y

Figure 2.1: A simple graphical model.

The joint density can be written as

p(y,w) = p(y|w)p(w), (2.21)

which is proportional to the posterior p(w|y) and could be directly evaluated in this simple

scenario. However, the variational inference framework shall be used to demonstrate the

principle. For this example, the variational free energy is given by

F [q(w)] = −H [q(w)]− Ew [ln p(y,w)]

= −H [q(w)]− Ew [ln p(y|w)]− Ew [ln p(w)] .
(2.22)

Defining q(w) = N(w|ŵ,Sw), whereas N(w|ŵ,Sw) denotes a Gaussian distribution over

w with the mean ŵ and the covariance matrix Sw, the optimal factor q(w) is found by

minimizing the variational free energy with respect to the variational parameters ŵ and Sw.

Neglecting all terms independent from ŵ, equation 2.22 can be written as

F [q(w)] = Ew

[
wT

]
XyTΣ−1 −

1

2
Ew

[
wT XΣ−1XT w

]
+

α

2
Ew

[
wT w

]
+ const.

= ŵT XΣ−1yT −
1

2
ŵT XΣ−1XT ŵ +

α

2
ŵT ŵ + const.

(2.23)

Setting the first derivative with respect to ŵT equal zero, yields the following optimal value

for the mean ŵ

2A description of the graphical notation used in this thesis, can be found in section A.1.
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ŵ =
[
XΣ−1XT + αI

]−1
XΣ−1yT . (2.24)

The same procedure can be done with respect to the covariance matrix Sw. After evaluation

of all expectations, the resulting objective function takes the following structure

F [q(w)] = −
1

2
ln |Sw| −

1

2
Tr

[
XΣ−1XT Sw

]
+

α

2
Tr [Sw] + const. (2.25)

Again, the first derivative with respect to Sw is set to zero and the resulting estimation

expression for the covariance matrix is given by

Sw =
[
XΣ−1XT + αI

]−1
(2.26)

The reader should note that equations 2.24 and 2.26 fully describe the variational distribution

q(w). Remembering the standard results for Bayesian estimation for a fully Gaussian model,

one can see that q(w) exactly matches the true posterior p(w|y) and thus, the variational

inference framework produces exact estimates due to this choice of the q factor. [1]

2.2.4 Summary

Summarizing the previous considerations in a few words, the Variational Bayesian inference

framework can be seen as an elegant toolbox for combining exact as well as approximate

inference under one common optimality criterion. The quality and also the tractability directly

depend on the restrictions made on the approximating distribution q. Under the mean field

assumption, free form solutions (equation 2.19) can be obtained in many cases and thus the

shape of the q-factors is automatically determined. If this is not possible, one can restrict

the factors to belong to a certain class of densities (e.g. Gaussian, Dirac-Delta) and try to

estimate the parameters of the approximating distribution such as to minimize the variational

free energy.

In general, determining a single q-factor requires taking expectations with respect to all other

q-factors such that the resulting estimates implicitly depend on each other. Hence, the

variational distributions have to be estimated in an iterative manner.



Chapter 3

Variational Bayesian Reservoir

Computing

3.1 Introduction

As discussed in chapter 1, recurrent neural network learning turns out to be a non-trivial task.

Due to a high dimensional parameter space and the nonlinear dynamic behavior, training of

RNNs is computationally complex. For instance, bifurcations can occur during training due

to the parameter changes of the nonlinear dynamical network [8]. As a consequence, there is

no guarantee that an optimum is found. Another aspect is that the numerical optimization of

the network parameters, which recurrently depend on each other requires many computation

steps and thus will lead to a large computational effort [11]. The described shortcomings

of RNN learning lead to a novel class of RNN learning concepts, referred to as reservoir

computing (RC ). [11]

The basic idea of reservoir computing can be described as a simple two-step procedure [9]:

1. Randomly create a large reservoir of fixed nonlinear dynamical base functions

2. Try to reproduce a certain input-output behavior as a simple function of the reservoir

base functions

This is realized by using a large, randomly constructed RNN, where each neuron is connected

to several other neurons and these connections are assumed to be fixed. The collection of

the neuron outputs at a certain time step represents the state of the dynamical reservoir.

Using the fixed reservoir states one can try to reproduce a certain input-output behavior of

an unknown target system. Clearly, if the reservoir is large and it provides base functions

which are diverse enough, complicated nonlinear dynamic target functions can be modeled.

[9, 10]

15
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3.2 Echo State Networks

The fact that Jaeger’s version of reservoir computing was developed in terms of classical

supervised learning, makes it a very compact but powerful learning tool, which can be used

out-of-the-box for typical regression as well as classification tasks. For this reason, this work

will utilize the ESN-type formulation of reservoir computing. An illustration of the concept

is given in figure 3.1.

Figure 3.1: Illustration of Jaeger’s Echo State concept (Source: [30])

The input signal is projected into a high dimensional space using a large, randomly constructed

RNN. The neuron outputs form the temporal base functions and are termed the echo states.

The corresponding mathematical formulation takes the following simple form: considering a

K-dimensional input vector u[n], an L-dimensional output y[n] and a reservoir of size M ,

the ESN functioning is described by two equations

x[n] = f
(
CT

Xx[n− 1] + CT
u u[n] + CT

y y[n− 1]
)

(3.1)

y[n] = g



W T




x[n]

u[n]







 = g
(
W T s[n]

)
. (3.2)

The reservoir matrix CX has dimension M×M and defines the connectivity of the reservoir.

The input weight matrix Cu is of size K ×M and the feedback matrix Cy has dimension

L × M . Furthermore, the functions f and g are some static nonlinear functions (e.g.,

hyperbolic tangent functions) operating on each element of the vector argument and W is

the M + K × L-dimensional output weight matrix. The key difference between ESNs and

classical RNNs is that all weighting matrices within the state equation 3.1 are defined to be
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fixed. By doing so, the echo states can be considered as a dynamical base, which is used

to construct the output as a simple linear combination (with an additional static nonlinear

function), such that standard solutions for learning linear models can be applied. In section

3.2.2, ESN learning will be introduced but before that, some important constraints on the

ESN setup have to be discussed. [9, 11]

3.2.1 ESN Setup and the Echo State Property

As mentioned before, all weighting matrices, that act within the dynamical reservoir (i.e.

CX , Cu and Cy), are randomly constructed and assumed to be fixed during ESN learning.

To obtain base functions which are as diverse as possible, a sparse reservoir matrix CX should

be used. However, good values for the connectivity are quite application dependent. [30]

Another important aspect of ESN learning is the so-called echo state property (ESP) [9].

The ESP states that the spectral radius of the reservoir matrix CX must be smaller than

one, i.e.

ρ(CX) < 1,

to make sure that initial conditions are washed out over time (fading memory). Note that this

statement has only been proved for zero input signals and reservoirs with hyperbolic tangent

functions but in practice it turns out that echo state network learning typically succeeds for

any input signal if the reservoir has the ESP. [30, 11]

Typically, also the weighting matrices Cu and Cy are constructed randomly or by using

heuristics. Another important aspect is the choice of the nonlinearities g and f . As it will

be shown section 3.2.2 g is required to be invertible. For more details on ESN configuration

issues, the reader should refer to [9], [11] or [14].

3.2.2 Learning

Assuming the reservoir (equation 3.1) to be fixed, only equation 3.2 has to be considered

during learning. As the output weight matrix W enters the systems output equation 3.2 in a

linear fashion followed by an invertible static nonlinearity, network learning can be casted into

a linear least squares problem, acting on the transformed output g−1(y[n]). As a Bayesian

formulation of ESN learning is a central part of this chapter, reformulating the learning

problem into an equivalent estimation problem makes sense. To do so, the transformed output

g−1(y[n]) is assumed to be perturbed by a random learning error ξ[n] = [ξ0[n], . . . , ξL−1[n]]T .

y[n] = g
(
W T s[n] + ξ[n]

)
(3.3)

Assuming the single noise components ξ0[n], . . . , ξL−1[n] - each perturbing one of the L

system outputs - to be white and statistically independent from each other, the maximum

likelihood solution [2] for W is given by

Ŵ =
(
SST

)−1
Sg−1 (Y ) , (3.4)
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where the L × N matrix Y contains the length-N observation sequence of y[n] and the

M + K × N matrix S collects the corresponding echo states for time steps 0 . . . N − 1.

Using infinitely many observations (N → ∞), equation 3.4 converges toward the Wiener-

Hopf solution. Note that equation 3.4 could also be interpreted as a MAP estimate using

flat (non-informative) priors over W . [9, 1, 2]

3.2.3 Regularization

From equation 3.4 one can see that estimating W requires inversion of the matrix SST .

