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Abstract

Spiking neural networks constitute the third generation of artificial neural

networks. They differ from traditional neural network models by respecting

biological networks in greater detail and mapping their behavior more accu-

rately. One of the main research goals in the field of spiking neural networks

is to elucidate connections between structure and function. Recent research

in cognitive psychology and neuroscience points to an instrumental role of

probabilistic reasoning and learning in human and animal behavior. The

objective of this thesis was to investigate the ability of certain architectures

of spiking neural networks to perform probabilistic inference and learning,

either exact or approximate. To this end, a recently proposed architecture

which has established a link between the Expectation-Maximization (EM)

algorithm and neural mechanisms was extended and generalized. A rigor-

ous theory was developed which relates activity and plasticity in a special

class of spiking neural networks to an online approximation of EM. This was

achieved by mapping a probabilistic mixture model with component distri-

butions from exponential families to a neural architecture. Inference and

learning were demonstrated to correspond to neural integration with lateral

inhibition and Hebbian plasticity, or more precisely Spike-Timing Dependent

Plasticity (STDP). The method proposed in this thesis is consistent with bi-

ological data in important aspects and complements recent discoveries in the



area, by providing a theoretical explanation of the emergence of a particular

function in certain classes of spiking neural networks.



Kurzfassung

Spikende neuronale Netze stellen die dritte Generation von neuronalen

Netzen dar. Sie unterscheiden von herkömmlichen Modellen neuronaler Net-

ze durch eine höhere Detailtreue in der Repräsentation von biologischen

Netzwerken. Ein besonders interessanter Aspekt bei der Untersuchung von

spikenden neuronalen Netzen besteht im Aufzeigen von Zusammenhängen

zwischen Struktur und Funktion. Aktuelle Forschungsergebnisse aus kogni-

tiver Psychologie und den Neurowissenschaften deuten darauf hin, dass pro-

babilistische Inferenz und Lernen eine entscheidende Rolle im Verhalten von

Menschen und Tieren spielen. Das Ziel dieser Arbeit war die Untersuchung

bestimmter Architekturen von spikenden neuronalen Netzen hinsichtlich ih-

rer Fähigkeit, probabilistische Inferenz und Lernen, entweder exakt oder ap-

proximativ, zu implementieren. Zu diesem Zweck wurde eine kürzlich vor-

geschlagene Architektur erweitert und verallgemeinert, in welcher neurona-

le Mechanismen in Verbindung mit dem Expectation-Maximization (EM)

Algorithmus gebracht wurden. Es wurde eine Theorie für eine bestimmte

Klasse von spikenden neuronalen Netzen entwickelt, welche neuronale Akti-

vität und Plastizität mit einer online Approximation des EM Algorithms in

Verbindung setzt. Dies wurde durch die Projektion einer probabilistischen

Mischverteilung mit Komponentenverteilungen aus Exponentialfamilien auf



eine neuronale Architektur erreicht. Es konnte gezeigt werden, dass Inferenz

und Lernen in solchen Modellen neuronaler Integration und lateraler Inhi-

bition, beziehungsweise Hebb’scher Plastizität oder genauer, Spike-Timing

Dependent Plasticity (STDP), entspricht. Die in dieser Arbeit präsentierte

Methode ist mit biologischen Daten in wesentlichen Aspekten konsistent und

ergänzt jüngste Entwicklungen dieses Gebiets durch eine neuen theoretische

Grundlage, die erklärt wie eine konkrete Funktion in bestimmten Klassen

von spikenden neuronalen Netzen entstehen kann.
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Chapter 1

Introduction

What is the secret behind human cognition? Is there a physical substrate for
memory, abstract thought or planning? Shall we contemplate that neurons
and synapses are responsible for complex perception and behavior? Will an
understanding of the biophysical processes, which take place in the brain,
shed light on the miracle of human intelligence?

Questions like these have engaged ancient philosophers and modern sci-
entists alike for quite some time (Morton [1997]; Purves [2008]; Carlson and
Braun [2002]). The 20th century witnessed many new approaches to these
issues. Perhaps most important, the concept of artificial neural networks was
born and has rapidly occupied a key position in fields like artificial intelli-
gence and machine learning over the past decades (Haykin [1994]; Bishop
[2006]). Just before the turn of the century, models of spiking neural net-
works entered the stage: the third generation of neural networks (Maass and
Bishop [2001]). In contrast to their predecessors, they capture one of the
most significant peculiarities of communication in biological neurons. When
a biological neuron transmits information, it sends out spikes, small pulses
of activity traveling from one neuron to another. In between neurons, the
pulses pass through synapses which act as gates and are able to modulate
the strength and impact of a spike.

Models of spiking neural networks have reached a previously unmatched

1



2 1. Introduction

level of detail in describing the intricate processes which underlie communica-
tion and computation in real biological networks. Many central questions in
the study of spiking neural networks are about function (Maass and Bishop
[2001]). How powerful is a network of neurons and synapses in computational
terms? Are there certain structures and architectures which can be associ-
ated with certain functions? Eventually, one would like to know whether and
how high-level functions such as abstract thought and language comprehen-
sion may be embedded in neural circuitry. For the time being, the answers
to these high-level questions remain out of reach. There are, however, some
intermediate-level features of human intelligence which seem promising to
study. Pattern learning and recognition as well as reasoning in the face of
uncertainty are examples of features which offer themselves to analysis as
they have been studied extensively in non-spiking networks (Bishop [2006]).

This thesis is about associating a certain class of spiking neural networks
with a particular function, namely probabilistic learning, or more precisely
density estimation, and inference. Ideally, learning in the sense of density
estimation refers to an agent’s ability to build an internal model of the world
while observing it. An ideal model should comprise a full-fledged descrip-
tion containing raw sensory inputs, intermediate concepts like objects which
summarize sensory inputs, and high-level concepts like abstract categories.
Furthermore, it should capture dependencies and causal relationships among
sensory inputs, objects and concepts, and represent the basic rules, according
to which elements in the environment, including the agent itself, interact and
evolve in time. Inference in an ideal model would allow to optimally exploit
the acquired knowledge in any given situation. This includes interpreting
current sensory inputs, drawing conclusions about the state of the world,
or even predicting the future (MacKay [2003]; Bishop [2006]). Clearly, un-
derstanding how networks of spiking neurons could implement probabilistic
models which can deal with real-world complexity is a long-term objective.
At the moment, this objective can only serve as an inspiration to more mod-
est endeavors.

Recent work by Deneve [2008a] or Nessler et al. [2010] indicates the com-
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plexity of probabilistic models which are currently within reach for spiking
neural networks1. In the latter publication, the authors consider a mixture
model of categorical variables and the mapping of this model to the neural
domain. Both learning and inference are successfully associated with stan-
dard neural mechanisms. Due to its attractive simplicity, the model proposed
by Nessler et al. [2010] will serve as a starting point for the original part of
this thesis. Being a relatively concise model, it has a number of weaknesses
which limit its value from a technical perspective and diminish its plausibility
in a biological context. These weaknesses naturally motivate the adjustments
and extensions proposed in this work.

The first weakness is about how the input must be delivered to the model.
The authors must assume that there exists a so-called population coding of
input variables. The inputs must be provided in groups and in each group
there can be only one active input at a time. The second weakness concerns
how an input spike influences the state of an internal model neuron. The
temporal evolution of this influence is called excitatory post-synaptic poten-
tial (EPSP, see Purves [2008]). In biology, EPSPs decay smoothly over time,
whereas the proposed model must assume that this influence stops abruptly
after a fixed window of constant influence. Therefore, the second weakness
is about the EPSP shape. In this work, these two shortcomings will be ad-
dressed by considering mixture models with component distributions which
differ from the original approach.

The remainder of this thesis is structured as follows. Chapter 2 introduces
spiking neural networks. Chapter 3 gives an introduction to probabilistic
models. Chapter 4 covers existing work of immediate relevance to this thesis.
Chapter 5 presents a generalization of the model from Nessler et al. [2010]
which deals with the issue of assuming input population coding. In Chapter 6,
it is shown how more realistic EPSP shapes can be incorporated in the model.
In addition, two further extensions of the method are presented. Finally,
Chapter 7 gives a conclusion and a brief outlook. Appendix A contains a
convergence proof of the proposed method.

1At least when mechanisms for both inference and learning should be implemented by
the same network.
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Chapter 2

Spiking Neural Networks

Neural networks are a fascinating, and deeply enigmatic field of study. In
their relentless pursuit of knowledge and understanding, modern biology, neu-
roscience and cognitive psychology have left little doubt that the miraculous
process by which we humans perceive, think and act, comes about through
the collaboration of myriads of highly specialized brain cells, most impor-
tantly neurons (see for example Carlson and Braun [2002]). Densely con-
nected via electrical or chemical synapses, organized in areas, local networks
and columns and embedded in supporting tissue, they are thought to lend us
spirit and reason. Picturing such an intricate and elusive process at work is
clearly beyond our imaginative capabilities, albeit the inspiring words once
conceived by Charles S. Sherrington, a pioneer of modern neuroscience, to
express his wonder and excitement at the human brain (Sherrington [1941]):

“The great topmost sheet of the mass, that where hardly a light
had twinkled or moved, becomes now a sparkling field of rhyth-
mic flashing points with trains of traveling sparks hurrying hither
and thither. The brain is waking and with it the mind is return-
ing. It is as if the Milky Way entered upon some cosmic dance.
Swiftly the head mass becomes an enchanted loom where millions
of flashing shuttles weave a dissolving pattern, always a meaning-
ful pattern though never an abiding one; a shifting harmony of

5



6 2. Spiking Neural Networks

sub-patterns. ”

Today, nearly sixty years after Sherrington’s groundbreaking spadework,
the neuroscientific community may look back on quite a series of important
discoveries which have greatly shaped, and sometimes permanently changed
our understanding of the most complex of organs we possess. Many fields
of study have grown a close relation to neuroscience, sharing an unresting
and longanimous eagerness to unravel the brain’s mystery. While western
philosophers have been pondering on the mind and its relation to the body
ever since the dawn of ancient Greek philosophy (Morton [1997]), and psy-
chologists have long provided a phenomenological perspective of our mental
functions and behaviors, more recently the formulation of the Turing ma-
chine (Turing [1937]) and the advent of computers in the twentieth century
have added yet another delicate twist to this longstanding endeavor1.

The continuing scientific diversification has given birth to fields like com-
putational neuroscience, artificial intelligence and machine learning. Each
has its own focus, pursuing a slightly different goal. Yet, there is one partic-
ularly intriguing question of interest to all related disciplines: If the brain’s
function, nature’s most ingenious piece of art, can be fully understood in
terms of neurons and synapses, can we someday build an artificial brain just
as easily as we can build today planes, cameras and microphones, inspired
by birds, human sight and hearing?

In fact there are three separate questions hidden in this formulation:

Conceptual question: Can the brain’s function be fully understood as a
network of neurons and synapses? This is a highly controversial topic
(see for example Churchland and Sejnowski [1994]). In a more care-
ful formulation, the question should probably run: Is there some level
of detail of description which suffices for a complete account of the
brain’s function? While many researchers seem to agree on that, our
knowledge is too limited for a certain answer. Some go as far as to

1It is remarkable that the dawn of computers initiated by Turing’s work, was motivated
by an attempt to “build a brain”, as Turing himself expressed his intentions (the interested
reader is referred to Hodges [2007]).
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speculate that effects on a level as small as quantum mechanics might
be responsible for what we perceive as higher brain function, including
consciousness and will (Koch and Hepp [2006]). On the other hand,
experience from man copying nature might suggest that an overwhelm-
ing body of details can be omitted in an abstraction step as long as
a few underlying principles are implemented correctly. Even if we can
motivate ourselves with such an assumption, it only moves the problem
towards identifying which parts of the entire structure and process are
central to its function. Which pieces of the puzzle can be ascribed to
deeper principles of intelligence, and which parts are implementation
details which we might be able to neglect as they only reflect evolu-
tionary design choices due to physical or other constraints that do not
apply in a technical engineering setting?

Measurement question: Can all functionally relevant facts be reverse en-
gineered on the required level of detail? This issue strongly depends on
technological progress in neuroimaging (see Filler [2009] or Monchi et
al. [2008]). Both structural and functional imaging are fast developing
branches, making a prognosis difficult. The emerging field of optoge-
netics (see Miesenbock [2009]) as well as clever combinations of exist-
ing techniques like Magnetic Resonance Imaging (MRI) and Positron
Emission Tomography (PET) (see Judenhofer et al. [2008]) hold great
promise for the future. Still, the temporal and spatial resolution re-
quired to obtain a thorough picture of the human brain remain out of
reach.

Engineering question: Having gathered all required knowledge, can an
artificially intelligent system be built, fast and power-efficient enough
to meet our needs? While Moore’s law (Moore [1965]) is thought to
continue to hold for the near future, power efficiency is more and
more emerging as a real obstacle in this matter (see for example
Markram [2006]). Current processor technology is tailored to opti-
mize performance versus space requirements. Even supercomputers
based on current high-end architectures like Blue Gene/P claiming an
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unmatched performance/power consumption trade-off, spend 2.9 Mio.
Watt/Petaflops (see I.B.M.B.G. Team [2008]), as opposed to approxi-
mately 1 Watt/Petaflops in the human brain2.

Identifying the principles of human intelligence and measuring the brain’s
activity at the required level of detail go hand in hand. In neuroscience,
there is a constant demand for modeling observed phenomena and ascribing
functional meaning to them. Conversely, modelers need biological data for
inspiration, extraction of principles and testing of predictions. There is also
a growing interest in collaboration between engineering and modeling labs,
providing exclusive mutual benefits for both sides (see for example, Meier
[2005]). In this spirit, the following sections will briefly introduce some basic
concepts of Spiking Neural Networks, intending to provide a peek at all three
perspectives, namely modeling, neuroscience and engineering.

2.1 Motivation for Investigating Spikes

Artificial neural networks (ANNs) are mathematical models which emulate
the behavior of biological neural networks in an abstracted fashion. The
history of ANNs can be traced back to the introduction of the perceptron,
mapping analog inputs to binary outputs through a weighted sum and a
threshold gate (Rosenblatt [1958]). A step towards more sophisticated mod-
els was to allow for analog output values by replacing the threshold gate by
a sigmoid activation function. The resulting class of ANNs, in the follow-
ing referred to as traditional ANNs, continues to be of great importance in
countless applications up to the present day (Haykin [1994]; Bishop [2006]).
Functionally, traditional ANNs can be understood as defining a mapping be-
tween a number of analog input and output ports. The network computes its
output as a function of the input and a set of parameters, called weights. The
input-output mapping can be seen as an atomic step, updating all neurons in
a pre-specified order that propagates information from input to output in a

2Based on an estimated 10+ Petaflops (Narayan [2009]) and 20 Watt power consump-
tion (Drubach [1999]) in the human brain.
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single update wave. Traditionally, time is not explicitly incorporated in the
model. Instead, each invocation of the network on a different input pattern
can be considered a single discrete time step. Unfortunately, ANNs are quite
at odds with neuroscientific findings regarding the way neurons communicate
in biological networks.

While traditional ANNs have been successfully employed as a tool in a
number of difficult machine learning problems and as such have become a
field of study in their own right, they fail to account for many observations
made in real neurons and synapses, most importantly:

• Biological neurons communicate via spikes, short pulses of activity of
identical magnitude. The influence of one neuron’s spike on another
neuron is characteristically time-dependent (Purves [2008]). The sig-
nificance of synchronicity in firing patterns of biological neuron ensem-
bles is a natural consequence. ANNs cannot capture these effects since
they assume that communication takes place via analog messages, as
opposed to spikes.

• Recent research has consolidated that exact spike timings cannot be
dismissed as a technical artifact of spiking transmission. Conflicting
with the assumption behind ANNs that exact timing can be ignored as
an epiphenomenon, information in observed spike patterns seems to be
encoded not only in the frequency of spiking but also the exact spike
timing relative to other events (see for example, Petersen et al. [2001])

• The plasticity of synapses, that is their ability to adjust their transmis-
sion strength, has been found to be highly sensitive to the exact timing
of spikes (see Section 2.3.2).

The shortcomings of traditional ANNs to model these phenomena (among
many others) render them quite impractical in the attempt of understanding
neural communication at any reasonable level. This has led many researches
to consider new types of neural network models which explicitly incorporate
continuous time and biologically more realistic communication protocols to
overcome the aforementioned limitations.
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Most notably, Spiking Neural Networks, sometimes also called Pulsed
Neural Networks, have emerged as a significant improvement over traditional
ANNs regarding proximity to biological findings and the ability to produce
useful testable predictions (see Maass [1997] for a good introduction; a more
thorough treatment is given in Maass and Bishop [2001]). Apart from oper-
ating closer to biological reality, the use of a spiking communication protocol
has also been shown to bring unique benefits from a computational perspec-
tive (see Maass [2004]).

2.2 Single Neuron Modeling

A common systematic approach to understanding a complex system is to
take it apart and analyze each part individually. The human brain, with
its estimated 50-100 billion neurons and 1000 trillion synapses (Murre and
Sturdy [1995]) is undoubtedly the most complex organized system we can
ever hope to have access to. It is hardly surprising that single neuron (and
synapse) models play such an important role in the neuroscientific commu-
nity, as they must provide the solid foundation upon which more complex
network models, involving an increasing number of elements, can build.

