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Graz, Österreich, 28. Jänner 2010

Begutachter

Univ. Ass. DI Dr. Robert Albin Legenstein





Abstract

Recommender Systems are becoming more and more popular these days. They are used

in many different areas for recommending books, CDs, movies and other products. The

main building block of a recommender system is a collaborative filtering (CF) algorithm,

which uses the wisdom of the crowd to predict the taste of the individual. The goal of

this thesis is, to compare state-of-the-art collaborative filtering algorithms.

I compare several latent factor models and neighborhood based approaches on the

following real world datasets: Jester Joke, MovieLens1M, MovieLens10M and Netflix.

For collaborative filtering there exist a lot of popular error measures, which find a

widespread use. Therefore I do not restrict my analysis to a single error measure. In-

stead I use the following four: Mean Absolute Error (MAE), Root Mean Square Error

(RMSE), Average Rank (AR) and Area Under Curve (AUC). I empirically investi-

gate the relationships between these error measures. For the latent factor models I

investigate the influence of regularization and feature size on accuracy and runtime.

Furthermore I investigate the effect of different fillrates of the rating matrix and Gaus-

sian observation noise. The evaluation is done on synthetic data or on the mentioned

real world datasets.

My thesis shows that factor models prove to be superior to neighborhood based

models on all datasets and with respect to every error measure under investigation.

Different fillrates and observation noise do not change the result. Furthermore empirical

analysis shows a close relation between the minimas of different error measures.
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Kurzfassung

Empfehlungssysteme werden immer populärer. Sie finden in vielen verschiedenen Bere-

ichen Anwendung, so können sie eingesetzt werden um Bücher, CDs, Filme und andere

Produkte zu empfehlen. Der Kernbestandteil eines Empfehlungssystems ist ein col-

laborative filtering (CF) Algorithmus, welcher aus dem Geschmack von Vielen den

Geschack des Einzelnen ableitet. Das Ziel dieser Arbeit ist es, moderne collaborative

filtering Algorithmen zu vergleichen.

Hierbei werden verschiedene Latent Factor Modelle und nachbarschaftsbasierte

Methoden auf den folgenden Datensätzen verglichen: Jester Joke, MovieLens1M,

MovieLens10M und Netflix. Für Collaborative Filtering gibt es einige weitverbreitete

Fehlermaße. Aus diesem Grund beschränke ich die Experimente nicht auf ein

einziges Fehlermaß, sondern verwende die vier folgenden: Mean Absolute Error

(MAE), Root Mean Square Error (RMSE), Average Rank (AR) and Area Under

Curve (AUC). Die Beziehungen zwischen diesen Fehlermaßen werden empirisch

untersucht. Bei den Latent Factor Modellen wird der Einfluss von Regularisierung

und Anzahl der Features auf Genauigkeit und Laufzeit untersucht. Des weiteren

werden die Effekte von unterschiedlichen Füllraten der Rating Matrix und Gaußschen

Beobachtungsrauschens untersucht. Alle Auswertungen werden auf synthetischen oder

den genannten echten Datensätzen durchgeführt.

Diese Arbeit zeigt, dass Latent Factor Modelle bessere Ergebnisse liefern als nach-

barschaftsbasierte Methoden, und dies auf allen Datensätzen und bezüglich aller un-

tersuchten Fehlermaße. Unterschiedliche Füllraten und Beobachtungsrauschen ändern

dieses Ergebnis nicht. Weiters zeigen empirische Ergebnisse, dass die Minimas ver-

schiedener Fehlermaße eng zusammenhängen.
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Chapter 1

Introduction

Contents

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Content Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Goal of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 Mathematical Notation . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Netflix Prize . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Overview

Recommender systems use the wisdom of the crowd to make predictions for an in-

dividual. So recommender systems can be used in various contexts, where you have

lots of users and items. For example they can be used to predict how likely you are

going to enjoy a movie or buy a book. A typical webshop has thousands of items and

users. Recommender systems can be used to help the user to find items among the

overwhelming set of choices.

Recommender systems can learn from different types of information. Typically you

group it into explicit and implicit information. Everytime when the user is directly

asked to explain his taste to the system, it is called explicit information. The most

popular example in this category is the rating. In the case of a 5 star rating scale, the

user has to transform his opinion on an item into a 5 star rating. An other popular

1



2 Chapter 1. Introduction

example for explicit information are rankings, where the user is asked to rank items

corresponding to his taste. For implicit information the user is not directly asked.

Examples are: The time spent on a page, clicks and purchased products.

In general recommender systems can be categorized into content and collaborative

filtering systems.

1.2 Content Filtering

Content filtering uses additional item information for the recommendations. Based on

the users historical information on liked and disliked items and item-item similarities, a

content filtering algorithm calculates recommendations. In the case of content filtering

item-item similarities are based on item meta data. So the quality of a content filter-

ing system strongly depends on the quality of the item meta information. Typically

there are two ways of generating item meta data. The first option is the handcrafted

generation, which can be very time consuming and error-prone. Typical examples

therefore are coarse categorizations of items like genres for movies. The second option

for generating item meta information is to automatically generate it. There exist a

lot of examples where this has been done for text. A classical example for automatic

feature extraction is described in [20], where content filtering is applied to newsgroup

messages. For pictures, video and audio data the problem of automatically extracting

content information is much harder.

1.3 Collaborative Filtering

Pure collaborative filtering (CF) does not use user and item meta information. The

underlying assumption of CF is, that users who agreed on something in the past tend

to agree on it in the future. So CF searches for users with similar taste and uses this

information to generate predictions.

1.4 Goal of the Thesis

Over the last years lots of collaborative filtering algorithms were published. Most of the

papers focus on a specific algorithm on a specific dataset and report results for one spe-
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cific error measure. This resulted in a variety of different algorithms, datasets and error

measures. All of this makes it hard to compare new results to older ones. It is often

very hard to judge if an improved result on a benchmark dataset results from algorith-

mic improvements and prevails for other datasets, or from modelling dataset specific

properties. There is also the big question on which error measure to use for comparison

since all of the commonly used have their justification and real world relevance.

In the thesis I focus on pure rating based collaborative filtering algorithms, because

most published results are stemming from this area. I compare classic neighborhood

based methods with matrix factorizations. For comparing the algorithms I use accu-

racy measures and ranking error measures, and I analyze which are better suited for

optimizing and analyzing collaborative filtering algorithms. Then, I analyze the accu-

racy of the algorithms on the MovieLens1M, MovieLens10M, Jester Joke and Netflix

dataset. Furthermore, it will be shown how to generate synthetic data for conducting

experiments which would not be possible otherwise. I also take a close look at the be-

havior of the algorithms for very sparse and non sparse data, as well as at the influence

of high observation noise.

The main finding of my thesis is that factor models proved to perform well on all

dataset and error measure combinations. Regularization is shown to be important for

factor models, which is not very surprising for imbalanced datasets. Different fillrates of

the rating matrix and different levels of observation noise do not change a performance

based ranking of the algorithms. A very interesting result is that the best algorithms

are mostly the same for all error measures. Furthermore, I empirically found that the

minima regarding different error measures are closely related.

1.5 Mathematical Notation

Within this work I use datasets with jokes and movies, we will call them allways just

items. The set of users is denoted by U and the set of items with I. The set of items

rated by user u is Iu, while the set of users which rated item i is called Ui. The rating

of user u on item i is written as rui. One can think of the ratings as being stored in

a sparse matrix R = [rui] of the size |U | × |I|. The set of user-item tuples with an

existing historical rating rui is called L = {(u, i)|u ∈ U, i ∈ I,user u has rated item i}.
L is split into two disjoint sets T ∩P = ∅, the train set T and the probe set P, so that
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T ∪ P = L. The way how to split away the probe set is reported for every dataset in

Chapter 2. Predicted ratings or approximations are denoted as r̂ui. All sorts of meta

parameters are written as small Greek letters (α, β, γ, ...). Vectors and matrices will

be written in bold face. Additional definitions will be made on demand throughout

this work.

1.6 Netflix Prize

Netflix Inc. is a leading online movie rental company, which started a world wide com-

petition to improve their own Cinematch algorithm by 10%. The competition started

in October 2006 and ended in September 2009. Michael Jahrer and I participated in

the competition and achieved to be part of the winning team for the Progress Prize

2008 and the final Grand Prize in 2009. Throughout my thesis I will have remarks and

notes on topics where we gained experience from the Netflix Prize.



Chapter 2

Datasets

Contents

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 MovieLens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Jester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Netflix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Synthetic Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Overview

Data for collaborative filtering is typically collected from explicit or implicit user feed-

back. Explicit feedback means that the user is asked to explain his opinion to the

system. Examples for explicit feedback data are ratings and orderings. Implicit feed-

back data is collected out of user actions. Examples are clicks, time of viewing or

purchase information. The statistical properties of the different sources of information,

can be very different. Purchase information is typically a high quality information,

whereas click information has low quality. But not only the noisy level is different be-

tween the datasets. The user interface design plays a major rule. Sometimes the ratings

are missing at random but mostly not. Rating scales can be continuous or discrete,

and could have different ranges. Users can be asked to rate an initial fixed set of items.

So the datasets can be very different. Obviously this influences the performance of the

algorithms, and a good comparison should use as different datasets as possible.

5



6 Chapter 2. Datasets

The comparison of the recommender algorithms is done on 4 real world datasets

and a synthetic dataset. The 4 real world datasets have different numbers of ratings

and different statistical properties. All of these datasets stem from explicit feedback,

due to the lack of freely available implicit feedback datasets. Not every algorithmic

property of interest can be tested using real world datasets so we also use a adjustable

synthetic dataset for some experiments.

2.2 MovieLens

MovieLens∗ is a free online movie recommender system from the GroupLens research

group at the University of Minnesota. Users can rate known movies, and based on this

information the system recommends new movies to the users. The GroupLens research

group provides 3 datasets with 100 thousand, 1 million and 10 million of ratings. We

use the 1 million and 10 million datasets. Both datasets use a 5 star rating scale ranging

from 1 to 5 stars.

2.2.1 MovieLens1M

The MovieLens1M dataset consists of exactly 1,000,209 ratings of 6,041 users on 3,707

items. The fillrate of the rating matrix is 4.47%. The probe set is a fixed 10% random

subset. In Figure 2.1 we can see a overall rating histogram, in Figure 2.2 a histogram of

the number of ratings per item and in Figure 2.3 a histogram of ratings per user. These

ratings per user and ratings per item histograms are clearly distributed exponentially.

This means that few users voted a lot, while most users have given just a few ratings.

Also, there are some very popular items which are heavily rated, while the most have

few ratings. This imbalancedness of the data is the reason why proper regularization

is important. We will discuss this in Section 6.2.