Due to the fact, that the sparse reservoir is created randomly, there is no guarantee that the

resulting base functions are linearly independent and thus, SST might be ill-conditioned. In

such cases, one needs to introduce appropriate regularization techniques. As discussed in

section 2.1.1, a Bayesian treatment of regularization can be realized by introducing priors

over each output weight vector wl, representing the l-th column in W with l = 0 . . . L− 1.

Typically, Gaussian distributions with zero mean and variance α−1
l are used for each of the

output weight vectors, such that p(wl|αl) = N(wl|0, α−1
l I). It can be easily verified that

the MAP estimate for wl, corresponding to the l-th output yl, is then given by [1]

ŵl =
(
SST + αlI

)−1
Sg−1 (yl) , (3.5)

whereas yl denotes the l-th row of the observation matrix Y . The prior acts as a quadratic

penalization term in the logarithm of the posterior function, which results in the additive term

αlI [1]. Another regularization technique introduces an additive noise term in equation 3.1.

However, this would yield solutions similar to equation 3.5. Both methods can be interpreted

as Tikhonov regularization techniques, which is reflected by the quadratic penalization term

in the resulting objective function. [11, 1]

An alternative regularized ESN learning technique, which is very often used in literature

[9, 14, 15] is based on the computation of the pseudo-inverse, e.g., by using a singular value

decomposition (SVD) [1]. Compared to the Wiener-Hopf solution, this method is numerically

more stable albeit computationally much more demanding [11].

However, the simple Bayesian regularization as well as the SVD-based pseudo-inverse require a

manual determination of certain algorithm parameters, specifying the regularization strength.

As discussed in section 2.1.1, Bayesian inference allows to estimate the parameters wl,

as well as the corresponding regularizer αl, although an exact analytical computation is

often intractable. Later in this section, automatic regularization and simultaneous parameter

estimation for ESN learning will be formulated within the variational Bayesian inference

framework.



3.2. ECHO STATE NETWORKS 19

3.2.4 Limitations and Model Extensions

Even if ESNs have been shown to work well for many different tasks, they may also fail in

some cases. This section will address limiting aspects for ESNs and will also discuss possible

ESN model extensions which can sometimes significantly improve ESN learning. Without

loss of generality, this work will consider extended ESN models, which can be written as

yl = wT
l S(φl) + ξl (3.6)

with

S(φl) =








s0(φl,0)
...

sM+K−1(φl,M+K−1)








=


















x0(φl,0)
...

xM−1(φl,M−1)

u0(φl,M )
...

uK−1(φl,M+K−1)


















(3.7)

and the parameter vector φl = [φl,0, . . . , φl,M+K−1]
T . From equation 3.7 one can see that

the i-th row in the extended state matrix S(φl) represents the transformed base function

si(φl,i) corresponding to the l-th output yl.

It has been already discussed in section 1 that the effective memory capacity of an ESN

is limited as it was shown in [14]. In his work, the author concludes that the short term

memory capacity is bounded by the reservoir size M (under certain conditions). A simple

way to boost the effective memory capacity of standard ESNs was proposed in [15]. In this

work, the authors introduce ESNs with delay & sum readouts, which construct their out-

put as a linear combination of the time shifted base functions. Thus, s(φl,i) ≡ si(τl,i) =

[si[−τl,i], . . . , si[N − τl,i − 1]] and S(φl) ≡ S(τ l) with τ l = [τl,0, . . . , τl,M+K−1]. Fur-

thermore, they were able to improve the ESN learning performance by optimizing the delay

parameters using EM-type algorithms. In section 4, this work will utilize this extension for

the recognition of handwriting trajectories.

Several other extension have been proposed so far. For instance, leaky integrator neurons

were used in [31] to achieve time warping invariant reservoirs. A generalization of this

principle was provided in [32] and [15] with the more generic concept of filter neurons. The

reader should note that these extensions act within the feedback loop of the reservoir, which

makes the estimation of - for instance the filter neuron parameters - quite complex. In some

cases, heuristic approximations can reduce the computational effort, while keeping the results

accurate enough to boost ESN’s learning performance (see [33]). A very good overview about
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state-of-the-art ESN techniques is given in [11]. Later in this work, training of the extended

ESN parameters φl for l ∈ [0, . . . , L− 1] will be referred to as extended ESN learning.

3.2.5 Classification with ESNs

In [11], two main concepts for ESN-based classification are discussed. The first one uses a

single ESN with L outputs, where L denotes the number of class labels. Assuming the current

training example to belong to class c, the corresponding target output yc[n] is set to a certain

temporal pattern, indicating the value true for this class. All other outputs yl 6=c[n] are set to

a contrary sequence, implying that the current sample does not belong these classes. In the

most simple case, constants are used (e.g., +1 for true and 0 for false). In the test phase,

one decides for the class output, which has the maximum response regarding the positive

pattern. This method will be evaluated in section 4.3.2 and will be referred to as multi-class

ESN learning. [11]

The second scenario uses L independent ESNs, whereas each of them is trained to predict the

trajectory of a single letter. During the classification of new samples, the prediction error is

calculated for each of the specialized ESNs and the resulting class label is selected, according

to the predictor which has performed best. This concept corresponds to the architecture used

in section 4.3.3. [11]

3.3 A Variational Bayesian Formulation

In the previous sections, several important aspects of ESN learning have been discussed. A

summary is given in table 3.1.

Task Solution

Estimating W Wiener-Hopf, MAP

Automatic Regularization Evidence Procedure, Model Selection

Extended ESN Learning EM-type of algorithms

Table 3.1: Important Aspects of ESN Learning.

In order to handle each of these tasks, one could simply apply a combination of specialized

algorithms, but in general, there would be no guarantee that this assembly of algorithms will

still be optimal. In terms of Bayesian optimality, a joint realization of all these aspects requires

inference of the posterior over the output weights, their corresponding hyperparameters as

well as the extended ESN parameters. However, this is mathematically complex and thus,

approximate inference algorithms would be of great interest. Using variational Bayesian infer-

ence algorithms, all tasks from table 3.1 can be jointly solved within one common optimality

framework and thus, the resulting estimates remain interpretable from a statistical point of
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view. Starting with a simple scenario, a variational Bayesian solution for learning extended

ESNs is successively derived in this section, covering efficient estimation of extended model

parameters as well as automatic regularization. Similar results are provided in [33] or [34]1.

For simplicity, ESNs are assumed to have only a single output for the following derivations

such that L = 1, y0 ≡ y and ξ0 ≡ ξ. As the classification of on-line handwriting data will

require multiple-output ESNs, the algorithms will be extended for the multidimensional case

in section 3.3.4, which will be straight forward under some weak conditions. Furthermore,

it is assumed that the output non-linearity is a scalar identity transformation. However, any

invertible function could be used, resulting in a simple transformation of the observed data,

before estimating the model quantities.

3.3.1 Scenario A: Regularized ESN Learning

The first scenario deals with training standard ESNs combined with an automatic regular-

ization. The problem of variational Bayesian learning of a simple linear model was already

discussed in section 2.2.3. As mentioned before, ESNs can also be considered as linear sys-

tems, assuming the echo state base functions to be fixed. The vector y collecting the scalar

output values for n ∈ [0 . . . N − 1] is given as

y = wT S + ξ, (3.8)

where S is the M + K × N state matrix, containing the extended system state at time

steps n ∈ [0 . . . N − 1] and ξ models a random learning error with ξ ∼ N (0,Σ). In

contrast to the simple model from section 2.2.3, the prior distribution over w is defined

as p(w|α) = N(0,A−1) with A = diag {α0, . . . , αM+K−1} and α = [α0, . . . , αM+K−1]
T .

This means that each of the base functions in S has its own regularization constant such that

a more specific regularization becomes possible. Furthermore, we assume α to be random

with p(α) =
∏M+K−1

i=0 G(αi|ai, bi), where G(αi|ai, bi) denotes a Gamma distribution over

αi, given the shape parameters ai and bi. The corresponding graphical model is given in

figure 3.2.

αw

y

Figure 3.2: Regularized ESN learning.

The probabilistic model is fully specified by its joint density function over all variables, which

is given by
1The reader should note that the related paper [34] is still in work.
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p(y,w,α) = p(y|w)p(w|α)p(α) (3.9)

and the taking the logarithm yields

ln p(y,w,α) = ln p(y|w) + ln p(w|α) + ln p(α). (3.10)

The corresponding log-densities from equation 3.10 are given in table 3.2, whereas terms

independent from w as well as α are summarized as constants.

