
Masterarbeit

Design and implementation of a domain
specific architecture for programmable

logic controllers

Andreas Haselsberger, Bakk.techn.

————————————–

Institut für Technische Informatik
Technische Universität Graz

Vorstand: O. Univ.-Prof. Dipl.-Ing. Dr. techn. Reinhold Weiß

Begutachter und Betreuer: Dipl.-Ing. Dr. techn. Christian Kreiner

Graz, im Jänner 2010

Abstract

The gap between software development on computers and programmable logic controllers
(PLC) is wide. PLC-programming is a growing discipline, done by technicians whereas
software development is more an academic discipline. There are many projects that try
to improve the quality and reuse of PLC software and make it more systematic. Some
of these projects for example apply existing software development paradigms like object
oriented software development, with little outcome however.
An important attempt to reach systematic PLC code design was a standardised architec-
ture and programming scheme (DIN/EN 61131) which is unfortunately not explicit.
Another influential issue is the development speed (time to market) and flexibility of PLC
compositions which is moderate.
Software product lines (SPL) are state of the art approach in systematic software reuse.
The three main processes are domain engineering to extract reusable parts, application
engineering for creating custom applications and the management to deal with economic
aspects.
The goal of this master thesis is to create a domain specific architecture and an imple-
mentation to support systematic software reuse for a PLC controlled inventory system
model. A synergy between the software development paradigms SPL and PLC program-
ming is analysed, developed and implemented. A suitable implementation of an SPL for
the logistics domain is selected and a tool evaluation is done. An architecture model with
abstract logistics objects and a corresponding platform model (PLC) for the implementa-
tion is developed. The transformation between the models is done with generators which
use function-blocks as the basic concept. These generators extract the information of the
modeled logistics system to create the target sources: function-blocks, functions, data
blocks and organisational blocks. The implemented process includes the graphical system
architecture modeling which can be transformed to the full and complete PLC source code
together with consistent documentation and other helpful files (i.e. a pin binding diagram,
recommended tests or a sample hardware configuration).
Finally a technical- and business evaluation is done to compare this work with existing
methods and the literature.

Kurzfassung

In der Praxis besteht ein wesentlicher Unterschied zwischen der Software Entwicklung für
herkömmliche Rechner und der für speicherprogrammierbare Steuerungen (SPS). Während
die SPS Programmierung meist von Technikern durchgeführt wird, gibt es die Software
Entwicklung als akademische Disziplin, dies zeigt bereits die Unterschiede dieser bei-
den Techniken. Viele Projekte versuchen die Entwurfsmethodik von SPS-Programmen
zu verbessern und zu systematisieren. Es gibt Ansätze, bereits existierende Methoden,
wie beispielsweise objektorientiertes Programmieren, auf die SPS-Programm-Entwicklung
abzubilden, deren Erfolg aber nur mäßig ist.
Ein wichtiger Schritt in Richtung systematischer Programmierung war die Einführung
einer Norm (DIN / EN 61131), die die Programmierung von SPS Systemen vereinheitlichen
sollte, was aufgrund vieler Ungereihmtheiten nur dürftig gelang.
Ein wesentliches Maß der derzeitigen Marktlage ist die Geschwindigkeit mit der neue
Produkte auf den Markt gebracht werden (time to market) und die Flexibilität von SPS-
Systemen, die nicht ausreichend effizient ist.
Software Produkt Linien (SPL) sind derzeit state of the art in Sachen effizienter Wiederver-
wendung von Code und damit auch effizienter Produktion. Die drei wesentlichen Teil-
prozesse sind Domain-Engineering, um wiederverwendbare Blöcke zu identifizieren und
zu erstellen, Application-Engineering, um Anwendungen aus der Produkt Linie abzuleiten
und das Management, das durchgehend involviert ist und firmenpolitische sowie finanzielle
Aspekte berücksichtigt.
Das Ziel dieser Arbeit ist der Entwurf und die Entwicklung einer domänenspezifischen
Architektur für ein SPS-System, die ein hohes Maß an Wiederverwendung und Entwick-
lungsbeschleunigung bietet. Dabei handelt es sich um Labormodell eines Logistiksystems.
Es wird versucht, eine Synergie zwischen der Entwicklung von Software Produkt Linien
und der SPS Programmierung zu finden und zu realisieren. Dazu wird eine entsprechende
Implementation einer SPL ausgewählt und eine Tool-Evaluierung für diese Logistik An-
wendung durchgeführt. Ein Architektur-Modell mit abstrakten Objekten der Logistik
und ein zugehöriges Plattform Modell (PLC) für diese Implementierung wird entwick-
elt. Die Transformation zwischen den Objekten wird mit Generatoren realisiert, welche
Funktionsblöcke als Grundbausteine nutzen. Generatoren extrahieren Information aus
dem modelierten System, um den fertigen und kompletten Quellcode zu generieren (Funk-
tionsbausteine, Funktionen, Daten- und Organisationsbausteine). Der entwickelte Prozess
beinhaltet eine graphische Modellierung des Systems, das ein fertiges PLC Programm mit
einer persistenten Dokumentation und weitere hilfreiche Dokumente (z.B. Verdrahtungs-
plan, Tests oder eine mögliche Hardware-Konfiguration) erstellt.
Abschließend wird eine Evaluierung durchgeführt, die technische als auch wirtschaftliche
Aspekte beinhaltet um diese Arbeit mit anderen Ansätzen vergleichen zu können.