2.2.2 MovieLens10M

The MovieLens10M is the latest and biggest dataset from the GroupLens research

group. It has 10,000,054 ratings from 71,567 users on 10,681 items. The fillrate of the

rating matrix is 1.31%. The probe set is a fixed 10% random subset. Figure 2.4 shows

∗http://movielens.umn.edu

http://movielens.umn.edu
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Figure 2.1: MovieLens1M: The rating distribution is clearly shifted to-
wards 3 to 5 star ratings. The 4 star rating is the most prominent.
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Figure 2.2: MovieLens1M: The number of ratings per items varies over a
large scale. Some items got heavily rated, while others are rated rarely.

the rating histogram. The histogram with ratings per item can be seen in Figure 2.5

and the rating per user histogram in Figure 2.6.
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Figure 2.3: MovieLens1M: The number of ratings per user varies as much
as the ratings per item, but on a different scale.
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Figure 2.4: MovieLens10M: The rating histogram of the MovieLens10M
dataset looks similar to the smaller MovieLens1M. The rating distribution
is clearly shifted towards three to five star ratings. The four is the most
common rating.

2.3 Jester

Jester is an online joke recommender site†. The users can rate jokes on a continuous

rating scale from -10 to 10. Based on the users previous ratings a recommender algo-

rithm suggests new jokes to the user. Originally Jester used the Eigentaste algorithm

†http://shadow.ieor.berkeley.edu/humor/

http://shadow.ieor.berkeley.edu/humor/
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Figure 2.5: MovieLens10M: The number of ratings per item ranges from
a few hundred to over 20,000.
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Figure 2.6: MovieLens10M: This histogram shows nicely that the actual
number of ratings per user differs widely. A single user rated over 7,300
movies, while the average user rated 140.

as described in [12]. Currently Jester uses the improved Eigentaste 5.0 algorithm [22].

Based on the collected rating data Jester provides a dataset with 4,116,866 ratings

from 73,421 users on 100 jokes. Compared to other collaborative filtering datasets the

fillrate of this dataset is much higher. In the Jester dataset 56.07% of the elements of

the rating matrix are known. In Figure 2.7 you can see a rating histogram. The probe

set is a fixed 10% random subset.
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Figure 2.7: Jester: The continuous rating scale ranges from -10 to 10.
The rating distribution is more flat as in the MovieLens or Netflix dataset,
with a slight overweight of positive ratings.

Figure 2.8 contains the histogram of ratings per item and Figure 2.9 the ratings per

user. The Jester website asks every new user to rate the same amount of initial jokes,

and starts afterwards to recommend jokes to the users. This behavior is clearly visible

in the histograms.
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Figure 2.8: Jester: The first few jokes got rated by nearly every user.
This property stems from the fact that a new user has to rate this fixed set
of jokes first, before the recommender system starts to recommend jokes.
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Figure 2.9: Jester: Some users rated every joke, while there are also users
who only rated the initial jokes.

2.4 Netflix

Netflix is an online movie rental company. Users can browse and order movies online. A

key part of the Netflix service is a recommender system, called Cinematch. In October

2006 Netflix launched a competition‡ with a prize money of $1,000,000, with the goal

to improve the Cinematch algorithm by 10% (measured in terms of the RMSE). For

this competition Netflix released a dataset with 100,480,507 ratings of 480,189 users on

17,770 items. Thus the dataset has a fillrate of about 1.17%. The probe set P used for

reporting performance values in this thesis is exactly the same as defined by Netflix for

the competition. The rating histogram is shown in Figure 2.10, while the histogram

with ratings per item can be seen in Figure 2.11 and ratings per user in Figure 2.12.

2.5 Synthetic Dataset

Experiments on real world datasets are very important, but it is not possible to find

real world datasets that cover every property of interest. So we are using a synthetically

generated dataset for some later experiments.

For collaborative filtering it is important that the ratings between the users and the

items are correlated. For this reason we construct the rating matrix R by summing up

‡http://www.netflixprize.com

http://www.netflixprize.com
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Figure 2.10: The average rating in the Netflix dataset is 3.6, and the
most often used rating is the four. The histogram itself is clearly shifted
towards the higher ratings, as for the MovieLens datasets.
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Figure 2.11: Netflix: The ratings per item range from under 10 to over
200,000. So there are very popular and very unpopular items in the dataset.
The average item got 5,654 ratings.

the user rating matrix Ruser and item rating matrix Ritem and the noise matrix Γ

R = Ruser + Ritem + Γ. (2.1)

The user rating matrix Ruser stems from a multivariate Gaussian distribution, with

non zero correlations between the users. The same applies to the item rating matrix
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Figure 2.12: Netflix: The ratings per user distribution looks similar to
the MovieLens datasets. The ratings per user range from 1 to over 17,000.
The average user has rated 209 items.

Ritem, which also has non zero correlations between the items.

The noise matrix Γ = [γij ] in Equation 2.1 simulates the rating noise, which is the

variability in the user ratings. Within this work we restrict our analysis to Gaussian

noise γij ∼ N (0;σ). By using σ = 0 a user gives always the same rating for an item.

Values for σ greater than 0 account for the fact that users do not give the same ratings

if they are asked to rerate already rated items. The user rating matrix Ruser has the

size |U | × |I| and consists of |I| column vectors ruser

i
of the dimension |U | × 1. The

vectors ruser

i
are drawn i.i.d. from

ruser

i ∼ N (µuser1;Σuser) (2.2)

a multivariate Gaussian distribuation with the covariance matrix Σuser, which defines

the correlations between the users. The item correlation matrix Ritem consists of |U |
row vectors ritem

u with the dimension 1× |I| which are drawn i.i.d. from

ritem

u ∼ N (µitem1;Σitem) (2.3)

a multivariate Gaussian distribution.

The problem of generating a meaningful rating matrix R can therefore be reduced

to the problem of generating valid user and item covariance matrices Σuser and Σitem.
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Hirschberger et al. [17] describes a method for generating valid covariance matrices by

specifying diagonal mean and variance and the offdiagonal mean of Σ.

The idea is to construct Σ as a product of the matrix F with itself:

Σuser = FuFu
T (2.4)

Σitem = FiFi
T (2.5)

Thus the constructed covariance matrix Σ is always positive semidefinite. In order

to specify the diagonal mean e, the diagonal variance v and the offdiagonal mean ē the

matrix F has to be generated as follows:

m = round

(

ē2 − e2

v

)

(2.6)

ê =

√

e

m
(2.7)

v̂ = −ê2 +

√

ê4 +
v

m
(2.8)

fij = ê +
√

v̂qij (2.9)

qij ∼ N(0; 1), i = 1, .., n, j = 1, ...,m (2.10)

After generating the synthetic rating matrix R as described, the matrix is fully filled.

For CF the rating matrix is typically very sparse, so we have to draw a random subset

from the full matrix in order to get a specified fillrate. Every item will have roughly the

same number of ratings, while the same is true for the users. Therefore, the user and

item rating distributions will be flat, hence differing from the exponential distributions

of Netflix and MovieLens. It would be very interesting to introduce parametrized

distributions and to investigate the implications for the needed regularization, but this

will be left open to future research.
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Throughout this work we will refer to the following three predefined synthetic

datasets.

2.5.1 Configuration 1

The configuration 1 uses 5,000 users and 1,000 items. The fillrate of the rating matrix

is 4% and the rating mean is 3. The rating noise is σ = 0.1. A random subset of 10%

is used as the probe set. The rating histogram is shown in Figure 2.13. The histogram

with ratings per item can be seen in Figure 2.14 and ratings per user in Figure 2.15.
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Figure 2.13: Synthetic dataset configuration 1: It can be clearly seen that
the global rating mean is at 3.

2.5.2 Configuration 2

The second configuration uses the same number of users and items, as the first con-

figuration. The fillrate with 4% and the mean rating with 3 is also the same. The

difference to configuration 1 is the much higher and more realistic rating noise with

σ = 0.7. For generating this dataset the ratings got also rounded to discrete ratings,

which introduces additional noise. Figure 2.16 shows the rating histogram.
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Figure 2.14: Synthetic dataset configuration 1: The ratings per item are
nearly equally distributed. This property comes from the fact that the
observed ratings were drawn randomly from the full matrix R.
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Figure 2.15: Synthetic dataset configuration 1: The ratings per user are
nearly equally distributed.

2.5.3 Configuration 3

The third standard configuration uses 5,000 users and 1,000 items, which is exactly

the same as for the first two configurations. The global rating mean is 3.54, the rating

observation noise is σ = 0.7 and the ratings are rounded. In contrast to the previous

settings the fillrate is much higher, in this configuration a fillrate of 16% is used. The

rating histogram is shown in Figure 2.17.
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Figure 2.16: Synthetic dataset configuration 2: The mean rating is 3. In
contrast to configuration 1 the ratings have been rounded.
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Figure 2.17: Synthetic dataset configuration 3: Due to the shift of the
rating mean to 3.54, the 3 and 4 star rating is now very popular.
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3.1 Overview

The fields of application of recommender systems are very widespread. So researchers

developed a variety of error measures. Herlocker et al. [16] grouped them into the

following three main groups:

• Predictive Accuracy Measures

• Classification Accuracy Measures

• Ranking Accuracy Measures

In each group there exist a lot of different error measures. This amount of different

error measures makes it very hard to compare results. Another problem here is that

for recommender systems people typically use a fixed probe set instead of cross fold

19
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validation, due to the size of real world datasets. Therefore the results become strongly

dependent of the way of choosing the probe subset.

The Netflix competition boosted recommender systems research. By means of fixing

a probe set and using the RMSE as an error measure the results got comparable.

A objective way of evaluating recommender systems is absolutely necessary. Un-

fortunately, there is no universal error measure which evaluates every aspect of a rec-

ommender system. For designing and tuning algorithms it is obligatory to have an

objective way for comparison. In the case of recommender systems it is very tricky to

find a good universal error measure [7].

3.2 Predictive Accuracy Measures

Predictive accuracy measures use the difference between the predicted and the real

rating. Such error measures are typically used for regression problems. Examples are:

• MAE Mean Absolute Error

• NMAE Normalized Mean Absolute Error

• MSE Mean Square Error

• RMSE Root Mean Square Error

3.2.1 Mean Absolute Error - MAE

The MAE is a classical accuracy measure and frequently used for regression problems.

Small and big errors influence the MSE equally. The MAE is given by

EMAE =
1

|P|
∑

(u,i)∈P

|rui − r̂ui| , (3.1)

where P stands for the probe set, rui for the real rating and r̂ui for the predicted rating.

3.2.2 Normalized Mean Absolute Error - NMAE

Goldberg at al.[13] proposed to normalize the MAE to the rating scale. This makes

errors from datasets with different rating scales better compareable.
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The normalized MAE is given by

ENMAE =
EMAE

rmax − rmin

=
1

|P|
∑

(u,i)∈P

|rui − r̂ui|
rmax − rmin

, (3.2)

where rmax denotes the highest possible rating and rmin the lowest.