Log-Density Expression

ln p(y|w) −1
2wT SΣ−1ST w + wT SΣ−1yT + const

ln p(w|α) 1
2 ln |A| − 1

2wT Aw + const

ln p(α)
∑

i

(
(ai − 1) lnαi − biαi

)
+ const

Table 3.2: Log-densities for the model of Scenario A.

Note that α is also a hidden variable and has to be estimated in order to obtain automatic

regularization. As discussed in section 2.1.1, the posterior over w and α given y cannot be

determined analytically for most practical scenarios. However, approximate posterior func-

tions q(w,α) can be found by minimizing the variational free energy F [q(w,α)]. According

to equation 2.15, the density q(w,α) is chosen to factorize such that

q(w,α) = q(w)

M+K−1∏

i=0

q(αi). (3.11)

Instead of using parameterized densities for the q-factors, free-form solutions shall be found

using equation 2.19. Assuming the factor q(w) to be of interest, the optimal factor q̂(w)

takes the form

ln q̂(w) = Eα [ln p(y,w,α)] + const

= Eα [ln p(y|w)] + Eα [ln p(w|α)] + const

= −
1

2
wT SΣ−1ST w + wT SΣ−1yT −

1

2
wT Âw + const

= −
1

2
wT

[

SΣ−1ST + Â
]

︸ ︷︷ ︸

Ĉ
−1

w

w −wT SΣ−1yT

︸ ︷︷ ︸

Ĉ
−1

w ŵ

+const.

(3.12)

with Â = E [A]. One can see that equation 3.12 is quadratic in w and thus the optimal

density q̂(w) can be identified as N(w|ŵ, Ĉw) with
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Ĉw =
[

SΣ−1ST + Â
]−1

(3.13)

ŵ = ĈwSΣ−1yT . (3.14)

With the knowledge, that ŵ is Gaussian, this procedure is now repeated with respect to the

factors q̂(αi), i ∈ [0, . . . ,M + K− 1]. Again, the logarithm of the optimal free form solution

for a single factor q(αj) is given by

ln q̂(αj) = Ew,αi6=j
[ln p(w|α)] + Eαi6=j

[ln p(α)] + const

=
1

2
ln αj −

1

2
ĉw,jαj −

1

2
ŵ2

j αj + (aj − 1) ln αj − bjαj + const

= (
1

2
+ aj

︸ ︷︷ ︸

âj

−1) ln αj − (
1

2
ĉw,j +

1

2
ŵ2

j + bj)
︸ ︷︷ ︸

b̂j

αj + const,

(3.15)

where ĉw,j is the j-th element on the main diagonal of Ĉw. Equation 3.15 is the logarithm

of a Gamma distribution and thus, the variational distribution over αj is found as q̂(αj) =

G(αj |âj , b̂j) with

âj =
1

2
+ aj (3.16)

b̂j =
1

2

[
ĉw,j + ŵ2

j

]
+ bj (3.17)

Now, also the term Â can be evaluated, using the standard results for the expected value of

a Gamma distribution, such that

Â = E [A] = diag

{
â0

b̂0

, . . . ,
âM+K−1

b̂M+K−1

}

(3.18)

Table 3.3 summarizes the estimation results for the variational densities.

Factor Structure

q(w) N(w|ŵ, Ĉw)

q(αj) G(αj |âj , b̂j)

Table 3.3: q factors for Scenario A.

It is important to see that calculation of the factor q(w) requires knowledge of the factor q(α)

and vice versa. As described in section 2.2.2 this leads to an iterative estimation procedure,

such that one factor is estimated, assuming all other factors to be known and so on.
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3.3.2 Scenario B: Extended ESN Learning

In this section, the previous model is extended by additional state parameters according to

section 3.2.4. Although this work will focus on delay & sum readouts, the following algorithm

will allow any model extensions acting as tunable parameters of the base functions si(φi).

The corresponding model is given in equations 3.6 and 3.7 with L = 1 and φ0 = φ.

αwφ

y

Figure 3.3: Extended ESN learning

The graphical model is illustrated in figure 3.3 and the logarithm of the joint density function

over y, φ, w and α can be written as

ln p(y,w,α,φ) = ln p(y|w,φ) +

M+K−1∑

i=0

ln p(φi) + ln p(w|α) + ln p(α). (3.19)

Equation 3.19 equals equation 3.10, except the additional terms ln p(φi), acting as the log-

priors of the parameter vector φ and the fact that φ also influences the data log-likelihood

ln p(y|w,φ). As there is no prior information about the parameters of the randomly con-

structed reservoir functions, it seems natural to choose the priors over φi to be non-informative

[1] over a certain interval Dφ, which means that within the range Dφ, each value for φi has

the same prior probability. Thus, the parameters φi are assumed to be uniformly distributed

on the interval Dφ. Clearly, the terms ln p(φi) can be neglected, when working with the joint

density from equation 3.19. The particular log-densities are set up as described in table 3.4.

Log-Density Expression

ln p(y|w,φ) −1
2wT S(φ)Σ−1ST (φ)w + wT S(φ)Σ−1yT + const

ln p(φi)

{

const φi ∈ Dφ

0 else

ln p(w|α) 1
2 ln |A| − 1

2wT Aw + const

ln p(α)
∑

i

(
(ai − 1) ln αi − biαi

)
+ const

Table 3.4: Log-densities for the model of Scenario B.

Very similar to the previous scenario (section 3.3.1), variational inference tries to find the

approximate distribution
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q(φ,w,α) = q(w)

M+K−1∏

i=0

q(αi)q(φi). (3.20)

The factors q(w) and q(αi) with i ∈ [0, . . . ,M + K − 1] can be determined the same way

as before, i.e. computing free form solutions using equation 2.19. In contrast, unconstrained

solutions for the factors q(φi) with i ∈ [0, . . . ,M + K − 1] cannot be determined in general,

due to complex dependencies between the base functions and the corresponding parameters.

As described in section 2.2.2, these factors can be estimated by restricting them to certain

classes of parameterized functions. In this case, Dirac-delta functions2 are used such that

q(φi) = δ(φi − φ̂i) and thus φ̂ = [φ̂0, . . . , φ̂M+K−1].

Similar to the previous scenario (3.3.2), the optimal log-factor q̂(w) is found as

ln q̂(w) = Eα,φ [ln p(y|w)] + Eα [ln p(w|α)] + const

= −
1

2
wT S(φ̂)Σ−1ST (φ̂)w + wT S(φ̂)Σ−1yT −

1

2
wT Âw + const

= −
1

2
wT

[

S(φ̂)Σ−1ST (φ̂) + Â
]

︸ ︷︷ ︸

Ĉ
−1

w

w −wT S(φ̂)Σ−1yT

︸ ︷︷ ︸

Ĉ
−1

w ŵ

+const,
(3.21)

and can be identified as a Gaussian with q̂(w) = N(w|ŵ, Ĉw) with

Ĉw =
[

S(φ̂)Σ−1ST (φ̂) + Â
]−1

(3.22)

ŵ = ĈwS(φ̂)Σ−1yT . (3.23)

The factor ln q̂(αj) does not depend on the parameter vector φ and thus, the variational

distribution q̂(αj) as well as the matrix Â will be the same as in section 3.3.1.

For estimation of the factor q(φk), equation 2.17 is used as a starting point for further

derivations. As the entropy H [q(φk)] is constant, the optimal parameter φ̂k is found by

maximizing the expected logarithm of the joint density function E [ln p(y,w,α,φ)].

φ̂k = arg max
φ̃k∈Dφ

E [ln p(y,w,α,φ)]

= arg max
φ̃k∈Dφ

[Ew,φ [ln p(y|w,φ)] + Eφk
[ln p(φk)]]

(3.24)

With p(φk) being flat over Dφ and using some standard identities from section A.2, equation

3.24 can be expressed as

2Choosing Dirac-delta distributions yields point estimates φ̂i of the variational parameter φi [18].
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φ̂k = arg max
φ̃k∈Dφ

[

ln p(y|ŵ, φ̃)−
1

2
Tr

[

ĈwS(φ̃)Σ−1ST (φ̃)
]]

, (3.25)

with φ̃ = [φ̂0, . . . , φ̃k, . . . , φ̂M+K−1]. Note that equation 3.25 has to be solved numerically

in general. As mentioned before, this work will use delay & sum readouts as a powerful

extension to the standard ESN model. The variational expressions described above can be

directly used for estimating the time delays τi with i ∈ [0, . . . ,M + K − 1].

The resulting approximating densities are given in table 3.5.