In the following, the two most important models will be briefly discussed.
A more detailed account of spiking neuron models can be found in (Gerstner
and Kistler [2002]).

2.2.1 Leaky integrate-and-fire (LIF)

The Leaky integrate-and-fire neuron model consists of three basic elements:

Integration: The membrane potential, a variable which captures the state
of the neuron, accumulates incoming spikes by summing up their
weighted contributions.

Leakage: The membrane potential is subject to a constant leakage. In the
absence of input it slowly decays to zero.
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Firing: Each time an incoming spike causes the membrane potential to
exceed a fixed threshold, an output spike is emitted and the membrane
potential is reset to zero.

The model is based on a simple electrical RC-circuit with an additional
threshold mechanism. Formally, integration and leakage can be expressed in
a single equation:

τm
du
dt = −u(t) +RI(t). (2.1)

u denotes the membrane potential, τm is the time constant of decay, and
I(t) collects the contribution of all weighted inputs at a specific time. The
simplicity of the model often makes it the first choice in network simula-
tions. However, it should be noted that the LIF model is inferior to many
alternatives if biological realism is of importance (Izhikevich [2004]).

Since the LIF model is a linear filter during sub-threshold operation, one
can study the effect of single spikes on the membrane potential in terms of
the impulse response of the filter. It is easy to verify that the impulse re-
sponse of a LIF neuron is an exponentially decaying function of time. This
also corresponds to the observation of decaying excitatory post-synaptic po-
tentials (EPSPs) in biological neurons (Purves [2008]).

2.2.2 Spike Response Model (SRM)

The Spike Response Model (Gerstner [2001]) is a generalization of the Leaky
integrate-and-fire model. In contrast to the differential equation governing
the membrane potential in Eq. 2.1, here the influence of input I(t) (gener-
ated by spikes or injected current) on the membrane potential is explicitly
characterized by a linear filtering operation,

u(t) = η(t− t̂) +
∫ ∞

0
κ(t− t̂, s)I(t− s)ds.

The kernel κ(t − t̂, s) captures the influence of a single input pulse (for ex-
ample a spike) on u(t). Note that the kernel allows for a dependency on the
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last output spike time t̂. Using this mechanism the model can account for
neural refractoriness by dampening or completely erasing input effects after
an output spike was emitted, thereby enforcing refractory periods between
output spikes. The η(t− t̂) kernel incorporates a complete description of the
action-potential which is triggered each time when the membrane potential
exceeds the variable threshold θ(t − t̂) which may also depend on the last
spike-time.

The SRM is a very attractive model as it provides a great deal of flexibility
through its adjustable functions while having a very simple form. The free
parameters, namely the functions κ(t− t̂, s), η(t− t̂) and θ(t− t̂), can be fit
to experimental data, for example to achieve optimal prediction performance
of spike-timings (see Jolivet et al. [2006]). The model compares well with
other models in benchmark tests of prediction performance (see for example,
Jolivet et al. [2008]).

2.3 Plasticity and Learning

One of the most fascinating aspects of the brain is its ability to adapt, to
learn, to improve. Despite extensive research, the mechanisms by which
new memories are formed and retained in the human brain are still poorly
understood. Today, it is widely believed that the main neural substrate
responsible for learning and memory is synaptic long-term plasticity, the
ability of synapses to change their connection strength in response to local
and global signal triggers (see for example Martin et al. [2000]).

The two most influential theories of synaptic long-term plasticity, Hebbian
learning and Spike-Timing Dependent Plasticity (STDP), will be introduced
briefly.

2.3.1 Hebbian Learning

Formulated by Donald Hebb in 1949, the Hebbian theory of learning states
that the connection from neuron A to neuron B is reinforced if neuron A
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“repeatedly or persistently takes part in firing” neuron B (Hebb [1949]). In
a crudely simplified version, Hebb’s postulate is often quoted as “Cells that
fire together, wire together”.

Formally it predicts, that if x and y denote pre- and post-synaptic activity,
respectively, then the weight change will be proportional to the product of
these activities:

∆w = ηxy.

Note that pure Hebbian learning is intrinsically unstable, since it does not
include a mechanism for synaptic depression, leading to a positive feedback
loop between post-synaptic activity and synaptic efficacy. Most later learning
theories are based on Hebbian learning and incorporate mechanisms to cope
with the stability issue, most notably BCM theory (Bienenstock et al. [1988])
and Oja’s rule (Oja [1982]). Thanks to its beauty and simplicity, Hebbian
learning and its close relatives constitute the most popular and influential
body of theories of synaptic plasticity to date.

2.3.2 Spike-Timing Dependent Plasticity

Rate-based plasticity models like Hebbian theory and its descendants dom-
inated the community until researchers began to look into more subtle ef-
fects that contribute to synaptic plasticity (see for instance, Abbott and Nel-
son [2000]). One of their findings was that sign and magnitude of synaptic
change depends strongly on the exact timing between pre- and post-synaptic
spikes. Specifically, they found that a pre-synaptic spike shortly before a
post-synaptic spike induced the greatest positive change in synaptic efficacy,
while the sign of change quickly reversed when a pre-synaptic spike was
emitted after a post-synaptic spike (Bi and Poo [2001]). In short, a synapse
is potentiated if it persistently contributes to post-synaptic firing (note the
similarity to Hebb’s original phrase). If pre-synaptic spikes occur too late
with respect to post-synaptic firing, the synapse is depressed. The resulting
dependency of weight change on the spike timing has a characteristic asym-
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metric form. Apart from underlining the importance of exact spike timings
in the nervous system, these findings have fueled the debate on the impor-
tance of causality and its detection in neural networks and its alleged role in
the formation of episodic memories (see for example, Neves et al. [2008]).

More recent research has suggested that STDP appears in very differ-
ent forms in cortex, such that the originally findings cover only one of
many observed spike-timing dependencies of long-term plasticity. In order
to avoid misunderstandings, the original asymmetric time dependence which
was found first is sometimes referred to as standard STDP .

In addition to different STDP curves, many surrounding mechanisms have
been identified which can modulate plasticity (see Dan and Poo [2006] for an
excellent summary). Many aspects of plasticity remain severely understudied
and have not entered an appropriate modeling-prediction-testing cycle yet.

2.4 Populations of Neurons

Perception, reasoning, motor control – is it conceivable that the most so-
phisticated cognitive functions come about by plugging together a bunch of
neurons with synapses? While the story is certainly more complex than that,
there is hope that investigating populations of neurons and elaborating theo-
ries of how neurons can interact to produce meaningful behavior might shed
some light on the way the human brain achieves its unmatched performance
at a great variety of tasks.

A good starting point for analyzing ensembles of neurons are structural
peculiarities observed in brain tissue. For example, one striking feature of
neocortex, the most recently evolved part of the brain in mammals, is its lay-
ered organization which is briefly discussed in section 2.4.1. Another common
theme in neocortical circuits is lateral inhibition, which has been postulated
to perform small-scale tasks like noise suppression, decorrelation of firing and
many more. One theory which states that local microcircuits with lateral in-
hibition are able to compute a Winner-Take-All response, “selecting“ only the
strongest from a set of neurons while suppressing all others, is discussed in



2.4. Populations of Neurons 15

section 2.4.2. For more aspects of neuron populations, the interested reader
is referred to the corresponding chapter in Maass and Bishop [2001].

2.4.1 Cortical layers and columns

The cortex is the outermost sheet of neural tissue in the mammalian brain
and is thought to mediate higher level cognitive functions like perception,
planning and conscious thought. The neocortex, the most recently evolved
part of cortex forming almost 80% of the human brain, is organized in six
layers with different structural properties (see Jones and Peters [1990]). The
six layers are primarily distinguished by prevalence of certain cell types and
connection profiles.

In addition to its layered structure, a very prominent feature of cortex
is a strong bias towards dense local connectivity and sparse long-distance
connections (Purves [2008]). Generally, connections seem to prefer either
vertical (perpendicularly across layers) or horizontal (within layers) direc-
tions. The vertical connectivity in cortex appears stereotypical and is be-
lieved to underlie the formation of small densely connected modules, called
columns. Neighboring columns tend to be stronger connected than columns
which lie further apart, in accordance within the observation of stronger lo-
cal connectivity. The columnar organization of cortex was first identified
by Mountcastle (see Mountcastle [1957], and for a later review, Mountcas-
tle [1997]) and has arguably become one of the most influential as much as
controversial concepts in modern neuroscience. While the anatomical and
functional columnarity of cortex stands without doubt, the debate revolves
around an attractive yet potentially flawed hypothesis which is typically as-
sociated with cortical columns. The hypothesis essentially states that the
intrinsic structure of neocortex is highly uniform, and that neocortex should
be understood as a stereotypically repetitive system based on just a few ba-
sic templates. Even though the hypothesis has been refuted in numerous
experiments, it seems to persist in popular opinion (see Rakic [2008]).

From a modeler’s perspective, the hypothesis that neocortex is made of a
single microstructure, replicated identically millions of times, would be very
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convenient. However, current research suggests that even though neocortical
circuits show stereotypical features at many levels of description, the exact
microcircuitry seems to depend not only on the species and age of subject,
but also on brain region and exact area. Even neighboring areas within
the same region seem to differ substantially in several important aspects
(see Silberberg et al. [2002]). These results pose significant problems to
the functional modeling of neocortical circuits, since structural variations
are expected to go hand in hand with functional differences. In the worst
case scenario, if neocortical microcircuits really perform highly individualized
functions, then a single model will have difficulties to explain much more than
a tiny brain area.

There is nevertheless hope that some of the structural variance can be
explained by theories and models which incorporate learning and structural
adaptation to input stimuli. The basic rationale behind this hope is that,
since each brain area receives inputs with distinct statistics, at least some
fraction of the observed differences in circuitry could be explained by the
ubiquitousness of plasticity and adaptability in neocortex (see for example,
Douglas and Martin [2004]).

2.4.2 Lateral Inhibition, Winner-Take-All (WTA) and Com-
petitive Learning

Lateral inhibition refers to the ability of a neuron to suppress its neighbors
when activated. The concept was first proposed when mutual inhibitory re-
lationships between detectors with similar response properties were found in
visual and auditory psychophysical experiments (see for example, Houtgast
[1972]). Physiological evidence for lateral inhibitory processes corresponding
to psychophysical findings soon consolidated the notion (see Blakemore and
Tobin [1972]). A first corresponding theory was formulated in Grossberg
[1973], which describes the continuous time dynamics of networks with re-
current inhibition and is the first theoretical treatment of Winner-Take-All
networks.
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Winner-Take-All (WTA) networks are artificial models utilizing lateral
inhibition for a particular purpose, namely the selection and reinforcement
of the strongest neuron among a group and the suppression of all others.
Several variants of WTA exist:

K-WTA: Instead of a single winner neuron, the K strongest neurons are
selected.

Soft WTA: Weaker neurons are not completely suppressed but signifi-
cantly damped.

Probabilistic WTA: Each neuron is assigned a probability of winning de-
pending on its strength, the selection is randomized. Stronger neurons
will win more often due to higher winning probabilities.

A recent theoretical analysis has revealed unique computational benefits
of WTA compared to other non-linearities (Maass [2000]). Given these find-
ings and the fact that lateral inhibition is such an omnipresent phenomenon
in the brain, it is not surprising that WTA-like functionality has also been
postulated to play a major role in neocortical function (see Coultrip et al.
[1992] and Douglas and Martin [2004]).

WTA circuits combine well with other elements of neural networks. For
example, in a two-layer artificial neural network with one input layer and
an output layer with WTA recurrent connectivity, the WTA functionality
can be exploited for template matching. Provided that weights are normal-
ized appropriately, finding the strongest neuron is equivalent to finding the
best match between stored weights and current input (see Rumelhart and
Zipser [1985]). Furthermore, endowing such a network with Hebbian learn-
ing gives rise to competitive learning, whereby each neuron tends to special-
ize on a small subset of input patterns. One of the first competitive learning
schemes was discussed in von der Malsburg [1973]. Perhaps the most popular
representative of competitive learning is the Self-Organizing-Map (Kohonen
[1990]).
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2.5 Simulation in Software and Hardware

In principle, research into Spiking Neural Networks could be done by inte-
grating experimental data and devising theories alone. However, evaluating
theories by simulation is helpful for a number of reasons:

• It can be used to better visualize complex processes, and to explain
them to an audience.

• It helps to reveal weaknesses or undesired behaviors of a model which
were not apparent in the theoretical framework.

• It assists in the justification of approximations by showing that the
desired functionality is still achieved.

• It serves as an additional source of inspiration, both for abstract ideas
and concrete improvements.

A quick overview of some current simulation tools and devices, is given
below.

2.5.1 Software Simulation

There are plenty of simulations tools for Spiking Neural Networks available.
In fact, the number of options has grown so large that there is increasing de-
mand for a common interface language for neural network simulators. One
recent project addressing this issue is PyNN (Davison et al. [2008]), which
is based on the Python scripting language (Sanner [1999]), and is quickly
becoming a standard for neural network interfacing, both with Software
and Hardware simulators. Currently supported software simulators include
(Davison et al. [2008], Brette et al. [2007]):

NEURON: The NEURON simulation environment (Hines and Carnevale
[1997]) has a long tradition. Since its beginnings in the early 1990s, it
has been used in countless neuroscientific experiments and publications,
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in particular to study observed biological phenomena like dendritic ex-
citability or network states and oscillations in a controlled and isolated
manner.

NEST: The NEST initiative is a long-term project dedicated to promote
research into large-scale neural network simulation technologies. Its
efforts have lead to the development of the NEST simulation tool, the
reference project of the initiative (Diesmann and Gewaltig [2002]). Its
main domain of usage are large-scale neural networks with biologically
realistic connectivity profiles.

Brian: A simulator written purely in Python (Goodman and Brette
[2008]). The scripting language approach provides unique benefits for
users concerned with rapid development and testing of new models.

PCSIM: A C++/Python based simulator developed at Graz, Technical
University (Pecevski et al. [2009]) which aims at combining the speed of
C++ with Python’s ease of configuration, interfacing and extensibility.
Its predecessor CSIM was originally developed for simulating networks
which implement the Liquid State Machine paradigm (Maass et al.
[2002]), a highly influential theory which has established an intimate
connection between diversity in neural networks and computational
power. Due to its computational roots, it supports a large variety
of machine learning algorithms which can be seamlessly combined with
spiking neural networks in real-time simulations. It is particularly well-
suited for large-scale simulations distributed on multiple machines.

For a more information on current simulation tools, the interested reader
is referred to Brette et al. [2007].

2.5.2 Simulation on Special-Purpose Hardware

Software simulation tools are the natural choice for many applications due to
extremely favorable properties in terms of extensibility, availability and costs.
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However, there are some limitations inherent to current multi-purpose archi-
tectures which might be overcome by custom neural network implementa-
tions in Very-Large-Scale-Integration (VLSI) hardware. Massive parallelism
is perhaps the most striking feature of neural computation. While there are
ongoing efforts to increase parallelism also in multi-purpose architectures, it
is clear that custom VLSI hardware can be more directly geared towards the
massively parallel computing paradigm that neural computing suggests. Be-
yond the apparent advantage of exploiting parallelism explicitly in hardware,
it was argued that special purpose low-precision circuits might suffice for neu-
ral networks, given that neural computation in the brain appears noisy and
unreliable on the neuron level (Hammerstrom [1998], London et al. [2010]).

Early VLSI implementations of neural networks date back to the late
1980s, see for example Murray and Smith [1988] or Satyanarayana et al.
[1992]. A significant step towards spike-based neural hardware implemen-
tations was the development of the Address-Event Representation (AER),
described in Mahowald [1992]. The basic idea behind AER is the definition
of a unified messaging protocol between circuits which includes a sender iden-
tification (Address) and a timestamp (Event) in each message. Additional
payload can be appended to this minimal message format, depending on
the application. AER allows for efficient temporal multiplexing by sharing
a common message carrier among multiple senders. Many neurally inspired
circuits have been developed on the basis of AER, including artificial cochlear
and retina implementations (see for example van Schaik and Liu [2005], Del-
bruck and Lichsteiner [2006] and Conradt et al. [2009]), as well as large-scale
neural network systems for integrated sensory processing, learning and actu-
ating (see Serrano-Gotarredona et al. [2009], Furber et al. [2008]). A slightly
different approach for temporal multiplexing was taken in the wafer-scale
VLSI implementation of a spiking neural network in Ehrlich et al. [2007].

Simulating on hardware may substantially speed up development cycles
and decrease associated costs. There are however a few important limitations
to consider when using special purpose hardware for simulations:

• Hardware implementations are limited in the class of neuron models
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they can implement. In particular, many features of detailed mod-
els like dendritic processing or complex synaptic dynamics and non-
standard learning rules might be difficult if not impossible to simulate
on current hardware.

• Hardware elements are prone to small deviations from the desired char-
acteristics due to process variations (see for example Pelgrom et al.
[1998]). In analog circuits, these variations can severely affect the ac-
curacy of a simulation.