3.2.3 Mean Square Error - MSE

The MSE is an accuracy measure and often used in literature for regression problems.

In contrast to the MAE larger errors contribute more

EMSE =
1

|P|
∑

(u,i)∈P

(rui − r̂ui)
2. (3.3)

3.2.4 Root Mean Square Error - RMSE

The RMSE is the square root of the MSE

ERMSE =
√

EMSE =

√

√

√

√

1

|P|
∑

(u,i)∈P

(rui − r̂ui)2. (3.4)

3.3 Classification Accuracy Measures

A recommender system could not only be seen as a regression problem. It could also be

seen as a classification problem. The goal is to correctly classify the interesting versus

the uninteresting items. For example on a five star rating scale this could mean to

classify the 4 and 5 star rated items as interesting and the rest as uninteresting.

3.3.1 Area Under Curve - AUC

The receiver operating characteristics (ROC) curve was introduced by Hanley and

McNeil [15] in the context of signal detection theory. Over time the ROC curve had

become a standard tool for measuring the performance of a classifier. In order to make

this metric easier to compare, it is compressed into a single number, namely the area

under curve (AUC).
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We calculate the AUC as described in [8]. For the evaluation of a CF algorithm,

one can simply calculate the AUC per user and average over the users. In the following

equation IH
u denotes the set of items with a high target rating from user u (4 and 5

stars). While IL
u stands for the set of items with a low target rating from user u. So

these two sets are disjoint IH
u ∩ IL

u = ∅ and their union is the set of all rated items

IH
u ∪ IL

u = Iu by user u

EAUC =
1

|U |
∑

u∈U

∑

î∈IH
u

∑

ī∈IL
u

1r̂
uî

>r̂uī

|IH
u | · |IL

u |
. (3.5)

3.4 Rank Accuracy Measures

Rank accuracy measures are used to quantify the quality of a sorting. Here a recom-

mender system predicts recommendation scores with the items getting sorted based on

these scores. Some of the error measures in this category assume a binary view on the

data, as for the classification accuracy measures.

3.4.1 Normalized Cumulative Gain - NCG

The NCG is often used to measure the quality of list of search results. This error

measure is often used for search engines. Let us assume a binary classification of all

items in interesting and uninteresting. The interesting items have a relevance score

of reli = 1 and the uninteresting items reli = 0. In order to calculate ECG(p) the

recommender system predicts recommendation scores for a list of items. The list gets

sorted while the relevance scores of the first p items get summed up

ECG(p) =

p
∑

i=1

reli. (3.6)

In order to normalize this error measure ECG(p) is divided by EICG(p) which is the

sum of the first p relevance scores based on a ideal sorting

ENCG(p) =
ECG(p)

EICG(p)
. (3.7)

Hence, the best value for the ENCG(p) is 1 and 0 is the worst. The NCG is not
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restricted to binary relevance scores, it is also possible to use ratings as relevance

scores. Another interesting property of this error measure is, that only ranking the

first elements influences the error. This is totally different to the predictive accuracy

measures where every error counts the same.

3.4.2 Normalized Discounted Cumulative Gain - NDCG

The NDCG introduces a discount factor, so a correct sorting at the highest places is

more importend. As for the NCG the last places (higher than p) do not influence the

error

EDCG(p) = rel1 +

p
∑

i=2

reli

log2(i)
, (3.8)

ENDCG(p) =
EDCG(p)

EIDCG(p)
. (3.9)

3.4.3 Average Rank - AR

The average rank works only on binary data. As for the other ranking errors the list

of items is sorted according to the predicted ratings r̂ui, where rank(r̂ui) denotes the

position (ranking) of the predicted rating within the list of all predicted ratings for the

user u. The EAR is now the average ranking of items with an high rating

EAR =
1

|U |
∑

u∈U





1

|IH
u |

∑

i∈IH
u

rank(r̂ui)



 , (3.10)

such that lower values of EAR indicate better performance.

3.5 Conclusion

In this chapter we introduced several popular error measures for collaborative filtering

algorithms. These error measures were grouped into predictive accuracy, classification

and ranking error measures. Throughout the rest of this work we focus on RMSE, MAE,

AR and AUC. We will report errors for all these error measures for every experiment.

The main intention of this work is not to achieve new benchmark results on a given
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dataset. Instead we are interested in the relationships between the error measures

which will be investigated in Chapter 6 empirically.
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4.1 Overview

Collaborative filtering algorithms can be categorized into memory based and model

based [6]. Memory based algorithms need all the data in the main memory for making

predictions. Typical examples in this category are nearest neighbor algorithms. By

contrast, model based methods learn a user and item model, so these methods do not

need access to the data for generating predictions. Good examples are factor models.

In practical implementations pure memory based methods are rarely used because of

scalability problems. For example the correlations for neighborhood based methods are

typically precomputed, so this method can become a hybrid algorithm in real world

applications.

25
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4.2 K-Nearest Neighbor - KNN

Figure 4.1: This figure visualizes a user based KNN. The thickness of
red lines between users indicate the correlations between them, which are
calculated based on past ratings. Thick red lines stand for strong correla-
tions, while thinner red lines denote weaker correlations. The goal in this
example is to predict a rating of user 5 for item 0. The unpersonalized
approach would be to take the mean rating of all other users. In order to
personalize the rating on item 0 for user 5, we select the K most similar
users and weight their rating based on the correlation to user 5. So the
unpersonalized average over all users changes to a weighted average over
the most similar users.

Nearest neighbor algorithms are very popular for collaborative filtering, and were

one of earliest published. In 1994 Resnick et al. [26] published a user based KNN for

filtering netnews, which become very popular. KNN algorithms are the best example

for a memory based method. The basic idea is to calculate correlations between users

or between items and to make predictions based on the ratings of the top K correlating

users or items.

4.2.1 User KNN

The user KNN is based on user/user correlations. A example is shown in Figure 4.1.

The needed similarities between two users u and v are computed based on the set of

items that both users have rated Iuv = Iu ∩ Iv. The typical choice for the correlation
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Figure 4.2: This example visualizes a item correlation based KNN. It is
basically a flipped version of the example in Figure 4.1. For item KNN a
similarity between the items is used instead of user similarities. Thus red
lines denote similarities between the items. Thicker lines denote strong cor-
relations and thinner lines stand for weak correlations. In order to predict
the rating for item 4, one has to simply take the K ratings for items which
are most similar to item 4. Finally a weighted average based on the K most
similar ratings is calculated.

between two users is the Pearson correlation ρuv, which is given by

ρuv =

1
|Iuv|−1

∑

i∈Iuv
(rui − µu)(rvi − µv)

√

1
|Iuv|−1

∑

i∈Iuv
(rui − µu)2

√

1
|Iuv|−1

∑

i∈Iuv
(rvi − µv)2

, (4.1)

where

µu =
1

|Iuv|
∑

i∈Iuv

rui (4.2)

µv =
1

|Iuv|
∑

i∈Iuv

rvi. (4.3)

In order to compute the predicted rating r̂ui for user u on item i, one has to select

the K most similar users Ui(u;K) who rated item i. This set of similar users is a subset

of all users Ui(u;K) ⊂ Ui who have rated item i, where ∀v1∈Ui(u;K)∀v2∈(Ui−Ui(u;K)) :

ρv1u ≥ ρv2u. The basic KNN version would be to simply average the ratings of the

similar user set, which leads to:

r̂ui =
1

|Ui(u;K)|
∑

v∈Ui(u;K)

rvi (4.4)
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A more sophisticated way of calculating this KNN is to calculate a weighted average,

where the ratings are weighted with the user correlation.

r̂ui =

∑

v∈Ui(u;K) ρuvrvi
∑

v∈Ui(u;K) |ρuv|
(4.5)

If we additionally account for the users rating mean µu, we end up with the user

based KNN described in [26]:

r̂ui = µu +

∑

v∈Ui(u;K) ρuv(rvi − µv)
∑

v∈Ui(u;K) |ρuv|
(4.6)

4.2.2 Item KNN

A lot of collaborative filtering datasets, and all of the ones used within this work, have

more users than items. This means that the average item has more ratings than the av-

erage user, so item/item correlations are typically better defined. For this reason, item

based KNN typically delivers much better results. In Figure 4.2 there is a visualization

of an item correlation based KNN.

The rating prediction for item based KNN is given by:

r̂ui =

∑

j∈Iu(i;K) ρijruj
∑

j∈Iu(i;K) |ρij |
(4.7)

Where Iu(i;K) ⊂ Iu is the set of most similar items to item i, which were rated by

user u. The similarity between two items i and j is measured in terms of the Pearson

correlation ρij , which is defined on the subset of ratings from users who rated both

items Uij = Ui ∩ Uj :

ρij =

1
|Uij |−1

∑

u∈Uij
(rui − µi)(ruj − µj)

√

1
|Uij |−1

∑

u∈Uij
(rui − µi)2

√

1
|Uij |−1

∑

u∈Uij
(ruj − µj)2

, (4.8)

where

µi =
1

|Uij |
∑

u∈Uij

rui (4.9)
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µj =
1

|Uij |
∑

u∈Uij

ruj . (4.10)

4.2.3 Correlation Shrinkage

A problem of the user and item correlations, as described above, is that not all of

them can be calculated with the same confidence level. The move from user to item

correlations helps on datasets with fewer items to get better defined correlations on

average. Still, there is the problem that some correlations are based on thousands of

ratings, while others on less than ten. An easy and effective solution was proposed by

Bell and Koren [4]. They proposed to shrink the correlations towards zero based on

the number of ratings used to estimate the correlation. The “shrinked” correlation cij

between item i and j is given by

cij =
|Uij| · ρij

|Uij|+ α
, (4.11)

where α is a meta parameter.

Thus, when the number of users |Uij | who rated item i and j is high compared to

α, the raw correlation ρij stays nearly unchanged. If the correlation is badly defined,

|Uij | is small compared to α, so ρij gets shrunken towards 0.

We can directly use this shrunken correlation cij for the item KNN for Equation

4.7, which results in:

r̂ui =

∑

j∈Iu(i;K) cijruj
∑

j∈Iu(i;K) |cij |
(4.12)

4.2.4 Nonlinear Correlation Rescaling

During the Netflix competition we discovered that weighting the neighboring ratings

with raw or shrunken correlation is not optimal. We got improved results by using a

sigmoid mapping function σ, which maps the correlations to weights better suited for

calculating weighted averages [32]. The rescaled correlation ĉij between item i and j is

given by

ĉij = σ (δ · cij + γ) , (4.13)
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where δ, γ are meta parameters, and

σ(x) =
1

1− e−x
(4.14)

is a sigmoidal nonlinearity.