Factor Structure

q(w) N(w|ŵ, Ĉw)

q(αj) G(αj |âj , b̂j)

q(φk) δ(φk − φ̂k)

Table 3.5: q factors for Scenario B.

3.3.3 Scenario C: The VBSAGE Algorithm

The algorithm derived in the previous section, estimates the parameters φk for k = [0, . . . ,M+

K − 1] independently from each other, which is a direct consequence of the mean field ap-

proximation. From the graphical model in figure 3.3 it can be seen that the parameters φk

conditionally depend on each other given the observation y (explaining away, [1]). As a

consequence, the factorization in equation 3.20 will yield only rough approximations of the

true posterior. Intuitively, one could try to estimate q(φ) at once, which is simply done by

discarding the full factorization q(φ) =
∏M+K−1

i=0 q(φi). Even if this strategy yields much

better approximation results in general, it has less practical relevance, as jointly optimizing

{φ0, . . . , φM+K−1} is extremely complex from a computational viewpoint.

An alternative approach for efficient estimation of high dimensional hidden data is to utilize

EM-type algorithms [16]. In particular, this section will deal with the Space Alternating Gen-

eralized EM algorithm (SAGE , [35, 36]). A variational Bayesian formulation of the SAGE

algorithm is provided in [37]3 and is referred to as the VBSAGE algorithm. Also VBSAGE-

based algorithms for extended ESN learning can be found in [33] and [34].

Compared to the classical EM algorithm, only a subset of the parameters φ is estimated

during one iteration. By varying the parameter subset (i.e. space alternations), each of the

3The reader should note that this work has not been published yet.
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parameters in φ can be estimated using the SAGE algorithm. Formally, this can be realized

by introducing the concept of admissible hidden data, represented by a latent variable H in a

graphical model, allowing to estimate the parameter subset of interest, given H. The reader

should consult [35] or [37] for a detailed theoretical description of the SAGE and VBSAGE-

type algorithms.

For the extended ESN learning problem, the VBSAGE algorithm can be simply used within

the previous VB algorithm, by rearranging the graphical model from figure 3.3 in terms

of an artificial hidden variable hk. This variable denotes the admissible hidden data for

estimating the parameter φk of the k-th base function sk(φk). The set K denotes all indices

i ∈ [0, . . . ,M + K − 1] except the index k itself. The final graphical model is given in figure

3.4.

αK

wkαk

hk
wKφk

φK
y

Figure 3.4: Extended ESN learning using the VB-SAGE algorithm.

Clearly, also the data model will change according to the hidden data hk, acting as the k-th

summand in the output equation. The modified output y can be written as

y =
∑

i∈K

(wisi(φi) + ξi) + hk

=
∑

i∈K

wisi(φi) + hk + ξK

(3.26)

with ξK =
∑

i∈K ξi and

hk = wksk(φk) + ξk. (3.27)

In equations 3.26 and 3.27, ξi,∀i ∈ K and ξk denote noise terms, each perturbing a single

base function. As the overall learning error in the observed output y is again assumed to be

a Gaussian random vector ξ ∼ N (0,Σ), the single noise components are also Gaussian and

must decompose such that ξK+ξk = ξ. Furthermore, the corresponding covariance matrices

sum up as ΣK+Σk = Σ and additionally, this work assumes Σk = βΣ and ΣK = (1−β)Σ.

[33, 34]

Under these assumptions, the probability density function for the hidden data vector hk is

given as
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p(hk|wk, φk) = N(hk|wksk(φk),Σk) (3.28)

and in a similar fashion, the density function over the output can be written as

p(y|hk,wK,φK) = N
(

y
∣
∣
∑

i∈K

wisi(φi) + hk,ΣK

)

. (3.29)

The rest of the model remains the same as in the previous scenario. The logarithm of the

joint density over all variables takes the simple form

ln p(y,hk,w,α,φ) = ln p(y|hk,wK,φK) + ln p(hk|wk, φk)

+
M+K−1∑

i=0

ln p(φi) + ln p(w|α) + ln p(α).
(3.30)

and the corresponding log-densities are summarized in table 3.6.

Log-Density Expression

ln p(y|hk,wK,φK) −1
2

∑

i∈K w2
i si(φi)Σ

−1
K

sT
i (φi)−

∑

i∈K wisi(φi)Σ
−1
K

hT
k

+
∑

i∈K wisi(φi)Σ
−1
K

yT − 1
2hkΣ

−1
K

hT
k + hkΣKyT + const

ln p(hk|wk, φk) −1
2hkΣ

−1
k hT

k + wksk(φk)Σ−1
k hT

k −
1
2w2

ksk(φk)Σ
−1
k sT

k (φk) + const

ln p(φi)

{

const φi ∈ Dφ

0 else

ln p(w|α) 1
2 ln |A| − 1

2wT Aw + const

ln p(α)
∑

i

(
(ai − 1) lnαi − biαi

)
+ const

Table 3.6: Log-densities for the model of Scenario C.

Including the hidden variable hk, the approximate density q(hk,φ,w,α) is assumed to fac-

torize as

q(hk,φ,w,α) = q(hk)q(w)

M+K−1∏

i=0

q(αi)q(φi). (3.31)

As in section 3.3.2, the factors q(φi) are restricted to be Dirac-delta distributions. Note that

the modification of the model in terms of the hidden data variable hk does not change the

structure regarding the node α. For this reason, also the factors q(αi) remain the same as

in section 3.3.2 and can directly be used for the further calculations. In this particular case,

it makes sense to start with the calculation of the factor for the hidden data variable q(hk).
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ln q̂(hk) = Ew,φ

[
ln p(y|hk,wK,φK) + ln p(hk|wk, φk)

]

= −
∑

i∈K

ŵisi(φ̂i)Σ
−1
K

hT
k −

1

2
hk

[

Σ−1
K

+ Σ−1
k

]

hT
k + hkΣ

−1
K

yT

+ ŵksk(φ̂k)Σ
−1
k hT

k + const

By adding and subtracting the missing k-th summand of the sum in equation 3.32, one

obtains

ln q̂(hk) = −hkΣ
−1
K

ST (φ̂)ŵ −
1

2
hk

[

Σ−1
K

+ Σ−1
k

]

︸ ︷︷ ︸

Ŝ
−1

h

hT
k

+ ŵksk(φ̂k)
[

Σ−1
K

+ Σ−1
k

]

hT
k + hkΣKyT + const

= −
1

2
hkŜ

−1
h hT

k

+ hk

(

Ŝ
−1
h sT

k (φ̂k)ŵk + Σ−1
K

(

yT − ST (φ̂)ŵ
))

+ const

= −
1

2
hkŜ

−1
h hT

k +

+ hkŜ
−1
h

(

sT
k (φ̂k)ŵk + ŜhΣ

−1
K

(

yT − ST (φ̂)ŵ
))

︸ ︷︷ ︸

ĥ
T

k

+const,

(3.32)

where ŵk = E [wk] and ŵ = E [w]. From equation 3.32 the optimal factor q̂(hk) can be

determined as a Gaussian distribution with q(hk) = N(hk|ĥk, Ŝh) with

Ŝh =
[

Σ−1
K

+ Σ−1
k

]−1
(3.33)

ĥk = ŵks(φ̂k) +
(

y − ŵT S(φ̂)
)

ŜhΣ
−1
K

(3.34)

and noting that ΣK = (1− β)Σ and Σk = βΣ one finds

Ŝh = β(1 − β)Σ (3.35)

ĥk = ŵks(φ̂k) + β
(

y − ŵT S(φ̂)
)

. (3.36)

Given the admissible hidden data hk, the optimal values for the parameters φk can be easily

obtained. As in the scenario of section 3.3.2, the optimal factor q̂(φk) is found by maximizing

the expected logarithm of the joint density function with respect to φ̃k:

φ̂k = arg max
φ̃k∈Dφ

E [ln p(y,hk,w,α,φ)]

= arg max
φ̃k∈Dφ

[

ln p(ĥk|ŵk, φ̃k)−
1

2
ĉw,ksk(φ̃k)Σ

−1
k sT

k (φ̃k)

] (3.37)
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When comparing equations 3.37 and 3.25 from the previous section, one can observe inter-

esting similarities between the resulting estimation expressions for φk. The difference is that

using the VBSAGE algorithm, the influence of all other base functions and their parameters

is absorbed into the calculation via the admissible hidden data vector hk. Clearly, this ends

up with a more efficient estimation of φk, as it avoids several large matrix multiplications.

