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Abstract

Slow Feature Analysis is an unsupervised feature extraction algorithm that
extracts non-linear features based on slowness. In many cases slowness is a good
indicator for the usefulness of information and can therefore be used to extract
features out of huge input spaces. We want to show that these extracted slow
features are useful for Reinforcement Learning. Slow Feature Analysis does not
have to be fine-tuned or adapted to a problem and it always finds the optimal
solution in a certain function space within a single iteration. Therefore it does
not have convergence issues. With these properties it is very suitable for an
autonomous preprocessing step before applying Reinforcement Learning on a
control task. The complete learning system can be applied to complex control
tasks and fares comparably well when compared to Reinforcement Learning
on the underlying driving force, a high level representation of the important
information contained in the huge input space.

In this thesis we will show the performance of the proposed learning system
on two different control tasks. For one task we will show that slowness is not
necessarily the best indicator for certain features to be extracted. For the second
task we will show that the learning system is able to outperform the learning
system consisting of the same Reinforcement Learning algorithm being applied
to a high level representation of the contained information.

keywords: slow feature analysis, reinforcement learning, unsupervised fea-
ture extraction
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Chapter 1

Introduction

The effort to use a machine learning algorithm depends largely on the time
needed to fine-tune its parameters. Knowledge of the field of application and
expertise of the algorithm is required to do that. Until now different research
directions like Computer Vision or Signal Processing have developed many so-
phisticated methods to extract useful features with different goals in mind.
Often these so-called feature extraction methods are suitable for specialized
tasks only and choosing one in a suitable way requires knowledge of the task at
hand and does not work in an unsupervised manner.

Autonomous learning has always been of major interest in the field of Ar-
tificial Intelligence. Still today many machine learning solutions require to be
tuned and adapted by an expert to fit the special requirements of a certain
problem setup. For example the hole field of Artificial Neural Networks, with
adaptation possibilities not only in terms of network type, but also in layer
depth, connectivity or its activation function. While much research is been done
on finding more efficient algorithms, the need to handle bigger and bigger data
sets calls for unsupervised feature extraction algorithms. Slow Feature Analy-
sis(SFA) (see [WS02]) is an unsupervised feature extraction method based on
slowness. The slowness principle comprises the idea that important information
spread over many input features, changes slowly in comparison to the change
of information encoded in a single feature. This slowness principle might well
be used in our brain as well. It has been shown that the usage of SFA can lead
to the creation of place, head-direction, and spatial-view cells[FSW07]. These
cells decode basic information out of a big video signal which is thought to be
needed for self localization, orientation and navigation. Slowness is an impor-
tant aspect in the self organization in the visual cortex[WB03]. This makes the
algorithm a plausible explanation for the preprocessing of the huge data the
brain is confronted with in a constant matter.

SFA has been used in different architectures to show different aspects of its
usability. We want to show that the combination of SFA and Reinforcement
Learning (RL) can be used successfully for more complicated control tasks.
SFA has been analyzed and used in different papers. Please see [LWW10]
for the use of a similar system on the Morris water maze task. The use of
SFA with receptive fields can be used to avoid the curse of dimensionality
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[FSW07]. Another possibility to avoid this problem is the use of the kernel
trick (see [BM02]). Please see [SW08] for a detailed mathematical analysis of
SFA. Another work has been done by [AS09] for the usage of an artificial neural
network with a reservoir with the SFA. For details of these related works please
see chapter Related Work 5. Many of these works provide interesting thoughts
for the extension of the learning system in this thesis and are discussed in the
Future Work section (see 6) of this thesis for its applicability in this context.
We therefore propose SFA as preprocessing stage for a later RL in a control
task.

Reinforcement Learning being the second part of the proposed learning sys-
tem is a well researched area of machine learning. See [SB99] for a good intro-
duction and [KLM96] for a survey on the topic. The idea of RL is the idea to
give a learning agent feedback in a loose manner. It is not told how to achieve or
perform, but given a reward telling it indirectly about its performance. Many
algorithms have been proposed in this field of research. Direct Policy Search al-
gorithms treat the RL problem as an optimization problem, in which the nature
of the environment and the value function is not known and is not constructed
during the learning. Its goal is to optimize the maximum reward in a black-box
manner.

The usage of this type of RL algorithm was chosen for its performance on
the used control tasks. Many other RL algorithms are usable and should be
considered for future work.

1.1 Motivation

The information we can access and use is growing every day in an exponential
way. Our own brain is very good in extracting useful features out of huge input
spaces, which are provided by our senses. So far we have not been able to copy
or even understand the inner working of our brain in a sophisticated way. Many
theories and algorithms have been and still are proposed, which are thought to
be plausible as being applied in our brain. So far most learning systems need
to be fine-tuned and adapted closely to the desired task at hand. An expert is
required who chooses ’good’ features to be extracted for a later learning stage.
The slowness principle[WS02] is one idea which is thought to be used in our
brain[WB03]. With SFA we have an unsupervised feature extraction algorithm,
which relies solely on slowness to extract relevant features.

So it’s only the next logical step to ask how to use the extracted features. RL
is a well established field in machine learning and provides us with many well
understood algorithms to solve control tasks. It is used as a learning process
in the brain of animals, which are in the need to model future reward to be
able to manipulate its causal environment in a predicable way[ARL+09], and
can be applied to many practical control problems. By using RL with SFA we
have a potentially completely autonomous learning system, which is capable
of learning control tasks. For the system to function properly we only need to
define a reward function and let it learn in a trial and error way on the provided
slow features.
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1.2 Problem Definition

The problem setup is a control task which is meant to test the proposed learning
system. The use of a big input space x(t) together with RL will require a
suitable feature extraction method. In this case the input space will consist
solely of a video signal. All necessary information needs to be extracted out of
this video signal to perform RL.

Two different control tasks for the problem setup were chosen. One being
the classic Cart-pole experiment. The other is the game Pong. Please see
chapter Implementation 3.4 for details of the implementation of the two control
tasks. Both control tasks have a single action dimension a ∈ A. For the Cart-
pole experiment it is the exerted force to move the cart left and right and for
the Pong experiment it is the movement direction of the paddle. The goal of the
control task is encoded in a reward function Rt. We can not use RL directly
on this control task, because of the huge dimension space of x(t). To solve
this problem we need to extract meaningful information out of x(t). There are
many ways for supervised and unsupervised feature extraction. Examples for
unsupervised feature extraction are Principal Component Analysis (PCA) or
Independent Component Analysis (ICA). For supervised feature extraction one
can think of the use of an Artificial Neural Network (ANN) trained as an edge
detector. For this thesis we chose SFA as an unsupervised feature extraction
algorithm for the preprocessing.

The implemented learn system consists of an environment, a SFA prepro-
cessing stage, and the agent. The environment provides the high dimensional
image stream. The SFA preprocessing stage consists of five layers. The first
layer performs a linear SFA directly on the input signal x(t). Each of the other
four layers performs polynomial expansion on the input space before perform-
ing SFA again. With every added layer we polynomially expand the search
space in which the slow features can be found. By performing the polynomial
expansion four times, we increase the search space from linear functions P1 to
the polynomial space P16. This polynomial expansion is needed to find features
which are more complex than linear combinations of the input signal. We only
use the slowest 32 features on each layer.

When the SFA is done, we have 32 slow features. We used the slowness
indicator η(x) to determine the number of useful features for the RL (see the
Slowness Analysis section of the corresponding experiments in the Results chap-
ter 4). Only the slowest 8 features were used for the RL agent. The agent used
a Black-box Optimizer approach to solve the control task. Fitness Expectation
Maximization (FEM) was used at this stage. Fitness Expectation Maximization
is explained in detail in 2.1.3.3.