The mapped correlations can now be used in Equation 4.12, which leads to:

r̂ui =

∑

j∈Iu(i;K) ĉijruj
∑

j∈Iu(i;K) |ĉij |
(4.15)

Throughout the following work we refer to the item KNN with nonlinear correlation

rescaling as “KNN V2”.

4.2.5 Preprocessing

In the Netflix competition it has been shown that preprocessing is very useful for

reducing the error in terms of the RMSE. Already substraction of user and item biases

reduces the RMSE significantly. Robert Bell and Yehuda Koren reported 10 global

effects for preprocessing, which drastically improved the RMSE [4]. We described 4

new global effects [32] for the Netflix progress prize 2008 and 2 new for the grand prize

[33].

Restricted Boltzmann Machines as described in [28] where also shown to achieve

great results for preprocessing.

4.3 Singular Value Decomposition - SVD

The singular value decomposition is well known in linear algebra and states that an

arbitrary matrix R with real or complex entries can be decomposed into a product

of three matrices AΣBT with Σ being a diagonal matrix. The SVD can be used

for calculating the Pseudoinverse, solving homogeneous linear equations and low rank

approximations. There exist a lot of theory about SVD, but most of it can not be used

directly for collaborative filtering. In the collaborative filtering context the matrix R

is sparse, meaning that most of the elements are unknown. The basic idea of SVD to

decompose the matrix R can be still applied. However, many of the nice properties of

standard SVD do not hold anymore.
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The basic idea is to represent a user by an user feature vector au and an item

by an item feature vector bi. This means the users are represented by a |U | × N

matrix A, where N is the number of factors used to represent a user. The items are

represented by a |I| ×N matrix B. The final goal is that the product of the matrices

ABT approximates the known ratings of R.

The goal is to minA,B‖R−ABT ‖2R, where the norm ‖ · ‖2R =
∑

(u,i)∈L r2
ui is only

defined on the known ratings of R. In order to account for the different number

of known ratings for users and items, regularizing the matrix decomposition is very

important. This leads to the following error function to be minimized:

E(A,B) = ‖R−ABT ‖2R + λ(‖A‖2F + ‖B‖2F ) (4.16)

In the equation above ‖ · ‖2F denotes the squared Frobenius norm and λ is the meta

parameter for controlling the L2 regularization. It was found that introducing a global

bias c, user bias du and item bias ei helps to improve the results [24]. A rating prediction

is then given by:

r̂ui = c + du + ei + aT
ubi (4.17)

The error function to be minimized can be written as:

E(A,B, c,d, e) =
∑

(u,i)∈L

(rui − r̂ui)
2 + λ(‖A‖2F + ‖B‖2F + ‖d‖2F + ‖e‖2F ) (4.18)

Where d is the vector containing the user biases and e the item biases.

In order to estimate all parameters in the above model one has to precalculate the

global mean c and learn all remaining parameters using stochastic gradient descent.

To do this, all parameters are initialized with a random value drawn from a uniform

distribution around zero [−0.001, 0.001]. The full details of the training process can be

found in Algorithm 1.

4.3.1 Remarks

Training a SVD using stochastic gradient descent is obviously not the only training

method, batch and mini batch updates are also commonly used. Full batches have

the disadvantage that a lot of epochs are needed due to rare parameter updates. Mini

batches are a tradeoff between full batches and updates after every training sample
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Initialize c to the global mean.1

Initialize A, B, d and e from a uniform distribution [−0.001, 0.001].2

repeat3

for (u, i) ∈ T do4

êui ← rui − r̂ui5

du ← du + η(êui − λdu)6

ei ← ei + η(êui − λdu)7

for n = 1 to N do8

ã← aun9

aun ← aun + η(êuibin − λaun)10

bin ← bin + η(êuiã− λbin)11

until error is minimal on P12

Algorithm 1: Training a SVD with stochastic gradient descent. In the beginning
c is initialized to the global mean. All other parameters are initialized randomly
around zero. Then stochastic gradient descent is performed, until a minimum on
the probe set is reached.

(stochastic update). Furthermore the mini batch update has the pleasant property

that it is easy to parallelize, because the training samples can be calculated within a

mini batch in parallel. During the Netflix competition we discovered that larger mini

batches lead to inferior results and increase the number of needed epochs, which nearly

nullifies the speedup through parallelization. Hence we always used stochastic gradient

descent.

Another very popular method for training SVDs is to use alternating least squares

[4]. The basic idea is to fix the user weights and calculate the item dependent weights,

which reduces the problem to solving a system of linear equations. Then the item

weights are fixed and the user weights are calculated. This process is repeated until

it converges. In the paper the authors also describe a way to modify simple least

squares to restrict all parameters to be non negative. In our experience alternating

least squares produce inferior results compared to simple stochastic gradient decent.

The biggest problem of this method is that the computation time rises quadratically

with the feature size N .
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4.4 Asymmetric Factor Model - AFM

In some datasets the ratings of the sparse rating matrix R, are not missing at random.

When the user has the free choice which item he is going to rate, then already the

selection of an item contains valueable information. We will call this information,

which is contained already in the selction of an item for rating, the selection bias.

The asymmetric factor model was first described by Arkadiusz Paterek in [24]. The

basic idea is to model the selection bias. There exist two distinct sets of item features,

which are used bi, fi ∈ RN . The SVD models a user directly via a user feature vector

au. By contrast, an AFM models a user as the bag of the rated items. The predicted

rating of user u for item i is given by

r̂ui = bT
i





1

|Iu|
∑

j∈Iu

fj



 . (4.19)

In the Netflix competition it was found that user and item biases help to improve

the results:

r̂ui = c + du + ei + bT
i





1

|Iu|
∑

j∈Iu

fj



 , (4.20)

where c is the global bias, du the user bias and ei the item bias. Using a quadratic

error leads to the following regularized error function:

E(B,F, c,d, e) =
∑

(u,i)∈L

(rui − r̂ui)
2 + λ(‖B‖2F + ‖F‖2F + ‖d‖2F + ‖e‖2F ) (4.21)

The parameters of the AFM can be learned using stochastic gradient descent, which

leads to the algorithm described in Algorithm 2. If the average user has rated lots of

items, the pure stochastic update is very time consuming and it is better to do a user

wise batch update for the asymmetric item features fi as in Algorithm 3.

4.4.1 Remarks

Paterek reported a variation of this model with only one set of item features bi = fi.

In the Netflix competition this modification made the individual RMSE always worse,
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Initialize c to the global mean.1

Initialize B, F, d and e from a uniform distribution [−0.001, 0.001].2

repeat3

for (u, i) ∈ T do4

êui ← rui − r̂ui5

du ← du + η(êui − λdu)6

ei ← ei + η(êui − λdu)7

for n = 1 to N do8

b̃← bin9

bin ← bin + η
(

êui

(

1
|Iu|

∑

j∈Iu
fjn

)

− λbin

)

10

for j ∈ Iu do11

fjn ← fjn + η
(

êui
b̃

|Iu|
− λfjn

)

12

until error is minimal on P13

Algorithm 2: The training of a AFM with pure stochastic gradient descent. For
datasets with a lot of ratings per user, the most inner loop becomes very time
consuming. A solution for this problem can be found in Algorithm 3.

but helped when different predictions were combined to increase prediction accuracy.

4.5 SVD++

The SVD++ combines the ideas of SVD and AFM, which Yehuda Koren described in

[19]. Combining those ideas leads to the following prediction formula:

r̂ui = c + du + ei + bT
i



au +
1

|Iu|
∑

j∈Iu

fj



 , (4.22)

where c is a global bias, du a user bias and ei an item dependent bias. The vectors

bi and fj are item dependent feature vectors, while au is a user feature vector. Using

the prediction formula from Equation 4.22 and a quadratic loss function leads to the

following error function:

E(A,B,F, c,d, e) =
∑

(u,i)∈L

(rui− r̂ui)
2+λ(‖A‖2F +‖B‖2F +‖F‖2F +‖d‖2F +‖e‖2F ) (4.23)
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Initialize c to the global mean.1

Initialize B, F, d and e from a uniform distribution [−0.001, 0.001].2

repeat3

for u ∈ U do4

f̃ ←
(

1
|Iu|

∑

j∈Iu
fj

)

5

for i ∈ Iu do6

êui ← rui − r̂ui7

du ← du + η(êui − λdu)8

ei ← ei + η(êui − λdu)9

f̂ ← 010

for n = 1 to N do11

f̂n ← f̂n + êuibin12

bin ← bin + η (êui − λbin)13

for i ∈ Iu do14

fin ← fin + η
(

f̂in

|Iu|
− λfin

)

15

until error is minimal on P16

Algorithm 3: This algorithm block shows the training of a AFM with a user
wise batch update for the asymmetric item features fj. All other parameters are
updated stochastically. Instead of training all samples randomly as in Algorithm 2
one iterates first over all users u and then over all rated items for this user Iu. Due
to the batch update of the asymmetric item features fj it is possible to precompute
the virtual user feature vector f̃ . Then one iterates over all rated items of this user
and accumulates a batch update in f̂ and updates the asymmetric item features
fj afterwards.

The training of the parameters can be done with gradient descent in the same way

as for the AFM, which leads to Algorithm 4.

4.6 RankSVD

Most algorithms see the recommendation task as a rating prediction task. Items can

be sorted according to their predicted rating and the items with the highest predicted

ratings are recommended to the user. Thus, for the standard recommendation task the

main interest lies in sorting items. Predicting ratings is the most popular way to get a

sorting, but it is not the only one. Pessiot et al. [25] showed a efficient way to directly

learn a ranking or sorting.
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Initialize c to the global mean.1

Initialize A, B, F, d and e from a uniform distribution [−0.001, 0.001].2

repeat3

for u ∈ U do4

f̃ ←
(

1
|Iu|

∑

j∈Iu
fj

)

5

for i ∈ Iu do6

êui ← rui − r̂ui7

du ← du + η(êui − λdu)8

ei ← ei + η(êui − λdu)9

f̂ ← 010

for n = 1 to N do11

b̃← bin12

f̂n ← f̂n + êuibin13

bin ← bin + η (êui − λbin)14

aun ← aun + η(êuibin − λaun)15

for i ∈ Iu do16

fin ← fin + η
(

f̂in

|Iu|
− λfin

)

17

until error is minimal on P18

Algorithm 4: This algorithm block describes the trainings process of a SVD++
model. The user and item features are updated using a update after every training
example, while the asymmetric item features fj are getting an user wise batch
update.

The basic idea is similar to the SVD. A user u is represented via user feature vector

au and the a item i with the vector bi. In contrast to the SVD, where a dot product of

user and item feature vectors is used to approximate the rating matrix, the RankSVD

predicts a ranking score. Based on this score it is possible to sort the items accordingly

and recommend the highest ranked items.