One could also question if the VBSAGE based algorithm from this section allows better ap-

proximation results, as hk enforces conditional independence between φk and φK given y,

which corresponds to the chosen factorization of q(φ). However, this is an interesting but

non-trivial question and thus, a detailed theoretical as well as numerical comparison of these

algorithms should be topic of future research.

Equation 3.37 can be further simplified, if the model is extended by simple delay & sum

readouts, as the terms sk(φ̃k)Σ
−1
k sT

k (φ̃k) is asymptotically invariant against time shifts. As

a consequence, determining φ̂k reduces to maximizing the weighted cross-correlation between

sk(φ̃k) ≡ sk(τ̃k) and ĥk with respect to the time lag τ̃k.

To complete the derivation of the VBSAGE-based ESN learning algorithm, the free form

solution for w is calculated. Again, the expected logarithm of the joint density function is

the key quantity, when determining the optimal free form solution for q(w):

ln q̂(w) = Ehk,φK

[
ln p(y|hk,wK,φK)

]
+ Ehk,φk

[ln p(hk|wk, φk)]

+ Eα [ln p(w|α)]

= −
1

2

∑

i∈K

w2
i si(φ̂i)Σ

−1
K

sT
i (φ̂i)−

∑

i∈K

wisi(φ̂i)Σ
−1
K

ĥ
T

k

+
∑

i∈K

wisi(φ̂i)Σ
−1
K

yT + wksk(φ̂k)Σ
−1
k ĥ

T

k −
1

2
w2

ksk(φ̂k)Σ−1
k sT

k (φ̂k)

−
1

2
wT Âw

(3.38)

One can see that equation 3.38 also depends on the expected value of the admissible hid-

den data vector ĥk. As the weights w are estimated jointly (which is reflected by the

choice of a non-factorizing density q(w)), the admissible data vector hk becomes redun-

dant. To get rid of this term, the joint density of y and hk, appearing as p(y,hk|w,φ) =

p(y|hk,wK,φK)p(hk|wk, φk) is marginalized with respect to hk such that

p(y|w,φ) =

∫

p(y,hk|w,φ)dhk. (3.39)

As both p(y|hk,wK,φK) as well as p(hk|wk, φk) are Gaussian, standard results for marginal

Gaussian distributions can be applied. The densities can be written as

p(hk|wk, φk) = N
(

hk|wksk(φk),Σ
−1
k

)

p(y|hk,wK,φK) = N
(

y|hkM + v,ΣK

)

,
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with

M = I and (3.40)

v =
∑

i∈K

wisi(φi). (3.41)

Now, the marginal distribution p(y|w,φ) is given as [1]

p(y|w,φ) = N
(

y|wksk(φk)M + v,ΣK + MΣkM
T
)

= N
(

y|wT S(φ),ΣK + Σk

)

= N
(

y|wT S(φ),Σ
)

(3.42)

Observing that equation 3.42 exactly matches the data likelihood from section 3.3.2, also the

estimation expressions for the optimal factor q(w) are given by equation 3.21 from section

3.3.2. This can also be seen from the resulting graphical model after the marginalization,

which is the same as the model depicted in figure 3.3. The estimated q-factors are summarized

in table 3.7.

Factor Structure

q(w) N(w|ŵ, Ĉw)

q(αj) G(αj |âj , b̂j)

q(hk) N(hk|ĥk, Ŝh)

q(φk) δ(φk − φ̂k)

Table 3.7: q factors for Scenario C.

Similar results can be found in [34] and also [33].

3.3.4 Extension to Multiple Outputs

So far, a variational Bayesian formulation of ESN learning has been discussed for three

different scenarios (sections 3.3.1, 3.3.2 and 3.3.3). The presented algorithms can only

handle ESNs with a single output y[n]. However, in many practical applications it is required

to consider models with multiple outputs, e.g., as in handwritten symbol recognition (see

section 4). Within a probabilistic model, the L outputs are perturbed by random learning

errors ξl[n] with l ∈ [0, . . . , L−1], which may also depend on each other in the most general

formulation. In this case, also the variational estimation expressions for the model quantities

would change accordingly.

However, this work assumes an even simpler, but still plausible case, where the L noise
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components, each perturbing one particular output, are modeled to be independent from

each other, such that the algorithms from the previous sections can be directly applied.



Chapter 4

Simulations

So far, mathematical descriptions of several ESN-based learning algorithms have been pro-

vided. In this section, the discussed algorithms will be evaluated and numerical simulations

using MATLAB(2008a, The MathWorks, Natick, MA) [38] will be performed for comparison.

Section 4.1 will address important implementation aspects of the VB algorithms from sections

3.3.1 to 3.3.3. In section 4.2, optimality of these algorithms will be verified empirically using

synthetic data (i.e., the Mackey-Glass time series). Afterwards, section 4.3 will evaluate the

ESN performance using two different learning schemes for real-world handwriting recognition

(sections 4.3.2 and 4.3.3). The ESN-based learning algorithms, considered in this section,

are summarized below:

Std-ESN: A standard ESN is trained using the SVD-based pseudo-inverse as described in

section 3.2.2. For all simulations, MATLAB’s default setup for the SVD computation

was used.

Ext-ESN: An ESN with delay & sum readouts is trained using the SVD-based pseudo-

inverse. The time delays τ l are randomly chosen. In many cases, better results can be

obtained, if only a particular number of the time delays is set to a value different than

zero.

VB-ESN-A: The VB learning algorithm from section 3.3.1. The algorithm combines

training of the output weights w with an automatic regularization. In an iterative

manner, the weights as well as the hyperparameters α are estimated consecutively.

VB-ESN-B: The VB learning algorithm from section 3.3.2. The output weights w, the

corresponding hyperparamters α as well as the delay & sum readouts are trained.

VB-ESN-C: The VB learning algorithm from section 3.3.3. The output weights w, the

corresponding hyperparamters α as well as the delay & sum readouts are trained using

a VBSAGE-type algorithm.

33
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Note that for all the following simulations, the covariance matrix of the random learning error

is assumed to be Σ = σ2I.

4.1 Implementation Aspects

It has been discussed in sections 2 and 3, that in general, the variational parameters have

to be estimated in an iterative manner as they may implicitly depend on each other. As

a consequence, the algorithms will show a cyclic structure, whereas one particular q-factor

is re-estimated during a single step, given the most recent estimates of all other q-factors.

Even if variational inference does not require any particular order of estimating the variational

distributions, the performance may strongly depend on the choice of the update sequence.

Furthermore, the resulting estimates may also depend on the initialization. One can immedi-

ately see that there are many degrees of freedom when using variational inference algorithms.

For this reason, algorithms VB-ESN-A, VB-ESN-B and VB-ESN-C, will be further speci-

fied in terms of structure and implementation details. To keep the descriptions as compact

as possible, the following considerations will assume ESNs with single outputs. As discussed

in section 3.3.4 an extension to multiple outputs is straight forward.

When performing algorithm VB-ESN-A, the estimation of q(w) requires knowledge of the

factors q(αj) for j ∈ [0, . . . ,M + L − 1] and vice versa. One possible realization of the

algorithm is given by algorithm 1.

Algorithm 1 VB-ESN-A

Initialize âi, b̂i for i ∈ [0, . . . ,M + L− 1]
repeat

ŵ, Ĉw ← 3.13, 3.14 {Estimate q(w)}
for j ∈ [0, . . . ,M + L− 1] do

âj, b̂j ← 3.16, 3.17 {Estimate q(αj)}
end for

until Convergence

As the factor q(w) is estimated first, all other factors (i.e., q(αj)) need to be initialized at the

beginning. This could for instance be done randomly or by applying heuristics. The algorithm

cycles through the estimation of q(w) and q(αj) until a certain convergence criterion is met.

Often, a fixed number of iterations is used or the algorithm is aborted as soon as the free

energy does not significantly decrease any more. Of course other criteria for convergence

could be used.

In algorithm VB-ESN-B also the time delays τ are trained1. The update order shown in

algorithm 2 was empirically found to work best for the simulations performed in the context

of this thesis.

