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Abstract

English

Cell differentiation is often regulated by some key players (transcription fac-
tors) activating specific genes being mainly responsible for the formation of
the respective phenotype. Public available gene expression data on early
myogenesis and prediction of regulatory sequences (potential transcription
factor binding sites) were used to gain insights into the regulatory process of
muscle cell development. Several methods based on different mathematical
background were applied to integrate this two types of data: over represen-
tation analysis of transcription factor binding sites of co-expressed genes,
binding association with sorted expression (BASE) and network component
analysis (NCA). A combined strategy for these three methods applied on the
same underlying data led to already known transcription factors like MyoD
and the MEF family playing a key role in myogenesis. Some transcription
factors were identified previously not associated with the myogenesis process.

Keywords:Myogenesis, gene expression, transcriptional regulation, net-
work component analysis, binding association with sorted expression.
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German

Die Differenzierung von Zellen wird héufig von Transkriptionsfaktoren reg-
uliert, die jene fiir die phédnotypische Entwicklung verantwortlichen Gene
aktivieren. Offentlich verfiighare Genexpressionsdaten der frithen Myoge-
nese und Daten iiber potentielle Bindungsstellen von Transkriptionsfaktoren
wurden verwendet, um einen Einblick in die regulatorischen Prozesse der
Entwicklung von Muskelzellen zu erhalten. Es wurden mehrere, auf unter-
schiedlichen mathematischen Grundlagen basierende Methoden angewandt,
um diese Daten zu integrieren. Die verwendeten Methoden waren die Analyse
von {iiberreprésentierten Transkriptionsfaktor Bindungsstellen co- exprim-
ierter Gene, Binding Association with Sorted Expression (BASE) und Net-
work Component Analyse (NCA). Durch eine kombinierte Strategie dieser
drei Methoden, die auf die gleichen zugrundeliegenden Daten angewandt
wurde, konnten sowohl bekannte Transkriptionsfaktoren der Myogenese (
MyoD und Mitglieder der MEF - Familie) als auch bisher nicht mit der Myo-
genese assoziierte Transkriptionsfaktoren identifiziert werden.

Stichworter: Myogenese, Genexpression, Regulation durch Transkrip-

tionsfaktoren, regulatorische Sequenzen, Network Component Analyse, Bind-
ing association with sorted expression.
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Chapter 1

Introduction

In biological systems a lot of regulatory interaction takes place during dif-
ferent cellular processes. Cell differentiation is often regulated by some key
players (transcription factors) activating specific genes being mainly respon-
sible for the formation of the respective phenotype. To gain insights in the
regulatory mechanisms different experimental and computational methodolo-
gies have been developed. High throughput technologies such as mircoarray
analysis are used to get a significant amount of cell wide data on the molecular
level and one is able to create meaningful information by analyzing these data
thereby. There are also technologies to study regulatory mechanisms such as
protein (transcription factor) DNA binding. By combining both approaches
the possibility understanding these processes in more detail increases and
helps to identify possible new and unknown interactions. Here, based on the
example of muscle cell development (myogenesis), it was studied how cell
differentiation is regulated. For this purpose different integration methods
on public available gene expression data and the occurrence of regulatory
sequences (motifs) were applied.

1.1 Myogenesis

Myogenesis is the biological process through which the cell differentiation
and furthermore the development of muscle cells is initiated [1]. During early
stages of Myogenesis some transcription factors such as MyoD a protein which
belongs to Myogenetic Regulatory Factors (MRF) and the Myocyte Enhance
Factors (MEF) - family are responsible for muscle cell differentiation [2] [3]
[4]. Figure 1.1 illustrates this complex biological process. The process of
myogenesis can be seen as a four step process.

e Starting at pre-myoblast cells so called mesodermal progenitors which



are influenced by different transcription factors and proteins lead to
myoblasts.

e Myoblasts themselves are as well a type of progenitor cells of early
myotubes.

e These early myotubes finally lead to muscle fibers in the next develop-
ment step.

e Finally a special quantity of theses muscle fibers together build up a
muscle.

Mesodermal
Progenitor Myoblasts Myotube

MyoD, etc. Mef, etc.

SL= L

Figure 1.1: Myogenesis reduced to three steps.

1.2 Gene expression profiling

Gene expression profiling is a method which is used in molecular biology
to identify the activity, in more detail the expression of a huge amount of
genes in one analyzing step. There are a number of different high throughput
methods available for this task, e.g. microarray technology. Oligonucleotides
are in situ synthesized or spotted on a modified glass slide. The synthesizing
process is based on photo lithography explained in more detail in [5]. There
are different companies, e.g. Affymetrix, which provide standardized arrays
for microarray analysis commonly used for many applications. Preparation
of samples to be analyzed is the next step in this context. Commonly total
RNA is used, reverse transcribed to cDNA, labeled with fluorescent dyes,
and hybridized to the microarray. The hybridization process can be seen as
bringing the samples and the microarray together in an appropriate environ-
ment and temperature so that the sequences of the samples can accumulate
with the complementary strand on the array. Prior to analyzing the result of
the hybridization process the surplus material is washed off. Now there are
only the hybridized elements on the microarray which have bound with the



appropriate equivalent complementary strand. Analyzing these microarrays
is done by automated laser scanning. If a one color array was used just one
image is available which shows the binding intensities of the samples whereas
two color arrays produce two different images which are often used for differ-
ential analysis, e.g. healthy versus diseased tissue. Analyzing these images
leads to data files containing the intensity values of each spot which equals
binding intensities. Some additional correcting is done

e Background correction
e Filtering of low quality elements
e Normalization

e (Probset summarization)

An advantage of mircoarray analysis is that not only many genes can be
studied at one experimental condition but also the expression of a gene can
be studied over many different conditions. This could help to interpret the
underlying regulatory patterns.

1.3 Transcriptional regulation and regulatory
sequences

The regulation of specific biological processes are initiated by transcription
factors, which are regulatory proteins. These transcription factors prefer-
entially bind at specific sequences within the genome called the regulatory
sequences which are located in genomic regions immediately upstream of the
transcription start site (promoters). However recently it was shown that
binding sites are spread over the whole genome and functional binding sites
can be more than 100kb away from the transcription start site (T'SS) and
can be also located within an intron [6]. In addition to these transcription
factors various cofactors are involved which create an adequate milieu for the
RNA polymerase to transcribe a sequence. The process initiated by such
a transcription factor is schematically shown in figure 1.2. To achieve the
transcription the DNA is split up and the 3’ to 5’ gene area is transcribed.
Where exactly a transcription factor preferentially binds is dependent on
the sequence for the respective factor. For well known transcription factors
it can be shown that they tend to bind at promoters of genes responsible for
a desired process which should be initiated. Transcriptional regulation can
be traced using gene expression levels because the more transcription factors
are active the higher the gene expression level of their respective targets is.
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Figure 1.2: Transcription factor gene activation

1.4 Integration methods

To find out a relationship between regulatory sequences and expression data
several methods are available such as REDUCE [7], MA-Networker [8], par-
tial least square regression [9] and the applied method network component
analysis (NCA) [10], BASE [11] and analysis of overrepresented transcrip-
tion factor binding sites (TFBS) in promoters of co-expressed genes. The
mathematical background for the applied analysis methods is shown later in
the appropriate chapters. What they have in common is on the one hand
using gene expression data which shows for instance the gene expression over
time and on the other hand motif binding affinities. The idea behind it is to
possibly find transcription factors new to the considered process.

1.5 Objectives

The purpose of this thesis is to investigate transcriptional regulation during
the first phase of myogenesis. To achieve this a strategy on different meth-
ods for integrating motif and gene expression data should be applied. This
strategy involves the following methods

e Over representation analysis of TFBS in co-expressed genes
e Binding association with sorted expressions (BASE)

e Network component analysis (NCA)



Choosing these methods was based on their different analyzing approaches
which should increase the potential of finding new regulatory interactions
and the reliability of common results. Finally a gene regulatory network for
myogenesis should be constructed based on common identified transcription
factors.



Chapter 2
Methods

This chapter focuses on several integration methods to combine regulatory
sequences and gene expression data. The used strategy is shown in figure
2.1. A description on the used methods, applied tools, and resources are
summarized below.

: Over
@ Eml::i?:m e Clustering = Cllgaer {:DTSCEIH?
s/ Cluster
Expresszion
Data —'
TF Activity-
BASE L T
Connedivity 4
Data
BASE filtered
connedivity
data ﬁ
Expression 4
Data

Result Comparison

Figure 2.1: Analysis strategy



2.1 Underlying data

For these analysis two Gene Expression Omnibus [12] (GEO) records GDS586
and GDS587 were used. Both of them focus on microarray analysis of early
stages of myogenesis. In more detail they are dealing with time series ex-
periments of C2C12 myoblasts differentiation. Both series were preformed
in triplicate. The record GDS587 and its reference series GSE990 are based
on microarray Affymetrix Murine Genome U74C Version 2 array whereas
record GDS586 and its reference series GSE989 are based on Affymetrix
Murine Genome UT7T4A Version 2 array. Normalized microarray result files
were downloaded from the GEO website.

2.1.1 Expression matrix

The series GSE989 consist of eight time points whereas the series GSE990
consists of seven time points. Each time series itself consist again of three
biological replicates. To identify differentially expressed genes and average
every three biological replicates the limma [13] package, part of the Biocon-
ductor [14] main package was used. The resulting p-values were corrected for
multiple hypothesis testing using Benjamini and Hochberg’s method based
on the false discovery rate. Genes which show at least a significant (p<0.05)
two-fold change

Intensityq,
Lfe = log( ntensitydqy

Int@nSityrefday) = log(Intensityia,) — log(Intensityre fday)

in at least two time points were selected for further analysis. The filtering
for the log fold change and p-value was implemented in a Perl script. Due to
the fact that there were two series on the same myogensis topic both series
have been treated independently first and at the end they have been merged
together. If there were multiple entries, which means that in both series the
same genes have been selected, just one of these datasets was used to avoid
redundancy. This resulted in a expression matrix in which only one gene
of both series was present which fulfilled the selection criteria. Finally the
Affymetrix IDs were translated to the appropriate RefSeq IDs implemented
in Perl using the Affymetrix annotation file of the arrays mentioned above.
To get the involved genes these RefSeq IDs were mapped to gene annotation
file (mus musculus genome version November 2008). After these preparation
steps the expression matrix with six conditions, representing the columns,
and all genes which fulfilled the criteria, representing the rows and containing
the log fold change values was created.