• Typically spike-based hardware runs many orders of magnitude faster
than a corresponding biological circuit would (for example, Furber et
al. [2008]). Providing high-bandwidth input to such a network and
analyzing its output in real-time may pose significant problems to the
surrounding framework.
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Chapter 3

Probabilistic Modeling, Inference
and Learning

Symbolic logic is the language of exact reasoning. The famous “Modus Po-
nens“ dictates how to perform exact logical inference: If we know that some
fact P holds, and we know that Q follows from P , then also Q must hold
(Smullyan [1961]). In contrast to the exact nature of symbolic logic, proba-
bility theory is the language of uncertainty. P is probably true, and Q usually
follows from P . Does Q hold? Probability theory provides a framework for
describing and solving problems of this kind in a mathematically exact way.
In many ways, probability theory may be viewed as an extended theory of
logic (Jaynes and Bretthorst [2003]). Just like logic it provides us with a
tool for reasoning, yet allowing for more flexible representations of beliefs
and relations than its exact counterpart.

Artificial intelligence long pursued the “logic approach” to reasoning,
most notably in the form of expert systems (Jordan and Russell [1999]).
Only in the late 1980s, probability theory made its appearance in artificial
intelligence: the highly influential book “Probabilistic reasoning in intelligent
systems: networks of plausible inference” by Pearl [1988] introduced Bayesian
Networks and represented a major stepping stone to modern machine learn-
ing and artificial intelligence. Today, probabilistic and statistical techniques

23
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have long become indispensable in most technical areas. Strikingly, recent
neurophysiological and psychological studies (see Yang and Shadlen [2007]
and Griffiths and Tenenbaum [2006]) also suggest a decisive role of prob-
abilistic inference in human reasoning and decision making. In the light of
this development it is hardly surprising that the mechanisms by which proba-
bilistic inference and learning could be carried out in spiking neural networks
have more than ever become a primary research target of computational neu-
roscience (see for example, Doya [2007]).

In this chapter, the basic ideas and formalities of probability theory and
statistics, required for understanding the remainder of this thesis, will be
briefly presented.

3.1 Basic Terminology

Before proceeding to more advanced topics, some fundamental concepts
around probabilistic models, inference and learning, will be introduced.

3.1.1 Probabilistic Models

A probabilistic model captures relations among a set of random variables
(Bishop [2006]; MacKay [2003]). If x and y are two random variables, a
typical probabilistic model provides the joint probability distribution p(x, y)
which assigns a relative frequency of occurrence to each joint configuration
of x and y. This is equivalent to a full specification of deterministic and
random effects which govern these variables. From the joint distribution,
one can derive other useful distributions, such as:

• Marginal distribution: p(x) = ∑
y p(x, y): specifies how x is distributed

“in disregard” of y. Analogously, p(y) = ∑
x p(x, y).

• Conditional distribution: p(x|y) = p(x, y)/p(y): specifies how x is dis-
tributed if a particular assignment of y is known. Similarly, p(y|x) =
p(x, y)/p(x).
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In many cases, it is more convenient to formulate a model in terms of its
constituent marginal and conditional distributions, rather than its complete
form. For example, the specification of two distributions p(y) and p(x|y)
instead of an explicit joint distribution p(x, y) might have some advantages
for a given task. Note that the split formulation is formally equivalent since
p(x, y) = p(y)p(x|y).

Sometimes, a full joint probability distribution is not even necessary for
the task at hand. In such a scenario, a model might provide only a subset
of marginal and conditional distributions. In the two-variable example from
above, one might be interested exclusively in the conditional dependencies of
y on x. Then a sufficient model would be p(y|x).

3.1.2 Inference

An observation is a particular assignment to a subset of random variables
in a model (MacKay [2003]). Knowledge of a subset of variables can be
used to reason about other variables. This procedure is called inference.
For instance, if the model provides p(y|x) and x can be observed, then the
probability distribution over y can be inferred. In a typical machine learning
application, there is a fixed subset of variables which can be observed. These
variables are then called observed variables, as opposed to latent (or hidden)
variables which have be inferred using a model. When performing inference,
the distribution over latent variables before making an observation is called
prior distribution. In the above example, p(y) would be a prior distribu-
tion. After taking all observations into account, the distribution over latent
variables is called posterior distribution (p(y|x) in the example).

3.1.3 Kullback-Leibler Divergence

Consider two probability distributions over the same set of variables, for
example p(x) and q(x). The Kullback-Leibler (KL) divergence between p and
q, written DKL(p||q), is a measure of how strongly q diverges from p. For a
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discrete random variable x, the definition is given by (MacKay [2003]),

DKL(p||q) =
〈

log p(x)
q(x)

〉
p(x)

(3.1)

=
∑
x

p(x) log p(x)
q(x) (3.2)

The Kullback-Leibler divergence is strictly non-negative and zero if and
only if the two distributions match exactly over the entire variable range.
It is strongly asymmetric since in general DKL(p||q) 6= DKL(q||p), and is
therefore not a metric. An important application arises when trying to ap-
proximate a given distribution p(x) by another distribution q(x). In such a
case, minimization of DKL(p||q) is useful to the optimize the approximation.

3.1.4 Parametric Models

So far, probability distributions have been treated as rather abstract ob-
jects which can be accessed and queried regardless of their internal repre-
sentation. Also the issue of setting up probability distributions and filling
them with knowledge on random variables and their relations has not been
raised yet. Parametric models constitute an elegant and unified approach to
both, representation and knowledge transfer (Bishop [2006]). A parametric
model is a distribution which is controlled via a number of finite parameters,
θ = (θ1, . . . , θN)T . A parametrized distribution may be written in several
ways to express the dependence on a parameter set θ:

• Suggesting conditioning on parameters: p(x, y|θ).

• Markedly Separated: p(x, y; θ).

• As a subscript: pθ(x, y).

A simple example of a parametrized distribution is the following Poisson
distribution, parametrized by the Poisson rate λ:

p(x|λ) = λxe−λ

x! . (3.3)
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Note that each choice of λ yields a different distribution over x. Therefore,
technically Eq. 3.3 describes a family of distributions.

3.1.5 Generative Models

If a model can be used to compute the marginal distribution over observed
variables, it is called a generative model (Bishop [2006]). Supposing that x is
observed and y is a latent variable, then p(x, y) would be a generative model
for x since the marginal distribution p(x) can be computed from the joint
distribution. Note that, due to the equivalence, also a model providing p(y)
and p(x|y) is a generative model for x. The term “generative” reflects the
fact that the model may be used to generate samples from the modeled input
distribution.

3.1.6 Learning from Samples and Maximum Likelihood
(ML)

Continuing the above example, suppose that a random variable x, corre-
sponding to some measurable quantity in real life, should be modeled. A
number of observations x(1), . . . , x(T ) have been recorded and prior knowl-
edge suggests that x is Poisson distributed. The only parameter which is
unsettled is the rate λ. This is where Learning from data comes into play.
Given a parametrized model like Eq. 3.3, and a number of complete ob-
servations involving all variables of interest, one would like to approximate
the observed distribution as closely as possible. As has been anticipated
in Section 3.1.3, a systematic approach to approximation of a probability
distribution is the minimization of the KL-divergence between original and
approximating distribution (MacKay [2003]). The first derivative of the neg-
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ative KL-divergence with respect to a set of parameters θ is given by,

∂(−DKL(p||qθ))
∂ θ

=
〈
∂(− log p(x)

qθ(x))
∂ θ

〉
p(x)

(3.4)

=
〈
∂(− log p(x) + log qθ(x))

∂ θ

〉
p(x)

(3.5)

=
〈
∂ log qθ(x)

∂ θ

〉
p(x)

(3.6)

This can be interpreted in the following way. Optimizing the approximat-
ing distribution means decreasing the KL-divergence. In order to achieve
that, a learning scheme must seek to increase the average log-likelihood
log qθ(x) of the data. The learning principle which is based on this rationale
is therefore termed Maximum Likelihood. Note that in a typical learning
scenario, direct access to the original distribution p(x) is not available. In-
stead one must resort to using samples as a proxy for the real distribution
which can be achieved by replacing the ideal expectation by a sample-based
expectation:

〈
∂ log qθ(x)

∂ θ

〉
p(x)

= 1
N

N∑
i=1

∂ log qθ(xi)
∂ θ

(3.7)

The procedure extends naturally to more complex models with thousands
of variables and intricate relations among them. It should be noted that
direct maximization by letting ∂DKL(p||qθ)

∂ θ

!= 0 is often intractable for more
involved models. In such a situation, any standard hill-climbing algorithm
like gradient ascent may be used in an iterative optimization procedure.

Another note is in order concerning the observations required to perform
learning according to this scheme. As was mentioned before, complete ob-
servations including all variables of the model are necessary to compute the
required gradients for optimization. Clearly this presents a significant obsta-
cle to models which include latent variables, which by definition can not be
observed. The learning scheme for such a model turns out slightly more diffi-
cult. One algorithm which deals with this issue and is of particular relevance
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for this thesis, will be covered in Section 3.2.

3.1.7 Conditional Independence

Two random variables are statistically (unconditionally) independent if the
observation of either variable does not alter the belief of how the other vari-
able is distributed (Bickel and Doksum [2001]; Bishop [2006]). The following
statements are equivalent:

• x and y are statistically independent.

• p(x, y) = p(x) · p(y).

• p(y|x) = p(y).

• p(x|y) = p(x).

Conditional independence is a similar concept of fundamental importance
which is best explained with a simple example: Alex is an undergraduate
student with a rather bad immune system. When he is sick he naturally
prefers not to attend university classes. Also, he usually drinks tea to speed
up his recovery. Sometimes he misses university classes also for other reasons,
and occasionally he also drinks tea when healthy.

Based on this knowledge, the observation that he has not come to univer-
sity increases the belief that he is drinking tea that day. Conversely, knowing
whether he has drunk tea allows one to quite accurately predict whether Alex
went to university. The two events, namely “tea drinking“ and “missing at
university“ are strongly correlated and clearly anything but independent.
However, the situation dramatically changes the moment Alex tells you he
his sick (or healthy). The knowledge of his health status removes the de-
pendence between tea and university. Knowing already that he is sick, the
observation that he has missed in university has become irrelevant for pre-
dicting his tea consumption. If Sick is a binary random variable indicating
whether Alex is sick on a specific day or not, Tea is a binary variable indi-
cating whether he has drunk tea that day, and Uni a variable representing
his presence in university, then the following statements are equivalent:
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• Tea and Uni are conditionally independent given Sick.

• p(Tea, Uni|Sick) = p(Tea|Sick) · p(Uni|Sick)

• p(Tea|Uni, Sick) = p(Tea|Sick)

• p(Uni|Tea, Sick) = p(Uni|Sick)

When setting up a model, knowledge of conditional independencies among
variables can be used to significantly reduce the model’s complexity. This can
be done by separation of the joint probability distribution into conditional
distributions: To exploit conditional independencies in the above example,
the full model p(Tea, Uni, Sick) should be decomposed into

p(Tea, Uni, Sick) = p(Sick)p(Tea, Uni|Sick) (3.8)
= p(Sick)p(Tea|Sick)p(Uni|Sick) (3.9)

What has been gained here is that the model from Eq. 3.9 requires at most
two-dimensional objects, while the original formulation in Eq. 3.8 involved a
three-dimensional object. It would be rather wasteful to directly model a full
joint distribution, when there is domain knowledge suggesting conditional
independencies. A frequently used independence constraint which greatly
reduces model complexity, is discussed below in Section 3.1.8.

3.1.8 Naïve Bayes

In Section 3.1.7 it has been noted that implementing conditional indepen-
dence assumptions may significantly reduce a model’s complexity. The Naïve
Bayes assumption may be regarded the strongest and most widely used type
of independence assumption and its benefits in terms of computational com-
plexity and memory consumption are remarkable (Bishop [2006], Hand and
Yu [2001]). Consider a latent variable model with a number of observed
variables x1, . . . , xN and a single latent variable z. The joint probability
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distribution can be written as,

p(x1, . . . , xN , z) = p(z) · p(x1, . . . , xN |z). (3.10)

The Naïve Bayes assumption states, that all observed variables are condi-
tionally independent of each other, given the latent variable. Then the joint
probability distribution simplifies to,

p(x1, . . . , xN , z) = p(z) · p(x1|z) · p(x2|z) · · · · p(xN |z). (3.11)

The most immediate benefit from such a formulation is memory consumption:
instead of having to handle an (N + 1)-dimensional object, the distribution
can decomposed into at-most two-dimensional objects. Another obvious im-
plication is the ease of generating input samples from the model: instead of
sampling from p(x1, . . . , xN |z), which may be arbitrarily complex and require
sophisticated and time-consuming sampling techniques, each “feature” can
be generated independently according to p(xi|z), once the latent variable is
sampled.

Inference in the model above can be performed according to,

p(z|x1, . . . , xN) = p(x1, . . . , xN , z)∑
z′ p(x1, . . . , xN , z′)

, (3.12)

assuming a discrete latent variable z. Since the joint probability is decom-
posed with Naïve Bayes, inference can be highly parallelized and distributed,
since each input i adds an independent factor p(xi|z) to the joint distribution.

Finally, also learning in a model with Naïve Bayes is greatly simplified.
First, note that also parameters may be distributed among conditional dis-
tributions:

pθ(x1, . . . , xN , z) = pθ0(z) · pθ1(x1|z) · pθ2(x2|z) · · · · pθN
(xN |z). (3.13)
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The log-likelihood of a data sample x is given as,

log pθ(x1, . . . , xN , z) = log pθ0(z) + log pθ1(x1|z) + · · ·+ log pθN
(xN |z).

(3.14)

As expected, the multiplicative factorization of the probability distribution
results in a linear decomposition in the log-space. When differentiating with
respect to θ, one obtains entirely decoupled derivatives,

∂ log pθ(x1, . . . , xN , z)
∂ θ0

= ∂ log pθ0(z)
∂ θ0

, (3.15)

∂ log pθ(x1, . . . , xN , z)
∂ θi

= ∂ log pθi
(xi|z)

∂ θi
, i = 1, . . . , N. (3.16)

When optimizing parameters according to the Maximum Likelihood princi-
ple, the resulting decoupled systems can be solved independently, thereby
greatly reducing computational demands and complexity.

Having discussed the benefits of Naïve Bayes at great length, a few critical
remarks are in order to complete the picture. Naïve Bayes’ enjoys widespread
use, even in applications where the corresponding conditional independence
assumptions are inadequate. In some situations, especially when data is
scarce, its use may still be justified in order to avoid overfitting (Hand and
Yu [2001]). In order to illustrate this point, consider an application with N
input variables, jointly Gaussian. Modeling a multivariate normal distribu-
tion involves a full covariance matrix and therefore O(N2) variables, while
the corresponding Naïve Bayes model requires only O(N). If too little data
is available to reliably fill the covariance matrix, then Naïve Bayes becomes
a viable alternative. Also in discrimination tasks, where the posterior prob-
ability distribution over the latent variable is used to decide among a set of
alternatives, meticulous precision of the underlying generative model is of
minor importance. For discrimination performance, it suffices that the pos-
terior probability for the correct choice is higher than all others, regardless
of exact probabilities. Hence, also in such a scenario, it might be reasonable
to trade a little performance for all the advantages of a simpler model like
Naïve Bayes (Hand and Yu [2001]).



3.1. Basic Terminology 33

3.1.9 Mixture Models

There is a glaring mismatch between the simplicity of many computation-
ally feasible models, and the complexity of probability distributions typically
encountered in real life. A common issue are multimodal probability distri-
butions, that is distributions with multiple distinct local maxima, or peaks.
Many popular parametric models are unimodal, and more complex models
which support multimodality are often unattractive for practical reasons.
Here, mixture models step in to provide an efficient compromise between
simplicity and complexity (Bishop [2006]).

Mixture models are probabilistic models which define a joint distribution
as a composition, or mixture, of a number of component distributions:

p(x) =
∑
i

aifi(x). (3.17)

If the component weights ai sum to one and all component distributions fi(x)
are properly normalized and non-negative, then also p(x) will be normalized
and constitute a valid probability distribution. Mixture models can also be
constructed and understood by introducing a latent variable which acts as a
probabilistic switch between component distributions.

p(x) =
∑
z

p(z)p(x |z) (3.18)

In this form, the components p(x |z) are distributions conditioned on the
latent variable.

Learning mixture models from data can be best understood with the
formulation in Eq. 3.18 in mind. Since a latent variable is involved, direct
maximization of data likelihood is impossible. Since learning in mixture
models is of particular interest to this thesis, Section 3.2 will introduce the
Expectation Maximization algorithm, a popular method to overcome this
issue.
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3.1.10 Classification

One of the most basic forms of reasoning is classification: given an observed
pattern, decide among a number of categories which one fits the pattern best.
The classification performance depends on two crucial factors: the quality of
the model and the accuracy of inference. While inference can be performed
exactly in most models which are used in practice, the quality of the model
usually presents the bigger challenge. There are at least three ways to arrive
at a useful classification model (Bishop [2006]; MacKay [2003]):

Learn discriminative model from data with supervision: Given a num-
ber of training input patterns x and corresponding labels z, learn a
model for p(z|x). When presented a new pattern x, evaluate p(z|x)
for each z to determine the most likely label.