1.3 Goal

The goal of the thesis is to analyze the proposed learning system in depth. We
will provide the system with a huge input signal and evaluate its performance
with the two proposed control tasks (see chapter Implementation 3). We want
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Figure 1.1: Learning System - for details, see main text

to determine its overall applicability and usability. Therefore we will analyze the
impact of different parameter combinations on the overall performance. Finally
we want to compare it to other unsupervised feature extraction methods and
show its advantages, but also its limitations and how to get around them.

1.4 Structure of the Thesis

This thesis consists of seven parts, which will be presented in a logical order:

• Introduction:
The introduction contains an overview of the thesis and the motivation
to write it. The learning system and the problem setup will also be
explained.

• Theoretical Foundation:
This section will explain all the necessary information, which is needed
to understand the idea of the thesis. First the idea of the Slow Feature
Analysis from [WS02] is introduced and its idea of unsupervised feature
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extraction, based on slowness is explained.

The second part needed for this thesis is Reinforcement Learning, which
is one of the major fields of machine learning in the context of robotics.
It’s simple idea is presented and algorithms in this field which were used
for the thesis are explained and detailed.

• Implementation: The details of the implementation will be presented
in this section. Two approaches were tried. The use of a RoboCup Soccer
simulator was the first try and will only be covered in short. We will
give reasons why it was of no use and why we stopped using it. An own
simulator was implemented later. This second approach, being the one
which was used to show the usefulness of the thesis idea, will be explained
and detailed. Both experiments, the Cart-pole experiment and the Pong
experiment are detailed in here too. A short overview of the used libraries
will also be given in here.

• Results and Discussion:
For the results we will present reasons for the success and also failure of
certain aspects in the two experiments which were used. Its limitations
will also be presented.

• Related Work:
In the Related Work section we will focus on the comparison to other
unsupervised feature extraction methods which were used in conjunction
with RL.

• Future Work:
This paper is meant to show the usefulness of the proposed learning sys-
tem. In this section we want to give advice on further research which will
be conducted. It also proposes some ideas on optimizing the given system
and where future research can lead us.

• Conclusion:
The final thoughts on this thesis, wrapped up in a short paragraph.
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Chapter 2

Theoretical Foundation

Before getting into the details of our system we want to describe the algorithms
on which the system is build.

2.1 Reinforcement Learning

Reinforcement Learning is the idea to teach a system without giving it the
correct answer, but giving it a reward telling it indirectly what is wrong and
right. It therefore lies in between Supervised Learning, in which case the correct
answer is known and Unsupervised Learning, in which case no feedback is given
to the agent.

RL algorithms are applied in many places in nature which perform learn-
ing. Agents, in this case kids, pets or normal people will seldom get concrete
answers what to do, but rather a reward for a certain behavior. Even classic
supervised learning, which kids will encounter in school, comprises a lot of RL.
In this case consider the grading as the reward signal which contains the in-
formation on how to please the teacher, which might not only include learning
the necessary information by heart, but also the presentation or necessity of
certain information. Actually one could say that social interaction and human
communication comprises a lot of RL as we are constantly being judged and
evaluated for our interactions and then fed back a very indirect feedback with
body language and other communication means. The human or agent therefore
has to figure out which action or action combination led to this certain feedback
or so-called reward.

This chapter will closely follow [SB99]. First the basic idea will be presented
and later the details of using Direct Policy Search in RL.

2.1.1 Basic Idea

A RL system consists of an agent and an environment(see figure 2.1). The
agent interacts with the environment in discrete time-steps t ∈ {0, 1, 2, . . . }.
For every time-step t the agent will be in state st ∈ S and takes an action at.
It will observe a reward rt+1 and find itself in the next state st+1. The goal is
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Figure 2.1: RLSystem

it to maximize the discounted future reward Rt.

Rt =
∞∑
k=0

γkrt+k+1 (2.1)

The discount factor 0 ≤ γ ≤ 1 discounts the future to make the current reward
gained more important than future reward. A γ = 1 can be used in episodic
tasks, where discounting is not needed, and will give equal importance for the
gained reward to all encountered states. A γ < 1 will prioritize actions in the
short past over actions long ago. The RL Problem therefore is to find a policy
π with at = π(st) which maximizes Rt. We will call this policy π∗. There are
many different concepts on how to find this policy π∗.

2.1.2 Value Function Approximation

These kind of approaches try to approximate the value function V π. This value
function V π is a function which maps a certain state s to the expected total
future reward Eπ for being in that state s and following policy π.

V π(s) = Eπ {Rt|st = s}
= Eπ

{∑∞
k=0 γ

krt+k+1|st = s
} (2.2)

V π(s) describes the discounted total future reward Rt under the condition
of being in state st and following policy π. Although the Value Function V π(s)
is enough to define optimality for policy π∗, we want to define the action value
function Qπ(s, a) to make further formulas easier to read. As its parameters
are a and s, we can directly deduce a the greedy policy π from Qπ(s, a). With
only V π(s) we would need to look one step ahead to do the same.

Qπ(s, a) = Eπ {Rt|st = s, at = a}
= Eπ

{∑∞
k=0 γ

krt+k+1|st = s, a1 = a
} (2.3)

Therefore Qπ(s, a) defines the value for the discounted total future reward Rt
under the condition of being in state st, choosing action a and following policy
π for all further encountered states. Therefore we can derive the optimal policy
π∗ as:

π∗ = arg max
a

Qπ(s, a)
= arg max

a
E {rt+1 + γV π(st+1)|st = s, at = a} (2.4)

For those who are interested in how the algorithms work to find policy π∗

please read [SB99].
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2.1.3 Direct Policy Search

For this thesis two algorithms were used. Both belong to the group of Direct
Policy Search algorithms. These kind of algorithms try to find a policy π in
a black-box manner without trying to approximate the Value Function V π(s).
Algorithms of this category are in fact Stochastic Optimization Algorithms.
Therefore any optimization algorithm can be used for Direct Policy Search.

These algorithms perform local search. Optimality can therefore not be
guaranteed. They perform reasonable well on the chosen dataset and were
chosen as reference algorithms. Two different groups can be differentiated.
Gradient-based and gradient-free algorithms. We only have data points for the
estimation of an underlying policy function. Therefore the gradient can not be
deduced directly and gradient-based algorithms have to rely on noisy estimates
of the gradient. The other group, gradient-free algorithms don’t rely on the
gradient at all. Evolutionary Algorithms (see survey in [MSG99], Simulated
Annealing (see Adaptive Simulated Annealing in [API]) and Cross Entropy
Search[MRG03] algorithms, just to name a few, belong to this group of opti-
mization algorithms.

2.1.3.1 Black-box Optimization in RL

The objective in Black-box Optimization is to maximize an unknown fitness
function f : Rn → R. The function f is assumed to be unknown or undefined
and its evaluation to be possible, but costly. We therefore want to find a solution
candidate with high fitness by using a limited number of function evaluations.
Exhaustive search in the fitness landscape is considered infeasible.

For RL we define the fitness function to be the total reward Rπ gained in
one episode while following policy π:

f(π) = Rπ =
N−1∑
k=0

rk+1 (2.5)

This definition of f converts the RL problem into a supervised learning
problem, where the parameters of π are adapted after each episode.

2.1.3.2 Stochastic Hill Climber

Hill Climbing is one of the simplest kind of Optimization Algorithms. It will
start at a random position and move uphill until it reaches a local minimum.
Stochastic Hill Climber (see algorithm 1) is an optimized version of this Hill
Climber algorithm. It will stochastically accept a worse solution given a tem-
perature parameter.