In order to learn a ranking a exponential loss function is used, which leads to the

following error function.

E(A,B) =
∑

u∈U

∑

i,j∈Iu
rui<ruj

eaT
u bi−aT

u bj + λ(‖A‖2F + ‖B‖2F ) (4.24)

The error function sums the errors over all users and all rating combinations of this

user. Ranking scores which lead to a wrong pairwise ranking get a high error. The
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wronger the predicted ranking score, the higher the error. The same is true for correct

rankings. The bigger the margin the smaller the contribution to the overall error. So

the error function is not only designed to lead to correct rankings it is also designed to

improve the margin.

In the paper Pessiot et al. suggested to train A,B one after another. First A is

optimized while B is fixed. Then B is optimized while A is fixed. This process is

repeated until convergence.

We use stochastic gradient descent, as for all the other factor models, which we

found gives better results in a shorter time. Using gradient descent leads to Algorithm

5.

Initialize A, B from a uniform distribution [−0.001, 0.001].1

repeat2

for (u, i) ∈ T do3

j is selected randomly from Iu4

if ruj ≤ rui then5

t̃← i6

i← j7

j ← t̃8

êui ← eaT
u bi−aT

u bj for n = 1 to N do9

ã← aun10

aun ← aun − η(êui(bin − bjn) + λaun)11

bin ← bin − η(êuiã + λbin)12

bjn ← bin − η(êui(−ã) + λbjn)13

until error is minimal on P14

Algorithm 5: Training a RankSVD with stochastic gradient descent. In the
beginning, user and item features are initialized randomly. Then they are trained
epoch wise, while each epoch runs over all available training samples T . In the
inner loop we randomly select an rated item j from the set of items Iu rated by user
u. Note that this means a simplification and approximation. In order to exactly
minimize the error function from Equation 4.24 one has to loop over all items
Iu with an higher rating than rui. This would lead to big runtime problems for
datasets with a lot of user ratings (e.g. Netflix), because of the computational time
growing quadratically with the number of ratings per user. On the MovieLens 1M
dataset this simplification has not changed the accuracy, but it made it possible
to run the algorithm on big datasets like Netflix.
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4.6.1 Remarks

A very good property of the RankSVD is the invariance to monotonic transformations

of user ratings. The RankSVD uses only pairwise comparisons of ratings per user, so

user biases and monotonic transformations do not have any impact. Hence, there is

no need to model these effects. In the extreme case every user can use his own rating

scale. For the algorithm it makes no difference if some users use a 3 star rating scale

while others use 5 or 10 stars.
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5.1 Overview

Every collaborative filtering algorithm discussed within this work contains several meta

parameters. These parameters are used to control the regularization and the model

complexity. Some of these parameters are very sensitive, while others are not. Tun-

ing all these parameters for every dataset by hand is a time consuming process and

mostly unfeasible for real world recommender systems. Therefore, an automated meta

parameter search is vital.

Direct search methods can find local minima of error functions without the need

of gradients, so these are a good choice for optimizing meta parameters. As for most

optimization methods there is no guarantee to find a global minimum. The solution

found can strongly depend on the choice of the initial values.

In the following sections 3 direct search methods will be discussed. The goal is to

39
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minimize an error function E(α1, α2, ..., αN ) which depends on N meta parameters α1

to αN .

5.2 Random Search

Random Search is a very simple idea. First, a parameter is selected at random, then

the parameter is changed randomly. In the case that the changed parameter lowered

the error E, the new value of the parameter is kept, otherwise the old is restored. This

procedure is repeated until convergence. A more detailed explanation can be found in

Algorithm 6.

Initialize α1, α2, ..., αN1

e← E(α1, α2, ..., αN )2

repeat3

Select i randomly between 1 and N .4

α̃i ∼ N (αi;
1
10max(|αi| , 1))5

ẽ← E(α1, α2, ..., αi−1, α̃i, αi+1, ..., αN )6

if ẽ < e then7

αi ← α̃i8

e← ẽ9

until e unchanged for a long time10

Algorithm 6: In the beginning, one has to initialize the parameters α1 to αN .
This could be at random, but the better choice is to start with known good
parameters. In general this is not possible, but for CF algorithms one has typically
an idea. The next step is to evaluate the error function E with the current set
of parameters. Then a parameter αi is randomly selected. Afterwards a new
value for αi is drawn from a normal distribution centered around the old value of
αi. The standard deviation is set to 1

10 of absolute value of αi. The maximum
operator is used to avoid problems around 0. With the new value α̃i the error
function is evaluated. In the case the error is better, the new value α̃i is kept as
a replacement for αi, otherwise α̃i is dropped. The process of randomly changing
parameters is repeated until convergence of e, which means that e stays unchanged
over a long time.

5.2.1 Remarks

In the beginning of the Netflix competition we used the above method a lot. It was very

easy to implement and delivered good results. The major drawbacks of this method
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are that the step size is not adjusted and that only one parameter is changed at a time.

Hence, the performance of this method depends on the shape of the error function.

In Section 6.7 one can find an empirical evaluation of the performance of random

search and a comparison with other methods.

5.3 Coordinate Search

The basic idea of coordinate search is oriented on a “human” search behavior. The

parameters are changed sequentially. If the error improved several times in one direc-

tion, the step size into this direction is increased. In the case the error gets worse, the

search direction is changed and the step size is reduced. A detailed description of the

algorithm can be found in Algorithm 7.

5.3.1 Remarks

This algorithm can not change the sign of a parameter. So it is important to set the

correct sign initially. In the case that the sign is not known the parameter α must be

decomposed into a positive part α+ and a negative part α−, which leads to α = α++α−

5.4 Nelder Mead Algorithm

The Nelder Mead or downhill simplex algorithm is a popular optimization method

which does not require gradients. The method was introduced in 1965 by John Nelder

and Roger Mead [23]. My experiments are based on a more recent description which

can be found in [30].

The full details of the algorithm can be found in Algorithm 8.

5.4.1 Remarks

The Nelder Mead algorithm can get stuck in flat regions of the error surface. A good

solution for this problem is to construct the initial simplex again around the point

where the algorithm got stuck, and start it again.
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Initialize α1, α2, ..., αN1

β1, β2, ..., βN ← 0.82

γ1, γ2, ..., γN ← 13

e← E(α1, α2, ..., αN )4

repeat5

for i = 1 to N do6

for k = 1 to 3 do7

α̃i ← αi · βi8

ẽ← E(α1, α2, ..., αi−1, α̃i, αi+1, ..., αN )9

if ẽ < e then10

αi ← α̃i11

e← ẽ12

γi ← γi + 113

if γi ≥ 2 then14

βi ← β1.25
i15

else16

γi ← 117

βi ←
(

1

βi

)0.8

18

until e unchanged for a long time19

Algorithm 7: In the beginning the parameters α1 to αN are set to their initial
values. The parameters β1 to βN are the search factors and initially set to 0.8.
The basic idea of the structured coordinate search is to replace the random search,
with a coordinate wise structured search. Therefore, one iterates sequentially over
the parameters α1 to αN . Then the parameter αi is multiplied with the search
factor βi. In the case that the new parameter value improves the error, the new
value is kept. Otherwise the old value is restored and the search direction is
reversed. When the search in one direction is successful for more than two times
then the search factor βi is raised to the power of 1.25 in order to perform bigger
steps in the successful direction.

Throughout this work the following values for the Nelder Mead meta parameters

are used: γ = 5, βr = 1, βc = 1
2 , βe = 2 and βs = 1

2
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Initialize α1, α2, ..., αN1

x0 ← (α1, α2, ..., αN )T ; // construct the initial simplex2

e0 ← E(x0)3

for i = 1 to N do4

xi ← (α1, α2, ..., αi−1, αi + γ · ei, αi+1, ..., αN )T ; // ei is a unity vector5

ei ← E(xi)6

repeat7

for i = 1 to N do8

eh ← max
j

(ej)
9

es ← max
j 6=h

(ej)
10

el ← min
j

(ej)
11

c← 1
N

∑

j 6=h xj ; // calculate the center12

xr ← c + βr(c− xh); // calculate the reflection point13

er ← E(xr)14

if el ≤ er < es then15

xh ← xr16

else17

if er < el then18

xe ← c + βe(c − xh); // calculate the expansion point19

ee ← E(xe)20

if ee < er then21

xh ← xe22

else23

xh ← xr24

else25

if es ≤ er < eh then26

xc ← c + βc(xr − c); // outside contraction27

ec ← E(xc)28

ẽ← er29

else30

xc ← c + βc(xh − c); // inside contraction31

ec ← E(xc)32

ẽ← eh33

if ec < ẽ then34

xh ← xc35

else36

∀j 6=l : xj ← c + βs(xj − xl) ; // shrinkage37

until min(e0, e1, ..., eN ) unchanged for a long time38

el ← min
j

(ej); // use the best found parameters
39

(α1, α2, ..., αN )T ← xl40

Algorithm 8: This algorithm block describes the Nelder Mead algorithm as used
within this work.
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6.1 Overview

The aim of this chapter is to empirically analyze interesting properties of recommender

algorithms. In Chapter 2 we presented four popular real world datasets, MovieLens1M,

MovieLens10M, Jester Joke and Netflix. In Chapter 3 we gave an overview of commonly

used error measures. Within this chapter of empirical results we use the MAE, RMSE,

AR and AUC. In Chapter 4 we gave an overview of state of the art collaborative filtering

algorithms. For the empirical evaluation we use the SVD, AFM, SVD++, RankSVD

and item KNN. The KNN versions with nonlinear correlation rescaling are called KNN

V2.

First we are going to investigate the importance of regularizing factor models, and

investigate the influence under different error measures. In Section 6.3 we analyze

45
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the feature size of factor models and the impact on different error measures and the

training time. Next we are analyzing the relationship between different error measures

in Section 6.4. In Section 6.5 the influence of the fillrate of the rating matrix R to the

errors will be investigated. The effect of observational noise is examined in Section 6.6.

Finally we compare the three automatic parameter tuners introduced in Chapter 5.

6.2 Regularization of Factor Models

Within this work in all factor models users and items are represented via a feature

vector of the same size. For example in a SVD model every user is represented via a

N dimensional feature vector and also every item has its own N dimensional feature

representation. It is not possible to use different feature sizes for every user or item.

One can only use the same feature size for all users and items, but on all datasets under

investigation the ratings are not equally distributed among users or items. The feature

size N controls the model complexity. For users or items with many ratings a lot of

features can be used. For example, using N = 30 is fine for users with 300 ratings,

but a problem for users with only 3 ratings. L2 regularization solves this problem. We

can keep the feature size fixed and change the model complexity by controlling the

regularization λ. So we do not overfit the parameters on users with few ratings and can

use enough features to learn complex user/item relations for users with lots of ratings.