2.1.2 Connectivity matrix

To construct the connectivity matrix an in silico promoter analysis was per-
formed. For this purpose the multiz alignment of the mouse and human
genome provided by the UCSC Genome Browser [15] of the University of
California Santa Cruz was downloaded. The next step was a selection of 357
position weight matrices provided by Transfac [16] and Jaspar [17]. Figure
2.3 shows the sequence logo of the Transfac MyoD position weight matrix
whereas figure 2.4 shows the matrix itself. To find out possible binding po-
sitions in the alignment of both genomes these matrices were used applying
the MatInspector [18] algorithm. The settings were as follows:

e The interesting region was set to -4500 base pairs upstream to 500
base pairs downstream of the transcription start site (TSS), shown in
figure 2.2, based on the RefSeq annotation also available at the UCSC
Genome Browser.

e The similarity threshold, indicated by the value in the square brackets
- see figure2.4 - in the position weight matrix description, was used as
lower limit for a significant binding possibility.

e The threshold was determined by allowing a maximum of one hit in
10.000 base pairs of coding sequence (CDS) of the repeat masked mouse
genome.

e Only those hits were considered significant if the similarity score was
higher than the threshold in both the human and the mouse sequence
of the alignment.

This resulted on the one hand in a binary connectivity matrix where possi-
ble binding locations per position weight matrix within one RefSeq ID were
indicated by a one and if no possible binding location was found a zero. On
the other hand a weighted connectivity matrix was created by summing up
the number of possible binding locations per motif in a RefSeq ID and the
sum was inserted instead of a one and if no possible binding location was
found also a zero, using Perl. In both matrices each row had the RefSeq
ID of the binding locations as first value. Due to the fact that the whole
genome annotation was used the matrices consisted of 18757 rows represent-
ing the number of RefSeq IDs of the genome and 357 columns representing
the binding affinity vector for each position weight matrix per RefSeq ID.

Finally the RefSeq IDs were converted to gene symbols using the mouse
annotation file (version November 2008) available at the homepage of the Na-
tional Center for Biotechnology Information [19] a subdivision of the National
Institute of Health.
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Figure 2.2: The interesting region for possible binding locations
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Figure 2.3: MyoD Sequence logo

M00001 MyoD (myoblast determination gene product) [0.94] (5 elements)

A 1 2 3 0 5 0 0 0 0 0 0 1
C 2 1 0 5 0 0 1 0 0 1 2 0
G 2 2 1 0 0 B 4 0 5 2 0 3
T 0 0 1 0 0 1 0 5 0 2 3 1

Figure 2.4: Position Weight Matriz - M00001 MyoD



2.1.3 Data preparation for analysis

Prior analyzing these data additional data manipulation was done by several
Perl scripts. The expression matrix and the connectivity matrix were reduced
so that the matrices included the same genes. This reduced the dimensions
of the connectivity matrix to 1531 rows which represented the genes and 357
columns representing the motifs. Also the number of rows of the expression
matrix was reduced to the same value and the six conditions representing
the columns was left unchanged. These data were used for the analyzing
methods.

2.2 Clustering

Clustering is a method to find out similar behavior in expression data and to
rearrange genes with similar behavior in a selected number of clusters. The
tool used for clustering was Genesis [20]. As input for the clustering tool
the above described expression matrix was used. This data contains the log
fold change values of the two series on myoblast differentiation. Due to the
data preparation the matrix consists of several genes (matrix rows) and six
columns representing the conditions.

2.2.1 Figure of merit (FOM)

Figure of merit is one method to prepare the data for different cluster algo-
rithms. Due to the fact that one can obtain different results on using different
clustering algorithms a validation process prior to clustering should be done.
If not it is possible that clustering results lead to misinterpretation. FOM
is used to validate the clustering process. The figure of merit estimation
was used to find out how many clusters should be used for clustering the
expression data matrix. A short explanation of FOM will show how it works.
The description in more detail can be found at [21]. Suppose that your data
consists of ¢ genes and j conditions which are equal to the time points of the
experiment and, as mentioned above, these time points contain the log fold
change values for every condition. Now assume that the clustering algorithm
is applied to every condition j which ranges from

L,2,...(n—1),n,(n+1),...5

to j. Condition n is used to estimate the power of the algorithm in a predictive
way. Now additionally assume that there are m clusters

C1,C2y ..., Cp

10



and let E(i,n) be the expression level of gene ¢ under condition n. Let
A, (n)
be the average expression level in condition n of the genes in cluster
Cm

Now Figure of Merit under condition n is calculated as follows

FOM (i, m) \J Z S (E A, (n))? (2.1)

Z =1 Trecm

The cumulated figure of merit for all conditions is

FOM(m ZFOM i,m) (2.2)

n=1

Before the curve reaches its saturation at a point one can say the value at
that point is the number of sufficient clusters for using the k-means clustering
algorithm.

2.2.2 k-Means clustering

K-means clustering and the k-means algorithm [22] is a simple clustering
version which provides good results. The algorithm itself works as follows,
where the number £ of clusters is an input parameter:

1. Randomized selection of & cluster centers.
2. Put each element in one of the k clusters.
3. Calculate the mean of each cluster.

4. Calculate the euclidean distance between a cluster element and the
mean of the cluster.

5. Reallocate the cluster element to the cluster whose mean is closest to
the cluster element.

6. Calculate the cluster mean again due to the reallocation of the cluster
elements.

7. Redo step 4 to 6 until no reallocations occur.

This results in clusters including genes which have similar behavior over
time.

11



2.3 Over representation analysis

Co-expressed genes could also be co-regulated sharing the same transcription
factor binding sites (TFBS). To test this over representation analysis can be
performed. To evaluate the over representation of specific TFBS statistical
tests have to be performed and the resulting p-value has to be adjusted. The
applied over representation analysis methods ORA [23] and PScan [24] do
have different mathematical considerations as a basis of finding overrepre-
sented transcription factors. The ORA analysis method uses Fisher’s exact
test and Benjamini and Hochberg method for correction of multiple testing.
Whereas the PScan method uses z-test and Bonferroni correction.

2.3.1 Fisher’s exact test

The Fisher’s exact test is an exact test for statistical significance. Starting
with a matrix with two rows and two columns as shown in table 2.1. Where

All | DS sum

TFBS a b a+b

not TFBS C d c+d
sum a+c | b+d | n=a+b+c+d

Table 2.1: Fisher’s exact test - general contingency table

a is the number of genes with potential transcription factor binding sites
(TFBS), b is the number of genes in the dataset with potential transcription
factor binding sites (TFBS), a+c are all genes of the organism, and c+ d is
the number of genes in the dataset. To get an impression how it is applied
table 2.2 shows the arrangement for the following example. The number of
analyzed genes is 18335. Let say the number of used dataset for ORA is
of size 219 genes. The number of genes with potential transcription factor
binding sites in the organism is 187 and the number of genes with potential
transcription factor binding sites in the dataset is 10, then the Fisher’s exact
contingency table looks as shown in table 2.2

All DS | sum
TFBS 187 10 197

not TFBS | 18148 | 209 | 18357

sum 18335 | 219 | 18554

Table 2.2: Fxample: Fisher’s exact test - contingency table

12
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The Fisher’s exact test permutes all possible contingency tables and the
calculated probability p(a,b,c,d) leads to a hyper geometric distribution. The
resulting p-values the sum of all p-values less than the p-value of the observed
contingency table have to be adjusted for multiple hypothesis testing. In the
example the resulting p-value would be 0.0001. In this case the resulting
p-values are corrected using the Benjamini and Hochberg correction.

p(a7 b? C? d) =

(2.3)

2.3.2 Benjamini and Hochberg correction

Benjamini and Hochberg correction is a method for correcting the p-value
for multiple hypothesis testing based on the false discovery rate (FDR). Let
assume that n motifs were tested for over representation. The correction
itself works as follows:

e Using for instance Fisher’s exact test to calculate a p-value for the over
representation of a specific motif this test delivers a p-value for each
involved motif. These p-values are sorted in an ascending order.

e The n-th, which is the motif with the highest p-value, stays as it was
calculated.

e The next to last, the n-1 p-value is corrected by using

adj.p — value = calc.p — value * ( n 1)
e The n-2 p-value is corrected by
adj.p — value = calc.p — value * ( 2)
n —_—

e This will be done for all n motifs and the motif with the lowest p-value
is just multiplied by n to be adjusted.

e [f the i-th adjusted p-value is greater then the i-1 adjusted p-value the
i-1 adjusted p-value is used.

e [f the adjusted p-value is greater then one, one will be used as adjusted
p-value.

When correction is finished one can see if the adjusted p-value is less than a
specific value, e.g. adjusted p-value < 0.05. All motifs fulfilling this condition
are significant.

13



2.3.3 Z-test

The Z-test is also a test for statistical significance. Let a be the number of
genes of an organism and therefore one has

P = <p17p27 "')pa)

P promoter sequences for the test. Let m be a matrix used for finding
possible binding locations in P. Now for matrix m a score is calculated for
each element of P and the highest score for each promoter sequences is used
for the next calculating step. Furthermore let now

pu(P,m)
be the mean of all highest scores for matrix m and let
o(P,m)

be the accordingly standard deviation. For analyzing a dataset consisting of
n sequences the standard error e is calculated as follows:

e=—= (2.4)

Also for these sequences the highest scores per matrix are used and then let
the mean of the dataset highest scores using matrix m be

(i, m)
Then z is calculated as follows:

. N(P7 m) — /1,(’/1,, m) (25)

(&

The p-value for each motif then is calculated using the normal cumulative
distribution function. These p-values are adjusted using the Bonferroni cor-
rection.

2.3.4 Bonferroni correction

The Bonferroni correction method is a method to consider the family-wise
error rate (FWER). Let say n motifs have been investigated if they are over-
represented. To correct the calculated p-values using a statistical testing
method each motif’s p-value is multiplied with the number of motifs involved.

adj.p — value = calc.p — value xn

If the adjusted p-value is less than a specific threshold the motif is considered
significantly overrepresented.

14



2.4 BASE - Binding Association with Sorted
Expression

The integration method called binding association with sorted expression
(BASE) [11] is a method to find out how different transcription factors behave
over time in context with gene expression and is similar to gene set enrichment
analysis (GSEA) [25]. The connectivity and expression matrix were used as
basis of this analysis method. The first one is a connectivity matrix [A] where
one has the relationship between different position weight matrices in context
with the genes in which area the transcription factor has a possible binding
location. The second matrix is a matrix [E] which contains the log fold
change expression values between two conditions over time of a microarray
experiment in context with genes which are involved in this experiment.