2.1.3.3 Fitness Expectation Maximization

Fitness Expectation Maximization is an Expectation Maximization algorithm.
This explanation follows closely the description in [WSPS08]. It is a heuristic
approach which tries to maximize the expected fitness J = Ez [f(z)] with z

10



Algorithm 1 Stochastic Hill Climber
1: bestSolution = random
2: for round = 1 to maxrounds do
3: challenger = bestSolution.mutate()
4: if evaluate(challenger) > evaluate(bestSolution) then
5: bestSolution = challenger

6: else if e
˛̨̨

eval(challenger)−eval(bestSolution)
temperature

˛̨̨
< random then

7: bestSolution = challenger
8: end if
9: end for

being a certain search point in the fitness landscape. Search points z are found
using a search policy π:

π(z|θ) = N (z|x,Σ) = ((2π)n/2 |Σ|1/2)−1 exp
[
−1

2
(z− x)TΣ−1(z− x)

]
This equals the probability density for search point z given policy π, which is
a Gaussian with mean x and covariance matrix Σ. The defining parameters of
policy π are combined in the vector θ.

θ = 〈x,Σ〉

By simply trying to optimize the objective function J we will find that
the algorithm is either too aggressive with little knowledge or converges pre-
maturely. An utility function u(x) is introduced to combat this problem. Its
requirement is that it scales monotonically with f , is semi-positive u(f) ≥ 0
and integrates to a constant. We will get a new objective function:

Ju(θ) =
∫
p(z|θ)u(f(z))dz

In this context a rank based utility function is chosen, as it fares well with
a broad spectrum of problems:

uk = u(f(zk)|f(zk−1), . . . , f(zk−N ))

It is piecewise linear. After ranking all values z by their corresponding fitness
values, 0 is assigned to the worst N −m samples and a linear distribution from
0 to 1 to the top m samples.

Adding it together we get the Fitness Expectation Maximization algorithm.
See algorithm 2 (taken from [WSPS08])

2.2 Slow Feature Analysis

Slow Feature Analysis is a fairly new idea introduced by [Wis98] for unsuper-
vised extraction of meaningful information from temporal data. The main idea
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Algorithm 2 Fitness Expectation Maximization
1: use shaping function u, batch size N , forget factor α
2: k ← 1
3: initialize search parameters θ(k) = 〈x,Σ〉
4: repeat
5: draw sample zk ∼ π(x,Σ)
6: evaluate fitness f(zk)
7: compute rank-based fitness shaping uk = u(f(zk)|f(zk−1, . . . , f(zk−N ))
8: x← (1− αuk)x + αukx
9: Σ← (1− αuk)Σ + αuk(x− zk)(x− zk)T

10: k ← k + 1
11: until stopping criterion is met

is that the world changes slowly compared to the fast changes of the sensor read-
ings trying to capture that information. Every sensor has only a very limited
local view. For example one pixel in a camera or a light receptor in an human
eye. By combining many of these sensors, useful information can be extracted.
It has been shown that SFA can be used for the self organized formation of
place cells, head-direction cells, and spatial-view cells as they are present in the
brain of rats [FSW07]. Therefore, SFA is an Unsupervised Feature Extraction
Algorithm that can be used to extract useful information for further learning
stages in a cognitive process.

2.2.1 Slowness Principle

Today we have access to an huge amount of data.

”There was 5 exabytes of information created between the dawn of
civilization through 2003, but that much information is now created
every 2 days, and the pace is increasing...” (Eric Schmidt, Google
CEO, 04.08.2010)

Most of this data is raw and its information content needs to be processed to be
useful in the machine learning context. The computational view of perception
is the extraction of environmental information out of quickly varying sensor
data. This environmental information is spread over many of these sensors,
which encode very localized information.

For example the relevant information in a video stream of zebras would be
the object identity and the object position. The signal of one of the sensors
would vary quickly as the stripes of the zebras move through its field of view.
The object identity and the object position on the other hand vary much slower.
An algorithm can be formulated to extract these slow varying features out of a
fast varying input space.

2.2.2 Algorithm

This chapter will closely follow [WS02] to describe the algorithm and its require-
ments. The mathematical optimization problem is defined first. An algorithm
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is constructed for the simpler case of considering only linear combinations of
the input signal. The limitation of finding only linear combined functions can
be avoided by expanding the input signal nonlinearly in a preprocessing stage.

2.2.2.1 Problem Definition

Given an input signal: x(t) = [x1(t), x2(t), . . . , xI(t)] with t ∈ [t0, t1] . We want
an output function: g(x) = [g1(x), g2(x), . . . , gJ(x)] which generates y(t) =
[y1(t), y2(t), . . . , yJ(t)] with yj(t) := gj(x(t)) from x(t) instantaneous to achieve
slowness:

∆j := ∆(yj) :=
〈
ẏ2
j

〉
→ min

The following constraints are imposed:

〈yj〉 = 0 (zero mean) (2.6)

〈
y2
j

〉
= 1 (unit variance) (2.7)

∀j′ < j :
〈
yj′yj

〉
= 0 (decorrelation) (2.8)

Angle brackets indicate temporal averaging 〈f〉 := 1
t1−t0

∫ t1
t0
f(t)dt. Unit

variance 2.7 and decorrelation 2.8 are imposed to prevent trivial solutions. The
unit variance constraint prevents the construction of constant signals and the
decorrelation constraint is needed to enforce distinctness of the found slow fea-
tures. The zero mean constraint 2.6 is for convenience only. It should be
noted that a instantaneous response is required for the slow features yj . Ev-
ery response in time y(xt) depends only on the current value xt and therefore
prohibits the creation of a low pass filter.

This optimization problem is one of variational calculus and is in general
difficult to solve. However, if we consider only linear combinations in the opti-
mization step, the problem simplifies significantly.

2.2.2.2 Algorithm

A straight forward algorithm can be constructed, by considering only linear
combinations. A preprocessing stage is proposed to nonlinearly expand the
input signal before applying the algorithm to find higher order slow features.
We apply hj(x) to x(t) for the non-linear expansion. This will give us the
nonlinearly expanded signal zj(t) = hj(x(t)). The optimization will simplify
insofar that we only need to optimize the weights wj in yj(t) = gj(x(t)) =
wTj h(x(t)) = wTj z(t). This will give us:

∆(yj) :=
〈
ẏ2
j

〉
= wTj

〈
żżT

〉
wj → min (2.9)

We further choose z(t) with 0 mean and a unit covariance matrix: :

〈yj〉 = wTj 〈z〉︸︷︷︸
=0

= 0
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〈
y2
j

〉
= wTj

〈
zzT

〉︸ ︷︷ ︸
=I

wj = wTj wj = 1

∀j′ < j :
〈
yj′yj

〉
= wTj′

〈
zzT

〉︸ ︷︷ ︸
=I

wj = wTj′wj = 0

The imposed constraints will be already fulfilled if we choose the weight
vectors to be an orthonormal set of vectors. Therefore the solution is the set
of normed vectors of the matrix

〈
żżT

〉
which correspond to the smallest eigen-

values. The vectors are sorted ascendingly by their corresponding eigenvalues.
The one with the smallest eigenvalue will be the slowest extracted feature.