In order to analyze the influence of L2 regularization on the RMSE, MAE, AR and

AUC we have made experiments with SVD, AFM, RankSVD and SVD++ on Jester

Joke, MovieLens1M and Netflix datasets.

6.2.1 SVD

We use the SVD algorithm described in Section 4.3. The feature size is fixed to N = 30

and the learnrate to η = 0.002. In order to limit the training time we limit the number

of training epochs to 400. This means if the minimum is not reached after 400 epochs,

the training will be stopped anyway. This is necessary because higher regularizations

tend to increase the number of epochs needed to reach the minimum. The results can

be seen in Figure 6.1.

The first and very important effect we can observe, is that the training time increases
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for higher regularizations. The flat regions which can be observed in the green lines

come from the fact, that we limit the training epochs to 400. The other very important

observation is that proper regularization is very important. For example if we look at

the RMSE on the Netflix dataset, with a regularization of λ = 0 the RMSE is 0.9335,

by increasing the regularization to λ = 0.02 the RMSE drops to 0.9190 and increasing

the regularization further to λ = 0.1 increases the RMSE to 0.9536. So regularization

has a big effect, too high or too low regularizations can make the results very bad.

In Figure 6.1 we marked the optimal regularization with an red cross. So it is easier

to see that the optimal regularization is different for every error measure and dataset

combination.
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Figure 6.1: This figure shows the effect of regularization for a SVD model.

6.2.2 AFM

For this experiment we use the AFM described in Section 4.4. We used a fixed feature

size of N = 30 and a learn rate of η = 0.002 for the Netflix and MovieLens1M datasets.
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For the Jester Joke dataset we used a lower learn rate of η = 0.0002. As for the SVD

we limited the number of training epochs to 400. The results are visualized in Figure

6.2.

The regularization has an big effect on the MovieLens1M and the Netflix dataset,

but on the Jester Joke dataset the relative differences between high and low regulariza-

tion are much smaller. This effect is probably caused by the high fillrate of the Jester

Joke dataset. Another very interesting observation is, that the training time seems to

behave differently compared to the SVDs in Figure 6.1, where the training time simply

increased with higher regularizations. In the case of the AFM the behavior looks a

bit different. When we look at the RMSE and MAE results on the Netflix dataset,

we clearly see that the AFM training takes longest for the optimal regularization. For

higher and lower values the training time is lower. For the Jester Joke dataset the

regularization seems to have only a marginal impact on the training time.
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Figure 6.2: In this figure we visualize the influence of regularizing an
AFM.
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6.2.3 RankSVD

The RankSVD is described in Section 4.6. The feature size is fixed to N = 30 and the

learn rate to η = 0.001. We analyzed the behavior on the MovieLens1M, Jester Joke

and Netflix dataset and used the AUC and AR error measures. We do not analyze the

accuracy measures RMSE and MAE, because the RankSVD can only predict rankings

and not ratings. Thus it is not possible to evaluate accuracy metrics. The results can

be seen in Figure 6.3.

We observe that for the MovieLens1M and the Jester Joke dataset the optimal

regularization is no regularization, only for the Netflix dataset the results improve

slightly by using λ = 0.01. Using high regularizations results in very bad errors. So it

seems that for RankSVD the regularization is not as important as for the other factor

models under investigation, and it is better to use no or low regularization.
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Figure 6.3: This figure visualizes the influence of regularization on
RankSVD.

6.2.4 SVD++

The SVD++ is described in Section 4.5. For the following regularization experiment

we used a feature size of N = 30 and a learn rate η = 0.02. The results of using the

SVD++ on different datasets and error measures can be seen in Figure 6.4.

The first thing we noticed is the close to linear increase of the training time with

higher regularizations. The flat regions of the green lines, which visualize the training
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time, stem from the fact that we limit the training epochs to 400. The next important

point to notice is that proper regularization plays a major role. A too high or too low

regularization has an negative effect on the performance. In general we observe that

the optimal regularizations tend to be higher than for the SVD, AFM and RankSVD.
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Figure 6.4: This figure visualizes the results of training a SVD++ model
on different datasets and error measures and influence of the regularization.

6.2.5 Conclusion

We empirically analyzed the influence of L2 regularization to training time and accu-

racy.

We found that for SVD, RankSVD and SVD++ a higher regularization clearly

results in an increased training time. For the AFM the result is not that clear. When

analyzing the AFM with respect to the RMSE or MAE on the MovieLens1M dataset

we see a strong increase of training time with higher regularizations. By contrast, on

the Netflix dataset, training time decreases for regularizations greater than 0.02.
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The accuracy achieved depends on a proper regularization. Unfortunately, we can

not make any statement on guidelines to find a proper regularization. The ideal regu-

larization is different for every algorithm, dataset and error measure. The only thing

we found to be true in general is that too high regularizations can harm more than too

low ones. Hence, it seems that in the case of not having the time to carefully tune the

regularization, it is better to use a lower regularization. For real world systems using

a lower regularization has also the benefit of a shorter training time.

The empirical results within this section show the benefit of modelling the selection

bias. The SVD, which is the basic latent factor model, has a RMSE of 0.9190. The

AFM, which only models the selection bias, has an RMSE of 0.9497. By combining

the SVD and the AFM idea into the SVD++ model, the RMSE on the Netflix data

improves to 0.9068. This nicely shows the value of modelling the selection bias on

the Netflix data. In contrast on the Jester Joke dataset the SVD++ model performs

slightly worse. The SVD has an RMSE of 4.08 and the SVD++ has 4.18. This is

a result of the fact that the Jester Joke dataset has no selection bias, so introducing

additional features for it does not improve the results. Due to the additional parameters

the results become even slightly worse.

Another very important result is that the best algorithm is the same regarding all

four error measures. The exact error values can be found in the tables in Appendix

A. The SVD++ is the best algorithm on the Netflix dataset in terms of RMSE, MAE,

AR and AUC. On MovieLens1M and Jester Joke the standard SVD is slightly better

on all four error measures. This means if someone is interested in the best algorithm

on a specific dataset, it suffices to use one error measure. This is different to the

result reported by Gunawardana and Shani [14], who report that the choice of the

error measure plays a major role for finding the best algorithm for a given dataset. In

our opinion the different results are based in the algorithms used. The factor models

used by us give good results for accuracy and ranking error measures, whereas the

item KNNs used by Gunawardana and Shani produce bad results in terms of accuracy

metrics like the RMSE.
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6.3 Feature Size of Factor Models

The feature size is a very important meta parameter of factor models. It controls

the number of latent features used to represent a user or item. So it controls the

overall model complexity. It is obvious to see that the training time and the prediction

time grows when we increase the feature size. Also the memory consumption rises by

increasing the feature size. So for real a world system this leads to the interesting

problem of finding the right tradeoff between accuracy and space/time requirements.

In order to investigate the influence of increasing the feature size we try the SVD,

AFM, RankSVD and SVD++ on the MovieLens1M, Jester Joke and Netflix datasets.

For each algorithm dataset combination we use the optimal regularization for N = 30,

found in Section 6.3. We increase the feature size from 10 to 100 using a stepsize of 10.

6.3.1 SVD

The SVD uses regularization of λ = 0.03 on the MovieLens1M dataset, λ = 0.06 on the

Jester Joke dataset and λ = 0.02 on the Netflix dataset. The results are visualized in

Figure 6.5.

The first thing to notice is that the training time increases linearly with the number

of features used. The next interesting thing is that the training times are shorter for

the AR and AUC error measure, which means that the minimum is reached after

fewer epochs. On the accuracy side we observe, that more features lead to a higher

accuracy for all dataset and error measure combinations. The improvement from 10 to

20 features is clearly the biggest, from 20 to 30 the improvement is already smaller and

the improvement of more than 30 features is nearly invisible in the graphs.

6.3.2 AFM

For the experiments with the AFM we used a regularization of λ = 0.02 for the Movie-

Lens1M dataset, λ = 0.04 for Jester Joke and λ = 0.02 for Netflix. The results are

visualized in Figure 6.6.

We observe a nearly linear increase in training time with more features being used.

The training seems to stop earlier if we optimize for the AR or AUC. On the Netflix

dataset the AFM behaves as expected, additional features increase the accuracy. Only
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Figure 6.5: This figure shows the influence of the feature size N to the
accuracy and training time of a SVD.

the MAE on the Netflix dataset gets slightly worse by using more than 50 features. On

the Jester Joke dataset additional features also increase the accuracy, but the effect is

very small. In our opinion this stems from the fact that the Jester Joke dataset does

not have a selection bias in it, because the users do not select the jokes for voting by

themselves. Moreover nearly 50% of the users have voted all jokes. So the AFM is not

optimal for Jester Joke and additional features do not help. The behavior of the AFM

on the MovieLens1M dataset is very strange, additional features decrease the accuracy

on all four error measures under investigation. Initially we suspected this behavior

stems from a too low regularization, but an increased regularization has not changed

the behavior. This brings us to the conclusion that the AFM is not well suited for the

MovieLens1M dataset.
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Figure 6.6: This figure visualizes the accuracy of an AFM with different
feature sizes.

6.3.3 RankSVD

In the feature size experiments with RankSVD we used a regularization of λ = 0 for

MovieLens1M and Jester Joke, and for the Netflix dataset we used λ = 0.1. The results

are visualized in Figure 6.7.

Like in the other experiments with the feature size, the training time grows linearly

with the number of features used. On the accuracy side we observe an interesting

behavior. For the MovieLens1M dataset more than 50 features do not improve the

accuracy, while we observe improvements for every added feature on the Jester Joke

dataset. On the Netflix dataset more than 50 features seem to still improve the results,

but only slightly.
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Figure 6.7: This figure shows the influence of feature size on RankSVD.

6.3.4 SVD++

The regularization parameters for this experiment are λ = 0.04 for the MovieLens1M

dataset, λ = 0.12 for the Jester Joke dataset and λ = 0.02 for Netflix. The results can

be seen in Figure 6.8.

For all datasets and error measures the training time rises linearly with the number

of features used. On the Netflix data we observe that the training time for AR and

AUC is much shorter, which simply means that the minimum is reached earlier. So the

algorithm runs for fewer epochs. It is very interesting that this effect is not visible on

the other datasets. On the accuracy side the behavior is as expected, every additional

feature increases the accuracy.

6.3.5 Conclusion

We observed that the training time rised linearly with the number of features used. In

the case one doubles the number of features the time and space requirements for one

training epoch doubles exactly. This means that the observed linear increase of the

complete training time is based on the longer runtime for one epoch, but the number

of epochs stayed the same.

On the Netflix data we observed an interesting effect. On this dataset the AR and

AUC tended to train fewer epochs, compared to RMSE and MAE.
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Figure 6.8: The figure shows the feature size experiment with a SVD++.