Learn generative model from data with supervision: Given a num-
ber of training input patterns x and corresponding labels z, learn
models for p(z) and p(x |z). The term “generative model” reflects the
fact that the model can produce samples from the input distribution,
which is conveniently given by a mixture model: p(x) = ∑

z p(z)p(x |z).
When asked for classification of a new pattern x, compute p(z|x) ∝
p(y)p(x |z) for each category z and choose winner.

Learn generative model from data without supervision: Given a num-
ber of training input pattern x without labels, introduce a hidden vari-
able z which corresponds to the unknown labels. Learn a mixture
model of the form p(x) = ∑

z p(z)p(x |z). Upon arrival of a new pat-
tern, evaluate p(z|x) ∝ p(z)p(x |z) and choose the best label.

3.2 Expectation Maximization (EM)

In parametric latent variable models one has a number of observed variables
x and hidden variables z, and relations among these which are defined via a
set of parameters θ. In order to obtain a generative model from a given data
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set (T samples which are assumed to be drawn i.i.d.), one seeks to maximize
the likelihood of these data samples under the model (Bickel and Doksum
[2001]),

pθ(x(1),x(2), . . . ,x(T )) =
∏
t

pθ(x(t)). (3.19)

As will become clear in Section 3.2.1, likelihood optimization in latent
variable models is somewhat more difficult than in fully observed models.
Direct optimization turns out to be intractable, such that iterative optimiza-
tion schemes have to be employed. Lower bound optimization is a general
iterative optimization principle which is introduced in Section 3.2.2. A con-
crete algorithm for Maximum Likelihood based on this principle is Expecta-
tion Maximization (Dempster et al. [1977]). It is composed of an iteration of
two steps, which will be discussed in Section 3.2.3 and 3.2.4.

3.2.1 Likelihood Gradient

Likelihood maximization is usually performed in the log-domain (Bickel and
Doksum [2001]):

L(θ) = 1
T

log pθ(x(1) x(2), . . . ,x(T )) = 1
T

∑
t

log pθ(x(t)). (3.20)

This is a convenient reformulation since the gradient with respect to the
parameters can be decoupled across observations:

∂L(θ)
∂ θ

= ∂
∑
t log pθ(x(t))
∂ θ

(3.21)

=
∑
t

∂ log pθ(x(t))
∂ θ

. (3.22)

In order to evaluate the likelihood of a single input pattern x in a latent
variable model, one must compute,

pθ(x) =
∑
z
pθ(x, z). (3.23)
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The sum runs over all possible configurations of latent variables z. Since the
number of configurations may grow exponentially in the number of latent
variables, Eq. 3.23 poses a major problem to Maximum Likelihood learning
in many latent variable models. In mixture models, the number of possi-
ble configurations is limited by the number of components K which greatly
alleviates the issue:

pθ(x) =
K∑
k=1

pθ(x, zk). (3.24)

However, both in the general case and in mixture models, the parameter
gradient in the log-domain yields strongly coupled derivatives,

∂ log pθ(x)
∂ θ

= 1
pθ(x)

∂pθ(x)
∂ θ

(3.25)

= 1
pθ(x)

∂
∑

z pθ(x, z)
∂ θ

(3.26)

= 1
pθ(x) ·

∑
z

∂pθ(x, z)
∂ θ

(3.27)

=
∑
z

pθ(x, z)
pθ(x)

∂ log pθ(x, z)
∂ θ

(3.28)

=
∑
z
pθ(z |x)∂ log pθ(x, z)

∂ θ
, (3.29)

since the conditional probabilities pθ(z |x) in Eq. 3.29 involve all param-
eters of the model. This usually makes direct likelihood optimization via
∂ log pθ(x)

∂ θ

!= 0 intractable, even for a single observation. Iterative gradient-
based methods like gradient ascent are one way to get around this problem
(see for example Salakhutdinov et al. [2003]). A slightly different approach
will be presented below in Section 3.2.2.

3.2.2 Lower Bound Optimization

The principle of lower bound optimization is sketched below (Bishop [2006]):

1. Initialization: Consider maximization of an arbitrary function L(θ)
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and start with some initial guess θcur.

2. Lower Bound: Construct a lower bound L̂(θ) which touches the orig-
inal function at the current position, such that L̂(θcur) = L(θcur).

3. Maximization: Find a θnew which maximizes the lower bound. Let
θcur ← θnew.

Repeat 2. and 3. until convergence.

Note that the key step in this scheme is the construction of the lower
bound, which may be difficult to find for many practical problems. If, how-
ever, one can find a lower bound with the desired characteristics, then this
scheme has several nice properties:

• Since the lower bound touches the original function at the current po-
sition, its gradient must match the original gradient there. Hence, the
lower bound will have a local maximum at θcur only if the current
position is also a local maximum of the true optimization goal.

• Note again that L̂(θcur) = L(θcur). Unless there is a local maximum
at the current position, maximization of L̂(θ) is guaranteed to increase
the lower bound, such that L̂(θnew) > L̂(θcur). By definition of a lower
bound, one also has L(θnew) ≥ L̂(θnew). These facts taken together,
it becomes apparent that L(θnew) > L(θcur): An iteration always in-
creases the true function value, until a local maximum is found.

• The lower bound is often concave (Ghahramani and Jordan [1997]).
Convex (concave) optimization is a particularly well-studied field and
many efficient algorithms have been found (Boyd and Vandenberghe
[2004]). Note that this is only relevant in cases where an analytical
solution of the lower bound optimization problem can not be found.

• The gradient of the true optimization goal need not computed at any
point in the algorithm. This may entail computational benefits for
complicated L(θ).
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• The scheme is very simple. Depending on the quality of the lower
bound, it may significantly outperform traditional gradient-based algo-
rithms of comparable simplicity like gradient ascent, since it will take
well-informed large steps through state space when adequate.

3.2.3 Expectation

In contrast to gradient-based methods, Expectation Maximization relies on
lower bound optimization for increasing the data likelihood under a latent
variable model (Dellaert [2002]). The difficulty of lower bound optimization
lies in the construction of a lower bound which should be tight at the current
position, and preferably concave.

The optimization objective in learning probabilistic models is the data
likelihood function. For a single sample we have,

L(θ; x) = log pθ(x) (3.30)
= log

∑
z
pθ(x, z). (3.31)

In mixture models this would correspond to,

L(θ; x) = log pθ(x) = log
K∑
k=1

pθ(x, zk). (3.32)

As has been discussed in Section 3.2.1, the logarithm of a sum makes for a
difficult optimization target. In order to obtain a lower bound of L(θ), note
that Jensen’s inequality states,

ϕ

(∑
x

g(x)f(x)
)
≥
∑
x

ϕ(g(x))f(x), (3.33)

if f(x) is a probability distribution over x and φ is a concave function over the
range of interest. Since the logarithm is strictly concave, one can introduce
an arbitrary artificial distribution f(z) and apply Jensen’s inequality to the
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likelihood function:

L(θ; x) = log
∑
z
f(z)pθ(x, z)

f(z) ≥
K∑
k=1

f(z) log pθ(x, z)
f(z) = L̂(θ; x,θcur). (3.34)

In order to make the bound tight at the current parameter estimate θcur,
the distribution f(z) must be chosen such that,

log
∑
z
f(z)pθcur(x, z)

f(z)
!=
∑
z
f(z) log pθcur(x, z)

f(z) . (3.35)

Interestingly, this is just achieved by the posterior distribution f(z) =
pθcur(z |x) given the current input. This gives the final lower bound for the
likelihood of a single sample x:

L̂(θ; x,θcur) =
∑
z
pθcur(z |x) log pθ(x, z)

pθcur(z |x) (3.36)

=
K∑
k=1

pθcur(z |x) log pθ(x, z)−
∑
z
pθcur(z |x) log pθcur(z |x)

(3.37)

= 〈log pθ(x, z)〉pθcur (z |x)︸ ︷︷ ︸
Q(θ;x,θcur) = Expectation

+ Hθcur(z |x)︸ ︷︷ ︸
Independent of θ

. (3.38)

As indicated in Eq. 3.38, the second term is independent of θ and may
therefore be dropped in anticipation of the subsequent maximization step.
Evaluation of the first term, which will be denoted as Q(θ; x,θcur), is known
as the expectation step and can be understood as follows:

• Given an input pattern x, inference is performed according to the
current parameter set θcur. This provides the posterior distribution
pθcur(z |x).

• Samples zi from this posterior distribution lead to full observation
pairs (x, zi).

• Then, the expectation is computed as the log-likelihood log p(x, z),
averaged over all observation pairs.
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Note that the general difficulty of Maximum Likelihood in latent variable
models arises from the fact that only partial observations are available. Ex-
pectation Maximization tackles this issue by filling the missing variables via
inference with the current parameter set.

Note that so far only a single observation was considered. In order to
account for multiple observations, the lower bound of the full likelihood can
be constructed straightforwardly by linear composition,

L̂(θ; θcur) = 1
T

∑
t

L̂(θ; x(t),θcur). (3.39)

Analogously, the full expectation can be linearly composed of individual sam-
ple expectations:

Q(θ; θcur) = 1
T

∑
t

Q(θ; x,θcur). (3.40)

3.2.4 Maximization

During the expectation step, the average data log-likelihood in dependence
of θ is computed. The expectation runs over input samples, augmented
by inferred hidden variables. Let p∗(x) denote the true (empirical) input
distribution. Then, the augmented distribution may be written as,

p∗θcur
(x, z) = p∗(x)pθcur(z |x), (3.41)

and the expectation can be expressed as,

Q(θ; θcur) = 〈log pθ(x, z)〉p∗
θcur

(x,z) . (3.42)

As has been discussed in Section 3.1.6 and 3.1.8, likelihood maximization
with fully observed data is straightforward for many models, especially when
conditional independence assumption are implemented wisely.
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3.2.5 Algorithm

The Expectation Maximization algorithm (Dempster et al. [1977]) can be
summarized as follows:

1. Initialization: Start with an initial parameter guess θcur.

2. Expectation: For each data point, draw samples from the posterior
distribution over the latent variable and keep track of the log-likelihood
in dependence of θ. This procedure gives Q(θ; θcur).

3. Maximization: Maximization of Q(θ; θcur) can be done exactly as for
fully observed data. Repeat 2. and 3. until convergence.

It should be noted that even though the lower bound is typically convex,
the original likelihood landscape rarely is. For that reason, EM does not
necessarily find the global optimum of a likelihood function but may get
stuck in local maxima.

3.3 Exponential Families

Among all possible distributions there is a certain class of distributions which
have particularly appealing properties: the exponential class of density func-
tions (Bishop [2006]; Bickel and Doksum [2001]). Many popular distributions
fall into this class, like Gaussian and Poisson distributions. This section will
introduce the concept of exponential families along with useful facts and
relations relevant to this thesis.
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3.3.1 Definition

An exponential family is a parametrized set of distributions which can written
as1,

pθ(x) = h(x)g(θ) exp(θT T (x))︸ ︷︷ ︸
parameter-data interaction

, (3.43)

where T (x) is vector-valued and has the same dimension as θ. As indicated in
Eq. 3.43, the property which distinguishes an exponential family from other
families is a very specific and restricted form of interaction between param-
eters θ and data x. A more common but equivalent form of an exponential
family is,

pθ(x) = h(x) exp(θT T (x)− A(θ)). (3.44)

The individual elements of Eq. 3.44 are explained below:

x . . . Modeled random variables. The domain of an exponential family
(all configurations for which the probability density is defined) is
often restricted. There are families with discrete and continuous
domain, and many are restricted to non-negative data.

θ . . . The M parameters of the family. They are usually restricted to
some parameter space, in particular some subspace of RM .

T (x) . . . Sufficient statistics (must also be M -dimensional): they gate the
interaction between parameters and data. Section 3.3.2 is dedicated
to the meaning and importance of sufficient statistics.

A(θ) . . . Log-partition function: this function ensures that the distribution
is properly normalized for each allowed parameter set θ. It is of
utmost importance for the analysis of an exponential family.

h(x) . . . May be considered the (unnormalized) base distribution of a family,
since for θ = 0 one has pθ(x) ∝ h(x).

1In this thesis, only the canonical form will be used. For a more general definition, see
Bickel and Doksum [2001].



3.3. Exponential Families 43

3.3.2 Sufficient Statistics

A statistic is a measure or a number of measures computed from a set of
data (Bickel and Doksum [2001]). It usually captures important character-
istics of the data. Examples of statistics are the mean and variance of a
set of observations. In the context of parametrized distributions, a suffi-
cient statistic with respect to a certain parameter of the model, is a statistic
which captures all relevant information for estimating that parameter from
the data. Intuitively, a sufficient statistic may be seen as a concise summary
of data, targeted at the estimation of a parameter. Formally, a statistic is
sufficient with respect to a parameter θi if,

p(x |Ti(x), θi) = p(x |Ti(x)). (3.45)

For a normal distribution with parameters θ = (µ, σ2)T , the correspond-
ing sufficient statistics are the mean and variance of a data set, since this
information is all that can be extracted from the data with respect to these
model parameters.

Exponential families play an outstanding role in the context of sufficient
statistics. Consider a number of independent identically distributed obser-
vations from some family of distributions with unknown parameters θ. In
general, the dimensionality of a sufficient statistic for these parameters may
increase with the number of data samples. Among all families of distribu-
tions, only exponential families have the property that the dimension of the
sufficient statistic does not increase with sample size. In practical terms this
means that in exponential families, parameter estimation can be elegantly
performed via a fixed number of sufficient statistics, whereas outside expo-
nential families systematic parameter estimation is much more difficult and
requires a different approach.
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3.3.3 Variance Functions

In order to understand variance functions, it is useful to study a certain sub-
class of exponential families. A natural exponential family is an exponential
family with the simplest possible sufficient statistic T (x) = x (Bickel and
Doksum [2001]). Hence a univariate, single-parameter natural exponential
family can be written as,

pθ(x) = h(x) exp(θTx− A(θ)). (3.46)

Single-parameter natural exponential families are convenient to study for
their simple form and many popular distribution families can be cast in this
form. Just to name a few, the family of Gaussian distributions with fixed
variance, the family of Poisson distributions, the family of Gamma distribu-
tions with fixed shape parameter, all can be parametrized to fit Eq. 3.46.

Recall that each parameter value θ defines a different distribution, with
potentially different mean µθ and variance σ2

θ . The dependence of mean and
variance on θ is strictly determined by the specific model, in particular by
the log-partition function A(θ) (Bickel and Doksum [2001]):

µθ = A′(θ), (3.47)
σ2
θ = A′′(θ). (3.48)

In general, the mean µθ can be shown to be strictly monotonic increasing
with θ, such that an inverse always exists. The inverse function,

θµ = Θ(µ) = (A′)−1(µ), (3.49)

is useful for recovering the parameter associated with a given mean.

A variance function is a function which relates variance and mean in a
family of distributions. In single-parameter natural exponential families, the
variance function can be constructed from the log-partition function A(θ)
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via (Morris [1982]),

V (µ) = A′′ (Θ(µ)) . (3.50)

Hence it is clear that each family has a unique variance function associated
with it. Moreover, this association is bijective: the variance function uniquely
characterizes the family (see for example David R. Clark [2004]). In fact, for
a given variance function one can systematically construct the corresponding
log-partition function A(θ). First, Θ(µ) can be computed by noting that,

Θ′(µ) = ∂θ

∂µ
= 1

∂µ
∂θ

= 1
A′′(Θ(µ)) = 1

V (µ) , (3.51)

and therefore,

Θ(µ) =
∫ 1
V (µ)dµ+ C. (3.52)

Since V (µ) is strictly positive, Θ(µ) will be strictly monotone increasing and
thus also possess a unique inverse, which must be A′(θ) according to Eq. 3.49,
from which in turn one can derive A(θ) by integration. The integration in
Eq. 3.52 adds a degree of freedom to the choice of Θ(µ) and hence also A(θ),
which can be easily interpreted as a constant parameter shift that can be
chosen freely. The relation between V (µ) and A(θ) is summarized below:

A(θ) diff.−−→A′(θ) inv.−−→ Θ(µ) diff.−−→ 1
V (µ)

1
·−→ V (µ) (3.53)

A(θ)←−−
int.
A′(θ)←−−

inv.
Θ(µ)←−−

int.

1
V (µ) ←−1·

V (µ) (3.54)

Note that not all variance functions have a proper probability distribution
associated with them. The variance function V (µ) = √µ, for instance, is not
associated with any natural exponential family (Tweedie [1984]). Thus, a
reconstructed log-partition function A(θ) for an improper variance function
does not correspond to any normalized family of distributions according to
Eq. 3.46.
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Chapter 4

Expectation Maximization in Spik-
ing Neural Networks

Expectation Maximization is one of the most powerful algorithms for train-
ing generative models (see Section 3.2). The challenge of transferring the
algorithm to the domain of Spiking Neural Networks is to identify neural
mechanisms which correspond to the two main ingredients of Expectation
Maximization, namely inference and learning. In the original part of this
document, a method will be presented which addresses these two issues. In
this chapter, related work in this context will be introduced. Of immediate
relevance to this thesis is a recent publication by Nessler et al. [2010], which
consider a neural implementation of a mixture model with observed cate-
gorical variables. Importantly, the authors succeed in relating learning and
inference in this model to neural integration and plasticity. A slightly differ-
ent approach is taken by Deneve [2008a,b], where a Hidden Markov Model
with binary variables is mapped to the spiking neural domain.