2.2.2.3 Measuring Slowness

We want to use a more intuitive measure for judging slowness than using the
∆ values directly. We will use slowness measure proposed in
[WS02] for comparing the slowness of features with each other:

η(x) =
T

2π

√
∆(x) (2.10)

This measure is a more intuitive measure describing how many oscillations
a pure sine wave with the same ∆(x) would have. A smaller η(x) indicates a
slower signal.
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Algorithm 3 Slow Feature Analysis

1. Input signal:
x̃(t)

2. Normalization:

x(t) : = [x1(t), . . . , xI(t)]
T

with xi(t) : = x̃i(t)−〈x̃i〉√
〈(x̃i−〈x̃i〉)2〉

,

so that 〈xi〉 = 0,
and

〈
x2
i

〉
= 1.

3. Nonlinear Expansion:

z̃(t) := h̃(x(t))

4. Sphering:

z(t) := S(z̃(t)− 〈z̃〉),
with 〈z〉 = 0
and 〈zz〉 = I.

S is the shearing matrix and is determined by the use of Principal Com-
ponent Analysis on the matrix (z̃(t)− 〈z̃〉).

5. Principal Component Analysis:

wj :
〈
żżT

〉
wj = λjwj

with λ1 ≤ λ2 ≤ . . . ≤ λJ ,

we get:

g(x) := [g1(x), . . . , gJ(x)]T

with gj(x) := wTj h(x)))

and output signal:

y(t) := g(x(t)))
with 〈y〉 = 0,〈

yyT
〉

= I,
and ∆(yj) = λj .

λj are the eigenvalues.
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Chapter 3

Implementation

3.1 Simulation Environment

Two different approaches were implemented to test the system. The first ap-
proach was the use of the Robocup Soccer Simulator. It turned out that the
speed of the simulator was not sufficient. It had to render a 3D scene for
every frame and could not provide the speed, needed to perform millions of
evaluations. A simple graphic simulator, directly producing 2D images, was
implemented and used instead to speed up the simulation.

3.1.1 Robocup Soccer Simulator

The Robocup is an international competition in the field of robotics with the
goal to build a fully autonomous humanoid robotic soccer team that can beat
the human world champion team in 2050. One of the Robocup leagues is the 3D
soccer simulation league with the Simspark simulator [OORR04, BA08] provid-
ing the environment for virtual soccer matches. It’s goal is it to tackle software
challenges, which arise when building real physics robots. The Simspark soccer
simulator is a separate process which communicates with the agents via TCP.
This simulator can easily be adapted and used for other simulation problems.
For this thesis we implemented a cart pole agent to be used in the simula-
tion, with the goal of using the proposed learning system to teach it to balance
the pole. The fact that the simulation was done in 3D was the limiting fac-
tor. Therefore a simpler 2D simulator was implemented called Simple Graphics
Simulator.

3.1.2 Simple Graphics Simulator

As the Robocup Soccer Simulator did not provide enough speed, the Simple
Graphics Simulator was implemented. It uses the underlying driving force to
create the images. The Python Imaging Library was used for the image gener-
ation. It is a 2D image simulator which can produce the needed video stream
with a much higher speed than the RoboCup Simulator. It provides the video
stream of images in high speed, is adaptable in image size and can easily be
extended for different control tasks.
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3.2 Reinforcement Learning using Slow Features

In this thesis we propose to use SFA with RL. The usefulness of this approach
has also been demonstrated in [LWW10]. The system consists of two training
phases. The first phase will be a SFA training phase. There is no RL during
this first phase. The second phase is the RL phase. The RL will then try to
find an optimal policy by using the slow features found by the SFA.

First Phase - SFA

During this phase we generate data by following a fixed policy πsfa. The policy
πsfa was chosen to be a random walk. Its requirement is to include most possible
state transitions. Otherwise the RL phase will not be able to find an optimal
policy π∗. The SFA on the generated data is performed in multiple layers.
The first layer consists of adding noise to the data signal and then performing
SFA to extract linear features. The other four layers consist of adding noise,
polynomially expanding the input space and then performing SFA. Every one
of these layers will increase the function space for the slow features to be found
polynomially. The noise is added to make the calculations numerically stable
and also to generalize. By using the SFA four times, we are able to find slow
features in the polynomial space P16. We only consider the slowest 32 features
found by the SFA on each layer. For the last layer we use the slowness measure
η(x) (see the SFA section 2.2 in the Theoretical Foundation chapter for details)
to find the appropriate number features which were faster than the input signal.

Second Phase - Reinforcement Learning

The second phase is the RL phase. We use the found slow features and the
reward provided by the environment to train the agent. The agent uses a
direct policy search approach to optimize the weights in a linear two layer
artificial neural network. The second layer consists of one neuron, as only one
continuous action dimension exists. The artificial neural network is therefore a
linear combination of the provided slow features.

For the direct policy search we use the Fitness Expectation Maximization
[WSPS08] algorithm. It tries to maximize the expected fitness of a defined
fitness function J = Ez [f(z)]. The parameter z is the vector consisting of the
weights for the ANN. The fitness function is defined as:

J(πs) = Rπs =
∞∑
t=0

rt|π = πs (3.1)

pis is the current search policy. Rπs is therefore the total reward gained in one
episode. Rπs is a rational number, as there is a limit on the maximum number
of time steps t per episode.

Please see figure 3.1 for a data flow diagram.
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Figure 3.1: Data Flow Diagram

3.3 Libraries

We used the two major machine learning libraries PyBrain and MDP for this
thesis. By using those two powerful libraries we were able to build a system
which is easily adaptable and extendable. We will give a short overview over
the two libraries.

3.3.1 PyBrain

PyBrain [SBW+10] stands for Python-Based Reinforcement Learning, Artificial
Intelligence and Neural Network Library. It is therefore a Toolbox providing
algorithms from the above mentioned fields. It is very modular and can be easily
applied and extended to perform machine learning. A PyBrain module consists
of an input buffer, an output buffer and parameters to tune the underlying
transformation algorithm. The transformation algorithm takes the input from
the input buffer and applies an algorithm to create the output which will be
present in the output buffer. A general module also provides error buffers.
These are generally used for error back propagation. Modules can be stacked
to create networks. A simple Artificial Neural Network can be created as easily
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as stacking linear layers on top of softmax layers and so on. More complex
networks are possible too. Any directed graph can be realized by connecting
the input and output buffers of modules in an appropriate way. Any network
is also a module, which makes it easy to create nested networks. PyBrain
offers a variety of algorithms to train these modules. It provides out of the
box algorithm for Supervised Learning, Unsupervised Learning, Reinforcement
Learning, and Optimization Problems.

Reinforcement Learning using PyBrain

A general Reinforcement Learning task is split in three parts:

• Environment

• Task

• Learner

The Environment is a virtual world and does not know anything about
tasks, learners or rewards. It changes from state to state as actions are applied
to it. A Task defines the reward function, scales inputs and outputs and tells
the learner when an episode ends. Many different tasks can be constructed for
one Environment. The Learner will contain the learning algorithm and will
use the rewards obtained from the task to adapt the algorithm’s parameters.

PyBrain provides the following algorithms to be used in RL (List is taken
from the official documentation):

• Value-based:

– Q-Learning (with/without eligibility traces)

– SARSA

– Neural Fitted Q-iteration

• Policy Gradients:

– REINFORCE

– Natural Actor-Critic

• Exploration Methods:

– Epsilon-Greedy Exploration (discrete)

– Boltzmann Exploration (discrete)

– Gaussian Exploration (continuous)

– State-Dependent Exploration (continuous)
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Black-box Optimization using PyBrain

Algorithms for black-box optimization can be applied to any problem which can
be constructed as the minimization of an error function. A problem only needs
to implement a fitness evaluator Interface to be used in black-box optimization.
The fitness evaluator provides the black-box optimizer with a fitness function,
which it has to maximize. In RL the fitness function is the cumulated reward
gained in one episode. The optimization algorithm will change parameters of
the network after every episode by evaluating the fitness function.