2.4.1 Mathematical considerations

The matrix [E] consists of ¢ column vectors where ¢ is the number of condi-
tions in log ratio in the microarray experiment with N genes per vector. The
dimension of [E] is (N x i). The matrix [A] contains the binding affinity of
a transcription factor to an involved gene. The dimension of [A] is (N x j)
where j is the number of transcription factors and N is still the number of
genes. The first step which should be done is to sort the elements of the i-th
vector of [E] is
e = (e1,e9,€3,...,eN)

where the sorting condition is
€n = €pt1
All j vectors of [A] where the j-th vector of [A] is
a = (a1, as,as,...,ayn)

is equally sorted so that the binding value is still corresponding to the ex-
pression value. The next step is to calculate on the one hand a function f(k)
for each sorted vector of [A] as follows:

flk) = M (2.6)

Sh_ lenay]

On the other hand another function g(k) is calculated as follows:

Z’;@:l |€ks|
Zr]le ‘€k|

15
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The next step is to calculate a pre- score using f(k) and g(k). The pre-score
1s

ps = f(kma:v) - g(kmax)

where
kmaz = argmaz|f(k) — g(k)|,k=1,2,.., N

When these steps are finished each binding vector a is permuted M times
to be able to calculate the activity change. For each permutation calculate
the steps above again and there are M new pre-scores in a new vector called

gherm

P = (ps', ps®, ..., ps™)

Now that these values are available the calculation of the p-value and the
activity change can be calculated as follows with z

. HF . ps” > ps}
B M

and y
#{k : ps* < ps}
y= Vi

and p is defined as shown below:

|z, ps> MEAN (psP™)
b= { Yy, pSs S MEAN(pSperm) (28)
Finally the activity change is calculated as follows
_ perm
a0 = P MEAN (psPe™™) (2.9)

SD(|psterm|)

Here SD stands for the standard deviation. The absolute value is used to get
positive and negative activity change scores where a positive AC score means
activity enhancement and a negative AC score means activity reduction. It
leads to a bimodal distribution.

2.5 NCA - Network Component Analysis

Within NCA [10] a gene expression matrix is decomposed into matrices that
satisfies not only mathematical considerations (as for example in principal
component analysis) but also takes biological relationships within the expres-
sion data into account. This leads to a network representing the regulatory
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signals as shown in figure 2.5. Thus network component analysis is an in-
tegration method used in conjunction with the connectivity and expression
matrix. The result of that method is a matrix with the involved genes and
their levels of regulatory signals concerning the nodes of interaction as well as
a matrix with calculated weighted values of the connectivity strength where
a possible binding location is present as in the used connectivity matrix.

2.5.1 Mathematical considerations

To analyze the expression matrix and the connectivity matrix one has to
reconstruct the following mathematical system.

[E] = [A][P] (2.10)

The dimensions of the matrices [A] and [P] must satisfy the mathematical
condition for multiplying matrices. The size of [A] is (N x L) and of [P] it is (L
x M). The decomposition of [E] is a not uniquely defined inverse mathematical
problem. Therefore another assumption is made for the matrices [A] and [P].
Let [D] be a nonsingular matrix with the dimension (L x L) so that the

matrices [A] and [P] can be calculated as follows.
[A] = [A][D]and[P] = [D~][P] (2.11)
The equation changes to

[£] = ([AI[D)([D][P]) = [A][P] (2.12)

This is still a not uniquely solvable problem. To get a uniquely solvable
decomposition one has to make two further limitations. The first one is that
the matrix [D] must be diagonal and the second one is that [P] must have
full row rank and [A] must have full column rank. This leads to the three
preconditions as mentioned in [10]

e The connectivity matrix [A] must have full column rank

e When a node in the regulatory layer is removed along with all of the
output nodes connected to it, the resulting network must be charac-
terized by a connectivity matrix that still has full column rank. This
condition implies that each column of [A] must have at least L-1 zeros.

e The matrix [P] must have full row rank. In other words, each regu-
latory signal cannot be expressed as a linear combination of the other
regulatory signals.
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After the network component analysis the matrix [A] contains the calcu-
lated connection strength of the connectivity matrix and matrix [P] contains
the regulatory signal of each regulatory node involved in this integration
method.

Figure 2.5: NCA- Regulatory Network adopted from [26]

2.6 Applied Tools

Several different tools were used to prepare and analyze the data. Preparing
the microarray data mainly Perl [27] was used. To have an integrated devel-
opment environment the Java [28] based IDE Eclipse [29] was used. Due to
the fact that Eclipse is mainly used in Java development context the EPIC
[30] plug-in was installed to use features like syntax highlighting, code com-
pletion and having access to Perl documentation. For mathematical analysis
on the one hand Matlab [31] a product of Mathworks Inc. and on the other
hand the open R project for statistical computing [32] was used. While Mat-
lab offers C and C++ integration and the possibility to use self programmed
scripts, R project base software can be extended through different also open
packages to handle relevant statistical problems. Therefore the Bioconductor
[14] base package was installed which offers different predefined functions for
bioinformatic problems. Especially limma which stands for "Linear Models of
Microarray Data” was used. The commercial Matlab product as well as the
open R project software was used to prepare and analyze data. For clustering,
gene expression visualization, and Gene Ontology (GO) analysis Genesis [20]
was used. To find out significant overrepresented motifs within expression
data two different online applications were used. The first application called
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ORA [23] (http://genome.tugraz.at/ORA/) and stands for "Over representa-
tion Analysis” provided by the Institute for Genomics and Bioinformatics at
the University of Technology Graz, Austria. ORA was used with Fisher’s ex-
act test as testing and Benjamini and Hochberg as correction settings. The
second application called PScan [24] (http://159.149.109.9/pscan/) is also
an online application to find out overrepresented motifs in expression data.
PScan is provided by the Department of Molecular Biology and Biotech-
nology at the University of Milan, Italy. PScan was used with z-test as
testing and Bonferroni as correction settings. Both applications use the Ref-
seq IDs of the expression data to find significant overrepresented motifs in
a RefSeq. The BASE application used is provided by Mr. Lei Li, Professor
at the University of Southern California in Los Angeles. The application
is available at (http://sites.google.com/site/uscarraylab/research/base). Fi-
nally Matlab files for NCA analysis provided by Mr. James C. Liao, Profes-
sor at the University of California in Los Angeles, were used. These Matlab
files are available at (http://www.seas.ucla.edu/ liaoj/download.htm). Cy-
toscape [33] were used for network visualization.
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Chapter 3

Results

Three different integration methods were used to gather information on the
myogenesis process in an early differentiation state. Similar regulatory events
identified by all three methods could highlight that these processes may be
important in the biological context. To show the considerations which were
made prior using these methods the approach is described. The first method
was clustering and over representation of motifs related to genes which were
allocated to the appropriate cluster due to similar expression behavior over
time. The result of this method was a list of over represented motifs in each
cluster. See appendix A for details. The second method was BASE which
provided the activity scores of all motifs from the connectivity matrix in
conjunction with the expression matrix. As result one can see the temporal
behavior of a motif over all conditions. If a motif does have a relative high
positive activity score under all conditions and its significance g-value is
less then 0.01 it can be determined that this motif is relatively important
for the biological process. Using this motif now for comparison with the
clustering and over representation results and the same motif can be found in
a cluster with similar expression behavior and is additionally overrepresented
as well then it has an obvious significant influence on the biological process,
even if one does not know the exact behavior of the transcription factor’s
expression behavior. To proof this consideration the third method called
network component analysis was used to find out if the transcription factor
activity (regulatory signal) values calculated by this method shows a similar
behavior under all conditions of the expression matrix. If in the NCA analysis
the same motif shows such a behavior it is then even more likely that this
transcription factor plays a key role on that biological process. After applying
all three methods a list of known transcription factors for that process as well
as some not already assigned transcription factors to that process could be
derived.
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3.1 Co-expressed genes during myogenesis

The first step to realize the above considerations was made by clustering the
expression matrix. The figure of merit analysis resulted in six clusters for
an adequate clustering. The clustering itself was done by using the k-means
clustering. The result of clustering are six clusters whereas each cluster con-
tains genes showing a similar expression behavior over time (co-expression)
what can be seen in figure 3.1.
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Figure 3.1: Expression matrix genes
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Many genes known to be involved in myogenesis process do have a similar
expression over time what can be seen in figure 3.2. There are Myog, Mef2
and others which show that kind of similarity. These clusters and their
respective members were used for Gene Ontology (GO) analysis. The result
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Figure 3.2: Similarity of genes in cluster #1.

of GO for the shown cluster can be seen in figure 3.3. The GO distribution
of the cluster members having an active behavior evidence their importance
in the myogenesis process. The involved genes in that cluster are mainly
involved in muscle cell, myoblast, and muscle fiber development. More than
half the genes cover these three development areas. According to the activity
levels of all co-expressed genes in cluster number one it is obvious that its
members play a key role in myogenesis.

3.2 Over representation

After clustering was finished investigation on over representation was made
using the online applications Over representation Analysis (ORA) and PScan.
For each cluster the Refseq IDs were used as input and as a result ORA and
PScan delivered all possible motifs which do have possible binding locations
in the RefSeq IDs provided. The results included several additional infor-
mation if a motif is overrepresented identifiable by the calculated p-value.
The PScan online application uses as well the Refseq IDs of the cluster el-
ements. Some additional settings were made to use this application. The
organism was set to mus musculus, the region of interest was set to -950 to
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cardiac muscle cell development (7,14 %)
cell death (14,29 %)

erythrocyte development (7,14 %)

muscle cell development (14,29 %) cell maturation (14,29 %)

myohlast development (14,29 %)

muscle fiber development (28 57 %)

Figure 3.3: Gene Ontology (GO) - Cluster # 1

+50 base pairs related to the transcription start site (T'SS) of the correspond-
ing RefSeq and as descriptors on the one hand only Jaspar matrices and on
the other hand only Transfac matrices have been selected. The output of
PScan for the cluster number one can be seen in table 3.1. This application

ORA TF | Matrix | adj. p-value | PScan TF | Matrix | adj. p-value
SRF MO00152 2.48e-7 MEF2A MAO0052.1 0.000708
SRF MA0083 2.34e-6 SRF MAO0083.1 0.046839

MEF2 MAO0052 2.49e-6 TBP MAO0108.2 0.049502

RSRFC4 | M00026 2.74e-6 P53.02 MO00272 0.004356

SRF M00215 2.91e-5 SRF_Q6 MO00186 0.005804
MEF-2 MO00231 4.83e-5 AP4.Q6 MO00176 0.007343
MEF-2 M00232 0.0001 AP4.Q5 MO00175 0.009804

MYOD_Q6 | MO00184 0.029225

Table 3.1: ORA and PScan result cluster 1

calculated an p-value to show an over representation. To get a Bonferroini
corrected p-value one can calculate the adjusted p-value. For that kind of
correction it is to mention that 130 different Jaspar matrices and 282 Trans-
fac matrices were used. The Jaspar and Transfac over representation results
using PScan were arranged in the same column and apart from the matrix
ID the PScan TF value includes an underline symbol followed by additional
information. For further comparison just the transcription factors with an
adjusted p-value less then 0.05 were used. To show all results of the over
representation analysis it is referred to appendix A. The results show that in
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the interesting clusters number one, four, five and six some already known
transcription factors in context with myogenesis are overrepresented as well.
In cluster number one MEF2 and MyoD are overrepresented. Additionally
the serum response factor SRF and the activator protein AP-4 are over rep-
resented. There are the tumor suppressor p53 and the serum response factor
related transcription factor RSRFC4 overrepresented as well. Whereas clus-
ter number three, which is the most down regulated one, includes mainly cell
cycle specific transcription factors overrepresented like E2F and Elkl. An
explanation therefore is that these cell cycle specific transcription factors are
not active after the proliferation. In fact, cluster number three shows cell
cycle related genes (e.g. Ccna2, Cenb2, and Cendl) down regulated during
the differentiation process.