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

.............................. ...
date (signature)

Contents

Contents III

1 Introduction 1
1.1 Motivation and goal . 1
1.2 Structure of the thesis . 3

2 Related work 5
2.1 Software product line engineering . 5

2.1.1 Introduction to SPLE . 5
2.1.2 Motivation for SPLE . 6
2.1.3 Terminology . 8
2.1.4 SPL development processes . 8

2.1.4.1 Management . 10
2.1.4.2 Domain engineering . 10
2.1.4.3 Application engineering . 12
2.1.4.4 Approaches for software product line development 13

2.1.5 Variability . 14
2.1.6 SPLE in action . 16
2.1.7 Hall of fame . 16
2.1.8 Supported product line approaches and tools 17

2.1.8.1 Domain specific languages 18
2.1.8.2 Generative programming 19
2.1.8.3 Model driven engineering 19
2.1.8.4 Domain specific modeling 19
2.1.8.5 Comparison: UML vs. Domain specific modeling 20
2.1.8.6 Metamodeling tools . 21
2.1.8.7 SPLE tooling benefit analysis 26

2.2 Programmable logic controllers . 29
2.2.1 History and definition . 29
2.2.2 PLC platform and workflow . 29
2.2.3 The IEC 61131 standard . 30
2.2.4 PLC programming (IEC 61131-3) . 31

2.2.4.1 Common elements . 31
2.2.4.2 Programming languages . 33

2.2.5 IEC 61499 . 34

I

2.2.6 Modern approaches . 36
2.2.6.1 Object orientation . 36
2.2.6.2 Petri nets . 36
2.2.6.3 UML extension . 37
2.2.6.4 Virtual reality . 37

2.2.7 Model driven design . 37

3 Design and implementation 39
3.1 Requirements . 39
3.2 Product line architecture . 42

3.2.1 Introduction . 42
3.2.2 Domain model . 43

3.2.2.1 Graph . 43
3.2.2.2 Objects and properties . 43
3.2.2.3 Ports . 47
3.2.2.4 Roles . 48
3.2.2.5 Relationship . 48
3.2.2.6 Model representation . 48
3.2.2.7 Current domain model limitations and solutions 48

3.2.3 Domain Specific application modeling 50
3.2.3.1 Model verification support 51

3.2.4 Application modeling process . 51
3.3 PLC target platform architecture . 53

3.3.1 Functions and components . 53
3.3.1.1 Main task . 53
3.3.1.2 Conveyor system . 53
3.3.1.3 High bay racking . 56
3.3.1.4 Gantry crane . 58

3.3.2 Transportation interface and queuing 59
3.3.3 Assembly generation . 60

3.4 Generators . 61
3.4.1 Error checking . 61
3.4.2 PLC code generator . 61
3.4.3 PLC hardware parts list generator 62
3.4.4 Application documentation generator 63
3.4.5 Address filling assistant . 65
3.4.6 Online help generator . 65

3.5 Application development environment . 66
3.5.1 Used hardware and software . 66
3.5.2 User interface . 66
3.5.3 Migrating the application to the PLC 66