4.1 Mixture of Categoricals

In this section, the work by Nessler et al. [2010] will briefly be discussed where
a mixture model with M observed categorical variables x = (x1, . . . , xM)T is

47
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considered. A categorical random variable x can take on values from a limited
discrete set of size C1. For simplicity, one may assume values that range from
1 . . . C. The distribution of such a random variable can be described by C
probabilities which must sum to one:

C∑
c=1

p(x = c) =
C∑
c=1

πc = 1, (4.1)

where πc is by definition the probability of x taking on the value c. In a
typical model, the πc would constitute the parameters of the distribution.

The latent variable z in the mixture model may also be seen as a cate-
gorical variable with K different states. The underlying generative model of
the approach is based on Naïve Bayes independence assumptions (see Sec-
tion 3.1.8):

p(x1, . . . , xM , z) = p(z)p(x1, x2|z) (4.2)
= p(z)p(x1|z) · · · p(xM |z). (4.3)

Below, the mapping of this generative model to the neural domain is
explicated. Also, the most important limitations of the approach will be
discussed as they are significant for motivating the original part of this thesis.

4.1.1 Mapping between random variables and spiking neu-
rons

The connection between theoretical input variables and spiking neurons is es-
tablished in two steps. First, a single categorical random variable is expanded
into C binary variables. At any time, exactly one of these C binary variables
may be active such that each categorical value is encoded by the activity of
one binary variable. The authors call this transformation population coding
since a single categorical variable is represented by an ensemble of C binary
variables. These binary variables are denoted by y = (y1, . . . , yN)T , where

1Original notation has been slightly adjusted.
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with N = C ·M , taking account of M variables with C possible values each.
The second step relates the binary variables to spiking neurons by introduc-
ing one neuron for each binary variable and defining that an active binary
state is reflected by random firing at some fixed rate λ, while the inactive
binary state is encoded by the absence of firing 2.

In an analogous fashion, the latent variable is also brought in relation
to a set of K spiking neurons, each of which encodes a specific value of the
latent variable. Again, only one of these variables may be active at a time.
However, as opposed to the spiking input neurons, the latent variable takes
on a value only at certain points in time, in particular when the network
performs inference. Then, exactly one spike is emitted by the neuron which
corresponds to the current value of the latent variable.

4.1.2 Inference

The parameters of the generative model are the log-prior probabilities of the
latent variable z,

wk0 = log p(zk = 1), (4.4)

and the conditional log-probabilities of input variables yi given a specific
latent value,

wki = log p(yi = 1|zk = 1). (4.5)

The parameters are subject to several constraints, namely,

K∑
k=1

πk = 1, (4.6)

2Firing occurs according to a homogeneous Poisson process at the given rate.
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and for each group Gj of variables yi which code for the same categorical
variable xj,

∑
i∈Gj

πki = 1, k = 1 . . . K; j = 1 . . .M (4.7)

This choice of this parametrization, in particular of using log-probabilities
instead of probabilities, is justified by noting that inference becomes very
straightforward with these parameters:

uk =
∑
i

wkiyi + wk0, (4.8)

p(zk = 1|y) = exp(uk)∑K
k′=1 exp(uk′)

. (4.9)

In fact, the operation defined by Eq. 4.8 and 4.9 can be mapped to neural
dynamics in a straightforward fashion:

• The weight wki corresponds to the synaptic efficacy between yi and zk.

• The computation of uk corresponds to the integration of current in-
put via the synaptic weights. uk may be considered the (uninhibited)
membrane potential of neuron k.

• The divisive normalization in Eq. 4.9 corresponds to a lateral inhibi-
tion mechanism among the output neurons zk, implementing a Winner-
Take-All (WTA) operation, as discussed in Section 2.4.2.

4.1.3 Learning

Maximum likelihood learning in the model is achieved by local synaptic plas-
ticity rules:

∆wki =


η(exp(−wki)− 1), if yi = 1 and zk = 1

−η, if yi = 0 and zk = 1

0, if zk = 0

(4.10)
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where η is a learning rate. A similar rule may be used for learning the
log-priors wk0.

It can be shown that this learning rule converges to the optimal values in
a fully observed setting. The concurrent use of inference and learning results
in an online EM approach for which the authors can prove that the expected
learning update after a combined inference and learning step always increases
the log-likelihood of the input distribution under some mild conditions.

4.1.4 Results and Limitations

The method proposed in Nessler et al. [2010] appears to work well in practice
and can cope with high-dimensional data and noisy inputs. To demonstrate
the properties of the algorithm, an application on the MNIST dataset was
shown. The database, which consists of small pictures of handwritten digits
labeled by their digit (Lecun and Cortes [1998]), is usually used as a standard
benchmark test for supervised learning. In order to test performance in the
unsupervised setting, the authors employ the conditional entropy of the labels
given the network output as a measure for discrimination performance. They
further show that the model is able to detect changes in the input distribution
and adapt its connectivity accordingly. On a reduced subset of the standard
database comprising different writings of the digits 0, 3 and 4, the method
achieves a classification error of 3.68% on an independent test set.

The method may be considered an early prototype of a new class of
spiking neural network architectures which succeed in relating time-tested
machine learning algorithms to neural activity and plasticity. As such, it
naturally has a few limitations and imperfections:

Implementation of WTA: The authors do not provide a neural mecha-
nism for computing the WTA response. The hypothesis that such a
network may be implemented neurally, in particular in context of the
proposed method, has yet to be confirmed.

Categorical variables: The method is limited to categorical input vari-
ables. In the context of spiking neurons, it would seem more natural
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to consider Poisson distributed inputs (Gerstner and Kistler [2002]).

Population coding: The requirements on the input coding seem overly
strict and unrealistic in a biological context. Demanding that there are
subsets of input neurons which encode underlying variables as described
above in Section 4.1.1 seems unrealistic.

EPSP shapes: The proposed theory is only consistent when rectangular
EPSP shapes are used. Biological neurons are known to have smoothly
decaying impulse responses (see for instance the Leaky-Integrate-Fire
model discussed in Section 2.2.1).

4.2 Binary Hidden Markov Model

In Deneve [2008a], the authors present a principled approach how a single
neuron can perform Bayesian inference based on evidence from incoming
spike trains. First, in an implicit space, a temporal generative model is
constructed which relates binary input variables st = (s1

t , . . . , s
N
t )T with a

binary hidden state xt. The model has temporal dynamics and may be seen
as a binary instance of a Hidden Markov Model. Inference in this Hidden
Markov model can be achieved by a recurrent process in time. Note that in
a binary latent variable model, inference is equivalent to keeping track of the
log-odds ratio Lt = log p(xt=1| s0→t)

p(xt=0| s0→t) , a quantity which captures the tendency
of explaining the input history with hidden state xt = 1 rather than xt = 0.

In the explicit neural space, the input st corresponds to a binary vector
indicating which synapses were activated between time t and t+ dt. The au-
thors then show that the computation of the log-odds ratio Lt can be mapped
to a differential equation which contains terms resembling the integration of
input spikes and decay in a neuron’s membrane potential:

L̇t = −φ(Lt) +
∑
i

wiδ(sit − 1). (4.11)

The neuron uses this information to emit spikes according to a predictive
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coding paradigm, where spikes are only generated when new information
has been accumulated at the neuron which could not be predicted from the
prior information. In order to be able to perform this coding scheme, they
postulate that a neuron must constantly try to estimate its own state from
its output spike train in order to judge how accurately another neuron could
infer this state. Whenever this estimate deviates too greatly from the real
state, a neuron must emit spikes to correct for the error.

The scheme allows for building hierarchies of such neurons, since the
output coding is approximately equal to the input coding, a fact which is
experimentally verified in Deneve [2008b]. However, belief propagation in
these hierarchies is not correctly implemented by the proposed network in a
strict sense, due to the lack of top-down feedback.

The parameters of the model can be learned in an online EM algorithm
with Spike-Timing Dependent Plasticity. The details of the learning rule
involve estimating sufficient statistics via running averages and computing
functions of these sufficient statistics to update the actual parameters of the
model. Note that this mechanism is somewhat unwieldy in the context of
synaptic plasticity, especially when compared to the plasticity rules emerging
from the previously discussed model (Section 4.1). The postulated learning
scheme involves non-standard computations and therefore constitutes a ma-
jor issue for implementing this method in standard neural network simulators.
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Chapter 5

A Generalization to Exponential
Families

In this chapter and the remainder of this work, the original part of this thesis
will be presented and discussed, which will build on the concepts and for-
malisms discussed in the introductory part of this document. In particular,
in Section 4.1, a recent publication by Nessler et al. [2010] was summa-
rized which will provide the basis and source of inspiration for the remainder
of this work. From a theoretical perspective, the most striking aspect in
their approach is the establishment of a link across traditional discipline
boundaries. In a simple neural architecture, they are able to relate one of
the most powerful algorithms in machine learning, Expectation Maximiza-
tion (see Section 3.2), to neural activity and plasticity. Its formal simplicity,
which is evident in implementations of both inference and learning, makes it
an attractive starting point for further investigation and improvement.

Section 5.1 is intended to provide motivation for a new theory which is
then introduced in Section 5.2 and 5.2.2.

55
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5.1 Motivation

In order to motivate the improvements which will be proposed shortly in this
chapter, consider two particular limitations of Nessler et al. [2010]. First, the
restriction to categorical input values, which prevents the method from being
able to read, learn and reason based on continuous input firing rates. Second,
the related problem of population coding. In Nessler et al. [2010], inputs have
to fulfill certain requirements in order for the theory to work. It is assumed
that inputs are divided in disjoint groups, and in each of these groups there
may be precisely one active neuron at a time. While at first this may seem
tolerable in an algorithmic setting, it is quite hard to argue in favor of such
restrictions in biological networks, since precision seems particularly hard
to achieve in single neurons (see for example, London et al. [2010]). Even
in purely technical applications, there are practical issues with population
coding. Note that usually, input data is not supplied in a form that satisfies
the demanded constraints. Consequently, one has to convert data into the
required format before the method can be applied. In the worst case, one has
to construct a mirror neuron for each single input. The original input and
the mirror neuron together could then satisfy the required group constraint.
It is clear that such an overhead may severely hamper performance and is
highly undesirable in real-time online processing tasks. The performance loss
is particularly striking when data is already provided in a spiking protocol
with sparse activity. In such a situation, the introduction of mirror neurons
which always fire when the corresponding input is silent, drastically increases
input bandwidth and computational demands.

Note that both issues are related to the particular choice of component
distribution, namely the categorical distribution. Therefore, below a gener-
alization of the method to exponential family components will be elaborated.
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5.2 Recursive Estimation in Mixtures of Expo-
nential Families

The new theory should preserve three critical properties of the original
method. First, the parameters of the probabilistic model should directly
correspond to synaptic weights. This is important in order to be able to map
learning in the probabilistic model to synaptic plasticity. Second, inference
should be tractable, and the interaction between input data and synaptic
weights should be a weighted sum of the form wT x. This is of relevance,
since neurons may be viewed, to a first approximation, as integrators of
their weighted inputs (see Section 2.2.1). Third, learning rules should be
local. Only four components must enter the weight change of a synapse:
pre-synaptic spikes, post-synaptic spikes, current weight, and learning rate.
The model which is proposed below fulfills all requirements.

5.2.1 Mixtures of Exponential Families

Consider a generative model of the following form:

p(x) =
N∑
k=1

p(z = k)p(x |z = k,θk) (5.1)

=
N∑
k=1

exp(πk)p(x |z = k,θk). (5.2)

with π = (π1, . . . πN)T , constrained by ∑
k exp(πk) = 1. This defines a

general parametric mixture model with “class” probabilities p(z = k) =
exp(πk) and component parameters θk. Here, the focus is on mixtures of
exponential-family type distributions, such that the k-th component density
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can be written as

p(x |z = k,θk) =

h(x) exp
 M∑
j=1

θkjTj(x)− A(θk)
 ,

parametrized by θk = (θk1, . . . , θkM)T . The functions Tj(·) are called the
sufficient statistics of x.

For convenience, define

y = (T1(x), . . . , TM(x))T ,
uk(y) = πk + θTk y−A(θk),

and

u(y, z) =


u1(y) , if z = 1,
...

uN(y) , if z = N.

Then the joint probability of x and z can be written as

p(x, z|π,θ) = h(x) exp(u(y, z)) (5.3)

with y as defined above.

Inference in such a model is easy:

p(z = k|x,π,θ) = p(z = k,x |π,θk)
p(x |π,θ)

= p(z = k,x |π,θk)∑
k′ p(z = k′,x |π,θk′)

= h(x) exp(uk(y))∑
k′ h(x) exp(uk′(y))

= exp(uk(y))∑
k′ exp(uk′(y)) . (5.4)
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Note how the parameter independent factor h(x) is canceled. This will be
of major importance later when a neural implementation for inference with
this model is considered.

Learning also turns out straightforward. Given fully observed data, that
is a number of independent samples x(t) and corresponding latent variables
z(t), one can write the joint-probability of the data as

p(x(1), z(1), . . . ,x(T ), z(T )|π,θ) =
N∏
t=1

p(x(t), z(t)|π,θ)

Maximizing this quantity w.r.t. π and θ is equivalent to maximizing

1/T
T∑
t=1

log p(x(t), z(t)|π,θ)

or by using Eq. 5.3 also equivalent to maximizing

〈u(y, z)〉p(X,z) =〈
〈u(y, z)〉p(X |z)

〉
p(z)

=
N∑
k=1

p(z = k)〈uk(y)〉p(X |z=k) =

N∑
k=1

p(z = k)uk(〈y〉p(X |z=k)).

Here, 〈·〉p(X,z) denotes the expectation operator w.r.t. the sample distribu-
tion, and 〈·〉p(X |z=k) the expectation conditioned on a certain value for z.

In order to account for the normalization constraint on π one can define
the Lagrangian

L(π,θ, λ) =
N∑
k=1

p(z = k)uk(〈y〉p(X |z=k))

+ λ(
∑
k

exp(πk)− 1)
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and find critical points by requiring1

∇L(π,θ, λ) != 0.

This gives the expected result for π (compare this to the model definition in
Eq. 5.1 and 5.2):

π∗k = log p(z = k)

For θ, the result depends on the particular choice of A(·) and Tj(·) through
the following relation which must hold for all k and j considered:

∂A(θk)
∂θkj

!= 〈Tj(x)〉p(X |z=k) (5.5)

Example: Single Poisson variable

Suppose x is distributed according to

p(x|z = k, λk) = λxke
−λk

x! ,

for non-negative integers x. One can identify the exponential form by rear-
ranging

p(x|z = k, λk) = λxe−λk

x!
= 1
x!e

log(λk)x−λk

= 1
x!e

θkx−exp(θk)

1For notational simplicity the nabla-operator will be used as the column vector of
partial derivatives, contrary to common notation.
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such that

θk = log λk, h(x) = 1
x! ,

y = T (x) = x, A(θk) = exp(θk).

Then, Eq. 5.5 simplifies to

exp(θk) != 〈x〉p(x|z=k)

θ∗k = log(〈x〉p(x|z=k))

Example: Conditionally independent Poisson variables

Consider the following distribution:

p(x |z = k, λk) =
∏
j

λkj
xje−λkj

xj!
=

∏
j

1
xj!

 e∑j
θkjxj−

∑
j

exp(θkj)

with

θkj = log λkj, h(x) =
∏
i

1
xi!
,

yj = Tj(x) = xj, A(θk) =
∑
j

exp(θkj).

Thanks to the factorized form, the derivatives of A(·) are very simple and
Eq. 5.5 becomes

exp(θkj) != 〈xj〉p(x|z=k),

θ∗kj = log(〈xj〉p(x|z=k)).
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5.2.2 A Recursive Maximum Likelihood (ML) Approach

Again, it is assumed that access to full observations (x(t), z(t)) is provided.
However, in contrast to standard batch learning according to Eq. 5.5, in
neural networks, parameters should be updated incrementally while data is
observed. Furthermore the update at time step t should depend only on the
current data (x(t), z(t)) and the parameters from the last step (π(t−1),θ(t−1)).

First, let p̂(t)
k and ŷ(t)

k be the empirical estimates of p(z = k) and
〈y〉p(X |z=k), respectively, based on the observations up to time step t:

p̂(t)
k = 1

t

t∑
t′=1

δ(z(t′) − k),

ŷ(t)
k =

∑t
t′=1 δ(z(t′) − k) y(t′)∑t
t′=1 δ(z(t′) − k)

with δ(·) being the Dirac delta function. Now suppose that the optimal
parameters up to time step t have already been computed, that is for all k,

π
(t)
k = log p̂(t)

k ,

∇A(θ(t)
k ) = ŷ(t)

k . (5.6)

For the next time step t+ 1 with η = 1
t+1 , one has,

π
(t+1)
k = log p̂(t+1)

k

= log
(
(1− η) p̂(t)

k +ηδ(z(t+1) − k)
)

= log
(
p̂(t)
k +η[δ(z(t+1) − k)− p̂(t)

k ]
)

≈ log p̂(t)
k +ηδ(z

(t+1) − k)− p̂(t)
k

p̂(t)
k

(5.7)

= π
(t)
k + η(e−π

(t)
k δ(z(t+1) − k)− 1)

= π
(t)
k + η∆(t+1)

πk
(5.8)
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with

η∆(t+1)
πk

=

η(e−π
(t)
k − 1) if z(t+1) = k,

−η otherwise.
(5.9)

The approximation in Eq. 5.7 is valid for small η.