3.3 BASE

To be able to compare and evaluate the results achieved by the clustering
and over representation step, the binding association with sorted expression
(BASE) method was used. The matrices used for that kind of analysis consist
of two different connectivity matrices, one with just binary information and
the other one with the number of possible binding locations. The dimensions
of the connectivity matrices has been already described in chapter number
two. To integrate these data the expression matrix is additionally needed.
For each of the 357 motifs representing the binding affinity of the motif
in conjunction with the binary matrix as well as the weighted matrix this
method was applied. Dependent on which connectivity matrix has been used
this step resulted in two tab delimited files including an activity score for each
condition in the expression matrix per gene as well as additional information
on the significance of the result. To get an overview on the results they
have been filtered and only these were analyzed in more detail which had
a g-value less than 0.01 at least once over all conditions. 77 motifs using
the weighted matrix and 78 motifs using the binary matrix in this method
fulfilled the criterion. To show the temporal behavior of all interesting motifs
they were grouped depending on their activity scores. Three of the groups
show considerable activity. Out of the 77 motifs of the weighted connectivity
matrix 63 motifs are active through the differentiation process. The highest
activity at the beginning of the analysis can be seen in group one and two.
In these groups there is a significant increase during the first two analyzing
days. The group number three shows a continuous activity of 28 motifs over
time. Active transcription factors are shown in table 3.2. The remaining
motifs in group number four are inactive.
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Group 1 Group 2 Group 3
Srebpl GATA-3 TEF-1
Spzl CDP MEF-2
E47 GATA-2 AP-2
MZF1 GATA-1 c-REL
MZF_5-13 | MZF_1-4 MEF-2
AP-1 GATA-2 LUN-1
RP58 MyoD Olf-1
deltaEF1 Pax-4 RORalfa-2
Brachyury Lmo2 RORalpha2
SRF Lyf-1
Spzl GATA-1
ER GR
SRF NF-kappaB
MyoD NF-kappaB
Brachyury MEF-2
E47 MZF1
SRF RSRFC4
RUSH1-alfa AREB6
AP-4 STAT3
HEN1 P300
RREB-1 NF-kappaB
SREBP-1 GATA-3
SRF GR
MAZR AP-2rep
RREB-1 TCF11-MafG
SP1 MEF-2
AP-2gamma
SEF-1

Table 3.2: BASE - weighted connectivity matrix - transcription factors

Looking now at the binary connectivity matrix results there is a similar
behavior. Out of 78 interesting motifs also 66 show a significant increase of
activity. Group number three and number four do have a similar behavior
in comparison with group number one and two of the weighted connectivity
matrix groups. Group two shows a similar behavior as group three of the
weighted connectivity matrix group. The inactive motifs of the binary con-
nectivity matrix results are shown in group one. Active transcription factors
can be seen in table 3.3. All motifs are shown in the appropriate table and
the activity graphs are shown in the appropriate pictures in appendix B.
The down regulated group number one using the binary connectivity matrix
and group number four using the weighted connectivity matrix include cell
cycle specific transcription factors like Elk-1 and E2F which is similar to the
overrepresented motifs in cluster number three.
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Group 2 Group 3 Group 4
GATA-1 CDP NF-kappaB
MEF2 Srebpl deltaEF1

AP-1 Brachyury | NF-kappaB
MZF1 MZF_1-4 c-REL
AP-4 E47 AP-2rep
AP2alpha HEN1 Pax-4
RSRFC4 AP-4 RORalpha2
Nex HEN1 Lmo2
AP-2alpha AP-1 MZF1
POU3F2 RREB-1 Lyf-1
NF-kappaB MEF-2 NF-E2
Bachl GR NF-kappaB
Roaz SREBP-1 MEF-2
Olf-1 SRF SEF-1
NF-kappaB RREB-1 Spzl
GATA-3 SP1 SRF
SRF AP-1 AP-2
MEF-2 RP58 GR
TCF11-MafG Ik-2 RORalfa-2
MyoD MyoD
RUSH1-alfa AREBG6
ARP-1 MAZR
p65
GATA-3
GATA-2

Table 3.3: BASE - binary connectivity matrix - transcription factors

3.4 NCA

To proof the assumption network component analysis was used to find out
if the transcription factor activity (regulatory signal) values of the P-matrix
of each motif can confirm the results of the already applied methods. There-
fore two new connectivity matrices were generated which included only these
motifs which have fulfilled the BASE filter criterion. The number of columns
for the binary connectivity matrix was reduced to 78 and for the weighted
connectivity matrix to 77. Due to the fact that NCA postulates special
mathematical preconditions the matrices were checked for potential rank de-
ficiencies and the motifs causing such a deficiency have been removed so that
the number of columns in the binary connectivity matrix was reduced to
66 as well as in the weighted connectivity matrix to 67. The result of the
network component analysis was also grouped to sort it depending on the
regulatory signals of each motif. Using the binary connectivity matrix NCA
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showed five motifs which were extremely active at the beginning of the analy-
sis which can be seen in the appropriate graph of group one and three. Group
two shows 33 motifs which do have a positive transcription factor activity
(TFA) (regulatory signal) value over the complete analyzing process. The
following table 3.4 shows the motifs with transcription factor activity (TFA)
(regulatory signal). For more details it is referred to appendix C.

Group 1 Group 2 Group 3 \ Group 1 Group 4
MAZR E2F NF-Y NF-kappaB MEF-2
MEF2 Spzl MZF1 MEF-2 CREB
AP-2 SRF RP58

HEN1 LUN-1
SAP-1 SRF
Roaz P300
SREBP-1 TEF-1
NF-kappaB MEF-2
MyoD GATA-3
E47 NF-Y
MEF-2 SRF
Pax-4 Pax-4
RUSH1-alfa RUSH1-alfa
Elk-1 SAP-1
AP-1 E2F
GATA-3 RREB-1
NF-kappaB MZF1
GR Brachyury
AP-1 SRF
SRF c-REL
Lyf-1 AP-2rep
MZF1 MyoD
RP58 HEN1
CDP SRF
GATA-2 RSRFC4
MEF-2 Pax-2
Olf-1 Spzl
TCF11-MafG ER
ARP-1 AP-2
E2F MyoD
AREB6 AP-1
RSRFC4 GATA-2
RORalpha2

Table 3.4: NCA - binary connectivity matriz || weighted connectivity matriz
- TFs

Additionally NCA was applied in conjunction with the weighted connec-
tivity matrix. Just two motifs show an extremely transcription factor activity
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(TFA) (regulatory signal) increase at the beginning and 30 motifs show an in-
creasing activity over the analysis time line. Table 3.4 shows the transcription
factors with positive transcription factor activity (TFA) (regulatory signal)
under all conditions as well for the weighted connectivity matrix. All detailed
information can be found in appendix C.

3.5 Result comparison

Due to the fact that all three methods delivered results which have differ-
ent appearances they are compared in this section. The clustering and over
representation delivered four interesting clusters in which a specific amount
of motifs are overrepresented. As mentioned above the clusters number one,
four, five and six show more or less but always positive activities of the genes.
Comparing these clusters with the BASE results based on their temporal be-
havior cluster number one is first compared with group number three of the
binary connectivity matrix. It can be seen that the known transcription fac-
tors like MyoD, Mef2, SRF and AP4 are overrepresented in cluster number
one. The other transcription factors noted in group number two and four
are distributed over the other active clusters number four, five and six. This
shows that the overrepresented transcription factors in these clusters show an
adequate activity. Furthermore using group number one of the weighted con-
nectivity matrix which has also a similar temporal behavior as cluster number
one it can bee seen that MyoD, SRF and AP4 are present in that group as
well. The transcription factors of group number two and three are as well
distributed over the positive active clusters number four, five and six. This
confirms the activity of the overrepresented transcription factors in BASE
analysis. Comparing the NCA results with clusters having similar temporal
behavior there are two observations to mention. The first observation is that
the grouping of the NCA results led to groups with extreme activity. These
groups include MEF2 in both analyzed connectivity matrices. The second
observation is that comparing the temporal behavior the matching is not that
significant as comparing the BASE results. Further it could be shown that
comparing the NCA binary connectivity matrix results of group number two
with the active clusters of over representation also includes MyoD, MEF2 |
SRF and RSRFC4 which are overrepresented in cluster number one. The
remaining transcription factors of group number two are distributed over the
other active clusters number four, five and six. A similar distribution of
transcripts in group number four was the result of NCA using the weighted
connectivity matrix, where MyoD, MEF2, SRF and RSRFC4 overrepresented
in cluster number one are included in that group. The remaining transcripts
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of group number four are distributed over the other active clusters number
four, five and six. Finally the activity of NFkappaB, not known as a key
player in the myogenesis process, the methods predict that it could be in-
volved in this process. It is overrepresented in cluster number five as well as
active in binary BASE group number two and weighted group number three.
In the binary NCA group number four NFkappaB belongs to the active group
and only in the weighted group number four it is not shown as active. In all
three methods the appearance of these transcription factors concerning the
activity and over representation is continuous. Therefore the significance of
these transcription factors in this biological process led to a high probability.

3.6 Gene regulatory network

The overrepresented transcription factors MyoD, Mef2, AP-4, SRF, and
RSRFC4 have a connectivity matrix based binding site at the cluster mem-
bers of cluster number one and give consistent results over all three integra-
tion methods, indicating that these factors are key players of myogenesis [3].
At least partly evident also through large scale ChIP on chip studies. This
binding situation is illustrated in the following figures. The interaction of
these transcription factors with the genes is visible due to the color of the
nodes representing the genes. Under condition one, see figure 3.4, nearly all
genes are inactive except Rbpl and Mgp. Over time the activity of the genes

Figure 3.4: Gene requlatory network - condition one
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Figure 3.5: Gene regulatory network - condition two

is increasing which is illustrated by genes changing the color from green to
red, see figure 3.5. The slightly brown and green colored genes are less active
then the red colored genes. At condition four to six all genes in the clusters
are active, see figure 3.6, and participate in the myogenesis process.
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Figure 3.6: Gene regulatory network - condition six
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Chapter 4

Discussion

The applied methods were chosen based on their complementary approaches
in analyzing regulatory sequences and gene expression data. Each of the
methods has shown its reliability in analyzing these kind of data. Over
representation analysis for transcription factor binding sites in co-expressed
genes identifies similar temporal behavior without regarding an explicit bind-
ing of transcription factors provided by the connectivity matrices. This fact
uncouples the result of this method from being much to related to the other
analyzing methods. The difference in the results of the over representation
analysis by using two different analysis methods illustrates how strong the
influence is on the method used for in silico prediction of transcription factor
binding sites. In the opposite of word based motif search tools, the biological
context for the construction of a position weight matrix for specific transcrip-
tion factors is important [34]. Another analysis, over representation of GO
terms per cluster could be applied to get additional information on the biolog-
ical function of co-expressed genes. BASE and NCA instead use both kinds
of data to analyze the biological relationship and importance in this process,
but using different approaches. While BASE calculates the results based
on a statistical evaluation to find out the activity of transcription factors,
NCA calculates a unique decomposition of the expression data to present a
meaningful biological regulatory network. Each of these approaches has its
advantages. The BASE method uses a straight forward mathematical algo-
rithm which results for each transcription factor in an activity score for each
condition, and applied over several conditions in a time course of the activ-
ity score. A variation of BASE was also suggested for gene expression data
and microRNA target prediction [35]. NCA instead uses a more complex ap-
proach which results in additional information on the connectivity strength
of the data. The mathematical requirements of NCA are more specific which
leads to a possible loss of information due to these preconditions. NCA was
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originally applied to E. coli data [10], but was also successfully used in yeast
applications[36] and in mouse [37].