1Note that in algorithms 2 and 3 a general parameter vector φ is used instead of explicitly modeling
the time delays τ .
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Algorithm 2 VB-ESN-B

Initialize âi, b̂i, φ̂i for i ∈ [0, . . . ,M + L− 1]
Initialize ŵ, Ĉw

repeat

for k ∈ [0, . . . ,M + L− 1] do

φ̂k ← 3.25 {Estimate q(φk)}
end for

ŵ, Ĉw ← 3.22, 3.23 {Estimate q(w)}
for j ∈ [0, . . . ,M + L− 1] do

âj, b̂j ← 3.16, 3.17 {Estimate q(αj)}
end for

until Convergence

In this case, the factors q(w) and q(αj) have to be set to certain values during the algorithm

initialization. Note that the estimation of the time delays τ̂i for i ∈ [0, . . . ,M + K − 1]

strongly depends on the initialization of the other factors. If âi and b̂i are chosen such that

α̂i = âi

b̂i

takes a high value, the weight ŵi, corresponding to the i-th base function will be

highly regularized during the subsequent calculation of ŵ. As a consequence, it will be likely

that the corresponding time delay τ̂i changes during the next update cycle and so on. For

the simulations from sections 4.3.2 and 4.3.3 very high initial values for α̂i will be used (i.e.,

10e5 − 10e10), as the best results have been achieved using this setting.

As algorithm VB-ESN-C is quite similar to algorithm VB-ESN-B, the previous consider-

ations concerning the update order also hold in this case. The realization of VB-ESN-C,

which will be used in the following simulations, is given by algorithm 3.

Algorithm 3 VB-ESN-C

Initialize âi, b̂i, φ̂i for i ∈ [0, . . . ,M + L− 1]
Initialize ŵ, Ĉw

repeat

for k ∈ [0, . . . ,M + L− 1] do

ĥk, Ĉh ← 3.34, 3.33 {Estimate q(hk)}
φ̂k ← 3.37 {Estimate q(φk)}

end for

ŵ, Ĉw ← 3.22, 3.23 {Estimate q(w)}
for j ∈ [0, . . . ,M + L− 1] do

âj, b̂j ← 3.16, 3.17 {Estimate q(αj)}
end for

until Convergence

An important parameter of algorithm VB-ESN-C is the noise splitting constant β. For the

classical SAGE algorithm it was shown in [35] that fast convergence can be achieved, by

assuming that all the learning perturbation comes from the latent variable of interest. This
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assumption corresponds to the choice β = 1 and is adopted for the following simulations.

4.2 Optimality - Free Energy Minimization

In this section, it will be empirically shown that indeed each of the algorithms monotonically

decreases the variational free energy over the number of update iterations. Therefore, the

variational free energy will be analytically determined up to a constant term which does not

depend on the variational parameters. For compactness, the derivations will be skipped as

the calculation is long but straight forward using the relation

F̂ [q(z)] = Ez [q(z)]− Ez [ln p(x,z)] + const. (4.1)

The ESNs will be trained such as to predict the chaotic Mackey-Glass attractor [9] with the

delay parameter τMG = 30. As the only goal of this simulation is to illustrate the optimization

progress, a detailed description of the system and also the algorithm configuration is skipped,

as the parameters have been tuned to obtain illustrative learning curves instead of optimal

performance. Figures 4.1, 4.2 and 4.3 show the variational free energy and the mean squared

prediction error over 600 update iterations for algorithms VB-ESN-A, VB-ESN-B and VB-

ESN-C.
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Figure 4.1: Free energy F̂ [q] and mean squared error over 600 update iterations for
VB-ESN-A.

From each of the plots, one can clearly see that the variational free energy in fact decreases

after each update cycle. In contrast, the mean squared error can also increase during opti-

mization, which is a natural consequence of automatic regularization.
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Figure 4.2: Free energy F̂ [q] and mean squared error over 600 update iterations for
VB-ESN-B.
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Figure 4.3: Free energy F̂ [q] and mean squared error over 600 update iterations for
VB-ESN-C.

A detailed performance analysis of ESN-based prediction of the Macky-Glass system using

algorithms very similar to VB-ESN-C is provided in [34]. The VB algorithms are compared

against state-of-the-art ESN learning techniques and it is shown that they can significantly

boost ESN’s learning performance. Additionally, it is demonstrated that the learned delay

parameters strongly correlate with real quantities from the Mackey-Glass equation (i.e. the

delay parameter τMG). Furthermore, the effects of automatic regularization are demon-

strated. It was shown that output weights, corresponding to base functions with a delay

parameter close to τMG or zero are typically barely regularized during training. All other base
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functions are often suppressed, which is expressed by very large hyperparameters (and as a

consequence, weights close to zero). Further details and additional simulation results can be

found in [34].

4.3 Handwriting Recognition

In this section, the proposed VB algorithms from sections 3.3 are evaluated using real world

handwriting data. First of all, it should be figured out, if reservoir based learning principles -

in particular echo state networks - can be used for classification of on-line handwriting data,

which has not been reported so far. In the second step, this section tries to find out if,

and how the classification performance can be improved, using the proposed algorithms from

section 3. Algorithms Std-ESN, Ext-ESN and VB-ESN-C will be considered during this

section. The reader might wonder, why the VB learning algorithms from sections 3.3.1 and

3.3.2 are not chosen to be subject of the following simulations. Remembering the results

from sections 3.3.2 and 3.3.3, one could state that algorithm VB-ESN-C supersedes algo-

rithm 3.3.1 as well as the approach from section 3.3.2, as it allows estimating extended ESN

parameters, without neglecting dependencies between them. Additionally, the computational

complexity of algorithm VB-ESN-C is much smaller than in case of algorithm VB-ESN-B.

Thus, algorithms VB-ESN-A and VB-ESN-B can be considered as intermediate stages in

formulating a powerful VB learning algorithm (i.e., VB-ESN-C), which satisfies all desired

requirements.

The simulations provided in this section concentrate on the ESN-based recognition of hand-

written letters, given as pen-movement trajectories. Furthermore, only letters, which can

be drawn within a single stroke (i.e., continuous trajectory) are considered for simplification

reasons. As discussed in section 1, classifiers can directly act on the trajectories themselves

or can use a sequence of extracted features for recognition. In the following simulations, the

ESNs will act on the raw trajectories (except some simple preprocessing).

4.3.1 Handwriting Data

The simulations will be performed using two different databases, which are freely available.

Both of them are part of the UCI Machine Learning Repository which can be found at [29].

In the following, the two data sets are described and compared against each other.

The WILLIAMS Database:

The data set consists of 2585 character instances, represented by their pen trajectories.

The database only contains letters, which can be written as a single stroke. Further-

more, the data was captured only from a single writer, which drastically simplifies the

recognition task, as the data shows quite small interclass variations. Each trajectory is

represented by a three dimensional time series, covering velocities along the x- and y-
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position and the pen force. The velocities were calculated by differentiating the original

data. Additionally, a Gauss filter was applied to smoothen the data. For further details,

the reader should refer to [39].

The UJI Database:

All together, the database provides 11640 samples consisting of 66 letters and several

other symbols, which are not in the focus of this work. The characters were recorded

twice for each of the 60 writers. Clearly, the interclass variations will be much higher

than for the WILLIAMS database because many different writers have contributed.

As a consequence, recognition will be much more challenging as for the WILLIAMS

database. Another difference is that trajectories of the UJI data set are described with

only two features: the absolute x- and y- positions. In [40], the authors claim that

duplicate entries might occur in the original data and thus a suitable preprocessing

scheme was applied.

To visualize the differences between the UJI and the WILLIAMS database, 20 instances of

three different letters (’a’, ’b’, ’c’) are drawn in figures 4.4a and 4.4b for each database2,

whereas the x- and y-coordinates of each trajectory have been normalized to a common

range of [−1,+1].

a b c

(a) WILLIAMS Database

a b c

(b) UJI Database

Figure 4.4: Handwriting data comparison: 20 samples of letters ’a’, ’b’ and ’c’ are plotted.

2The third dimension of the WILLIAMS trajectories was neglected for figure 4.4.
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Considering a classification scenario, the UJI database is much more demanding in terms of

very diverse and writer-specific realizations of the characters. Clearly, automatic recognition

becomes very complex due to strong fluctuations concerning writing speed, size and also the

shape of the input letters.

4.3.2 Multi-Class ESNs

This section provides simulation details for handwriting recognition algorithms based on multi-

class ESNs. The central problem, which arises when working with this type of classifier is

the choice of the temporal reference patterns, indicating the values true or false for a certain

output (i.e., class label). Clearly, it would be beneficial, if the classifier could also be used in

an on-line fashion, which means that it would be able to detect and simultaneously classify

[31] the symbols while the test person is still writing. From this viewpoint, a reference signal,

which indicates the class, as well as the moment of detection would be an intuitive choice.