In order to obtain a recursive formula for θ, note that at time step t+ 1
the conditional expectation on the right-hand side of Eq. 5.6 changes only
for the active hidden value k = z(t+1). Therefore one can immediately write

θ
(t+1)
k′ = θ

(t)
k′ , ∀k′ ∈ {1 . . . N}\{k}. (5.10)

For k = z(t+1) an update of the form θ
(t+1)
k = θ

(t)
k +η∆(t+1)

θk
is desired, and

can be plugged in to give:

∇A(θ(t)
k +η∆(t+1)

θk
) = ŷ(t+1)

k

= (1− η) ŷ(t)
k +η y(t+1)

= ŷ(t)
k +η[y(t+1)− ŷ(t)

k ]
= ∇A(θ(t)

k ) + η[y(t+1)−∇A(θ(t)
k )]

Now, assuming small η one may approximate the left-hand side by a first-
order Taylor series

∇A(θ(t)
k +η∆(t+1)

θk
) ≈ ∇A(θ(t)

k ) + ηHA(θ(t)
k )∆(t+1)

θk
,

and obtain

η∆(t+1)
θk

= ηH−1
A (θ(t)

k )[y(t+1)−∇A(θ(t)
k )], (5.11)

where HA(·) is the Hessian of A(·) w.r.t. θk.

In summary, Eq. 5.9, 5.10 and 5.11 define an approximate recursive
estimation procedure for mixtures of exponential-family type distributions.
Only Eq. 5.11 depends on the particular choice of distribution.
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Example: Conditionally independent Poisson variables

Using from 5.2.1

θkj = log λkj, h(x) =
∏
i

1
xi!
,

yj = Tj(x) = xj, A(θk) =
∑
j

exp(θkj).

A particularly convenient gradient and Hessian of A(·) is found,

∇A(θ(t)
k ) = (exp(θk1), . . . , exp(θkM))T ,

HA(θ(t)
k ) = diag(exp(θk1), . . . , exp(θkM)).

Plugging this into Eq. 5.11 yields

η∆(t+1)
θk

= η diag(e−θk1 , . . . , e−θkM )[y(t+1)−(eθk1 , . . . , eθkM )T ]
= η[(e−θk1y

(t+1)
1 , . . . , e−θkMy

(t+1)
M )T − 1]

or, more explicitly,

θ
(t+1)
kj = θ

(t)
kj +

η(e−θkjx
(t+1)
j − 1) if k = z(t+1),

0 otherwise.

5.3 Learning Rules for Some Exponential Fami-
lies

General learning and inference equations for mixtures of exponential families
in a neural network setting have been derived. Here, a selection of exponential
families is compared by their resulting learning and inference equations. The
Poisson special case will be discussed in greater detail in section 5.5.
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5.3.1 Derivation of Learning Rules for Single-Parameter
Families

Here, it will be assumed that inputs xi are conditionally independent and
that the same single-parameter exponential family model can be used for all
inputs (except for the multinomial distribution, see 5.3.2). Furthermore, only
exponential families are covered, for which the single sufficient statistics is
proportional to the mean of the distribution, that is T (x) = x/φ with some
constant φ which will be called dispersion factor. Then, one can write

p(x |zk = 1,θk) = [
∏
j

h(xj)] exp
(

θTk x−∑j A(θkj)
φ

)

For conditionally independent inputs, learning rules can also be studied
in a simplified single input, single parameter scenario since the derivative of
the log-likelihood is decomposed when Naïve Bayes assumptions apply (see
Section 3.1.8). Consider the simplified scenario,

p(x|θ) = h(x) exp
(
θx− A(θ)

φ

)
. (5.12)

The normalization or log-partition function A(θ) ensures that p(x|θ) is prop-
erly normalized for all possible θ. It depends on φ, h(x) and the support SX
through the following relation2,

A(θ) = φ log
∫
x∈SX

h(x) exp
(
θx

φ

)
dx. (5.13)

The log-likelihood of an ensemble of T observations x1, . . . , xT is given
by:

log p(x1, . . . , xT |θ) = 1
φ

T∑
t=1

(log h(xt) + θxt − A(θ)) . (5.14)

2For discrete distributions, the integral is replaced by a sum.
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A maximum likelihood objective function LT (θ) up to time step T is
defined by dropping terms that are independent of θ and multiplying by
φ/T :

LT (θ) = 1
T

T∑
t=1

(θxt − A(θ)) (5.15)

= θ〈x〉T − A(θ), (5.16)

where 〈x〉T denotes the temporal average over samples x1, . . . , xT . Then the
maximizing θ fulfills

A′(θ) = 〈x〉T . (5.17)

In order to understand the meaning of Eq. 5.17, note that A′(θ) is simply
the mean of the model distribution with parameter θ:

A′(θ) =
∂
[
φ log

∫
x∈SX

h(x) exp
(
θx
φ

)
dx
]

∂θ
(5.18)

= φ
∂
[∫
x∈SX

h(x) exp
(
θx
φ

)
dx
]

∂θ
· 1∫

x∈SX
h(x) exp

(
θx
φ

)
dx

(5.19)

= φ
∫
x∈SX

h(x)
∂
[
exp

(
θx
φ

)]
∂θ

dx · exp
(
−A(θ)

φ

)
(5.20)

= φ
∫
x∈SX

h(x) exp
(
θx

φ

)
x

φ
dx · exp

(
−A(θ)

φ

)
(5.21)

=
∫
x∈SX

h(x) exp
(
θx− A(θ)

φ

)
x dx (5.22)

= 〈x〉p(x|θ) := µ(θ) (5.23)

Eq. 5.17 therefore simply states that θ should be chosen such that the model’s
mean and the observed mean match. Note that it does not directly give
an explicit solution for the parameter θ, unless one can invert A′(θ) (see
Section 3.3.3 for more on that). Instead, as has been shown alrady, a recursive
learning rule can be derived without having to invert A′(θ).

Assume that θ is the current maximum likelihood estimate up to time
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T − 1, such that

A′(θ) = 〈x〉T−1.

Adding another observation generally leads to a different estimate, θnew =
θ + ∆θ, for which holds,

A′(θ + ∆θ) = 〈x〉T
= (1− η)〈x〉T−1 + ηxT

= (1− η)A′(θ) + ηxT ,

with η = 1
T
. A first order Taylor approximation of the left-hand side yields

A′(θ) + ∆θA
′′(θ) = (1− η)A′(θ) + ηxT ,

∆θ = η
xT − A′(θ)
A′′(θ) (5.24)

In the following, Eq. 5.24 will be used to show how various exponential fami-
lies differ in their learning rules due to different normalization functions A(θ).

5.3.2 Multinomial Distribution with n Trials

The above derivation applies to most distributions that will be considered.
The fact that one can model a multivariate distribution by independently
modeling each input makes the method quite elegant and attractive.

The multinomial distribution, however, is a multivariate distribution that
imposes additional constraints on parameters across inputs, and thus requires
some extra treatment. For a multinomial distribution with n trials, defining
θi = log(n pi) one has,

p(x |θ) = n!∏
i xi!

e
∑

i
(θi−logn)xi

=
[

n!∏
i xi!

n−
∑

i
xi

]
e
∑

i
θixi
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for ∑i xi = n, constrained by ∑i exp(θi) = n. This results in a constrained
maximum likelihood optimization problem, for which the Lagrangian can be
defined,

L1(θ, λ) =
∑
i

θi〈xi〉T + λ(n−
∑
i

exp(θi)),

Then one obtains

∂L1(θ, λ)
∂θi

= 〈xi〉T − λ exp(θi) != 0,∑
i

〈xi〉T − λ
∑
i

exp(θi)︸ ︷︷ ︸
!=n

!= 0

For well-behaved input, ∑i xi = n, this yields λ = 1. Using the conve-
nient fact that the Lagrange multiplier is a constant, a simplified objective
is defined,

L2(θ) =
∑
i

θi〈xi〉T + (1−
∑
i

exp(θi)),

∂L2(θ)
∂θi

= 〈xi〉T − exp(θi) != 0,

θi
!= log〈xi〉T ,

giving the learning rule

∆θi
= η

xi,T − exp(θi)
exp(θi)

(5.25)

= η(xi,T exp(−θi)− 1). (5.26)

Note that this generalizes the single trial result from Nessler et al. [2010].

5.3.3 Comparison of Learning Rules

Tables 5.1 and 5.2 summarize important properties and learning rules for
six different distributions: Normal, Poisson, Multinomial, Gamma, Binomial
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and Negative binomial:

Domain: The set of admissible inputs, which can be continuous or discrete,
finite or infinite.

Fixed parameters: Parameters of the distribution which are assumed
fixed. Fixed parameters must come from prior knowledge of the in-
put data, since they usually cannot be learned with a simple scheme as
the one proposed.

Variable parameter (standard form): The parameter of the distribu-
tion which is assumed unknown and which can be learned from data
with the proposed method.

Mean: The mean of the distribution in dependence of the variable param-
eter.

Variance: The variance of the distribution in dependence of the variable
parameter.

Variable parameter (Exponential family form): The variable param-
eter expressed in the exponential family form. The exponential family
form differs from the standard form of most distributions. Hence, this
row accounts for the re-parametrization of the variable parameter and
shows the relation between parameter spaces in original and exponen-
tial family form.

Parameter domain: The set of admissible parameters in the exponential
family form. This is typically of a subset from the real numbers.

Interpretation: The meaning of the parameter in exponential family form.

Log-partition function A(θ): The corresponding log-partition function
of the family.

Mean µθ: Shows the dependence of the mean of the distribution on the
exponential family parameter.
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Variance function: The mean-variance relation of the family (see Sec-
tion 3.3.3). Note that the variance function is not given for the multi-
nomial case, since a channel in a population coded input ensemble is
highly dependent on other channels and therefore does not qualify as
a single-parameter distributed input.

Learning rule: The learning rule which has its equilibrium point at the
correct maximum likelihood estimate based on complete observations.

Figure 5.1 visualizes the learning rules for five distributions. The black
line denotes the optimal parameter θ given some input x, that is the param-
eter that explains the input best. The arrows indicate parameter changes
caused by a mismatch between current and optimal parameter.

Note that, for visual clarity, the learning dynamics are shown for real-
valued inputs x, even if the corresponding distribution has only discrete
support.
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(a) Normal (b) Poisson

(c) Gamma (α=3) (d) Binomial (n=5)

(e) Negative binomial (n=5)

Figure 5.1: Generalization: Comparison of learning rules for different
choices of component distribution. The black line denotes
the optimal parameter θ given some input x, that is the
parameter that explains the input best. The arrows in-
dicate parameter changes caused by a mismatch between
current and optimal parameter. For visual clarity, learn-
ing dynamics are shown for real-valued inputs x, even if
the corresponding distribution has only discrete support.
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5.4 From Recursive ML to Approximate On-
line EM

So far, only learning with complete observations has been considered.
Typically, solving the marginal ML problem θ∗ = arg maxθ p(x |θ) =
arg maxθ

∏
i p(xi |θ) for partially observed data with independent observa-

tions xi and missing data zi is a hard problem. The basic trick behind EM
(see Section 3.2) that makes learning tractable is the following:

• First obtain complete data by inferring the hidden state probabilities
p(zi) from the independent observed data samples p(xi), using the cur-
rent estimate of the model θ(t). This produces a temporary joint dis-
tribution p∗(xi, zi|θ).

• Then solve the joint ML problem θ(t+1) = arg maxθ

∏
i p
∗(xi, zi|θ).

If these two steps are performed iteratively, one can guarantee convergence
to local maxima of the likelihood function under mild assumptions (Neal and
Hinton [1998]). The following EM-based learning procedure for discrete-time
is proposed:

1. At time step t+1, consider the next input x(t+1), for simplicity assumed
to be sampled from some stationary distribution p(X).

2. Compute a set of sufficient statistics y(t+1) = T (x(t+1)).

3. Sample z(t+1) from a multinomial distribution p(z|y(t+1),π(t),θ(t))
where

p(z = k|y,π,θ) ∝ exp(θTk y +πk + A(θk)), (5.27)

with π = (πk, k = 1 . . . N) and θ = (θk, k = 1 . . . N).

4. Update neuron parameters π(t+1) = π(t) +η∆(t+1)
πk

.

5. Update synapse parameters θ
(t+1)
k = θ

(t−1)
k +η∆(t+1)

θk
.
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Eq. 5.27 constitutes the inference step of the model and corresponds to the
previously derived inference equation for MEFs (see Eq. 5.4). The learning
updates with η∆(t+1)

πk
and η∆(t+1)

θk
are performed according to the recursive

estimator equations derived earlier.
This scheme implements an online approximation to EM in the spirit of

Neal and Hinton [1998] and Gilles Celeux et al. [1995]. A proof of convergence
can be found in Appendix A .

5.5 Spikes, Poisson, and Continuous Time

From the above derivations, it may not be immediately clear, how the pro-
posed method relates to spiking neural networks. This section aims at estab-
lishing the relation. First, a particular special case of the general algorithm
will be elaborated that assumes Poisson distributed inputs which are inde-
pendent conditioned on the hidden causes. Then, a discussion follows how
and under what conditions the discrete time algorithm can be applied to
Poisson processes. A spiking neural network is presented which implements
the proposed model.

5.5.1 Poisson-based scheme in Discrete Time

Based on the above general learning scheme, at time step t+ 1,

1. Consider input x(t+1).

2. Skip computation of sufficient statistics, since y(t+1)
i = x

(t+1)
i .

3. Sample z(t+1) from p(z = k|x,π,θ) ∝ exp(θTk x +πk −
∑
j e

θkj ).

4. Update π(t+1)
k = π

(t)
k +

η(e−π
(t)
k − 1) if z(t+1) = k,

−η otherwise.
.

5. Update θ
(t+1)
k = θ

(t)
k +

η(e−θkjx
(t+1)
j − 1) if z(t+1) = k,

0 otherwise.
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Note that there are a few significant differences from this particular learn-
ing algorithm to the one proposed in Nessler et al. [2010]: First, the here pro-
posed algorithm works with count data as opposed to binary inputs. This is
useful in the context of spikes, as will be discussed in Section 5.5.2.

Inference in the new scheme is performed through,

uk = θTk x +πk −
∑
j

eθkj , (5.28)

as opposed to,

uk = θTk x +πk.

Here, it should be noted that ∑j e
θkj = ∑

j λkj, where λkj is the average
rate of the input j when output k is active. Different hidden states k can
specialize on patterns with different overall rates. Without the additional
normalization term, those hidden neurons k would always dominate which
have large θkj, even if the input has low rates. If one can guarantee that
the sum of inputs is constant at all times, the term can be dropped since
the sum of learned rates will converge to the same value for all k and will
appear as a multiplicative constant that cancels due to the normalization in
p(z = k|y,π,θ) = uk∑

k′ uk′
. If the normalization terms vary across internal

neurons, they must be taken into account for correct inference.

Learning in the new model is formally very similar to the original rule,
except for the fact that the new scheme allows for input values greater than 1.

5.5.2 Spiking Neural Network Implementation

The Poisson perspective is particularly appealing when a continuous-time
STDP learning scheme such as in Nessler et al. [2010] is considered. If the
input is supplied as an ensemble of inhomogeneous Poisson processes with
instantaneous rates λj(t), generating a number of events in a time window
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[t− l, t], then on average,

m
(t)
j =

∫ t

t−l
λj(τ)dτ.

For small l and/or slowly changing Poisson rates one can approximate this
by,

m
(t)
j ≈

∫ t

t−l
λj(t− l/2)dτ = hλj(t− l/2).

This means, that if at any point t in time one has access to the number
of spikes in small window of length l, then these inputs will be Poisson
distributed and the model derived above can be used to perform learning and
inference. What is still missing in the transition to a spiking neural network
implementation is a specification of when and how often observations are
taken. In accordance with the scheme in Nessler et al. [2010], for simplicity
one can assume an external process which produces trigger events. At the
arrival of such an event, the inference procedure is initiated, a winner is
selected according to a WTA operation, and learning is performed for the
synaptic weights which belong to the winning neuron.
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(a) Input: From rate to EPSP (b) Poisson-based model

Figure 5.2: Spiking neural network implementation of Poisson-based
model. The left graphic (a) shows how input spikes are
assumed to be generated, and how they are accumulated
by a rectangular EPSP shape. On the right side (b), the
basic setup is illustrated. Inputs are connected in an bi-
partite all-to-all fashion to the internal layer which is con-
trolled by a Winner-Take-All (WTA) circuit. The synap-
tic weights can be learned with Spike-Timing Dependent
Plasticity (STDP).

The proposed spiking neural network implementation of the Poisson-
based model is shown in Figure 5.2. The model corresponds to the elements
of the spiking network as follows:

• The parameters θkj are the synaptic weights of the network. Since
parameters θkj can be negative, one may shift them to the positive
range as described in Nessler et al. [2010]. The prior parameters πk
correspond to intrinsic parameters of the internal neurons.