The analyzed data, in more detail the preparation of the data prior analyz-
ing must fulfill specific criteria. So the microarray data needed several prepa-
ration steps which led to a possible loss of information due to different fil-
tering settings and versions of annotations. The reliability of the integration
methods can be improved by using not only prediction but also using experi-
mentally large-scale methods to detect binding sites of transcription factors.
Whereas in ChIP-chip TF enrichment regions are identified by hybridization
to promoter elements in ChIP-seq TF binding regions are sequenced and can
be spread over the whole genome. The identified binding regions are shorter
with ChIP-seq and therefore have a better resolution, but it is more difficult
to assign a binding site to a specific gene and it is more difficult to construct
a connectivity matrix. A solution can be a weighted connectivity matrix
number of binding sites within a region around the transcription start site
( eg. +/- 20kb) [6] similar used throughout this thesis. Additionally the
construction of a connectivity matrix is dependent on the used matrices and
the size of the promoter area as well as the settings for finding a possible
binding location in the promoter area and the used thresholds. Investigating
the myogenesis process some review papers and articles using high through-
put technologies papers have already been published. These publications,
e.g. [2] and [3], show similar results like this thesis, in which also MyoD,
Myog and MEFs were identified to play a key role in the myogenic differen-
tiation process. So the already known transcription factors found during the
analysis in this thesis proof the reliability of the results. The transcription
factors, yet not mentioned in this context, which do have similar behavior
and are as well overrepresented such as NFkappaB and MAZR - just to name
two of them - should be analyzed in more detail to find out if they can be
of interest in myogenic differentiation. Finally the usage of three different
methods for analyzing the myogenesis process confirmed the quality and re-
liability of the analyzing methods. Furthermore some transcription factors
not yet associated with this process could be discovered.
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Glossary

DINA Deoxyribonucleic acid contains genetic instructions for developing and
functioning of living organisms. In the DNA a lot of information is
coded. Segments of the DNA containing information on proteins and
RNA are called genes. The DNA is organized in a double stranded
three dimensional helix.

RNA Ribonucleic acid is very similar to DNA. One of the main differences
is that RNA is usually single-stranded and it is transcribed from DNA.
Depending on the context of RNA occurrence it is named a little dif-
ferent.

cDNA Complementary DNA (¢cDNA) is DNA synthesized from a mature
mRNA template in a reaction catalyzed by the enzyme reverse tran-
scriptase.

RefSeq ID Reference Sequence is a comprehensive, integrated, non-redundant,
well-annotated sequence which could be an ID for genomic DNA, tran-
scripts and proteins. The Reference Sequence collection is adminis-
trated by the National Center for Biotechnology Information.

Affymetrix ID In Affymetrix array oligonucleotides are in situ synthe-
sized. Each gene (transcript) is represented on the array by 11-20 paired
sets of perfect match (PM) and mismatch (MM) oligonucleotides. The
identifier associated with a probe set is called Probeset ID or Affymetrix
ID.

Matrix ID Is an identifier which represents the Jaspar or Transfac name of
the PWM. It is named by the appropriate nomenclature of the respec-
tive provider.

PWM - Position Weight Matrix A position weight matrix (PWM), also
called position-specific scoring matrix (PSSM), is a commonly used
representation of motifs (patterns) in biological sequences. A PWM
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is a matrix of score values that gives a weighted match to any given
substring of fixed length. It has one row for each symbol of the alphabet
(A, C, G, T in case of DNA) and one column for each position in the
pattern.

TSS - Transcription start site Isthe start position within a genome where
the transcription of a gene is initiated.
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Appendix A

Clustering and over

[ ]
representation

ORA TF | Matrix | adj. p-value | PScan TF | Matrix | adj. p-value
SRF MO00152 2.48e-7 MEF2A MA0052.1 0.000708
SRF MA0083 2.34e-6 SRF MA0083.1 0.046839
MEF2 MAO0052 2.49e-6 TBP MAO0108.2 0.049502
RSRFC4 | M00026 2.74e-6 P53_02 MO00272 0.004356
SRF M00215 2.91e-5 SRF_Q6 MO00186 0.005804
MEF-2 MO00231 4.83e-5 AP4_Q6 MO00176 0.007343
MEF-2 MO00232 0.0001 AP4_Q5 MO00175 0.009804
MYOD_Q6 MO00184 0.029225

Table A.1: ORA and PScan result cluster 1
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ORA TF | Matrix | adj. p-value PScan TF Matrix | adj. p-value
Myc-Max | MA0059 7.03e-6 HIF1A::ARNT | MA0259.1 | 6.19679e-21
E2F MO00516 5.15e-6 E2F1 MAO0024.1 | 6.50338e-21
c-Myc:Max | M00118 1.42e-5 Arnt::Ahr MAO0006.1 | 1.33842¢-18
USF MO00217 1.30e-5 MIZF MAO0131.1 | 1.64684e-18
ARNT MA0004 8.83e-6 Mycn MA0104.2 | 3.32027e-17
n-MYC MAO0104 8.83e-6 GABPA MA0062.2 | 4.16703e-17
NF-Y M00287 1.63e-5 Myc MAO0147.1 4.8077e-17
USF MAO0093 3.34e-5 NFYA MAO0060.1 | 8.73196e-14
NF-Y MO00185 3.11e-5 ELK4 MA0076.1 | 2.92622e-12
SPI-1 MA0080 9.80e-5 Arnt MA0004.1 | 1.09637¢-11
N-Myc MO00055 0.0001 Zfx MAO0146.1 | 3.58804e-11
c-ETS MAO0098 0.0001 SP1 MAO0079.2 2.77138e-9
E2F MO00050 0.0008 Klf4 MAO0039.2 4.82186¢e-9
E2F MA0024 0.0007 ELK1 MA0028.1 5.32805e-9
CREB MO00178 0.0010 TFAP2A MA0003.1 8.83154e-9
USF MO00121 0.0029 Egrl MA0162.1 3.83984e-7
E2F M00024 0.0071 MYC:MAX | MA0059.1 0.001354
c-Myc:Max | M00615 0.0071 USF1 MAO0093.1 0.003383
Arnt M00236 0.0072 ETS1 MAO0098.1 0.003469
Max MAO0058 0.0076 Pax5b MA0014.1 0.016896
CRE-BP1 | M00179 0.0092 E2F_03 MO00516 4.24554e-33
Spl M00196 0.0088 E2F_02 M00050 6.70977e-22
NRSF M00256 0.0088 SP1_Q6 M00196 4.88929¢e-21
Max MO00119 0.0087 AP2_Q6 MO00189 1.44327e-18
USF MO00187 0.0149 NFY_01 M00287 1.54219e-13
NRF-2 M00108 0.0175 SP1.01 MO00008 1.28888e-10
NRF-2 MA0062 0.0175 NMYC_01 MO00055 1.50819e-9
Tax/CREB | M00114 0.0465 ELK1.02 M00025 7.27656¢e-9

Table A.2: ORA and PScan result cluster 2 - Partl
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ORA TF | Matrix | adj. p-value PScan TF Matrix | adj. p-value
NF-Y M00209 0.0451 AP2GAMMA_01 | M00470 1.38505e-8
CREB MO00177 0.0495 AP2ALPHA_01 | M00469 1.91576e-8

E2F_01 M00024 2.44763e-8
TAXCREB_01 Mo00114 3.92857e-8
CREB_02 MO00113 1.0027e-7
CREB_Q2 MO00177 2.16586e-7
ARNT_01 M00236 2.25847e-7
CREB_Q4 MO00178 0.000002
HAP234_01 M00288 0.000002
NRF2_.01 MO00108 0.000008
NFY_Q6 MO00185 0.000008
PAX4.01 MO00373 0.00001
ATF_01 MO00017 0.000014
AHR_01 MO00139 0.000025
NFY_C M00209 0.000061
MYCMAX_01 MO00118 0.000514
AHRARNT_01 | M00235 0.000366
AHRARNT_02 | M00237 0.000543
EGR3_.01 M00245 0.000868
STAT3_02 MO00497 0.001966
STAT1_01 M00224 0.002004
MYCMAX_03 MO00615 0.002384
EGR1.01 M00243 0.00255
CREB_01 MO00039 0.004167
CREBP1_Q2 MO00179 0.005531
MAX_01 MO00119 0.01792
CETS1P54_01 MO00032 0.025353
SPZ7Z1.01 M00446 0.039479
NGFIC_01 M00244 0.044707
Table A.3: ORA and PScan result cluster 2 - Part2

ORA TF | Matrix | adj. p-value | PScan TF | Matrix | adj. p-value
E2F MO00516 9.02e-6 E2F1 MA0024.1 4.41319e-11
E2F MAO0024 0.0002 NFYA MAO0060.1 0.000004
E2F MO00050 0.0003 ELK1 MA0028.1 0.008096
NF-Y M00287 0.0054 Klf4 MAO0039.2 0.023405

E2F M00024 0.0172 E2F_036 MO00516 1.81179e-14

NF-Y MO00185 0.0282 E2F_02 MO00050 2.4647e-10
NFY_01 MO00287 0.000028
NFY_C M00209 0.012851
ELK1_.02 M00025 0.043823

Table A.4: ORA and PScan result cluster 3
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ORA TF | Matrix | adj. p-value PScan TF Matrix | adj. p-value
p300 MO00033 0.0483 EBF1 MAO0154.1 0.004469
AP-4 MO00005 0.0498 PPARG::RXRA | MA0065.2 0.010879