The accuracy of SVD, RankSVD and SVD++ increased with more features. The

biggest improvements were always made by moving from 10 to 20 features. So for

real world system one has to carefully think about how many features to use, because

the training and prediction time rises linear, but the accuracy improvements for larger

feature sizes are only marginal.

The accuracy of the AFM improves on the Netflix dataset only. On MovieLens1M

and Jester Joke additional features do not increase the accuracy. The AFM is designed

to model the selection bias, which is very strong in the Netflix data. In the Movie-

Lens1M and the Jester Joke datasets it seems that there is little information in the fact

that a user rated an item, hence, there is no selection bias. Therefore, the AFM, which

only models the selection bias works badly on these datasets. Obviously, additional

features do not help to increase the results of a AFM on MovieLens1M and Jester

Joke.
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6.4 The Relationship between Different Error Measures

Throughout this work we use different error measures for all our experiments. Our goal

is to analyze the influence of the used error measure. In this section we are analyzing

the relationships between the error measures directly. We investigate the relationships

between RMSE, MAE, AUC and AR. By looking at the definitions of the error measures

in Chapter 3 it is easy to see that a perfect algorithm has ERMSE = 0, EMAE = 0,

EAUC = 1 and EAR = 1. A CF algorithm on a real world dataset will never predict

user ratings without error, so the interesting question is how RMSE, MAE, AUC and

AR are related on real world datasets.

The question of interest within this experiments is not to find a rule how to translate

a RMSE into a AUC or something similar. In our opinion the main question of interest

for real world systems is: Will we obtain totally different results by using a different

error measure? All the error measures under investigation are very popular, so if

someone trains a SVD and stops the training when the RMSE is minimal on a hold

out set will the results be different compared to stopping the training based on the

AUC. Does it make a difference if someone tunes KNN meta parameters to optimize

the MAE; will the results look different to someones results who optimized everything

to minimize the AR.

In order to investigate the relationship between the error measures, we recorded

RMSE, MAE, AUC and AR on all training steps of the following models:

• Item KNN

• Item KNN V2

• SVD, N=30, λ = 0.03

• SVD, N=100, λ = 0

• SVD++, N=30, λ = 0.02

• AFM, N=30, λ = 0.02

The results on the MovieLens1M dataset are visualized in Figure 6.9, on Jester Joke in

Figure 6.10 and on the Netflix dataset in Figure 6.11.
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Figure 6.9: The Relationship between RMSE, MAE, AUC and AR on
the MovieLens1M dataset.

By looking closely at the results on the MovieLens1M dataset in Figure 6.9, we

observe that the AR and the AUC have a linear relationship. The relationship between

the RMSE and the MAE is not exactly linear, but it comes very close. The relationship

between the accuracy metrics RMSE and MAE and the ranking metrics AR and AUC

is more complex and far away from linear. One very interesting thing to notice is that

minimas of different error measures are closely connected. So the lowest RMSE values

have a low MAE, AR and a high AUC.

In Figure 6.10 we plotted the results on the Jester Joke dataset. AR and AUC

are again in linear dependency. The relationship between the other error measures

seems to be more complex than the results on the MovieLens1M dataset suggested.

On the MovieLens1M dataset the error values from the different algorithm runs and

parametrizations had been fallen together into one graph. For the same experiment on

the Jester Joke dataset the error values does not fall together into one graph. So it

looks that we can not find a clear relationship between the error measures. But there
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Figure 6.10: The Relationship between RMSE, MAE, AUC and AR on
the Jester Joke dataset.

is one important thing to notice. We observed that for a fixed algorithm the minimas

on all error measures are closely related. For example a SVD delivered the best RMSE

after 135 epochs and the best AUC after 139.

In Figure 6.11 one can see the relationship between RMSE, MAE, AUC and AR on

the Netflix dataset. In the cloud of points we can clearly see separated curves which

stem from different algorithms. So we observe the same behavior as on the Jester Joke

dataset.

6.4.1 Conclusion

The AR and AUC seem to be linearly related. So for this two ranking errors it makes no

difference which one we use. So if one chooses to optimize for the AUC, the result will

also be optimal in terms of the AR. The relationship between the accuracy measures

RMSE and MAE is not so nicely linear, but these measures are still closely connected.



60 Chapter 6. Empirical Results

0.9 1

0.9

1

RMSE

R
M

S
E

0.70.750.8

MAE

1.2 1.25 1.3

AR

0.65 0.7 0.75

0.9

1

AUC

R
M

S
E

0.7
0.75

0.8

M
A

E

0.7
0.75
0.8

M
A

E

1.2

1.25A
R

1.2

1.25 A
R

0.9 1
0.65

0.7

0.75

RMSE

A
U

C

0.70.750.8
MAE

1.2 1.25 1.3
AR

0.65 0.7 0.75
0.65

0.7

0.75

AUC

A
U

C

Figure 6.11: The Relationship between RMSE, MAE, AUC and AR on
the Netflix dataset.

Between the accuracy metrics and the ranking metrics the relationship is very complex.

In Figures 6.10 and 6.11 we observe that the curves which emerged in the point clouds

do no fall together. Therefore it is not possible to calculate for example the AUC based

on the RMSE. The curve describing the relationship between ranking and accuracy

metrics is different for every algorithm dataset combination.

The most interesting fact we found in this empirical analysis of the relation between

the error measures is that the optimas are closely related. For example, the number of

epochs needed to reach the minimal RMSE is similar to the epochs needed to maximize

the AUC. We observed this behavior for all algorithms, datasets and error measures

under investigation within this work.

This means if one uses a SVD the resulting user and item features will be roughly

the same regardless of the selected error measure. For example, let us train 2 SVDs

one to minimize the RMSE and one for the AR. The first SVD trains as many epochs
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as needed to minimize the RMSE while the second runs for as many epochs as needed

to minimize the AR. The number of epochs needed to reach the minimum RMSE will

be roughly the same as those needed to reach the minimum of the AR. For this reason

these two SVDs will generate very similar features for all users and items.

6.5 The Influence of the Fillrate

The Fillrate describes the percentage of known ratings. In real world datasets the

rating matrix R is very sparsely filled, so the fillrate is small. It is well known that CF

algorithms perform better with a higher fillrate. Or in other words, a CF algorithm

needs information from the users and items in order to perform well. In order to

investigate the change of the performance of the algorithms we used synthetic data and

the Netflix dataset.

The synthetic dataset uses 5,000 users and 1,000 items. We investigate the perfor-

mance of various algorithms with different parametrizations and evaluate the RMSE,

MAE, AR and AUC. The number of ratings within the rating matrix R is changed in

small steps from 5,000 to 5,000,000. This means that the average number of ratings

per user goes from 1 up to 1,000. So in the beginning, where we have a low fillrate, the

probe set P contains few users with more than one rating within the probeset, which

is needed to calculate the AR and AUC. Thus for the lower fillrates these numbers

are not meaningful. In Figure 6.12 one can see a comparison of various SVDs, and in

Figure 6.13 we have a comparison between different algorithms.

Using the Netflix dataset we can do the same experiment as with the synthetic

data. In order to generate smaller versions of the Netflix dataset with a lower fillrate,

we simply generate random subsamples of the training data. The fixed Netflix probe

set is not changed. Due to the subsampling it is possible that some users or items do

not have ratings. In Figure 6.14 one can see the results on the Netflix dataset with

number of training ratings ranging from 500,000 to 100,000,000.

6.5.1 Conclusion

All algorithms have improved the results with a higher fillrate. It is very interesting

to see that the KNN type algorithms perform badly for too few ratings, which is an
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SVD N=30 λ=0
SVD N=5 λ=0
SVD N=100 λ=0
SVD N=30 λ=0.01
SVD N=30 λ=0.02

Figure 6.12: This figure shows the RMSE, MAE, AR and AUC of various
SVDs on a synthetic dataset with a changing number of ratings. From 5,000
to 100,000 ratings within the matrix R there is no significant difference
between the SVDs in terms of the RMSE and MAE. For more than 100,000
ratings SVD with N = 5 performs worst, while SVD with N = 100 performs
best. The three SVDs with N = 30 and different regularizations perform
nearly equivalent. So in this scenario regularization does not improve the
results.

unexpected result. The performance of KNNs strongly depends on good preprocessing,

and we have not used preprocessing within this work. Using preprocessing may have

changed the results for KNNs. SVD and SVD++ models give good results with low

and high fillrates. In order to perform really good on high fillrates the factor models

need a lot of features in order to model complex user item relationships. The factor

models with lots of features are doing as well as factor models with few features on a

low fillrate, but doing much better with lots of ratings. This behavior suggests that

factor models with lots of features are very good in terms of accuracy, regardless of the

fillrate.
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Figure 6.13: This figure compares the performance of SVDs and KNNs
on a synthetic dataset with a changing number of ratings. From 5,000 to
100,000 ratings the simple KNN performs badly, the KNN V2 with the
nonlinear correlation rescaling performs better. But already a simple SVD
with N = 5 initially performs better. For more than 100,000 ratings the
performance of KNNs situated between the SVD with N = 5 and the SVDs
with N = 30. Within the synthetic data we have no selection bias, so the
SVD++ does not perform better than a SVD.

This result is different to Cremonesi and Turrin [9] who compared the cold start

behavior of factor models and item KNN on a IPTV dataset, and found item KNN

outperform latent factor models. In our opinion the key difference is the way of training.

We used a regularized stochastic gradient descent with early stopping, which introduces

no problems during the cold start phase where the fillrates are very low.

We also compared SVD++ and AFM on the IPTV1 dataset from [9] and got sig-

nificant better results. The results were obtained by exactly reproducing the way

Cremonesi and Turrin simulated the cold start, namely to grow the dataset over time.

Instead of using random subsampling to simulate the cold start, they used the time
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Figure 6.14: In this figure we visualize the results of various SVDs and a
KNN V2 on the Netflix dataset. Through random subsampling we simulate
datasets from 500,000 to 100,000,000 million ratings. The number of users
and movies are unchanged. The SVD++ clearly performs best on all four
error measures and from few to lots of ratings. The SVDs with different
learn rates and regularizations perform slightly worse. In Section 6.2 we
found, that λ = 0.02 is a good regularization for SVD models on the full
Netflix dataset. In this figure one can observe that this regularization
performs superior to λ = 0.0 from few to lots of ratings. The item KNN
with nonlinear correlation rescaling (KNN V2) has big problems with too
few ratings. For 500,000 ratings for 500,000 users results for 1 rating for the
average user on the training set, and lots of the item/item correlations are
undefined, which is not an ideal setup for a KNN algorithm. Preprocessing
of the ratings can reduce the problem.
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information from every datapoint.