The following is a list of implemented algorithms which can used in black-
box optimization (taken from the official documentation):

• (Stochastic) Hill-climbing

• Particle Swarm Optimization (PSO)

• Evolution Strategies (ES)

• Covariance Matrix Adaption ES (CMA-ES)

• Natural Evolution Strategies (NES)

• Fitness Expectation-Maximization (FEM)

• Finite Difference Gradient Descent

• Policy Gradients with Parameter Exploration (PGPE)

• Simultaneous Perturbation Stochastic Approximation (SPSA)

• Genetic Algorithms (GA)

• Competitive Co-Evolution

• (Inner/Inverse) Memetic Search

• Multi-Objective Optimization NSGA-II

Supervised Learning using PyBrain

In Supervised Learning we have the input samples and its desired output values.
These training samples are used to train a classifier in case of a discrete output
space or find a regression function in case the output space is continuous. The
goal of a Supervised Learning algorithm is to find a function which generalizes
the given data to make accurate predictions for future samples.

The following is a list of implemented algorithms, which can used out of the
box with the PyBrain library:

• Back-Propagation

• R-Prop

• Support-Vector-Machines (LIBSVM interface)

• Evolino
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Unsupervised Learning using PyBrain

The exact opposite of Supervised Learning is the field of Unsupervised Learning.
Algorithms in this field are meant to find structure or other forms of ’meaning’
in a given unlabeled data set. This is done by analyzing how data is organized
and trying to explain key features in the data.

Unsupervised Learning algorithms in PyBrain include the following:

• K-Means Clustering

• PCA/pPCA

• LSH for Hamming and Euclidean Spaces

• Deep Belief Networks

3.3.2 MDP

MDP [ZWWB08] stands for Modular toolkit for Data Processing. It is a Python
data processing framework. It includes many supervised and unsupervised data
processing algorithms. All algorithms are packaged in modules and can be
combined to build arbitrary feed forward networks. It is easily extensible and
provides the researcher with pipeline topological structure for data processing.
Special care has been taken to optimize the provided algorithms in terms of
memory and speed. It provides means to adjust the precision of the internal
calculations and to parallelize the computations.

A MDP network consists of connected nodes. A node is the basic building
block of every network. Every node can have one or more training phases.
MDP takes care of the training phases for all the nodes in the network in the
right order. It automatically determines the input and output dimensions for
every node, as data is provided during the training phases. The data can be
treated in batch mode or in an online mode for amounts of data that do not
fit in memory at one time. The online mode also provides the user with the
possibility of generating the data on-the-fly.

After the training phases are over, the trained MDP network can be executed
with new data. If all the nodes in one network use algorithm which provide
an inversion, then the hole network can also be used upwards and invert the
already processed data.

The MDP library is therefore a useful machine learning library capable of
doing fast calculations on data in a feed forward way. Its pipeline architecture
provides strong flexibility and gives a researcher means to perform many out-
of-the-box algorithms on his data.

The number of algorithms implemented in the MDP library is steadily grow-
ing. The following is a a current list of implemented algorithms:

• Linear Regression

• Fisher Discriminant Analysis

• Locally Linear Embedding
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• Hessian Locally Linear Embedding

• Restricted Boltzmann Machine

• Gaussian Classifiers

• Growing Neural Gas

• Factor Analysis

• K-Means Clustering

• PCA (standard, NIPALS)

• ICA (CuBICA, FastICA, TDSEP, JADE, XSFA)

• Slow Feature Analysis

• Independent Slow Feature Analysis

• Polynomial Expansion

• Hit Parades

• Noise

• Time Frames

3.4 Experiments

Two experiments were implemented to test the idea developed in this thesis.
The first implementation is the well known cart-pole experiment. For the second
task we chose the classic game of Pong.

3.4.1 Cart-Pole

The classic cart-pole control experiment is a balancing task. The goal of the
task is to balance the pole on the cart without moving out of a defined area.
The possible actions a ∈ A are limited to moving the cart left and right. A =
{left, right}. The pole is centered on the cart and attached via a passive joint.

The complete state is defined by the pole angle θ, the angle speed ω, the cart
position x, and the cart’s speed v. The driving force dcart for this experiment:

dcart = {θ, ω, x, v}

The driving force is initialized partly random.

init(dcart) =


θ ∈ [−0.2, 0.2]
ω = 0
x ∈ [−0.5, 0.5]
v = 0

22



Figure 3.2: Cart pole Task Layout

For the RL we need to define a reward signal r(t).

r(t) =


0, if |θ| < 0.05 and |x| < 0.05;
−2 ∗ (maxsteps− n) , if |θ| > 0.7 or |x| > 2.4;
−1, otherwise.

(3.2)

This means that a reward of 0 is given as long as the cart position x is very
close to the start and the pole is nearly straight up. A reward of −1 is given
when the cart is further away or the pole is not in a nearly straight position. A
reward of −2 is given for all remaining time steps when the episode is canceled,
because the pole has surpassed a curtain threshold or the cart position is too
far out.

One episode for the cart pole experiment ends when one of the following
conditions is met:

• |θ| > 0.7

• |x| > 2.4

• n >= maxsteps

The driving force dcart was used to generate different sized images for com-
parison. See sample images in table 3.1.
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Table 3.1: Comparing different image sizes for the Cart pole Task
100x20

50x10

40x8

30x6

3.4.2 Pong

The game Pong is one of the earliest arcade games. It is a tennis sport game
first released in 1972. In this thesis we use an adapted version of Pong which
is playable by one player. The second player is replaced by a wall. The reward
is the number of times the agent is able to bounce the ball and continue to
play. An episode ends as soon as the agent misses the ball or when he achieves
a reward of 10, which equals 10 bounces. The total game-state is defined by
the ball position, a vector describing its speed and direction and the paddle
position. We will call these game-state parameters driving force dpong from
now on:

dpong = {ballpos, dir, paddlepos}

The ball direction dir of the driving force dpong is initialized randomly. A
random angle α ∈ [−70◦, 70◦] is chosen and the vector dir is calculated from
that. The fully initialized state of dpong therefore is:

init(dpong) =



ballpos =

(
50
50

)

dir =

∥∥∥∥∥
(
−1

tan(α)

)∥∥∥∥∥
paddlepos = 50

Parameters which stayed constant through one test run, but were adapted
to test the thesis idea include the following:

Parameter Values Explanation
Image Size 5x5, 10x10, 20x20, 50x50 in pixels

Paddle Speed 5, 15 in percent on the y axis per time-step

See chapter Results 4 for results of using different values for these parame-
ters.
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Figure 3.3: Pong Task Layout

For the RL we need to define a reward signal r(t):

r(t) =

{
1, if bounce;
0, otherwise.

This reward signal r(t) will add up to a total Reward Rt with a max of 10
per episode when playing optimal.

In table 3.2 we can see the different image sizes being used for the training.
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Table 3.2: Comparing different image sizes for the game Pong
50x50

20x20

10x10

5x5
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Chapter 4

Results and Discussion

Overall we were able to show that Reinforcement Learning on slow features is an
approach with promising results. In our experiment setup we used two different
tasks to test the thesis idea. The cart pole experiment, being the first approach
was of limited success. The SFA was only in parts successful in extracting
useful features for the RL. The Pong experiment on the other hand was very
successful. We can show that the features extracted by the SFA were highly
correlated with the underlying driving force. Learning on those slow features
yields better results than learning on the driving force itself. This advantage
can not be explained by the SFA being better in removing the small amount of
added noise to the data, as it is also better than the RL on the driving force
without noise. It has to be assumed that a SFA preprocessing does not only
extract useful features, but is also able to prepare features in a suitable way for
the later RL. This was tested by using the SFA directly on the driving force,
which yielded an even better result than the learning on the image data. It
is known though that information is lost by creating images from the driving
force.