3.5.3.1 Files . 68
3.6 Evaluation . 69

3.6.1 Business evaluation . 69
3.6.1.1 Application development 69
3.6.1.2 Time to market and costs 71

II

3.6.2 Process evaluation . 72
3.6.3 Technical evaluation . 72
3.6.4 Notes on quality . 72

4 Outlook 75
4.1 General trends . 75
4.2 Ideas for future work . 76

5 Concluding remarks 77

A Appendix 79
A.1 Product line and DSM tool comparison criteria 79
A.2 Small evaluation of MetaEdit+ . 83
A.3 Application workflow: Example . 84
A.4 Generated documentation: Screenshots . 87
A.5 Installation guide . 91
A.6 Detailed design document: Hardware suggestion 92
A.7 Sequential application generation: Screenshots 93

Bibliography 105

III

IV

List of Figures

1.1 Reuse History . 2

2.1 SPLE: Costs . 7
2.2 SPLE: Time to market . 7
2.3 SPLE: Development process (1) . 9
2.4 SPLE: Development process (2) . 9
2.5 SPLE: Domain engineering . 11
2.6 SPLE: Application engineering . 12
2.7 SPLE: Graphical notation for variability . 15
2.8 SPLE: Graphical notation example . 15
2.9 SPLE: Bridging the abstraction gap . 20
2.10 SPLE: oAW architecture . 23
2.11 SPLE: MetaEdit+ R© architecture . 24
2.12 SPLE: MetaEdit+ architecture, brief overview 28
2.13 PLC: Hardware . 30
2.14 PLC: Workflow . 30
2.15 PLC: Parts of 61131-3 . 32
2.16 PLC: IEC 61131-3 software model . 33
2.17 PLC: Sequential function chart . 34
2.18 PLC: IEC 61131-3 Languages . 35
2.19 PLC: IEC 61499 example function-block . 35
2.20 PLC: Signal Interpreted Petri Nets: toolbox concept 37
2.21 PLC: MEDEIA technical approach . 38

3.1 D&I: System setup . 39
3.2 D&I: System setup impressions . 40
3.3 D&I: Implementation SPL architecture . 41
3.4 D&I: GOPPRR Model definition . 42
3.5 D&I: Type model: High bay racking . 44
3.6 D&I: Type model: Rack servicing unit . 45
3.7 D&I: Type model: Conveyors . 46
3.8 D&I: Type model: Rotary table . 46
3.9 D&I: Type model: Gantry crane . 47
3.10 D&I: Model: Visual representation . 49
3.11 D&I: Implemented architecture . 50
3.12 D&I: Application generation workflow . 52

V

3.13 D&I: Simatic PLC program architecture: Main task (OB1) 54
3.14 D&I: Simatic PLC program architecture: conveyor-system 55
3.15 D&I: Instruction word format . 55
3.16 D&I: Rotary table direction codes . 56
3.17 D&I: Simatic PLC program architecture: High bay racking 57
3.18 D&I: Simatic PLC program architecture: Gantry crane 58
3.19 D&I: Simplified PLC code generator functionality 62
3.20 D&I: Documentation: Main site . 64
3.21 D&I:Application modeling user-interface . 67
3.22 D&I: Assembly used for comparing DSL- and conventional development . . 69
3.23 D&I: Evaluation: Costs . 71
3.24 D&I: Implementation GUI . 72

A.1 Transport instruction word . 84
A.2 Connector data exchange . 85
A.3 Rotary table direction codes . 86
A.4 WinCC High bay racking GUI . 86
A.5 Documentation: Main page (1) Physical representation 87
A.6 Documentation: Main page (2) Component listing 87
A.7 Documentation: Pin binding . 88
A.8 Documentation: Generated files . 88
A.9 Documentation: Recommended tests . 89
A.10 Documentation: Instructions . 89
A.11 Documentation: Hardware suggestion . 90
A.12 Application generation 1 . 93
A.13 Application generation 2 . 93
A.14 Application generation 3 . 94
A.15 Application generation 4 . 94
A.16 Application generation 5 . 95
A.17 Application generation 6 . 95
A.18 Application generation 7 . 96
A.19 Application generation 8 . 96
A.20 Application generation 9 . 97