• Inference corresponds to neural integration, in combination with aWTA
operation. The membrane potential of neuron k before WTA is given
by,

uk = θTk x +πk −
∑
j

eθkj . (5.29)
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The weighted sum θTk x is equivalent to the accumulation of weighted
EPSPs from all input spike trains. πk can be understood as an in-
trinsic parameter of the neuron’s general excitability. The remaining
term ∑

j e
θkj is independent from the current input but depends on

the synaptic weights which are attached to the neuron. As has been
discussed, under appropriate conditions where the overall input rate
is constant, this term can be omitted. Alternatively, one can consider
heterosynaptic competition, a phenomenon which is ubiquitous in bio-
logical networks (Fiete et al. [2010]). With an appropriate mechanism,
this term will be approximately equal for all neurons and is therefore
canceled during the WTA operation. Yet another option to deal with
this term is discussed in a further extension in Section 6.3.

• The internal output layer is activated according to some external sched-
ule. Whenever activation of the internal layer is triggered, a winning
neuron is selected by the WTA circuit. The winner emits a single spike.

• Parameter learning of θkj can be mapped to weight-dependent Spike-
Timing Dependent Plasticity: each pre-synaptic spike which occurs
before a post-synaptic spike within the window of the EPSP-shape
increases the synaptic weight. Pre-synaptic spikes which occur after
a post-synaptic spike do not have a direct effect on the weight. This
behavior is reflected by the update equation,

∆θkj
∝ e−θkjxj − 1, if z = k, (5.30)

since each pre-synaptic spike from input j within the current EPSP win-
dow increments xj. The constant decay may be seen as the negative
part of standard STDP, with the slight difference that here, the neg-
ative weight contribution is triggered even if there is no pre-synaptic
spike following the post-synaptic spike. The weight dependence ap-
pears as a multiplicative factor e−θkj which results in the saturation of
weights even for high inputs as long as they are bounded. Note that
this automatically solves the problem of instability in standard Heb-
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bian learning (see Section 2.3.1). Similar to the synaptic weights, the
intrinsic parameters πk can be learned locally at the neuron.



Chapter 6

Further Extensions

Based on the model developed in the previous chapter, three more exten-
sions will be discussed. Section 6.1 targets at more realistic EPSP shapes.
Section 6.2 is about including prior information and Maximum a Posteriori
parameter estimation. Finally, Section 6.3 shows an alternative way of im-
plementing the normalization term ∑

j e
θkj , which appears in the inference

equations in the Poisson-based model.

6.1 Incorporating Realistic EPSP shapes

The influence of an input spike on the state of a neuron is limited in time. In
biological neurons, the time course of this influence is called excitatory post-
synaptic potential (EPSP) and has a characteristic decaying shape (Purves
[2008]). In contrast, the method by Nessler et al. [2010] proposes the equiva-
lent of a rectangular EPSP shape. Also the Poisson-based model, presented
in the previous chapter, is based on such an unrealistic assumption.

This section aims at incorporating more realistic EPSP shapes in the
model. One obstacle is that the convolution of an arbitrary EPSP shape with
a spike train with Poisson statistics leads to distributions which deviate from
the standard Poisson case (see Section 6.1.2). These distributions may be
outside the exponential family, such that exact inference may not be possible

81
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anymore. It is crucial to determine which distributions from the exponential
family best approximate the real distributions encountered when using more
complex EPSPs in order to keep errors small during inference. To this end,
a method is proposed which systematically constructs an exponential family
with a variance function identical to the desired distribution. Errors are
therefore limited to higher-order moment mismatch.

6.1.1 Convolution of Poisson Spike Trains with Arbitrary
EPSP shapes

As in the previous chapter, we will assume that input spike trains are gener-
ated by inhomogeneous Poisson processes with slowly varying rates. We will
first consider piece-wise constant EPSP shapes ε(t) of finite length L which
integrate to one (

∫ L
0 ε(t) dt = 1). Suppose that there are n individual pieces

with different magnitudes εi, each of length δ, such that L = n · δ. Formally,

ε(t) =
n−1∑
i=0

εiH(t− i · δ)H(−t+ (i+ 1) · δ), (6.1)

where H(·) denotes the Heaviside step function. Then, the convolution of a
spike train x(t) with such an EPSP can be written as,

ξ(t) =
∫ L

0
x(t− τ)ε(τ) dτ (6.2)

=
n−1∑
i=0

εi

∫ δ

0
x(t− i · δ − τ) dτ. (6.3)

Assuming a constant Poisson rate λ throughout the integration period, all
sub-integrals in Eq. 6.3 will be Poisson distributed with ensemble mean and
variance δλ. Let a single contribution to this sum be,

ξi(t) = εi

∫ l

0
x(t− i · l − τ) dτ. (6.4)
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Since sub-integrals are Poisson distributed, the ensemble mean and variance
of ξi(t) can be found easily as (Bickel and Doksum [2001]),

E(ξi(t)) = εiδλ (6.5)
Var(ξi(t)) = ε2

i δλ. (6.6)

Furthermore, since different ξi(t) are independent, the sum of contributions
is distributed with mean and variance,

E(ξ(t)) =
n−1∑
i=0

εiδλ = λ
n−1∑
i=0

εiδ = λ
∫ L

0
ε(τ) dτ = λ (6.7)

Var(ξ(t)) =
n−1∑
i=0

ε2
i δλ = λ

∫ L

0
ε2(τ) dτ. (6.8)

The mean equals λ, such that ξ(t) is an unbiased estimator of the underlying
rate. The variance scales linearly with λ, but also depends on the shape of
the EPSP. Note that this results holds irrespective of how small one makes
δ, such that arbitrary EPSP shapes can be considered in the limit of δ → 0,
and if required, L→∞.

6.1.2 Variance Function Depends on EPSP Shape

For a rectangular EPSP of length L = 1, one has

Var(ξ(t)) = λ
∫ 1

0

1
12 dτ = λ, (6.9)

as expected. For an exponentially decaying EPSP ε(t) = 1
τd

exp(−t/τd), one
obtains,

Var(ξ(t)) = λ
∫ ∞

0

1
τ 2
d

exp(−2τ/τd) dτ = 1
2τd

λ, (6.10)
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reflecting the fact that longer integration reduces estimation variance. In
general, one will obtain some variance which is proportional to λ,

Var(ξ(t)) = φλ. (6.11)

The factor of proportionality φ will be referred to as dispersion factor. Since
the mean equals λ, this gives rise to the variance function (see Section 3.3.3
for an introduction to variance functions),

V (µ) = φµ. (6.12)

The crucial question is whether ξ(t) can be modeled by an exponential
family distribution. Interestingly, one can easily construct an exponential
family which has the desired variance function by multiplication of Poisson
variables with the desired factor φ. Given a Poisson distributed variable X
with rate λ and Y = φX,

E(Y ) = φλ, (6.13)
Var(Y ) = φ2λ, (6.14)
V (µ) = φµ. (6.15)

Note that the construction of a natural exponential family from the vari-
ance function according to the above scheme is unique1. This means that
given the parameter φ, there is a single natural exponential family which
exactly matches the desired variance function. As a consequence, higher
moments (or more precisely, cumulants) in the model typically cannot be
matched to the corresponding higher moments of ξ(t) with this technique.
Clearly, this means that inference in the model only approximates ideal in-
ference. Further research will be necessary to evaluate the effect of this
approximation.

1Up to a constant parameter shift.
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6.1.3 Model Adjustments for Arbitrary EPSPs

In Section 6.1.2 it was shown that for arbitrary EPSPs one can construct
an exponential family which matches the variance function of the filtered
input spike train. Below, this will be set more explicitly in the context of the
method proposed in this thesis.

As described in the previous section, given an EPSP shape, one can com-
pute the dispersion factor φ, such that the variance function of the filtered
spike train can be expressed as,

V (µ) = φµ. (6.16)

Now, consider the probability density function of a Poisson random vari-
able, multiplied by a constant factor φ,

p(x|λ) = λx/φ exp(−λ)
(x/φ)! , x/φ ∈ Z. (6.17)

This can be written in natural exponential family form with θ = log λ,

p(x|θ) = 1
(x/φ)! exp

(
θx− φeθ

φ

)
, x/φ ∈ Z. (6.18)

In this form, one can easily identify the log-partition function A(θ) = φeθ.
Using the theory developed earlier, the corresponding local maximum likeli-
hood learning rule can be derived by application of Eq. 5.24:

∆θ = η
x− A′(θ)
A′′(θ) (6.19)

= η
x− φeθ

φeθ
(6.20)

= η(x
φ
e−θ − 1). (6.21)

Note that for φ = 1, the standard Poisson rule is recovered. Also during
inference, one must use a slightly different normalization term in order to
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account for the correct log-partition function:

uk = 1
φ

θTk x−
∑
j

eθkj . (6.22)

Again, φ = 1 gives the standard Poisson model.

6.2 Maximum a Posteriori Estimation

The standard maximum likelihood approach to parameter estimation is to
find a parameter set θ that maximizes p(X|θ) on some dataset X. On many
occasions, however, also some prior knowledge p(θ) about the parameters
themselves is available. The incorporation of prior knowledge can be partic-
ularly useful when dealing with high-noise input distributions where parame-
ters are difficult to decide on from few samples. With maximum a posteriori
one can combine prior and data-dependent knowledge by maximizing p(θ|X)
instead of p(X|θ) (Bickel and Doksum [2001]). Section 6.2.1 extends the the-
ory developed in this thesis to include prior information. A simple example
with a Gaussian input is illustrated in Section 6.2.2.

6.2.1 Extended Theory for Including Prior Information

As with maximum likelihood, the resulting parameter set is a point estimate
as opposed to a full posterior distribution (Bayesian learning).

By application of Bayes rule one has,

p(θ|X) = p(θ)
p(X)p(X|θ) (6.23)

log p(θ|X) = log p(θ)− log p(X) + log p(X|θ) (6.24)

Note that the middle term log p(X) does not depend on θ. Therefore an
objective function is defined,

L(θ) = log p(X|θ) + log p(θ) (6.25)
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Applying this to Eq. 5.16 for exponential families yields

LT (θ) = θ〈x〉T − A(θ) + φ

T
log p(θ) (6.26)

= θ〈x〉T − A(θ)− φ

T
B(θ), (6.27)

with

B(θ) = − log p(θ). (6.28)

Then the maximizing θ after T − 1 input samples fulfills

A′(θ) + φ

T − 1B
′(θ) = 〈x〉T−1 (6.29)

An additional sample xT leads to a new estimate θ+ ∆θ for which must hold

A′(θ + ∆θ) + φ

T
B′(θ + ∆θ) = 〈x〉T (6.30)

Approximating the left-hand side by a first-order Taylor series leads to the
following MAP-based learning rule:

∆θ = η
xT − A′(θ)

A′′(θ) + ηφB′′(θ) (6.31)

Note that, in the limit of a flat prior distribution log p(θ), Eq. 6.31 reduces
to the ML-rule (Eq. 5.24). Interestingly, learning from input data is auto-
matically slowed down for high noise distributions (φ � 1), thus rendering
the prior distribution more influential. Also note that the parameter θ must
be initialized at the (preferably unique) maximum of the prior distribution
(B′(θ0) != 0), in order for the recursive argument to hold. Since MAP only
tracks a point estimate, multi-modal prior distributions are discouraged.

It remains to be underlined that inference in the model is independent
of the learning objective, such that the choice of MAP/ML only affects the
learning step of an EM implementation.



88 6. Further Extensions

6.2.2 Example with Gaussian Input

Consider a single Gaussian input x with unknown mean µ and known variance
σ2. The input is modeled with a Gaussian distribution, in its exponential
family form:

p(x|θ) = h(x) exp
(
θx− θ2/2

σ2

)
(6.32)

For ML learning a learning rule derived from Eq. 5.24 was employed:

∆θ = η(xT − θ) (6.33)

For MAP learning, the prior distribution is chosen as a zero-mean unit-
variance Gaussian:

p(θ) = 1√
2π

exp
(
−θ

2

2

)
(6.34)

B(θ) = 0.5(log(2π) + θ2) (6.35)
B′(θ) = θ (6.36)
B′′(θ) = 1 (6.37)

Then, Eq. 6.31 gives the MAP learning rule:

∆θ = η
xT − θ
1 + ησ2 (6.38)

In both methods, the parameter θ is initialized to zero. Each method
is provided with T = 100 input samples, the procedure is repeated in 100
trials. For each method, the root mean squared estimation error is computed
as
√∑T

t=1(θt − µ)2. The error is evaluated for different µ and σ2, the results
are presented in Figure 6.1.

The results clearly show the potential improvement through MAP learn-
ing, especially when the input variance is high compared to the variance of
the prior distribution. On the other hand, in low variance settings or if the
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(a) Prior distribution (MAP) (b) RMSE: Low input variance

(c) RMSE: Medium input variance (d) RMSE: High input variance

(e) Average errors with input mean drawn
from MAP prior

Figure 6.1: Maximum Likelihood versus Maximum a Posterior learn-
ing rules using a decaying learning rate schedule. (a) Prior
distribution for parameter θ, corresponding to the dis-
tribution from which generative parameters were chosen
during subsequent simulations. (b) - (d) Performance of
ML and MAP learning rules in dependence of generative
θs, for different input noise levels. ML does not use prior
information, therefore performance does not depend on θ.
MAP performs best for θ which are probable under the
prior distribution. (e) Average errors for ML and MAP
in dependence of input noise level. High input variance
makes prior information more important.
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(a) RMSE: Low input variance (b) RMSE: Medium input variance

(c) RMSE: High input variance

Figure 6.2: Maximum Likelihood versus Maximum a Posterior with
fixed learning rate. Average performance of ML and MAP
learning rules under three noise conditions. MAP is more
robust to the choice of learning rate and outperforms ML
in all conditions.

prior distribution is unknown, ML might be the more robust choice.

Another interesting case to consider is a fixed learning rate scenario. In
such a setup, η is chosen beforehand to some determined value which stays
constant throughout the whole experiment, as opposed to the decaying sched-
ule ηT = 1/T for the above experiments. Again, the RMSE is computed from
the first 100 samples. Figure 6.2 shows the comparison in performance be-
tween the ML and MAP learning rules for different input variances. Like
in the decaying learning rate scenario, the superiority of the MAP learning
rule is clearly visible for all settings under study and becomes even more
pronounced for higher input variances.
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6.3 An Approximation of the Normalization Term

Examining the activation function,

uk = exp(θTk x +πk −
∑
j

eθkj ),

one may recognize that the normalization term∑
j e

θkj may be quite impracti-
cal for some implementations as it requires the computation of a sum over all
synapses, additional to the usual input path θTk x. This could be particularly
inconvenient in hardware implementations where, as in biology, synapses and
neurons might be spatially separated. Creating an additional communication
channel will generally complicate the design and increase costs.

A few ways of dealing with this inconvenience have been mentioned al-
ready in Section 5.5.2. In particular, if the overall input rate stays nearly
constant, the term can be dropped altogether. Heterosynaptic competition
may serve the same purpose as constant overall input rates by equalizing
the normalization term across all neurons, thus making it dispensable. A
third option will be discussed here, which enables the neuron to estimate its
synapse weights based exclusively on observed EPSPs.

6.3.1 A First Approximation

First, one must recognize that any systematic modification of the inference
step does not interfere with the optimality of the learning rule with respect
to the joint maximum likelihood. Certainly, the algorithm will generally not
perform correct EM due to the defective inference and “erroneous” activations
of hidden units. Still it is important to see that, due to the optimal learning
step, one can assume that after sufficient time the algorithm converges, and

θkj ≈ log x̂kj, (6.39)
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with x̂kj = 〈xj〉p(x|Z=k). Then, using the observed EPSP from synapse j to
neuron k, one has,

〈θkjxj〉p(x|Z=k) ≈ f(x̂kj) = x̂kj log x̂kj

Note that this average is taken over all input configurations that caused the
neuron k to spike. Therefore this will be called the spike-induced EPSP
average.

In principle, one could observe this quantity for each k and j and try to
infer x̂kj (as well as θkj) from that. Unfortunately, the function f(x̂kj) is not
injective, thereby prohibiting such an approach. To get around this difficulty,
shifted weights are introduced,

θ′kj = m+ θkj,

limited by θ′kj ≥ 0. The parameter m has to be chosen large enough to
prevent cutting away too much of the input range, as the limitation implies
that θkj ≥ −m. Adapting the learning and inference equations to use the
shifted weights is trivial.

For the new spike-induced EPSP average, which will be denoted by ψkj,
one can write,

ψkj = 〈θ′kjxj〉p(x|Z=k) ≈ g(x̂kj) = x̂kj(m+ log x̂kj) (6.40)

Now one can inspect the derivative of g(·) to analyze monotonicity:

g′(x̂kj) = m+ log x̂kj + 1.