In the following simulations, narrow Gauss pulses were used for the positive patterns. The

position parameter of the Gaussian was chosen as µp = 0.7NT , whereas NT denotes the

length of a single trajectory. The corresponding width parameter was set to σ2
p = 0.5. In

other words, the output corresponding to the correct class label is trained such as to emit

a pulse at 70% of the trajectory length3. An illustration of this behavior is demonstrated in

figure 4.5, where an ESN with three outputs (corresponding to classes ’a’, ’b’ and ’c’) was

trained according to algorithm VB-ESN-C. The plot shows the ESN class responses and the

ideal reference signals for several test examples from the WILLIAMS database.
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Figure 4.5: Comparison of the ESN output and the reference output for several test
examples.

Even if the emitted ESN pulses from figure 4.5 have much smaller amplitudes than the ref-

3The value of 70% was found empirically.
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erence pulses, the ESN can correctly detect letters ’a’, ’b’ and ’c’ for the given examples.

Another important aspect of the handwriting classifier is the way how it decides for the class

given the resulting pulse signals. Considering a real-time scenario, it would make sense to

decide for a class, if the corresponding output signal exceeds a certain level, acting as a

simple pulse detection. Using a decision criterion of this type, the classifier would suggest a

class label, every time a pulse was seen on one of the outputs. Clearly, this will always lead

to a certain amount of false alarms [31], due to the systematic ambiguity of handwritten

character trajectories. For instance, identifying the trajectory of letter ’c’, one cannot decide,

if the writer will proceed to letter ’a’. In case he does, the last part of the trajectory could

again lead to a vote for letter ’c’ and so on. A typical false alarm example is depicted in

figure 4.6. Some time steps after the correct class (i.e., ’a’) was indicated, also a pulse for

letter ’c’ was generated by the ESN.
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Figure 4.6: Demonstration of the false alarm problem.

For the following simulations, it will be necessary to define an appropriate quality measure

for the ESN-based classification algorithms. Regarding the ambiguity problem of real-world

handwriting data, the question arises, if and how the false alarms should enter the quality

measure. Remembering that on-line recognition is subject to causality constraints, the ESN

is in fact expected to vote for letter ’c’ after observing the first part of the trajectory, also

if the writer intends to write letter ’a’, for instance. Thus, the corresponding false alarm

should not be counted as an error in this case, as even humans would make the same de-

cisions. In contrast, the second false alarm, which might occur after the overall trajectory

was seen, should indeed contribute to the error, as in theory, a distinction based on the input

history would be possible. In general, the problem of separating systematic from erroneous

false alarms strongly depends on the context, in which the trajectory was written. For this

reason, this work uses a simple off-line evaluation of the resulting pulse patterns, such that
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each character trajectory yields exactly one classification result. In this case, the class label

is selected according to the output which shows the maximum value, no matter, when this

value has occurred.

For the simulations, ESNs with N = 200 neurons were used. A reservoir connectivity of 10%

was used and the reservoir matrices were rescaled such that ρ(CX) = 0.8. The input weights

CU were randomly chosen between −1 and +1. Output feedback was not necessary for this

task and thus, CY was set to zero. For algorithms Ext-ESN and VB-ESN-C, the time delay

vectors τ l,∀l ∈ [0, . . . , L − 1] were initialized randomly, whereas 30% of the vector entries

were set to zero and the resulting 70% were uniformly drawn from the interval [0, . . . , 100].

Furthermore, VB-ESN-C was trained using 6 iterations and the standard deviation of the

white observation noise was assumed to be σ = 10e−9, which resulted in a weakly regularized

solution of w.

For a compact evaluation of the algorithms, the classification is performed on only five letters

(i.e., ’a’, ’b’, ’c’, ’d’ and ’e’), instead of the overall set of character, available in the databases.

The ESNs were trained using 60% of the character samples and the resulting 40% were used

for testing. For each of the algorithms, 50 independent runs have been used. Classification

errors were calculated for the entire set of test examples (i.e., ETotal) as well as for each

class separately (i.e., the class error rates Ea, Eb,...). Furthermore, the error rate EAvrg was

calculated as the average over the class error rates. Obviously, EAvrg is a more meaningful

quality measure than the total error rate, as it is insensitive against the number of test

examples used for the different classes. The results obtained for the WILLIAMS database are

given in table 4.1.

Algorithm Ea Eb Ec Ed Ee ETotal EAvrg

% % % % % % %

Std-ESN 41.85 32.65 21.75 10.85 14.58 24.29 24.34

Ext-ESN 0.00 0.00 26.49 0.19 0.22 3.70 5.38

VB-ESN-C 0.00 0.00 3.14 0.00 0.04 0.43 0.64

Table 4.1: Classification results for the WILLIAMS data set.

Obviously, multi-class ESNs without delay & sum readouts (i.e., algorithm Std-ESN) can

not properly handle the complexity of dynamic handwriting data, which is indicated by large

classification errors, even for the WILLIAMS database. The observed behavior could be ex-

plained by the fact that the standard ESNs memory capacity is obviously not large enough for

the handwriting recognition problem. Remembering the false alarm discussion from above,

ambiguous pulses can be avoided by memorizing previous parts of the trajectory. For instance,

an erroneous ’c’-pulse in case of writing letter ’a’ can only be avoided if the ESN is able to

remember longer traces of the ’a’-trajectory, such that the ’c’-pattern is correctly considered
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as a part of letter ’a’. To boost the ESN’s memory capacity, the reservoir size could be

increased, for instance4. Alternatively, delay & sum readouts provide a much simpler and

more effective way of sufficiently extending the ESN’s memory. The results from table 4.1

show that the performance can be drastically improved by introducing random time delays

in the readout stage (i.e., algorithm Ext-ESN). Furthermore, it can be seen that letter ’c’

is miss-classified most often. Again, the reason for this might be that the trajectory of ’c’

often occurs as a part of other trajectories. Note that for algorithm Ext-ESN, the computa-

tional effort increases only marginal, compared to algorithm Std-ESN. For this simulation,

algorithm VB-ESN-C is found as the clear winner, as it can further decreases the average

classification error from 5.38% to 0.64%. One can see from table 4.1 that also for letter

’c’, most of the test examples can be correctly classified (96.86% instead of 72.51%). It can

be concluded that a significant part of the handwriting ambiguities can be resolved by an

adaptation of the time delays, combined with an automatic regularization.

As a second test, the simulations have been repeated for the UJI database. The corresponding

results are provided in table 4.2

Algorithm Ea Eb Ec Ed Ee ETotal EAvrg

% % % % % % %

Std-ESN 22.79 13.21 92.71 88.51 93.87 43.51 46.70

Ext-ESN 25.31 11.27 11.08 72.28 93.51 39.57 42.69

VB-ESN-C 11.30 15.41 4.37 55.31 88.51 31.66 34.98

Table 4.2: Classification results for the UJI data set.

As expected, the obtained classification results get much worse for the UJI data. Even if

the ranking of the three algorithms (i.e., Std-ESN, Ext-ESN and VB-ESN-C) remained

the same as for the WILLIAMS database, a practical application seems quite unrealistic.

Three main problems can be identified using the UJI database. First of all, the set of letters

corresponding to a certain class is quite diverse, as instances from many different writers

(i.e., 60) have been recorded. The second problem is that the database only provides two

examples per writer for a single letter, which is obviously not enough for multi-class ESNs.

Probably, the results could be improved by increasing the number of training examples per

writer. Additionally, the UJI database does not provide a pen force feature, which seems

to be important for a correct character classification. To realize ESN-based classification

of dynamic handwriting data also for more complex data sets (e.g., the UJI database), an

alternative approach will be investigated during the next section.

4This was found during the experiments.
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4.3.3 Classification by Prediction

An alternative approach for classification of handwriting trajectories is based on time series

prediction, as discussed in section 3.2.5. For each class, one specialized ESN is trained such

as to predict the handwriting trajectories as well as possible. Thus the target output is set to

y[n] = u[n + n0] during training. Test examples are simply classified by assigning the class

label corresponding to the predictor, which has achieved the smallest mean squared prediction

error. The reader should note that this method is not very well suited for performing on-line

recognition, as the resulting error signal will fluctuate in general and thus it is hard to identify

clear class votes at one certain time step. Of course one could try to find advanced methods

for on-line detection of the characters given the prediction error over time. However this is

not in the scope of this thesis.

To wash out initial conditions, the input trajectory was repeated R times during prediction.

In this case R = 4 repetitions have been used. Furthermore, the prediction horizon n0 was

set to 11, which seemed to work best in this case. The ESN setup was almost identical

to section 4.3.2 except that the input weights were uniformly drawn between −0.2 and

+0.2, which turned out to work well for this scenario. For algorithm VB-ESN-C, the input

variance was assumed to be σ2 = 10e − 10. Detailed simulation results are provided only

for the UJI database, as even the simple algorithm Std-ESN has achieved 0% error rates for

the WILLIAMS database and thus there is nothing to improve using the extended learning

algorithms. The results obtained for UJI database are summarized in table 4.3.