VI

List of Tables

2.1 SPLE: Synonymous terminology . 8
2.2 SPLE: Results of the SPLE tool evaluation for this thesis 27
2.3 PLC: IEC 61131 parts . 31
2.4 PLC: IEC 61131-3 Programming languages 33

3.1 D&I: Parts of the model Logistic System . 43
3.2 D&I: Available port types in the model logistics system domain 47
3.3 D&I: Transportation interface variables . 59

A.1 D&I: Criteria to rate SPL tools . 82
A.2 D&I: Instruction notation . 85

VII

VIII

List of Abbreviations

API Application Programming Interface

AWL Anweisungsliste

BsC Bachelor of Science

CAFE Concepts to Application in System-Family Engineering

CAD Computer Aided Design

COM Component Object Model

CSS Cascading Style Sheet

DDD Detailed Design Document

DIN Deutsches Institut für Normung

DOME Domain Modeling Environment

DOPLER Decision-Oriented Product Line Engineering for effective Reuse

DSL Domain Specific Languages

DSM Domain Specific Modeling

ECU Engine Control Unit

EN Europäischen Normen

ESAPS Engineering Software Architectures, Processes, and Platforms for System
Families

FBD Function Block Diagram

FODA Feature-Oriented Domain Analysis

FUP Funktionsplan

GEMS Generic Eclipse Modeling System

GME Generic Modeling Environment

GMF Graphical Modeling Framework

IX

GMT Generative Modeling Technologies

GOPPRR Graph Object Property Port Role Relationship

GP Generative Programming

HTML Hypertext Markup Language

IDE Integrated Development Environment

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IL Instruction List

ISIS Institute for Software integrated Systems

ITEA Information Technology of European Advancement

LAN Local Area Network

LD Ladder Diagram

LGPL Lesser Gnu Public License

MEDEIA Model-Driven Embedded Systems Design Environment for the Industrial
Automation Sector

MDA Model Driven Architecture

MDE Model Driven Engineering

MERL MetaEdit Reporting Language

oAW openArchitectureWare

OCL Object Constraint Language

OLE Object Linking and Embedding

OMG Object Management Group

OPC OLE for Process Control

PIG PLC Implementation Generator

PL Product Line

PLC Programmable Logic Controller

POU Program organistation Unit

RAM Random Access Memory

RFID Radio Frequency Identification

X

ROM Read Only Memory

SCL Structured Control Language

SEI Software Engineering Institute

SFC Sequential Function Chart

SIPN Signal Interpreted Petri Nets

SOAP Simple Object Access Protocol

SPL Software Product Line

SPLC Software Product Line conference

SPLE Software Product Line engineering

SQL Structured Query Language

ST Structured Text

UML Unified Modeling Language

WSDL Web Service Description Language

XML Extensible Markup Language

XI

XII

Credits

This master thesis was carried out at the Institute for Technical Informatics, Graz Uni-
versity of Technology.
I would like to thank my supervisor Christian Kreiner for his encouragement and many
research discussions. Further, I would like to thank all involved staff of the institute, es-
pecially the IT-administrators who provided a great workplace and Michael Thonhauser.
Finally would like to say thanks to my family and Verena. They kept me grounded at all
times.

January 2010 Andreas Haselsberger

XIII

XIV

Chapter 1

Introduction

This thesis describes a novel approach of a domain specific architecture for programmable
logic controllers (PLC). The current chapter gives a short motivation, introduces the goal
and the structure of this work.

1.1 Motivation and goal

The basic idea of this thesis arose from a project which was done at the Institute of Tech-
nical Informatics at Graz University of Technology. The project dealt with the automation
of a conveying system in combination with a high bay racking and other hardware for a
logistics system. The development of an application for this domain resulted in an inflex-
ible and fixed software, although modern techniques (function-blocks) for programming
programmable logic controllers were used.
Such applications should be adaptable and flexible. Each customer has a special structure
or limitations in space, so every application is different although they are similar. Perhaps
the high bay racking is smaller, loading is done in another way, or additional hardware
like RFID readers are used. These different requirements should not lead to a complete
redesign and a new implementation of the software. Novel functionality for the system
should be covered too, to include it in future applications.