In this section we want to describe the obtained results in detail for both
experiment setups used. A correlation analysis is conducted and the overall
results will be described.

4.1 Pong Experiment

Please see details for the implementation in section 3.4.2.

Slowness Analysis

The correlation analysis will give us a good idea about how many and which
slow features should be considered for the RL. For the general case, in which
we don’t have the driving force, we either have to estimate the number of useful
slow features or we use the slowness of the extracted features. Instead of using
the ∆ directly we use the slowness measure proposed in [WS02]:

η(x) =
T

2π

√
∆(x) (4.1)
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Figure 4.1: Slowness of the Pong task with size 5x5

(a) all features visible (b) zoomed in

Please see section Measuring Slowness 2.2.2.3 for details.
We used two different experiment setups with the Pong task: Pongeasy and

Ponghard. The two setups differ in the speed of the paddle. For Pongeasy the
maximum speed value of the paddle was chosen to be faster than the one of
the ball and for Ponghard the speed of the paddle was chosen to be slower.
The results for both tasks were pretty similar and the rest of the discussion will
focus on the setup setting Pongeasy. The reason for the similar results is the
limited range for the angle of the ball which limits the chance that the ball will
be faster than the paddle in y-direction in any case.

Please see figure 4.1, figure 4.2, figure 4.3 and figure 4.4 for a comparison
of the slowness of all the input features and the found slow features with the
SFA. For the sizes 5x5, 10x10, 20x20 only the first 8-9 slow features are slower
than the slowest features of the input signal, excluding constant input features.
This is a good indicator for how many slow features will be useful for the RL.
The 50x50 input signal had a lot more constant features on the border of the
image and 29 slow features were slower than the slowest, non-constant feature
of the input space.

The slowness of the driving force is ordered in the following way.

η(ballposy) < η(paddlepos) < η(ballposy) < η(balldiry) < η(balldirx)

For the second task we need to extract the speed and direction information
of the paddle to find an optimal strategy π∗. To represent this information in
the input signal we literally added one past frame to the current. This way the
information for the speed and direction is encoded in the difference of the two
provided images.

Please see figure 4.5, figure 4.6 and figure 4.7 for a comparison of η(x) for
the input signal, the driving force and the found slow features.

From the slowness of the driving force we can see why the SFA was only

28



Figure 4.2: Slowness of the Pong task with size 10x10

(a) all features visible (b) zoomed in

Figure 4.3: Slowness of the Pong task with size 20x20

(a) all features visible (b) zoomed in
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Figure 4.4: Slowness of the Pong task with size 50x50

(a) all features visible (b) zoomed in

able to find the position of the ball and the paddle. The direction of the ball
has a higher η(x) than some of the input signal features. This is the reason
why we do not find a a good match for that part of the driving force dpong.

In the figures 4.8 we can see a heat map plot of the slowness for all input
signals. It can be seen that for the bigger input space with the image size 20x20
and 50x50 the walls of the image never change and have a slowness η(x) = 0.
The reason for the higher slowness of the wall pixels for the smaller images is
the anti-aliasing effect .

Correlation Analysis

Useful and significant features are needed for a successful RL. We use a Corre-
lation Analysis to show that the SFA was able to find features which represent
important information of the driving force dpong. See table 4.1 and table 4.2
for a listing of the correlation coefficients. It can be seen that the parts of
the driving force which resemble position of the ball and the paddle can be
extracted by the SFA. The correlation for these values is on average at ∼ 90%.
The correlation values of the direction in the case of not using a time-frame
do not make sense as the required information is not encoded in the image
and can therefore not be extracted. The correlation values rather resemble the
correlation between the position and the direction. An increase in correlation
when using the time-frame can be seen, but it’s not enough to conclude that
the direction was found.
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Figure 4.5: Slowness of the Pong task with size 5x5 with time-frame

(a) all features visible (b) zoomed in

Figure 4.6: Slowness of the Pong task with size 10x10 with time-frame

(a) all features visible (b) zoomed in

Table 4.1: Correlation Coefficients woTF
Parameter 5x5 10x10 20x20 50x50 Slow Feature Nr
ballposx 0.8664 0.8823 0.8878 0.8933 2
pallposy 0.8884 0.9154 0.9347 0.9340 0
dirx 0.2572 0.2405 0.2233 0.2204 2
diry 0.1675 0.1298 0.1075 0.1053 18

paddlepos 0.9072 0.9241 0.9309 0.9329 1
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Figure 4.7: Slowness of the Pong task with size 20x20 with time-frame

(a) all features visible (b) zoomed in

Table 4.2: Correlation Coefficients with time frame
Parameter 5x5 10x10 20x20 Slow Feature Nr
ballposx 0.9096 0.8601 0.7590 2
pallposy 0.9423 0.8963 0.7903 1
dirx 0.1697 0.2839 0.2882 9
diry 0.2068 0.2855 0.3031 13

paddlepos 0.962 0.9595 0.9492 0
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Figure 4.8: Slowness heat map for the different image sizes

(a) 5x5 (b) 10x10

(c) 20x20 (d) 50x50
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Results

The overall results for the learning system show that it can be used successfully
for this task. Please see figure 4.9 for overall result comparison. In this plot
three different settings were compared:

• RL on the bare driving force

• RL on PCA preprocessed image data

• RL on PCA and ICA preprocessed image data

• RL on SFA processed image data

The RL on SFA processed image data did not find an optimal strategy,
but it was able to out-compete Principal Component Analysis (PCA) with RL
and the RL on the bare driving force. It was also able to perform better than
a system consisting of a layer of Independent Component Analysis (ICA) on
top of a PCA layer as a preprocessing stage before applying RL. The plotted
data is the averaged reward during the training phase over 100 runs, with each
consisting of 5000 episodes. It is low pass filtered for better comparison.

Figure 4.9: Pong Experiment Results

In a second figure 4.10 we can see a comparison how good the RL fared
with the driving force. There is only a small advantage when using noise for
generalization. Using the SFA as preprocessing for the bare driving force yielded
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a very good learning. It can be seen that SFA preprocessing of the input state
space is beneficial for the RL.

Figure 4.10: Comparing the Driving Force on the Pong task

4.2 Cart-pole Experiment

Please see section 3.4.1 for details of the implementation of this task.

Slowness Analysis

The Cartpole Experiment’s performance was dramatically worse when com-
pared to the Pong Experiment. One explanation is the slowness η(x) of the
driving force. All parts of the driving force were faster than many features of
the input signal. Therefore slowness is not a good indicator for finding these
features. Please see the figures 4.11,4.12,4.13 and 4.14 for detailed charts of the
slowness for the different image sizes. Most found slow features are a lot slower
than the driving force but also the input signal. What kind of information is
encoded in these features can only be speculated and is not known at this point.