Apparently, in order for g(·) to be strictly monotone increasing, one has to
ensure that

m > −(1 + log x̂min),
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where x̂min is the smallest ensemble averaged input at any time2. Then, g(·)
is injective on the interval [x̂min,∞[ and one can use the inverse

x̂kj = g(x̂kj)
W (emg(x̂kj))

,

where W (·) denotes the Lambert W function. Using Eq. 6.40 gives,

x̂kj ≈
ψkj

W (emψkj)
,

By Eq. 6.39 one also has,

eθkj ≈ ψkj
W (emψkj)

,

and therefore the normalization term can be expressed as,

∑
j

eθkj ≈
∑
j

ψkj
W (emψkj)

. (6.41)

At this point it is useful to recall what has been gained by using the
approximation in Eq. 6.41. If one assumes that the synapse can communicate
with the neuron just over the EPSP “channel”, the above approximation
enables the use of that channel for two purposes, namely

• Read out current EPSPs in order to decide on momentary spiking be-
havior.

• Use spike-induced EPSP averages for normalization and, consequently,
correct inference.

Also, since the approximate behavior of the Eq. 6.41 is only due to θkj ≈
log x̂kj, but otherwise exact, one may expect the approximation error to
vanish when convergence is reached.

2If the input is noisy, this requirement is easy to fulfill, since x̂kj will always be greater
than some noise-dependent constant ε.
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Still, the method is not quite satisfactory for two reasons. Firstly, the
computation of the Lambert W function is somewhat time-consuming, as it
is usually based on fixed-point iterations (see Chapeau-Blondeau and Monir
[2002] for an alternative method). Secondly, one has to maintain and update
an average for each single synapse j connected to neuron k. This is both
computationally expensive and biologically hard to justify.

6.3.2 A More Realistic Neural Approximation

Motivated by the shortcomings of the approximation derived in the previous
section, here a slightly different way of estimating ∑j e

θkj through the ob-
servation of the spike-induced average of θTk x is presented. The goal is to
replace the approximation,

∑
j

eθkj ≈
∑
j

g−1(ψkj),

by something of the form,

∑
j

eθkj ≈ h(
∑
j

ψkj).

This step would be possible exactly, if g(·) was an affine map. However,
as was found before, g(x̂kj) = x̂kj(m + log x̂kj). Accordingly, the approach
will be to see whether one can find a good linear approximation of g(·) such
that,

g(x̂kj) ≈ ax̂kj + b,

on a certain range of interest [x̂min, x̂max].

Fortunately, g(·) seems to behave increasingly linear as m grows. Fig-
ure 6.3 demonstrates this effect and also shows that the x̂min = e−m−1 cor-
responding to each m (small asterisk) becomes smaller for larger m, making
the method more suitable for lower input noise levels.
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Figure 6.3: Function g(·) for three different parameter shifts m: 0.1,
1 and 10. The higher m, the better the approximation by
a linear function.

In the limit one recognizes that,

lim
m→∞

g(x̂kj)/m = lim
m→∞

x̂kj(m+ log x̂kj)/m = x̂kj, (6.42)

providing a nice explanation of the observation made above. Assuming large
m one can therefore write

g(x̂kj) ≈ mx̂kj, (6.43)
g−1(ψkj) ≈ ψkj/m,∑

j

g−1(ψkj) ≈ 1/m
∑
j

ψkj =: h(
∑
j

ψkj)

Following the logic developed above, one might ask whether m can be
made arbitrarily large to improve the approximation. In fact, there are some
apparent practical considerations concerning the choice of m. First, the EP-
SPs scale practically linearly withm, so in some implementations there might
be a physical limit to m. Also, increasing m leads to a smaller influence of
the underlying weight θkj on the EPSP, giving rise to numerical issues during
inference, learning, as well as during the normalization term estimation itself.
Altogether it seems reasonable to use intermediate values for m. In practice,
m ∈ [7, 10] seem to work well for most purposes.

Usually the approximation in Eq. 6.43 can be further improved, especially
when m is relatively low and inputs are known to occur on a fixed range
[x̂min, x̂max]. Then, fitting a linear model in the mean squared error sense by
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minimizing

e(a, b) =
∫ x̂max

x̂min

((ax+ b)− g(x))2 dx,

will provide parameters a and b for an approximation,

g(x̂kj) ≈ ax̂kj + b, (6.44)
g−1(ψkj) ≈ ψkj/a− b/a,∑

j

g−1(ψkj) ≈ 1/a
∑
j

ψkj −Mb/a =: h(
∑
j

ψkj)

where M is the number of synapses j for neuron k. In practice, the re-
sulting constant term Mb/a can be omitted as it is canceled during the
WTA-normalization.

In summary, the presented approximate method can be easily imple-
mented by equipping each output neuron k with a running estimator ψk ≈
〈θ′Tk x〉, and using a slightly altered computation of the activation function:

uk = exp(θ′Tk x +πk − βψk), (6.45)

The constant β will typically be β � 1 and is given by β = 1/m or β = 1/a
for the limit and mean squared error approximations, respectively.

6.3.3 Comparison of Methods

For convenience, Table 6.1 revisits the four methods discussed above shortly.
The methods are abbreviated by UN (Unnormalized), EX (Exact), A1 and
A2 (Approximation 1 and 2, respectively).
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ID New parameters New estimators Activation uk
UN – – θTk x +πk
EX – – θTk x +πk −

∑
j e

θkj

A1 m, θ′kj := θkj +m ψkj ≈ 〈θ′kjxj〉p(x|Z=k) θ′
T
k x +πk −

∑
j

ψkj

W (emψkj)

A2 m,β, θ′kj := θkj +m ψk ≈ 〈θ′
T
k x〉p(x|Z=k) θ′

T
k x +πk − βψk

Table 6.1: Approximation of normalization term: Four methods for
inference in the Poisson-model. UN ignores the normal-
ization term. EX corresponds to the theoretically exact
method. A1 and A2 estimate the normalization term from
the post-synaptic activity.

Below, three of the four methods, UN, EX and A2, will be compared ex-
perimentally on two different data sets. In all simulations a constant learning
rate η and very small constant noise in the inference step is used to support
exploration. The whole data set is provided in the same order, epoch after
epoch. The performance measure is the average log-likelihood of the data
under the model.

Random Poisson Mixture

Data was generated as a mixture of Poisson patterns,

p(Z = k,x) = 1
N
p(x |Z = k) = 1

N

∏
j

Pois(xj;λkj), (6.46)

15 base patterns were generated by drawing λkj randomly from [0, 7]. From
these base patterns, a data set of 10000 patterns was randomly generated
according to Eq. 6.46. 20 hidden units were used in all models. For the ap-
proximate method, a parameter shift m = 7 was used. The results are shown
in Figure 6.4. As expected, the exact method performs best, closely followed
by the approximation. The unnormalized method quickly falls behind and
converges to a suboptimal solution.
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Figure 6.4: Approximation of normalization term: Performance com-
parison for random Poisson patterns. The data log-
likelihood under the model is plotted over the course of
simulation for three different methods. Error bars de-
note standard deviation over 20 trials. The exact method
performs best, closely followed by the proposed approxi-
mation. Neglecting the approximation term as in the un-
normalized method drastically impairs the quality of the
learned model.

MNIST without Population Coding

Here the MNIST database digits 0,3,4 from Lecun and Cortes [1998] were
used, with values discretized to 0 and 1 as input to the three algorithms. In
contrast to Nessler et al. [2010] no population coding was performed prior to
application of the method. Note that, since inputs are restricted to 0 and 1,
the unnormalized method corresponds exactly to learning and inference as
proposed in the original model by Nessler et al. [2010]. 20 hidden units were
used in all models.
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Figure 6.5: Approximation of normalization term: Performance com-
parison for handwritten digits. The data log-likelihood
under the model is plotted over the course of simulation
for three different methods. Error bars denote standard
deviation over 20 trials. Both exact method and ap-
proximation perform well compared to the unnormalized
method. The approximation benefits from an initial boost
which is related to underestimation of the normalization
term in early stages of learning, which in turn facilitates
recruitment of competitors for patterns. The unnormal-
ized method converges to an inferior solution.

The exact normalization procedure converges slower during the initial
phase than the unnormalized algorithm. However, since the unnormalized
version converges to a sub-optimal solution, the effect can only be seen during
the first 15 epochs of training.

Note that the approximation converges faster than the exact algorithm.
This can be credited to the fact that the approximation initially underes-
timates the normalization term. This facilitates the recruitment of more
competitors for the same pattern in early stages and leads to an accelerated
convergence.
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Chapter 7

Conclusion and Outlook

In this thesis I have presented my research work at the crossroads of spik-
ing neural networks and probabilistic models. After an introduction to the
field, Chapter 5 presented a generalization of the model proposed by Nessler
et al. [2010] to exponential family components. Not all exponential families
are equally suitable in the context of neurons. The most obvious candidate
for the use with spiking neurons is the Poisson distribution. A spiking neu-
ral architecture which implements learning and inference according to the
Poisson-based model was presented in Section 5.5.2. The proposed general-
ization preserves several important aspects of the original model. Synaptic
weights correspond to model parameters, inference is tractable and is medi-
ated by a weighted sum of inputs, and learning rules are local.

The two most significant benefits of the Poisson model compared to the
original model are:

• To a first approximation, spike trains can be understood from the
perspective of inhomogeneous Poisson processes (Gerstner and Kistler
[2002]). In accordance with this fact, the here proposed method uses
Poisson distributions to model inputs, as opposed to categorical or bi-
nary variables in the original model.

• The restriction of population coding has been lifted. Arbitrary en-
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sembles of spiking neurons can be directly connected to the network
proposed in Section 5.5.2.

Apart from the Poisson special case, the generalization to exponential
families entails additional flexibility in the context of spiking input. This
could become relevant in the light of deviations from Poisson statistics in
natural spike trains which may occur due to neural refractoriness (Gerstner
and Kistler [2002]). Exponential families other than Poisson may be even
more suitable for biologically realistic networks, depending on the exact na-
ture of input coding.

In Chapter 6, three further extensions to the model were developed. First,
it was shown how realistic EPSP shapes can be incorporated in the model.
Second, the inclusion of prior information about synaptic weights was dis-
cussed. Third, an approximative way of performing inference in the Poisson
model was discussed, which aimed at minimizing additional assumptions on
how neurons communicate with synapses in spiking neural networks.

The theory developed in this thesis is largely consistent with biological
data in some important aspects, such as basic neural integration (Purves
[2008]), Spike-Timing Dependent Plasticity (STDP) (Gerstner and Kistler
[2002]) and the existence of Winner-Take-All (WTA) circuits in cortex (Dou-
glas and Martin [2004]). Hence, it adds evidence to the hypothesis that
spiking neural networks can carry out complex probabilistic computations.

There are some attractive avenues to continue and build on the research
work of this thesis. Technically, it would be interesting to consider dynamic
input processes with fast rate variations and refractoriness. Also, many
aspects of biological spiking neural networks are still not covered by the
method. It is unclear whether and how mechanisms like short term plastic-
ity (Zucker and Regehr [2002]) or structural developmental processes (Dehay
and Kennedy [2007]) could benefit the performance of spiking neural net-
works for probabilistic tasks.

Deepening the connections between theory and neuroscientific data will
be of utmost importance to guide further improvements of the model. Also,
an implementation of the method on special purpose hardware (for example,
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Furber et al. [2008]) could be taken into consideration.
In the broader picture, the computational capabilities of currently re-

searched spiking neural networks, including the here presented method, are
still very limited. The vision of artificial neural networks which are capable
of learning and reasoning at the level of real-world complexity, appears yet
distant. In order to approach this exciting goal, more powerful probabilistic
models need to be brought in relation to spiking neural networks.
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Appendix A

Convergence Proof

In the most general case, vector-valued inputs x̂ are provided with sufficient
statistics x = (T1(x̂), . . . , TN(x̂))T . Assuming a mixture model with k expo-
nential family components gives,

p(x̂|Θ,π) =
∑
k

exp(πk)p(x |zk = 1,θk) (A.1)

=
∑
k

exp(πk)h(x̂) exp(θTk x−A(θk)) (A.2)

= h(x̂)
∑
k

exp(πk + θTk x−A(θk)︸ ︷︷ ︸
uk

) (A.3)

= h(x̂)
∑
k

exp(uk) (A.4)

The normalization or log-partition function A(·) is a scalar function of the
parameter vector θk, which decomposes into a sum for conditionally inde-
pendent sufficient statistics x.

Our goal is to maximize the expected log-likelihood of the data under the
model, 〈log p(x̂|π,θ)〉x̂ under the constraint ∑k e

πk = 1. To this end one
can define the Lagrangian,
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L(π,Θ, λ) = 〈log p(x̂|π,θ)〉p(x̂) − λ(
∑
k

eπk − 1), (A.5)

and obtain critical points by requiring

∇L(π,Θ, λ) != 0. (A.6)

As was shown previously, at a local maximum λ = 1. Using the fact that
λ does not depend on parameters or inputs, and dropping terms which are
independent of parameters, one can define a simplified objective function

l(π,Θ) = 〈
∑
k

euk〉p(x) −
∑
k

eπk . (A.7)

for which it is easy to show that the local maxima coincide with the origi-
nal constrained optimization goal. Maximization of l(π,Θ) then yields the
following necessary conditions:

πk
!= log p(zk = 1), (A.8)

∇A(θk) != 〈x〉p(x |zk=1). (A.9)

Now consider the following learning rule,

∆πk
= η(zke−πk − 1), (A.10)

∆θk
= ηH−1

A (θk) [x−∇A(θk)] . (A.11)

HA denotes the Hessian matrix of A(·),

hA,ij(θk) = ∂2A(θk)
∂θki∂θkj

, (A.12)

which can be also interpreted as the covariance matrix of the k-th mixture
component, since the cumulant-generating function of an exponential family
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is g(t) = A(θk + t)− A(θk), and

Cov(xi, xj) = ∂2g(t)
∂ti∂tj

|t=0 = ∂2A(θk)
∂θki∂θkj

(A.13)

As a consequence, if the inverse of HA(θk) exists, it is guaranteed to be
symmetric and positive definite, an important property that will be used
below1.

In the following, it will be shown that the expected update of the above
learning rule converges to a local optimum of l(π,Θ). First note that the
equilibrium points of the learning rule coincide with the necessary optimality
conditions developed above:

〈∆πk
〉p(x) = 0⇔ πk = log p(pk = 1), (A.15)

〈∆θk
〉p(x) = 0⇔ A(θk) = 〈x〉p(x |zk=1). (A.16)

From that it is concluded that the expected learning update is always non-
zero for non-optimal settings, and zero at local optima. Next, it will be proven
that the learning rule always drives the parameters in the right direction, by
showing that the dot product ∇π,Θl(π,Θ) · 〈∆π,Θ〉p(x) ≥ 0. The derivative

1For more complicated models, for example when the covariance between inputs is
directly controlled by a subset of the parameters, there might be pathological cases where
the Hessian matrix becomes rank-deficient, such that the inverse cannot be computed.
Luckily, the rescaling of the error vector through the inverse Hessian matrix in Eq. A.11
is not essential in terms of maximizing l(π,Θ), but rather enforces the learning speed
imposed by the current η. In such a rare event one can perform an alternative learning
update

∆θk
= ηH−1

k [x−∇A(θk)] , (A.14)

which is still guaranteed to increase data likelihood as long as H−1
k is a small enough

positive-definite matrix, for example a scaled identity matrix or the inverse Hessian com-
puted with the last successful parameter vector.
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of l(π,Θ) with respect to πk is,

∂l(π,Θ)
∂πk

= 〈 ∂[∑′k eu′k ]
∂πk

〉p(x) − eπk (A.17)

= 〈 euk∑′
k e

u′
k
〉p(x) − eπk (A.18)

= 〈p(zk = 1|x)〉p(x) − eπk (A.19)
= p(zk = 1)− eπk (A.20)

Similarly, differentiating with respect to θk gives,

∂l(π,Θ)
∂ θk

= 〈 ∂[∑′k eu′k ]
∂ θk

〉p(x) (A.21)

= 〈 euk∑′
k e

u′
k

(x−∇A(θk))〉p(x) (A.22)

= 〈p(zk = 1|x)(x−∇A(θk))T 〉p(x) (A.23)
= p(zk = 1)[〈x〉p(x |zk=1) −∇A(θk)]T (A.24)

Then,

∇π,Θl(π,Θ) · 〈∆π,Θ〉p(x) =

=
∑
k

∂l(π,Θ)
∂πk

〈∆πk
〉p(x) +

∑
k

∂l(π,Θ)
∂ θk

〈∆θk
〉p(x) (A.25)

=
∑
k

[p(zk = 1)− eπk ]ηk0[e−πkp(zk = 1)− 1]+
∑
k

p(zk = 1)[〈x〉p(x |zk=1) −∇A(θk)]T ·

· diag(ηk1, . . . , ηkj) HA(θk)−1︸ ︷︷ ︸
Bk

[〈x〉p(x |zk=1) −∇A(θk)]︸ ︷︷ ︸
vk

(A.26)

Since both HA(θk)−1 and diag(ηk1, . . . , ηkj) are symmetric and positive defi-
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nite, also Bk is. Consequently,

∇π,Θl(π,Θ) · 〈∆π,Θ〉p(x) =
=
∑
k

ηk0e
−πk [p(zk = 1)− eπk ]2︸ ︷︷ ︸

≥0

+
∑
k

p(zk = 1) vTk Bk vk︸ ︷︷ ︸
≥0

(A.27)

≥ 0, (A.28)

completing the proof.
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