So the specification for a flexible domain specific architecture arose. Defined domain
and business specific changes in the system should be covered. This modifications should
be realised very simply without a redesign just with strategic and systematic reuse of code.

Generally the software development for computers can not be compared to the devel-
opment of applications for programmable logic controllers. Software development is an
academic discipline which has been explored for more than 60 years whereas PLC pro-
gramming is done by technician. The programming of PLC has not changed significantly
over the years, but many paradigms for conventional software development have come into
existence. Currently, researches try to apply known software development methods like
object oriented approaches to programmable logic controllers with little outcome. The
reason for missing methods is the history of PLC. Many vendors came into existence in
the PLC market and all of them had different approaches of programming and different
architectures which made it hard to develop uniform paradigms. The hardware and soft-
ware of todays programmable logic controllers is also not fully compatible. PLC are state

1

2 CHAPTER 1. INTRODUCTION

of the art for real time control systems so standards were created. The two important
standards are IEC 61131 and the newer IEC 61499.

Software product lines are currently the state of the art in strategic reuse of software.
Figure 1.1 shows a short history of reuse in software development.

1960s
SUBROUTINES

1970s
MODULES

1980s
OBJECTS

2000s
SERVICES

1990s
COMPONENTS

SOFTWARE
PRODUCT
LINES

SOFTWARE
PRODUCT
LINES

Figure 1.1: Reuse History [Nor07]

In the 1960s, reuse started with subroutines, followed by modules in 1970s and objects
in 1980s. In 1995, components appeared followed by services in 2000. Today, software
product lines are seen as the most effective way to implement strategic reuse. The key
idea of product lines is old and based on Henry Ford’s mass customisation to provide an
effective way for cheap, individual cars. Today many different approaches exist to imple-
ment a software product line.

The main goal of this thesis is the design and implementation of a domain specific
architecture for programmable logic controllers. This architecture should provide a simple
design and implementation of applications for a logistics system: a straight and flexible
architecture from design to implementation and finally deployment to the controller. The
design of the structure should be done in a graphical way without textual programming
by reusing existing objects. A common protocol between the individual parts should be
worked out too.

1.2. STRUCTURE OF THE THESIS 3

1.2 Structure of the thesis

Chapter 2 covers the related work of this thesis, starting with Section 2.1 which deals with
software product lines. After a short introduction, the history, the terminology and the
development process is covered. The three main processes are discussed in detail. After
this, the variability which is a major part of the product line is examined. At the end
of Section 2.1, current projects and approaches to implement a software product line are
shown. Approaches like domain specific languages, generative programming and model
driven engineering are discussed.

Section 2.2 discusses the topic programmable logic controllers. Starting with a his-
torical review and the definition the platform and the workflow of a PLC are illustrated.
Afterwards, the standards IEC 61131 and IEC 61499 are discussed as well as the harmon-
isation between them. Finally, new approaches to programming PLC are shown, which
are adopted from conventional software development: for example, applying the object
oriented paradigm to a programmable logic controller.

Chapter 3 discusses the design and implementation. After defining the requirements,
both architectures are shown. The SPL architecture and the PLC architecture. Section
3.4 gives an idea how the generators produce the code and after illustrating the user in-
terface, an evaluation is done.

General trends and ideas for future work are given in chapter 4.

Chapter 5 includes concluding remarks.

The appendix A contains a short evaluation of the used software called MetaEdit+ R©

as well as an installation guide of the implemented software packages. Additionally, a list
of criteria for choosing a software product line tool is shown. An example workflow of the
implementation and several screenshots are also shown in appendix A.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Related work

This chapter covers the research which was done during the master thesis. It is divided
into two main Sections. Section 2.1 discusses software product lines, Section 2.2 deals with
programmable logic controllers.

2.1 Software product line engineering

This Section will deal with Software Product Line Engineering (SPLE). A short historical
review and the motivation to use this paradigm is given. Afterwards the terminology and
the development process are discussed. This is split into three sub tasks called domain
engineering, application engineering and management. Tools to handle SPLE are men-
tioned, as well as current and honoured projects. The final parts of this Section show
current approaches and corresponding tools of software product lines.