Correlation Analysis

For the correlation analysis we want to see which features of the driving force
dcart = {θ, ω, x, v} can be found by the SFA. The found features correlate much
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Figure 4.11: Slowness of the cartpole task with size 30x6

(a) all features visible (b) zoomed in

Figure 4.12: Slowness of the cartpole task with size 40x8

(a) all features visible (b) zoomed in
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Figure 4.13: Slowness of the cartpole task with size 50x10

(a) all features visible (b) zoomed in

Figure 4.14: Slowness of the cartpole task with size 100x20

(a) all features visible (b) zoomed in
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Table 4.3: Correlation Coefficients without time frame
Parameter 30x6 40x8 50x10 100x20 Slow Feature Nr

θ 0.5315 0.4747 0.3200 0.4312 28-50
ω 0.4050 0.3711 0.2612 0.3469 28-50
x 0.5093 0.4952 0.5112 0.3925 11-27
v 0.2785 0.2649 0.1961 0.2581 7-41

Table 4.4: Correlation Coefficients wtf
Parameter 30x6 40x8 50x10 Slow Feature Nr

θ 0.6014 0.5079 0.5305 25-34
ω 0.4565 0.3881 0.4141 25-34
x 0.4707 0.5279 0.4185 4-22
v 0.3172 0.2707 0.3039 25-34

worse than in the Pong Experiment. We gave a potential explanation in the
Slowness Analysis section (see section 4.2). One thing we can see is that the
found features do correlate to a certain degree, but not with the slowest features
found. All driving force features correlate with rather fast slow features. Many
slower features can be extracted, which do not correlate with the driving force.

It is clear that the information of the speed of the wagon and the angle is
not encoded in one still image and therefore can not be extracted at all. The
found correlation rather resembles a high correlation between the speed and
position(∼ 0.43) and θ and ω(∼ 0.78). Only a very slight improvement can be
observed when a second frame, called a timeframe, is literally added to the first
as input for the SFA.

Please see chapter Future Work 6 for thoughts on how to improve this
aspect.

Results

The overall performance for the Cartpole Task was bad when compared to
Learning on the bare driving force. Please see figure 4.15 for a comparison.
One reason can be seen in figure 4.16. The RL on the bare driving force is
better than the RL on the SFA preprocessed driving force. This indicates that
the information encoding in the driving force is very suitable for RL. The SFA
used with the video signal has a much worse performance. It is better than
a preprocessing stage consisting of PCA or a combination of PCA and ICA
though.

4.3 Limitations

Three main limitations were encountered during the evaluation of the learning
system. Scalability, the inability to adapt to a changing environment and the
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Figure 4.15: Comparing RL on the SFA processed Image Data with the Bare
Driving Force on the Cart pole task

extraction of temporal information. Please see chapter Future Work 6 for ideas
on how to improve on these limitations.

Scalability

The current learning system is limited in the size of the images it can pro-
cess. The two control tasks Pong and Cartpole had input dimension of up to
2500 and 2000, respectively. The system can not handle a much bigger input
space. The limitation lies in the SFA algorithm which suffers from the curse of
dimensionality.

Adapting to non-stationary processes

The limitation of not being able to adapt to non-stationary processes is not
relevant to the short lived control tasks used in this thesis. Different control
tasks can thought up which will be limited by this effect.

Extraction of temporal information

The learning system implemented in this thesis was not able to extract temporal
information from the input space. Both control tasks did not solely rely on
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Figure 4.16: Comparing RL on the Driving Force and a SFA processed Driving
Force on the Cart pole task

temporal information, but the extraction of this information would make it
easier for the RL to learn optimal strategies π∗.

4.4 Comparison to other Feature Extraction Meth-
ods

We compared the unsupervised feature extraction method SFA to two other
methods, PCA, and PCA together with ICA. We tested the system by swapping
the SFA part of the algorithm with a PCA layer and a combined PCA and ICA
layer. The combined layer of PCA and ICA fared better than PCA on its own.
Both systems compared rather poor to the proposed learning system. It can
be concluded that statistical independence and uncorrelation are not as good
principles on its own as slowness is. Both PCA and ICA can supplement other
methods to improve them. Please see figure 4.9 and figure 4.15 for a comparison
on how they fared with the two control tasks Pong and the cart-pole task.
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Chapter 5

Related Work

In this chapter we want to briefly summarize what research has been done on
topics relevant to this thesis. The theory of SFA has been explained in detail in
chapter Theoretical Foundation 2. For further information on SFA itself please
consult the following publications: [Wis98, WS02, BW03, Wis03, SW08]. This
chapter includes related work, which uses other feature extraction methods with
RL and also other uses of SFA and how SFA can be extended. The chapter 6
Future Work will refer to some of the extensions of SFA discussed in here.

5.1 Receptive Fields

The idea to use receptive fields with SFA is to combat the curse of dimensional-
ity. Any task that requires the SFA to find higher order features than just linear
features will have to use some kind of polynomial expansion of the input space.
The polynomial expansion of big input spaces like pictures or video signal will
lead to unfeasible calculations in the SFA algorithm. The use of receptive fields
is proposed for this reason [FSW07]. It is proposed to use the SFA on small
overlapping segments of the input image instead of applying the SFA on the
hole picture at once. Polynomial expanding small image segments in the order
of 10x10 pixel will avoid the curse of dimensionality. A hierarchical architecture
is then used to extract higher order slow features on every layer by applying
SFA to the underlying receptive fields. An example can be seen in figure 5.1.
The last layer will then apply SFA for the last time on the already found slow
features. They were able to show that the use of SFA in the proposed way
and an additional sparse coding step can lead to place, head-direction, and
spatial-view cells.

Further research has been done by [LWW10]. They propose a similar system
of using RL on top of the extracted slow features as it is being proposed in this
thesis. In their system they use the above mentioned hierarchical architecture
to extract slow features. A subsequent neural network is then trained by a
reward-based synaptic learning rule which can be compared to Q-learning. The
hole system was tested on the Morris water maze task. They were able to show
that the speed and success of this learning system is comparable to that found
in experimental studies with rats and therefore support the hypothesis that
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Figure 5.1: An example for the use of receptive fields with Slow Feature Analysis
[WS02]. The architecture consists of three layers of SFA and a final layer
performing ICA for sparse coding the output.

slowness learning is one important unsupervised learning principle being used
in the brain.

5.2 Kernelized Slow Feature Analysis

The curse of dimensionality can also be solved with a different approach. The
use of the kernel trick with SFA [BM02] can completely avoid the dimensionality
problem. They propose the use of a similar objective function to extract slow
features for which the kernel trick can be applied. With this trick they avoid
the need to explicitly represent the polynomial expanded input space and can
perform SFA on huge input spaces.

The objective function used tries to maximize output variance over long
time periods while trying to minimize output variance over short time periods.
The use of the kernel trick allows the projection of the input space into a non
linear kernel induced feature space without the need of representing this high
dimensional feature space. The objective function is biological plausible as it
can be implemented by a mixture of Hebbian and anti-Hebbian Learning on the
same synapse. The resulting algorithm with the kernel trick can then be im-
plemented by Sigma-Pi neurons or fixed radial basis function (RBF) networks,
which gives the overall architecture a biological plausibility.
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5.3 Online Slow Feature Analysis

The SFA algorithm used in this paper has a disadvantage when the task is
non-stationary. After the training phase has finished it is not possible to adapt
to changes in the environment. The use of SFA in the form of a neural network
makes the algorithm more biological plausible and adds an online adaptivity,
which is necessary for handling non-stationary processes.

SFA can be related to two standard neural architectures [WS02]. See figure
5.2 for the two neural structures. The non-linear expansion, here represented
as non-linear basis functions h̃k(x), can be represented as synaptic clusters on
the dendritic tree. They locally perform a fixed non-linear expansion on the
input features. The output can be weighted independently to other non-linear
expanding synaptic clusters. Sigma-pi units are examples, which can be used
for this purpose.