FOX04 | M00472 0.0489 EWSRI-FLI1 | MA0149.1 0.01727
SP1 MAO0079.2 0.017976
RREB1 MAO0073.1 0.018856
AP4 01 MO00005 0.00074
RREB1.01 MO00257 0.00562
SPZ1.01 MO00446 0.030451
Table A.5: ORA and PScan result cluster j
ORA TF | Matrix | adj. p-value PScan TF Matrix | adj. p-value
Spl M00196 5.37e-5 SP1 MAO0079.2 | 8.53824e-10
MAZR M00491 0.0002 Klf4 MA0039.2 1.36439e-7
Spl MO00008 0.0132 TFAP2A MA0003.1 0.000001

c-Myc:Max | M00615 0.0191 PLAG1 MA0163.1 0.000004
TEF-1 MAO0090 0.0215 Egrl MA0162.1 0.000046
USF MO00121 0.0239 Zfx MAO0146.1 0.000097
Max MO00119 0.0226 NFKB1 MAO0105.1 0.000138
Max MA0058 0.0372 Pax5 MAO0014.1 0.000375
Pax-4 MO00378 0.0402 INSM1 MAO0155.1 0.003071
IRF-7 MO00453 0.0486 HIF1A::ARNT MA0259.1 0.00846

AP-2alpha | M00469 0.0438 Arnt::Ahr MAO0006.1 0.017109

AP2alpha | MAO0003 0.0438 NF-kappaB MAO0061.1 0.023148
USF M00217 0.0497 SP1_Q6 MO00196 1.0925e-10
ARNT MA0004 0.0447 SP1.01 MO00008 1.48729e-7

n-MYC MA0104 0.0447 AP2_Q6 MO00189 4.3657e-7
USF M00122 0.0453 MAZR_01 M00491 0.000002
AP2ALPHA_0O1 MO00469 0.000002

AP2GAMMA_01 MO00470 0.000027

NGFIC_01 M00244 0.000121

PAX5_02 M00144 0.000945

HEN1_02 MO00058 0.001804

EGR1.01 M00243 0.001884

EGR3_01 M00245 0.003236

AHR_01 MO00139 0.004134

STAT3_02 MO00497 0.004693

SPZ1.01 MO00446 0.005435

NFKAPPAB50_01 | MO00051 0.010277

PAX4 03 MO00378 0.01985

AP4.Q6 MO00176 0.047663

Table A.6: ORA and PScan result cluster 5

43




ORA TF | Matrix | adj. p-value | PScan TF | Matrix | adj. p-value
PPARG | M00515 0.0427 Klf4 MA0039.2 0.002396
HEN1 MO00058 0.0359 SP1 MA0079.2 0.007252

Zfx MAO0146.1 0.019163
TFAP2A | MA0003.1 0.025848
SP1_Q6 MO00196 0.001434
MAZR_01 MO00491 0.010193

Table A.7: ORA and PScan result cluster 6
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Appendix B
BASE

Cluster 1- 12 Genes Cluster 2 - 19 Genes
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Figure B.1: Temporal behavior - BASE - binary connectivity matriz
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UniquelD | dml score | dO score | d2 score | d4 score | d6 score | d8 score
E2F -7.89966 -10.5896 | -7.77545 | -10.6898 -10.925 -10.3521
E2F -6.20102 -7.0009 -6.02595 | -7.93851 -8.146 -7.20765
Elk-1 -6.40707 -8.97801 | -8.37968 | -9.22739 | -10.8626 | -10.2794
NRF-2 -6.18836 -8.06805 | -7.17131 | -9.40785 | -9.46287 | -9.73735
c-ETS -4.87373 -9.58278 | -8.39611 | -10.8003 | -11.2203 -10.443
SPI-1 -9.09823 -9.32089 | -8.17905 | -11.1418 | -12.1125 | -11.4976
Pax-2 -5.44632 -6.85857 | -4.24928 | -7.78045 | -7.57679 -8.6544
NRF-2 -6.22801 -7.97743 -7.138 -9.49204 | -9.35597 | -9.77661
NF-Y 3.01928 -7.7457 -3.34247 | -7.05222 -5.684 -6.10941
SAP-1 -7.11216 -8.06116 | -8.01316 | -9.80725 | -11.3737 | -11.5041
Elk-1 -8.96756 -10.0263 -9.2783 -10.1053 | -11.7235 | -11.4399
E2F -6.1462 -7.57253 | -6.42018 | -8.55448 | -8.48644 | -7.64128

Table B.1: BASE - binary

connectivity matriz - Group #1
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Figure B.2: Temporal behavior - BASE - weighted connectivity matrix
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UniqueID | dml score | dO score | d2 score | d4 score | d6 score | d8 score
GATA-1 3.71003 4.71561 4.66048 7.07699 6.63536 6.59123
MEF2 4.02625 4.22286 5.27628 7.52533 6.71043 6.97343
AP-1 4.13693 7.99204 4.70046 6.65458 5.97127 5.44146
MZF1 3.00575 4.82563 6.31421 7.74828 6.54684 6.57308
AP-4 2.46471 7.3136 4.78455 5.89874 6.02971 5.87792
AP2alpha 3.24335 7.40828 4.39911 6.30337 6.0494 6.41436
RSRFC4 3.3264 4.3497 5.68576 7.43935 6.28113 6.43242
Nex 2.05679 7.74867 4.17729 6.56169 5.61332 5.60558
AP-2alpha 3.29622 7.54417 4.42032 6.39252 6.13376 6.44723
POU3F2 6.03883 7.71605 3.41268 4.49424 3.8374 3.76471
NF-kappaB 4.16874 6.69821 5.29528 7.02003 6.03998 6.87388
Bachl 2.44649 7.26745 4.80244 6.19758 4.75928 4.53717
Roaz 2.30646 6.12735 6.99575 6.29435 5.96542 6.24186
Olf-1 2.12901 4.90148 7.06081 7.10272 6.84254 6.98112
NF-kappaB 2.30348 6.96753 6.2746 7.16749 6.55889 7.12597
GATA-3 2.96499 4.20172 5.83273 8.20749 7.41858 7.1485
SRF 3.47025 6.78588 7.16037 6.43869 6.81095 6.68771
MEF-2 4.45103 6.53085 5.25031 7.02289 7.50175 7.5972
TCF11-MafG 3.49426 5.21459 5.80344 7.36513 7.06837 6.48535
Table B.2: BASE - binary connectivity matriz - Group #2
UniquelID | dml score | dO score | d2 score | d4 score | d6 score | d8 score
CDP -2.37242 7.27366 8.92312 7.86707 8.73393 7.8817
Srebpl -2.54048 6.81913 8.30249 6.9586 7.37683 7.44478
Brachyury -3.52707 4.55542 6.59235 7.12036 6.68123 7.195
MZF_1-4 -2.40183 8.00813 6.65178 9.29554 8.21077 8.17662
E47 -3.018 3.91652 7.58454 7.45715 6.82153 7.5754
HEN1 -2.73043 6.62514 5.1873 6.92221 6.11376 6.11301
AP-4 -1.40265 5.26184 6.00745 7.71622 7.24001 7.25966
HEN1 -2.34257 7.30034 4.89938 6.91436 5.96177 6.04766
AP-1 -2.72032 7.33242 4.30264 6.12195 5.67222 4.81493
RREB-1 -2.93415 4.68311 7.472 6.72728 6.74344 7.1014
MEF-2 -2.44536 4.84328 6.01394 8.28651 7.58517 7.54277
GR -2.77277 4.01632 7.69994 7.46543 6.56816 7.62039
SREBP-1 -4.30836 5.89683 6.42508 6.46239 6.5622 7.39713
SRF -2.74186 3.21393 6.89948 6.4845 7.46541 7.27247
RREB-1 -2.83198 7.64045 7.64326 9.11583 9.23529 10.2841
SP1 -4.2011 8.20657 7.00235 7.92192 7.34988 7.89754
AP-1 -3.00128 6.90599 7.41885 6.25638 6.24942 6.6469
RP58 -2.38893 7.03001 5.77989 8.14324 6.87287 7.4251
1k-2 -2.84559 5.76735 6.40369 6.88055 5.66867 6.9965
MyoD -3.81412 4.11256 9.37843 7.54972 7.65486 8.00769
RUSH1-alfa -2.54926 6.4972 7.14237 8.2615 8.87522 8.94101
ARP-1 -1.6468 6.17796 5.8244 6.39409 6.58392 6.98897

Table B.3: BASE - binary connectivity matrix - Group #3
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UniquelD | dm1 score | dO score | d2 score | d4 score | d6 score | d8 score
NF-kappaB 4.16925 7.46701 6.48906 8.89672 8.09268 8.67314
deltaEF1 1.86107 6.59636 9.11186 8.61119 7.47706 8.47199
NF-kappaB 3.39506 7.83908 7.35357 7.80075 6.47559 7.49485
c-REL 5.58583 7.48233 6.03831 7.98966 6.50216 7.56524
AP-2rep 2.58563 6.87171 6.41782 8.3806 7.80102 7.99881
Pax-4 3.51923 10.6276 8.64834 11.0514 9.81632 11.0176
RORalpha2 4.74964 7.08901 7.32557 8.786 7.9298 8.03634
Lmo2 2.817 7.85156 8.38016 9.23447 8.08581 8.54932
MZF1 2.4485 7.11671 6.65151 7.96263 7.48427 7.52468
Lyf-1 3.12127 8.11446 7.47662 8.52834 8.08017 8.19262
NF-E2 4.75924 9.03288 8.47293 8.36563 8.40209 8.30895
NF-kappaB 2.79765 8.28746 6.54063 7.72394 7.23982 7.84809
MEF-2 5.89661 7.63149 6.85065 9.01182 8.42779 8.19488
SEF-1 3.98412 8.95752 7.26778 8.09604 7.63907 7.83918
Spzl 2.15206 7.8025 6.92858 7.32221 6.84946 6.88369
SRF 4.40492 7.54407 6.49638 8.78913 8.53908 7.82608
AP-2 4.22712 7.82555 5.80921 7.22908 7.03918 7.98433
GR 3.93024 8.20042 6.04038 7.74953 7.27195 6.90328
RORalfa-2 4.9621 7.07192 7.99814 8.33935 7.8415 7.67969
MyoD 2.86503 7.13745 8.87418 8.6028 8.53497 8.40198
AREB6 3.16549 6.41168 7.36033 8.0167 7.52691 7.60346
MAZR 2.64547 8.1659 7.45832 9.20705 8.14513 8.99485
p65 4.38337 7.61155 6.82277 7.87021 6.60913 7.88171
GATA-3 2.97356 8.2377 7.18177 8.48224 7.92371 7.90245
GATA-2 3.12814 8.71333 7.15698 9.44223 8.8263 8.81989