6.6 The Influence of Observation Noise

A given rating of a user always includes a noise part. A rating is thought to consist

of a real part which represents the real opinion of a user and a noise part. If a user

rates an item several times the rating may change due to the observation noise. For

the datasets used in this work, and for most available datasets, we cannot estimate

the observation noise, because we only have maximal one rating per user/item pair.

Anyway, our interest is not in estimating the amount of noise included in a given rating.

We want analyze the impact of observation noise.

We are doing this experiment on synthetic data, with 5,000 users and 1,000 items.

We use 2,000,000 ratings and add a Gaussian noise with a variance σ2 ranging from 0

to 1. The results are visualized in Figure 6.15.

6.6.1 Conclusion

The amount of observation noise directly affects the accuracy level. A higher noise

leads to higher errors. The interesting point is that all algorithms are effected in the

same way. No algorithm reacted very sensitive to high noise levels.

For real world systems it is very important to design the user interface in a way

that the observation noise is minimized, but the amount of expected observation noise

does not influence the algorithm of choice.

6.7 Automatic Parameter Tuning - APT

Automatic tuning of meta parameters is very important. In Chapter 5 we described

three direct search methods, the stochastic search, the coordinate search and the Nelder

Mead algorithm. All of these methods work without gradients, can get stuck in local

minima and are sensitive to the initial values. We use these methods for tuning meta

parameters of collaborative filtering algorithms, so the main points of interest are the

quality of the found parameters and the time needed to find those.
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Figure 6.15: This figure shows the change in accuracy of SVD, KNN
and AFM in terms of RMSE, MAE, AR and AUC for different levels of
Gaussian observation noise on synthetic data. The graphs clearly show that
higher variances σ2 lead to lower accuracy. It is interesting to see that the
accuracy of all algorithms is effected by the same amount. The jumps in the
AUC of the KNN V2 stem from the parameter searcher which sometimes
fails to correctly optimize the parameters for the AUC.

In order to compare the quality we made experiments on four datasets: Jester Joke,

MovieLens1M, MovieLens10M and Netflix. To measure the error we used the RMSE,

the MAE, the AR and the AUC.

The search time is also very important. By far the biggest part of the search

time comes from the function evaluation. In order to get the error for a given set of

meta parameters, one has to train the algorithm on the train set T and evaluate the

performance on the probe set P.

For the experiments we used the item KNN from Equation 4.15 which has four

meta parameters to tune. The positive discrete parameter K to control the size of the

neighborhood. The continuous parameter α to control the shrinkage of the item-item
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correlations and the continuous parameters δ and γ for the nonlinear rescaling. For

the parameter tuning methods K is seen as continuous parameter which gets rounded

to the nearest positive discrete value. So for the parameter tuning methods the error

surface is locally flat dependent on parameter K. This results in a challenging task,

which is well suited to compare the different search methods.

In Figure 6.16 one can see a plot where the KNN was optimized in order to minimize

the RMSE. In the figure one can also see a method named “Nelder Mead Restart”,

which initializes the simplex again when it got stuck in a local minimum. Figure 6.17

shows the KNN being optimized to minimize the MAE and in Figure 6.18 the AR is

minimized. The results for maximizing the AUC are shown in Figure 6.19.

6.7.1 Conclusion

The results show, that the parameter searchers behave similarly on optimizing the

RMSE and MAE. Also the results of AR and AUC are looking similar. For the accuracy

metrics RMSE and MAE the differences in final accuracy are very small. In contrast

the differences in final accuracy for AR and AUC are very big. So in our opinion the

accuracy metrics produce a smoother error surface with fewer local minima, which is

better suited for parameter optimization.

The Nelder Mead algorithm clearly achieves the fastest initial progress, but has

problems in getting stuck early on. This is clearly visible in Figure 6.18 and 6.19.

Reinitializing the initial simplex after getting stuck improves the final accuracy, but

still this algorithm does not match the results of coordinate search.

Coordinate search delivered the best final results on all combinations of algorithms

and error measures, but the initial progress is slower compared to Nelder Mead.

For getting a relatively good parametrization very fast, the combination of Nelder

Mead Restart and an accuracy metric is very appealing. In the case that only the final

accuracy counts or one wants to use AR or AUC then coordinate search is clearly the

best choice.
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Figure 6.16: The figure shows the results of item KNN from Equation
4.15 being optimized to minimize the RMSE. On all four datasets the
Nelder Mead algorithms achieve a lot of improvement after a very short
time. Stochastic and coordinate search deliver very similar results, but
have a slower progress compared to Nelder Mead. No algorithm has major
problems in finding a good parametrization, and all methods find nearly
equally good results. Looking closely on the bottom right of the graphs,
one notices that coordinate search and Nelder Mead Restart found the
best parametrization on all four datasets. Stochastic search has done worst
on the MovieLens1M and MovieLens10M datasets, while standard Nelder
Mead was worst on the Netflix dataset. Nelder Mead Restart has achieved
the same final accuracy as coordinate and stochastic search on the Netflix
dataset.
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Figure 6.17: The figure shows the results of optimizing the parameters
to minimize the MAE. On all four datasets Nelder Mead and Nelder Mead
Restart has initially the fastest progress. The progress rate of coordinate
and stochastic search is lower. The final accuracy of all methods on all
datasets is very similar. Nelder Mead Restart and coordinate search are
finding always the best parameters. The stochastic search delivers the worst
results on MovieLens1M and MovieLens10M, and on the Netflix dataset
standard Nelder Mead performs worst. So the results look very similar to
those from minimizing the RMSE in Figure 6.16.
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Figure 6.18: The figure shows the results of finding a parametrization
to minimize the AR. In the first seconds Nelder Mead and Nelder Mead
Restart are making the fastest progress on all datasets, but the difference to
coordinate and stochastic search is not as big as for minimizing the RMSE
and MAE. The final accuracy of the search methods varies strongly. This
is a big difference compared to the results in Figure 6.16 and 6.17, where
we optimized the RMSE and MAE. Optimizing the AR seems to be a much
harder problem with a more complex error surface, so that the parameter
searchers can get stuck in local minima more easily. The final accuracy of
Nelder Mead was the worst in three out of four datasets. Restarting the
Nelder Mead after getting stuck clearly improved the results. In the case
of the Jester dataset Nelder Mead Restart is as good as coordinate search,
but needs more time to achieve the same accuracy level. Coordinate search
delivers the lowest AR on all 4 datasets, the results on the MovieLens1M
and MovieLens10M are much better than those of the rest.
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Figure 6.19: The figure shows the results of tuning the parameters of
item KNN in order maximize the AUC. The results look like a flipped
version of Figure 6.18, where the AR was minimized. Coordinate search
performed clearly best on all four datasets. Nelder Mead has initially the
fastest progress, but the worst final results in three out of four datasets. For
minimizing the AR on the Jester dataset reinitializing the initial simplex
after getting stuck improved the results of Nelder Mead to achieve the same
accuracy level as coordinate search. The same is true for optimizing the
AUC on Jester dataset. On the Netflix dataset the differences in terms of
the final accuracy are the smallest and on the MovieLens1M the biggest.
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7.1 Conclusion

In this master thesis modern latent factor models like SVD, AFM, RankSVD and

SVD++ were described and compared with neighborhood based approaches. All ex-

periments conducted were performed on the MovieLens1M, MovieLens10M, Jester Joke

and Netflix dataset or on synthetically generated data. Furthermore, we measured the

accuracy in terms of the RMSE, MAE, AR and AUC.

For factor models we found that using a proper L2 regularization improved the re-

sults for every algorithm, dataset and error measure combination. The SVD, RankSVD

and SVD++ showed the highest improvements. The problem is that the optimal reg-

ularization is different in every case. It turned out that in general it is better to use

a too weak regularization than a too strong one. Additionally higher regularizations

increased the training time. Thus, in the case of not having the time to carefully tune

the regularization it is better to use a smaller or no regularization.

We found that the best algorithm for a given dataset is independent from the

error measure used. This result stands in contrast to the recently reported result by

Gunawardana and Shani [14], who report that the error measure plays a important role

in finding the best algorithm. We speculate that the reason for the different empirical

73
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results is based in the selection of the algorithms.

Using more features always improves the accuracy and obviously leads to an in-

creased training and prediction time. The improvements of the AFM on MovieLens1M

and Jester Joke datasets are only marginal, which stems from the fact that the model is

not suited for these datasets. The AFM models the selection bias which is not existing

in these datasets.

In the conducted experiments we focused on different error measures and their rela-

tionship. We found that the minimas of the different error measures under investigation

were closely related. For example, if a SVD is optimized to minimize the RMSE, the

result will be similar to a SVD which optimizes the AUC. This means for the latent

factor models the resulting features would be very similar.

We found that accuracy measures like RMSE and MAE are better suited for op-

timizing meta parameters with direct search methods, because of the smoother error

surface. AR and AUC tend to have more problems with local minimas, so automatic

parameter searchers can get stuck more easily. In our experiments structured coordi-

nate search always found the best meta parameter setting. The Nelder Mead algorithm

was found to converge much faster, but also to have more problems in getting stuck in

local minimas.

We also investigated the influence of the fillrate of the rating matrix by subsampling

the rating matrix. It was found that factor models always produced superior results

compared to neighborhood based methods. This result stands in contrast to the results

optained by Cremonesi and Turrin in [9], who found that item KNN outperforms a

SVD in a simulated cold start. We speculate that latent factor models worked much

better on sparse data in our setup than in [9] because we used regularized stochastic

gradient descent with early stopping for training whereas [9] used standard SVD. We

believe that standard SVD is less suited to these types of problems.
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Appendix A

Error Tables

The following error values stem from Section 6.2. All models were trained with a feature

size N = 30. The regularization used is the optimal regularization, which was found

individually for every algorithm, dataset and error measure combination. The reported

error values correspond to the red crosses in the Figures 6.1, 6.2, 6.3 and 6.4. For the

RankSVD it is not possible to predict ratings, which means that RMSE and MAE can

not be computed. Therefore, the corresponding cells in the tables are empty. The best

error values are written in bold face.

A.1 MovieLens1M

ERMSE EMAE EAR EAUC

SVD 0.8402 0.6593 3.9467 0.8023

RankSVD x x 3.9741 0.8005

AFM 0.8608 0.6772 4.1166 0.7909

SVD++ 0.8416 0.6607 3.9808 0.8000
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A.2 Jester Joke

ERMSE EMAE EAR EAUC

SVD 4.0793 3.1242 1.7786 0.7498

RankSVD x x 1.8257 0.7347

AFM 4.3623 3.4615 1.9895 0.6821

SVD++ 4.1822 3.2393 1.8481 0.7275

A.3 Netflix

ERMSE EMAE EAR EAUC

SVD 0.9190 0.7087 1.2195 0.7528

RankSVD x x 1.2206 0.7516

AFM 0.9497 0.7429 1.2260 0.7455

SVD++ 0.9068 0.7035 1.2069 0.7671
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