A second plausible network provides the non-linear expansion through fixed
non-linear units in a hidden layer in the network. The output layer consists of
linear combinations of these non-linear features with trainable weights. A fixed
RBF network is an example of this interpretation. Depending on the type of
linear expansion needed, one or the other neural network is more suitable. In
both cases the components of the input output function are given by:

gj(x) = wT
j h(x) = w̃j0 + w̃T

j h̃(x)

The input signal x is assumed to be normalized and w̃j is the appropriate raw
weight vector.

The final part of the network consists of connections between the output
units gj and some variant of anti-Hebbian learning, which is needed to decor-
relate the output. Both network architectures perform SFA and are to be seen
as basic building blocks for a more complex hierarchical SFA architecture.

5.4 Reservoir Computing with Slow Feature Analy-
sis

The use of temporal information is needed for many control tasks working with
video signals. The use of time frames can add this temporal information to the
input space. This means that the input consists of a vector of two consecutive
image frames. This approach was used in [BW03]. They were able to extract
the temporal information with SFA in this way.

A different approach is proposed by [AS09]. They propose the use of a
reservoir with SFA. Reservoir Computing is a recently introduced paradigm
in Recurrent Neural Networks (RNN). A reservoir is a randomly generated
dynamic system. Only the output weights are trained while the internal weights
in the reservoir stay fixed. Liquid-state machines and echo state networks are
two major types in Reservoir Computing.

Using a reservoir with SFA adds short term memory to the system. This
short term memory is represented by echoes, which are formed because of the
recurrent connections within the reservoir. A later stage of SFA on top of
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Figure 5.2: Two possible network architectures for SFA(Taken from [WS02]).
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a reservoir can extract features which also contain the temporal information
provided by the reservoir. The architecture proposed in [AS09] used a third
layer using ICA for sparse coding the output. The system was used with a
simulated robot to successfully self-locate in an environment by using 17 noisy
short-range distance sensors.

5.5 Using PCA and ICA for feature extraction

SFA has been compared mathematically to ICA. The comparison of SFA and
ICA came up with the result that linear SFA is formally equivalent to second
order ICA with time delay of one [BBW06] while the conceptual differences
between SFA and ICA will lead to very different results in the non-linear case.
There work has been extended to a combined algorithm of SFA and ICA, named
Independent Slow Feature Analysis [BZW07]. This new method was used for
nonlinear blind source separation. The use of this algorithm for feature extrac-
tion in high dimensional spaces has not been tested yet.

PCA and ICA on the other hand have been used extensively for this purpose
in different fields, like feature extraction for face recognition [BMS02, BLS98,
HHH03, KKHK04]. These papers propose ICA as an alternative to the well
researched use of PCA in the field of face recognition. The use of eigenfaces
[TP91], holons [CM90] or local feature analysis [PA96] are successful examples
for PCA in the field of face recognition. For a comparison of PCA and ICA on
the FERET dataset see [BDBS02].

5.6 Using Gaussian Processes for dimension reduc-
tion

An alternative to using PCA and ICA is the use of Gaussian Processes [RW05]
for feature extraction. The Gaussian Process Latent Variable Model [Law04,
Law05] uses an adapted version of PCA to extract non-linear features. It can be
used for dimension reduction and has been used in a learning system together
with RL in [BHV10] for learning a bimanual reaching task. A similar approach
using Gaussian Processes with RL is used in [MA09] to approximate a Poincaré
map for learning biped locomotion. Both papers were able to show that the
use of Gaussian Processes for feature extraction does work well in conjunction
with RL.
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Chapter 6

Future Work

There are many possibilities to further improve the proposed learning system.
We can split those into two categories. Algorithmic enhancements and field of
application. Algorithmic enhancement include all future work which is meant
to improve the learning system. In this field we want to talk about improv-
ing scalability, adding adaptability for non-stationary process and the use of
Reservoir Computing for adding temporal information. The second part field
of application will include ideas about how and where we can apply and use the
developed learning system.

6.1 Algorithmic Enhancements

Research in the field of SFA provides us with ideas on how to further improve
the proposed learning system. Please see chapter Related Work 5 for details.
First we want to solve the encountered limitations.

One limitation is scalability. Our system fairs well with the used video
signal in the two experiment setups. So far the image size of the videos can not
be increased much further, because of the curse of dimensionality affecting the
SFA. A straight forward and easy to implement approach is the use of receptive
fields [FSW07]. Another interesting approach is the use of the kernel trick. The
use of the kernel trick avoids the curse of dimensionality by avoiding the need
to represent the polynomial expanded input feature space explicitly [BM02].

The second limitation is about extracting temporal information. The used
time frame, which is a simple concatenating of two consecutive images, was
unsuccessful. An alternative idea to provide the relevant temporal information
is the use of a reservoir [AS09]. Using an echo state network or a liquid state
machine with SFA is an interesting concept and should be pursued further.

Another limitations which we found is the inability of the system to adapt
to non-stationary processes. Any real world application will be confronted with
some kind of changes in its environment. The use of an online version of SFA
can speed up the learning process by instantly providing(at first inaccurate)
slow features without the need of an extra SFA training phase. Additionally
can a learning system based on an online version of SFA adapt to changes in its
environment. Online SFA can be implemented using a neural architecture using
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Sigma-pi units or fixed RBF networks as its basis for non linearly expanding
the input space. The needed decorrelation of the output is then performed by
an inter-connected layer of neurons using anti-Hebbian learning.

Further research should also be done in experimenting with different RL
algorithms. The proposed learning system uses Fitness Expectation Maximiza-
tion. A similar learning system proposed in [LWW10] uses a neural implemen-
tation of the Q-Learning algorithm. Many more RL algorithms are usable in
this context and should be considered for further implementations of a similar
learning system.

6.2 Ideas for Area of Application

The proposed learning system was tested on two different simulated control
tasks. An interesting field of application is to go deeper into the field of sim-
ulated, but also real world robotics. The idea to learn motion primitives and
trajectories with the system would be a challenging tasks. Until now it is not
completely clear which control tasks are suitable for the learning system and
which criteria are important to find relevant features for the RL stage. Some
ideas were given on how to decide on this for certain control tasks. A detailed
analysis about the encoding of important features in images and its speed η
would make this clearer.
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Chapter 7

Conclusion

Slow Feature Analysis is recent contribution in the field of unsupervised feature
extraction. This field is very relevant for finding biological plausible algorithms
as any creature on this planet is provided with a vast amount of information
through its senses, which it needs to preprocess to perform any meaningful
learning. Biological plausibility can provide good ideas for developing learning
algorithms as the cognitive abilities of most animals outperform current robotic
cognition by far. The proposed learning system is in its implementation not
completely biological plausible, but equivalent biological plausible implementa-
tions exist.

It was our goal to test the usefulness of Slow Feature Analysis with Rein-
forcement Learning on complicated control tasks with huge input spaces. RL
is a major field in machine learning and provides many means for learning in
control tasks, but its algorithms require a small input space to perform useful
learning in an control task. Therefore a preprocessing stage is needed for the
RL. We used SFA to provide this preprocessing.

By testing the proposed learning system on two implemented control tasks
we were able to find important task properties, which determine the success
of RL on the extracted slow features. Tasks for which the assumption that
slowness is an important indicator for the relevance of features holds, will per-
form very well with RL. On the other hand this is not generally true and tasks
exist where this assumption does not hold. Overall we were able to show that
slowness is often an important principle and that it can be used to perform
Reinforcement Learning on huge input spaces.
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