Table B.4: BASE - binary connectivity matrix - Group #4
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UniquelID | dm1l score | dO score | d2 score | d4 score | d6 score | d8 score
Srebpl -3.27174 6.14126 7.94301 6.73534 6.96341 7.32519
Spzl -2.0509 7.04195 8.10684 8.73398 8.49699 8.28223
E47 -4.38291 3.65562 6.02747 6.49127 5.73575 7.31434
MZF1 -4.13172 6.46696 6.08531 7.19671 6.87955 6.65818
MZF_5-13 -2.38503 7.60384 6.26635 7.69925 7.60839 7.42655
AP-1 -3.80379 4.67992 7.70028 5.33648 6.22443 6.42832
RP58 -2.52837 6.23608 5.49711 7.17248 6.07548 6.41804
deltaEF1 -2.48403 7.40212 8.00545 9.136 8.23111 9.23549
Brachyury -3.90106 3.61963 6.32025 7.16915 7.12887 6.88777
SRF -2.86987 5.25737 7.31268 7.26274 6.71243 6.34417
Spzl -2.63391 7.59554 8.22961 9.42421 8.688 9.28323
ER -2.61902 6.35706 7.71628 7.73863 6.9513 7.11424
SRF -3.31282 8.09296 9.17011 10.3098 9.99244 9.60908
MyoD -2.98676 5.15316 9.5694 8.61478 9.09106 9.37964
Brachyury -2.08929 5.64264 5.87305 7.43788 6.53318 6.25188
E47 -2.47516 4.54581 7.29201 8.12914 7.95062 8.61648
SRF -4.18286 6.02343 8.9065 9.01961 8.52681 8.66441
RUSH1-alfa -2.48779 8.36898 7.67173 10.2481 10.3388 10.1936
AP-4 -1.47037 5.10128 6.29696 7.27167 7.4087 7.4267
HEN1 -2.8087 8.39257 6.24505 8.38458 6.78173 7.49811
RREB-1 -2.62761 7.30048 7.96423 8.92056 8.5171 9.24014
SREBP-1 -4.26832 7.39692 8.39755 7.88483 8.06307 8.94048
SRF -2.65144 4.99047 8.0417 8.5029 8.80198 8.55637
MAZR -2.531 9.85543 6.78409 9.58544 8.20701 9.14196
RREB-1 -4.05456 6.99743 7.1608 7.91298 7.52696 8.63929
SP1 -3.41026 9.6347 9.75557 10.3028 9.25748 10.0863
Table B.5: BASE - weighted connectivity matrix - Group #1
UniquelD | dm1 score | dO score | d2 score | d4 score | d6 score | d8 score
GATA-3 5.06903 8.61463 7.44072 9.56069 8.3126 9.00447
CDP 3.04632 7.46112 9.25316 8.11846 9.27168 8.68494
GATA-2 4.78266 8.09901 7.62026 9.97959 9.19675 8.82802
GATA-1 2.29342 8.45931 10.2539 10.8778 10.1413 10.4455
MZF_1-4 3.03039 11.7641 10.548 13.2464 11.8181 13.0315
GATA-2 5.26485 9.17549 6.73649 10.1724 8.80166 8.88388
MyoD 2.94338 8.94521 10.5675 10.7985 10.473 10.7466
Pax-4 3.58007 11.0146 10.0488 12.1434 10.8706 11.7259
Lmo2 2.74458 7.51592 8.82359 9.41741 8.92893 9.51133

Table B.6: BASE - weighted connectivity matriz - Group #2
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UniquelD dm1 score | dO score | d2 score | d4 score | d6 score | d8 score
TEF-1 3.8287 6.01411 5.94909 7.96191 7.38631 7.5231
MEF-2 3.65531 5.23646 5.44032 8.61634 7.92977 7.98396
AP-2 4.8508 7.34697 5.04411 7.02454 6.5028 7.38984
c-REL 4.73446 6.94009 4.82918 7.12482 5.22273 6.24878
MEF-2 5.18293 5.43961 4.53951 7.8092 6.46483 7.59803
LUN-1 3.53913 4.49736 6.55853 7.05756 7.10653 7.18678

Olf-1 2.8819 4.12148 7.17607 6.94842 5.96168 7.20757

RORalfa-2 4.80737 7.31282 7.57551 8.31749 8.39405 7.89221

RORalpha2 5.10255 7.33673 7.15983 8.65321 8.40828 8.15867
Lyf-1 3.42774 7.96992 6.34571 6.90225 7.08271 7.18196
GATA-1 3.14246 6.53972 6.49624 9.38278 7.35126 7.74146

GR 3.76992 5.50093 7.68221 8.68649 7.3827 7.90132
NF-kappaB 4.35376 7.91507 6.2102 7.50832 7.20086 7.49459
NF-kappaB 6.01692 8.34809 6.23703 8.75578 7.91508 8.51863
MEF-2 4.67873 7.06566 5.22107 7.83904 7.28523 6.31229
MZF1 2.85545 5.11404 6.07724 7.81517 6.5278 6.69989
RSRFC4 3.33126 5.14081 5.90554 9.23422 8.37267 9.17756
AREB6 2.14467 6.19094 6.38121 7.71659 6.77522 7.64626
STAT3 2.96825 7.7444 7.4999 6.93548 7.86625 7.91064

P300 3.44683 6.41684 6.90028 7.56702 6.86663 7.1461

NF-kappaB 5.4274 7.61371 6.79082 8.49866 7.08248 7.88746

GATA-3 2.85717 5.51197 7.29122 8.84987 8.05167 8.469
GR 3.74364 7.79844 7.59748 8.3913 7.87076 7.85393
AP-2rep 3.50031 7.11245 7.17789 9.20874 7.83181 8.19332
TCF11-MafG 3.25391 7.4029 7.29484 8.39258 8.33934 7.72337
MEF-2 3.37195 5.20515 6.84384 9.94832 8.47215 9.30498

AP-2gamma 4.62805 9.19711 6.7456 8.49026 7.27066 8.04199
SEF-1 3.54663 7.77212 7.9399 8.04684 8.47173 8.23348

Table B.7: BASE - weighted connectivity matriz - Group #3

UniquelD | dml score | dO score | d2 score | d4 score | d6 score | d8 score
E2F -7.23275 -8.85288 -7.8241 -9.98319 | -10.0068 | -9.47183
Elk-1 -5.89308 -8.8464 -8.66781 | -9.66368 | -11.4778 | -11.0045
SAP-1 -5.65976 -8.05584 -8.2823 -9.71028 | -10.6845 | -10.8608
Elk-1 -6.55517 -9.31661 | -9.06263 | -9.75883 | -11.1038 | -11.1619
E2F -7.47317 -8.94285 | -8.04201 | -10.5463 | -10.3891 | -9.77766
NRF-2 -5.48803 -8.9987 -8.14717 | -9.73511 | -10.0684 | -10.4594
c-ETS -6.72927 -10.7318 | -10.1788 | -12.5195 | -13.1908 | -12.7162
SPI-1 -7.63855 -10.1092 | -10.6262 | -12.4811 | -13.8059 | -13.4228
E2F -7.70119 -9.59287 | -8.66041 -11.656 -12.2767 | -11.5696
CREB -4.63581 -4.09576 | -4.62491 -6.8083 -7.11819 | -6.04736
Pax-2 -5.67502 -6.79704 | -5.34042 | -8.01575 -7.3634 -8.82051
NRF-2 -5.51405 -8.93522 | -8.23978 | -9.95057 | -9.79503 | -10.4291
NF-Y 3.5147 -9.31736 | -4.18689 | -8.12825 | -6.70908 | -7.50185
NF-Y -2.18675 -7.13277 2.69795 -4.04765 | -2.92907 | -3.83536

Table B.8: BASE - weighted connectivity matrix - Group #4
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Figure C.1: Regulatory signals - NCA binary connectivity matriz.
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Figure C.2: Regulatory signals

- NCA weighted connectivity matriz.
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UniquelD | dml int. | dO int. | d2 int. | d4 int. | d6 int. | d8 int.
MAZR -0.18359 | 4.1076 | 3.0428 | 2.3867 | 3.1384 | 4.4844
MEF2 -0.41377 1.7148 | 4.9437 | 5.0224 | 4.1613 | 4.3558
AP-2 -0.27525 | 3.7242 | 9.6006 | 5.0036 | 5.7799 | 4.9551

Table C.1: NCA - binary connectivity matrix - Group #1

UniquelD dml int. | dO int. d2 int. d4 int. d6 int. d8 int.
E2F 0.91434 0.91344 | 0.55512 0.39632 1.3072 1.2022
Spzl -0.22442 0.52342 | 0.082821 | 0.30352 0.28334 0.10403
SRF 0.36508 0.91385 | 0.27732 0.59557 0.7514 0.84402
HEN1 0.16797 0.56008 | -0.12302 | 0.099718 0.28599 0.31141

SAP-1 0.01456 0.52322 | 0.58318 0.27753 0.59489 0.18853
Roaz -0.059423 | 0.56315 | -0.02058 | -0.047733 | 0.32915 0.26371

SREBP-1 0.32628 0.47213 | 0.58827 0.19818 0.39008 0.36087

NF-kappaB 0.53391 0.90123 | 0.28931 0.616 0.39642 0.31952
MyoD 0.13696 0.53568 | 0.41263 0.38371 | 0.0054716 | -0.053514

E47 0.081694 | 0.66458 | 0.32892 0.85363 0.43685 0.48403
MEF-2 0.15857 0.15831 1.0286 0.3389 0.62696 0.52143
Pax-4 0.1972 0.038074 | 0.52751 0.67651 0.39255 0.7734
RUSH1-alfa | -0.075259 | 0.33221 | 0.77391 1.1318 0.7735 0.63978
Elk-1 0.089314 | 0.41786 | 0.63983 0.30894 0.60961 0.57304
AP-1 0.31245 0.1109 1.0553 0.91587 0.94181 0.8031
GATA-3 -0.22824 0.2992 1.0302 1.1059 0.9014 0.83927
NF-kappaB 0.17176 0.23912 | 0.55832 0.99575 0.81538 1.2583
GR 0.15782 0.27895 | 0.84866 1.1665 1.3508 1.5838
AP-1 0.012139 | 0.069373 0.544 1.0926 0.95127 1.0447
SRF 0.59502 0.41228 1.0132 1.2458 1.1832 1.2459
Lyf-1 0.6696 1.3665 0.89837 1.0538 1.3597 1.3378
MZF1 -0.047636 1.0704 0.60882 1.1981 1.275 1.3407
RP58 0.028363 0.2076 0.75111 1.0792 0.99821 1.3495
CDP -0.003986 1.0289 1.2313 1.0721 1.103 0.99556
GATA-2 0.17937 1.7559 1.1138 1.4887 1.3119 1.2446
MEF-2 0.51157 0.89665 1.3592 1.2952 1.3536 1.5174
Olf-1 0.87875 0.87617 | 0.93203 1.3175 1.4469 1.592
TCF11-MafG | -0.043055 | 0.83898 2.1562 1.7354 1.6185 1.5501
ARP-1 0.077484 | 0.45333 1.6928 1.7795 1.8424 1.8976
E2F 0.18799 1.1948 1.5266 1.9635 1.8011 2.1192
AREB6 0.60793 0.80683 1.4733 1.5789 1.7448 1.7711
RSRFC4 -0.038575 2.1732 2.0163 1.7231 1.5585 1.6627