Algorithm Ea Eb Ec Ed Ee ETotal EAvrg

% % % % % % %

Std-ESN 2.03 5.80 10.09 4.97 2.51 5.10 5.08

Ext-ESN 5.20 6.79 11.21 5.75 3.48 6.54 6.49

VB-ESN-C 4.53 7.62 11.82 6.02 3.92 6.82 6.78

Table 4.3: Classification results for the UJI data set.

From table 4.3 one can see that the classification of handwriting data based on prediction

is in fact able to achieve good results. Obviously, classification becomes much more robust

against variations of the input data using ESN-based predictors, each trained for one partic-

ular class. This seems rather intuitive, as the specialized ESNs will probably yield the best

predictions for letters corresponding to the class for which they were trained, even if the test

examples strongly differ from the examples used for training.

Furthermore, a very surprising behavior can be observed. Algorithms Ext-ESN and even

VB-ESN-C are obviously not able to boost the classification performance. In fact, results

get even worse, as demonstrated in table 4.3. The problem, when performing classification

by prediction is that further decreasing the prediction error (which is done by applying Ext-
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ESN and VB-ESN-C) does not necessarily end up with an improvement of the classification

performance. The key criterion for successful recognition is that the predictor corresponding

to the true label achieves the smallest prediction error. Furthermore, all other predictors are

expected to perform worse. As a consequence, this would ensure large gaps between errors

achieved by the best and the next best predictor and furthermore an optimal separability

regarding the character classes. It seems that when applying algorithms Ext-ESN and VB-

ESN-C very small errors are achieved also for foreign classes. Clearly, this behavior is not

desired, as it systematically worsens the discrimination power of the classifier.

The simulations demonstrate that classification by prediction can handle more complex data

sets, as this method only needs a few examples per writer to perform well. The main drawback

of this principle is that it cannot be used for on-line handwriting recognition out-of-the-box.





Chapter 5

Conclusion

In this thesis, a variational Bayesian formulation of ESN learning was presented and evaluated

using synthetic as well as real-world handwriting data.

After a brief introduction to classical Bayesian inference, the concept of variational Bayesian

inference was discussed in chapter 2 and general estimation expressions under certain den-

sity factorizations have been provided. The chapter was concluded with a simple example,

demonstrating the principle of variational free energy minimization (section 2.2.3).

Chapter 3 started with a compact introduction to reservoir computing and in particular

ESNs, covering standard ESN learning (section 3.2.2), limiting aspects (section 3.2.4) and

ESN based classification (section 3.2.5). Afterwards, in section 3.3, a variational Bayesian

formulation of ESN learning was presented. For three different scenarios, the variational

estimation expressions have been successively derived (see sections 3.3.1 - 3.3.3). It was

shown that learning extended ESN models (e.g., ESNs with delay & sum readouts), as well

as an automatic Bayesian regularization can be simultaneously realized using the concept of

variational free energy minimization. Even if performing Bayesian inference is intractable for

the original problem, ESNs can be efficiently trained using approximate solutions, without

losing optimality. A general formulation of the extended ESN model has been used (section

3.2.4), such that the proposed algorithms can be easily adopted for a large family of ESN

model extensions.

Using synthetic data (i.e. the Mackey-Glass time series), it was empirically shown that the

VB-ESN learning algorithms discussed in chapter 3 are optimal as they monotonically de-

crease the free energy over the number of update iterations (section 4.2). In section 4.3,

ESN-based recognition of real-world handwriting trajectories (i.e. the WILLIAMS and the

UJI database) was evaluated using two different classification scenarios. For the WILLIAMS

database it was demonstrated that only multi-class ESNs with delay & sum readouts can

handle the complex ambiguities of handwriting trajectories. Furthermore, it was shown that
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the performance can be drastically improved by applying the VB learning algorithm from

section 3.3.3. Using the UJI database, only poor classification results have been obtained for

all of the ESN algorithms under test (error rates above 30%). The reason for this might be

that each character was recorded from many different writers only twice, which systematically

leads to huge inter-class variations of the data. Obviously, classification based on multi-class

ESNs would require larger amounts of training data to properly handle complex data sets as

the UJI database.

In contrast, the second classification scenario (i.e. classification by prediction, section 4.3.3)

is much more robust against large differences between the training and the test set. One

could state that a specialized predictor will probably achieve the smallest prediction error,

even if a certain test example - belonging to the class, for which the predictor was trained

- strongly differs from the training data. As a consequence, the error rate was significantly

reduced for the UJI database using simple ESNs without delay & sum readouts. It seems

paradoxical that for this scenario, the classification results became worse when using the

advanced learning algorithms. Obviously, the prediction error remains small, even if the input

trajectory does not correspond to the class for which the particular ESN was trained, and

thus, miss-classifications become more likely. The major disadvantage of classification by

prediction is the fact that it can not be directly used for on-line recognition of character

trajectories. Furthermore, the simulations from section 4.3.3 have indicated that extending

ESNs such as to achieve better predictions does not imply better classification results.



Chapter 6

Future Work

As already mentioned in chapter 3, a detailed comparison of the algorithms from sections

3.3.2 and 3.3.3 would be of great interest. One could assume that the learning algorithm from

section 3.3.3 could achieve better results, as the factorization of the approximating density

better matches the true model. On the other hand, the admissible hidden data vector is not

known and thus, has to be estimated too, which introduces additional uncertainty during es-

timation. It could even be possible to show that in theory both algorithms converge towards

the same solution, which also seems plausible, as both models are exactly the same as soon

as the latent variable is marginalized out. One can see that a detailed theoretical analysis

would be necessary to give clear statements on the approximation quality of these algorithms.

In chapter 4, initial simulation results for ESN-based classification of dynamic handwriting

data have been provided. Using two common classification scenarios, it was shown that ESNs

are principally able to classify real-world handwriting trajectories. In fact, several improve-

ments - especially to the multi-class ESN could be thought. For instance, one could try to

use additional features or other reference signals than Gauss pulses might perform better as

class indicators. Furthermore, the simple threshold in the readout stage of the algorithm

could be replaced by a more sophisticated pulse detector. However, one can see that on-line

recognition of handwriting trajectories using multi-class ESNs could be tuned on many dif-

ferent stages.

Using classification by prediction, the prediction horizon n0 plays a central role for the re-

sulting performance. It would make sense to perform a more detailed analysis regarding this

parameter. For instance, the optimal value for n0 might vary from class to class. Thus,

additionally optimizing n0 might achieve better classification results. Another important as-

pect regarding this scenario is how the winner class is selected, given the prediction errors.

In this work, the most simple strategy was used, i.e., deciding for the class corresponding to

the predictor with the smallest mean squared prediction error. More sophisticated decision

strategies could maybe further improve the discrimination power. As already mentioned, us-

49



50 CHAPTER 6. FUTURE WORK

ing classification by prediction in an on-line fashion is naturally more complex, as it requires

detecting the character classes from the history of the (fluctuating) prediction error sequence.

One could, for instance, try to estimate the error statistics for certain time windows to obtain

more robust classification results. However, there would be a trade-off between robustness

and time resolution of the resulting decisions.

One systematic problem of simple ESNs is that they are not invariant against distinct time

warping of the input trajectories. In [31], time warping invariant echo state networks have

been realized by using leaky integrator neurons and the authors even point out that this

approach might be used for handwriting recognition. Intuitively, this seems to be the most

promising extension, to significantly improve ESN’s classification performance, as it might

achieve invariance against different writing speeds.
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Appendix A

Appendix A

A.1 Graphical Notation

Figure A.1 explains the graphical notation used in this thesis.

A BC

Figure A.1: Graphical notation.

Generally, network nodes denote quantities from the statistical model, whereas circles (node

C) denote random quantities and squares represent deterministic parameters (nodes A and

B). Furthermore, the background color gray indicates that the corresponding node is known

(node B), while unknown (i.e. hidden) variables are colored white. Arcs denote dependencies

between nodes.

A.2 Useful Identities

For a real-valued random vector w with mean µ and covariance matrix Σ,

E
[
wT Aw

]
= Tr [AΣ] + µAµ. (A.1)

Furthermore:

∂

∂Σ
Tr [AΣ] = AT (A.2)

∂

∂Σ
ln |Σ| = Σ−1 (A.3)
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ln |diag {a0, . . . , aL−1} | =
L−1∑

l=0

ln al (A.4)

For further informations, the reader should consult [41] or [1].
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