RORalpha2 -0.18667 | -0.39531 2.7877 2.0887 2.2854 2.9258

Table C.2: NCA - binary connectivity matriz - Group #2
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UniquelD | dml int. | dO int. | d2 int. | d4 int. | d6 int. | d8 int.
NF-Y -1.8363 22.831 14.408 | 25.761 | 20.656 | 25.592
MZF1 3.723 17.604 | 18.995 | 33.144 | 28.732 | 29.325

Table C.3: NCA - binary connectivity matrix - Group #3

UniquelD | dml int. | dO int. d2 int. d4 int. d6 int. d8 int.
MEF-2 -0.38076 | -0.54717 | -0.25093 | -0.86213 | -0.72655 | -0.56727
GATA-1 -0.03448 | -0.42655 -1.0626 -1.0772 -1.012 -1.1841
RREB-1 -0.3657 -1.1969 -0.91159 | -0.81588 | -0.97001 -1.0574

Ncex -0.027488 | -0.73866 | -0.18441 | -0.74532 | -0.72994 -0.603
Brachyury 0.36293 | -0.24769 | -0.74674 | -0.83891 | -0.54656 | -0.81424
Elk-1 -0.23351 | -0.40422 | -0.75573 -1.0609 | -0.90935 -1.3436
Ik-2 -0.091641 | -0.70852 | -0.45782 | -0.55572 | -0.2376 -0.36577
HEN1 -0.27611 -1.1972 -1.7777 -1.989 -2.1605 -2.2802
Lmo2 0.10905 | -0.69446 | -0.58358 -0.6619 -0.8647 -0.74137
RREB-1 -0.36812 | -0.22724 | -0.82932 | -0.74066 | -0.79343 | -0.58775
NF-E2 0.13603 0.19869 -0.39702 | -0.20291 | -0.4234 -0.15783
GR -0.51395 | -0.28286 | -0.0075441 | -0.32181 | -0.35916 | -0.024366
NF-kappaB | -0.66981 | -0.42939 | -0.22091 | -0.19182 | -0.45433 | -0.19257
SRF 0.19479 | 0.088349 | -0.62679 | -0.40903 | -0.38817 | -0.74109
SP1 -0.41323 1.501 -1.3571 -0.78803 | -1.2058 -0.27501
AP-4 -0.12456 | -0.17643 | -0.62456 | -0.35134 | -0.73562 | -0.42245
AP-1 -0.66552 | -0.43369 | -0.32562 | -0.73289 | -0.86942 -1.0133
Pax-2 -0.30133 -1.0398 -1.2721 -1.3023 -1.3618 -1.5758
Srebpl -0.2562 -1.2702 -0.5802 -1.2892 -1.2202 -1.503
SEF-1 -0.29334 | -0.64827 -1.0565 -0.72927 | -0.87776 -1.0512
c-REL -0.6261 -0.50999 -1.0505 -1.0054 -1.2351 -1.3284
Bachl 0.061449 | -0.30877 | -0.58014 -1.3472 | -0.65647 -1.0186
GATA-3 0.091425 0.2248 -0.068894 | -0.37556 | -0.47415 | -0.40685
AP-2rep -0.12859 | -0.65207 | -0.40118 | -0.99122 | -0.68998 | -0.93696
MyoD -0.20273 | -0.86627 | 0.030423 | -0.41089 | -0.46454 | -0.45223
AP-4 0.3151 -0.97178 | -0.58791 | -0.98314 | -0.72079 -0.9304
NF-kappaB | 0.20588 0.17061 -0.34983 | -0.24582 | -0.089356 | 0.081519
p65 0.49724 0.14724 | 0.0061475 | -0.19866 | 0.28177 0.10698

Table C.4: NCA - binary connectivity matriz - Group #4

UniquelD | dml int. | dO int. | d2 int. | d4 int. | d6 int. | d8 int.
NF-kappaB 1.1082 9.0572 | 2.1735 | 6.1039 | 5.2897 | 7.2798
MEF-2 0.63646 8.6266 | 8.1705 | 8.6895 | 8.6835 | 8.4819

Table C.5: NCA - weighted connectivity matriz - Group #1
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UniquelD | dml int. | dO int. d2 int. d4 int. d6 int. dS8 int.
STAT3 -0.061278 | -0.77677 | -0.27397 | -0.21541 | -0.086855 | 0.073754
Elk-1 -0.018571 | -0.22095 | -0.16878 | 0.040882 -0.25169 | -0.27567
AP-4 -0.070574 | 0.35296 | -0.43804 | -0.19248 -0.48927 | -0.57169
Lmo?2 0.37587 0.51045 | -0.41625 | -0.46307 -0.53288 | -0.68566
Elk-1 0.050081 -0.25386 -0.76 -0.62596 -0.72032 | -0.68127
MZF1 0.2076 -1.1749 | -0.16658 | -0.40349 -0.64699 | -0.51236

MZF_5-13 0.39389 0.011905 | 0.029392 | -0.33244 0.041387 | 0.15656

AP-2gamma 1.0739 -0.61315 | -0.89285 -1.4768 -0.59213 -1.0189

GR -0.45458 -0.8187 0.29082 -0.32019 -0.51563 | -0.25566
SREBP-1 -0.17671 0.12266 | -0.61199 | -0.73821 -0.71496 | -0.94965
RREB-1 0.071703 | -0.94714 | -0.20001 0.12605 -0.25874 | -0.07663

SP1 -0.50924 -0.83223 | -0.62503 | -0.69177 -0.54162 | -0.55079

CDP -0.61055 -0.92335 | -0.27133 | -0.41747 -0.47442 | -0.55149
AREB6 -0.17028 -0.67383 | -0.68677 | -0.64398 -0.48453 | -0.89469

Olf-1 -0.59334 -0.91808 | -0.56892 -1.1938 -1.1577 -1.2625

NF-kappaB NaN -0.17625 | -0.41052 -0.688 -1.2426 -0.98612

NF-Y -0.14723 -0.80533 | -0.28394 | -0.99185 -0.94424 -1.2269

GR 0.46579 -0.14799 | -0.44498 | 8.0436E-4 | 0.094355 0.17136
Brachyury -0.1898 -1.1186 | -0.47857 -1.0746 -1.0975 -0.41329
GATA-1 -0.47495 -0.70654 | -1.1526 -1.4971 -1.6856 -1.7671
Srebpl -0.31625 -1.568 -0.71619 -1.5914 -1.5062 -1.8552
Spzl -0.17898 -0.05208 | -0.41188 | 0.086424 0.075674 | 0.35747
SEF-1 -0.0025944 -1.198 -1.4571 -1.6097 -1.5636 -1.9707
E47 -0.17637 -1.6379 -1.1302 -1.5003 -1.4075 -1.6166
E47 0.072135 | -0.57852 | -1.7088 -1.929 -1.9788 -1.8262
Lyf-1 0.82392 -0.21775 | -1.8636 | -0.037459 0.81001 0.78113
MEF-2 -0.38894 -0.99776 | -1.1131 -1.9615 -1.915 -2.1897
Table C.6: NCA - weighted connectivity matriz - Group #2
UniquelD dml int. | dO int. | d2 int. | d4 int. | d6 int. | d8 int.
MAZR 0.13875 -3.8544 | -4.2862 | -6.0198 | -4.7844 | -9.6023
NF-kappaB -1.9317 -5.8358 | -2.1372 | -3.8403 | -3.7626 | -4.6579
E2F 0.13091 -2.5423 | -1.7524 | -1.9765 | -2.6647 | -2.1897
GATA-3 -0.21561 -3.1526 | -3.686 | -3.0498 | -2.838 -2.026
RORalpha2 -0.70143 -2.0285 | -2.0598 -2.916 -3.412 -3.6612
TCF11-MafG -1.9552 -2.7535 | 1.5488 | -3.0854 | -3.1986 | -3.6158
Table C.7: NCA - weighted connectivity matriz - Group #3




UniquelD | dml int. | dO int. d2 int. d4 int. d6 int. d8 int.
MEF-2 0.55707 0.7542 -0.67583 | 0.53137 0.42688 0.84397
CREB 0.044928 0.59746 | -0.37759 | 0.29331 | 0.063407 0.14702
RP58 -0.19013 -0.1224 0.3987 0.57188 0.79257 0.92316
LUN-1 -0.12364 0.42713 | 0.73723 | 0.21872 0.59981 0.66032

SRF 0.21667 | -0.021332 | 0.55573 0.8108 1.0154 0.78644
P300 -0.32338 | -0.31602 | 0.98961 0.21513 0.55842 0.72992
TEF-1 -0.26477 | -0.16161 | 0.24793 | 0.52332 0.61836 0.3707
MEF-2 -0.20065 1.5451 -0.81011 | 0.32791 0.45459 | -0.0050765
GATA-3 -0.28077 0.71564 0.193 0.50233 0.9789 0.92827
NF-Y 0.19095 0.28048 | 0.85275 1.1754 1.1237 0.80035
SRF -0.21024 | -0.19129 | 0.80636 | 0.45984 0.65887 0.42244
Pax-4 0.72707 0.37752 1.5272 0.97756 0.82933 0.72302

RUSH1-alfa | -0.17358 0.76798 | -0.13045 | 0.59529 0.4076 0.52822

SAP-1 -0.044558 | 0.99996 | 0.59878 | 0.66867 0.62453 0.72989

E2F -0.052023 | 0.79724 | 0.51634 | 0.42695 0.70081 0.36771
RREB-1 -0.24712 0.21801 0.3951 0.41995 0.61737 0.6738
MZF1 -0.21702 | -0.26099 | 0.84607 | 0.32106 0.64458 0.36939
Brachyury | -0.67031 0.16655 | 0.32038 | -0.053525 | 0.19868 0.10105
SRF -0.048934 | 0.42763 1.4801 1.4112 1.7838 1.6078
c-REL -0.077502 | 0.28377 1.0328 1.227 0.88971 1.0383
AP-2rep -0.34238 0.82191 1.4217 1.3156 1.268 1.3292
MyoD -0.11467 1.0981 0.93642 1.1565 1.4416 1.4186
HEN1 0.12362 0.38045 1.0476 1.6269 1.3712 1.4477
SRF -0.041273 0.5643 1.7367 1.5056 1.6201 1.7965
RSRFC4 0.55333 0.78743 1.0105 1.8248 1.512 1.8692
Pax-2 -0.016473 1.183 1.3374 1.7177 1.5884 2.223
Spzl -0.33433 0.64992 1.4068 1.6641 1.6692 1.6677
ER -0.088758 1.2755 1.2427 1.6121 1.6338 1.9629
AP-2 0.97819 2.6291 2.5143 1.7591 1.7645 1.6223
MyoD 0.053267 1.2335 1.5595 2.2487 2.2256 2.2745
AP-1 -0.010668 3.1807 1.9971 2.07 1.9349 1.843
GATA-2 0.31276 2.5709 1.4911 2.2228 1.8368 1.7152

Table C.8: NCA - weighted connectivity matriz - Group #/
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