2.1.1 Introduction to SPLE

Henry Ford developed the production line in the automotive Section, which enabled the
production of goods for the mass market. This production was much cheaper than creat-
ing individual products, so the procedure for producing goods changed significantly. An
important aspect of the product line is the diversification, because with the original prod-
uct line, the production of different products was limited.
At the beginning this was not a big problem but not everybody wants the same kind of a
product. The industry was confronted with the demand for individualised products. This
is called mass customisation [PBvdL05; Sch07].

The definition of mass customisation is the large scale production of goods which are
tailored to individual needs [Dav87]. This was the beginning of platforms, because in-
dividual products are too expensive and so the profit is too small. Common platforms
increase profit because they allow the reuse of technology. The use of this methodology
in the software industry is called software product line engineering (SPLE).

Software product line engineering is a paradigm to develop software applications (soft-
ware - intensive systems and software products) using platforms and mass customization
[PBvdL05].

5

6 CHAPTER 2. RELATED WORK

Some of the key ideas of SPLE are 25-35 years old. Dijkstra discussed the idea of SPLE
in the late 1960s. Parnas and others resolved the idea in the mid 1970s and Jim Neighbors
invented domain analysis in the early 1980s. Between 1980 and 1990 a systematisation
of SPLE took place and the first applications appeared. The first Software product line
conference was in the year 2000 [Wei05].

In the United States, the Software Engineering Institute (SEI) leads in dealing with
SPL [Ins08].
In Europe there were some projects to improve the overall system knowledge of SPLE.
They were organised by the Information Technology for European Advancement (ITEA).
ITEA was an industry driven strategic research and development program. The projects
were Engineering Software Architectures, Processes, and Platforms for System Families
(ESAPS 1999-2001), Concepts to Application in System-Family Engineering
(CAFÉ 2001-2003) and FAMILIES (2003-2005) [vdLBK+04; vdL02a]. ITEA2 is the follow
up project to ITEA [fEA08].

2.1.2 Motivation for SPLE

There are several key motivations additional to mass customisation for using software
product line engineering [PBvdL05]. The most important are discussed in the following
description.

Reduce development costs: An essential reason to apply a new engineering practice
is the economical justification which means cost reduction. At the beginning of a
SPLE, the costs are higher compared to a single system, because of the common
platform development and the reusable parts. Subsequent products can be made
more economically because of the commonalities in the product line. This means
a company has to make an investment to create the platform before it can reduce
the costs per product. Figure 2.1 shows this behaviour. At the beginning, the
accumulated costs are higher, but after the break-even point of approximately three
different products, the software product line is the better strategy.

The use of a common platform and the reuse of artefacts in numerous products lead
to the next point.

Increase quality: The platform is reviewed many times and tested in several products,
so finding errors in a product increases quality in all products of the product line.

Reduce time to market: This aspect is important in many business areas because re-
ducing the time to market may be a key motivation. Figure 2.2 shows the different
traces of time to market with both strategies. Similar to the costs (Figure 2.1) the
product line shows the advantage after a certain number of implementations.

Reduce maintenance effort: As a result of the architecture, the maintenance effort is
reduced, because there is only one common platform and the same artefacts for all
kinds of products.

Coping with evolution and complexity: Implementing one new artefact for the plat-
form gives the opportunity to put it in all other products of the SPL to set trends.

2.1. SOFTWARE PRODUCT LINE ENGINEERING 7

Investment
Up−Front

Break-Even
Point

Single System

Different SystemsNumber of

Costs
Accumulated

Software Product Line

~3 Systems

Figure 2.1: Costs for developing single products compared to SPLE [PBvdL05]

Market
Time to

Time for
Core Artefacts

Single System

Different SystemsNumber of

Cycles due to Reuse
Shorter Development

Software
Product Line

Figure 2.2: Time to market with and without SPLE [PBvdL05]

The reuse of parts reduces the complexity, because the development with higher
abstraction of already implemented parts is easier.

Benefits for the customer: Last but not least, there are benefits for the customers who
get a product which is adapted to their needs with an adjusted price.

Companies dealing with software product line engineering tell about all these motivat-
ing factors (see 2.1.6).

8 CHAPTER 2. RELATED WORK

2.1.3 Terminology

Before dealing with the development processes, a uniform terminology has to be defined,
because the literature uses two notations for the same engineering discipline. In Europe
the term software product family is used more often than the American notation software
product line engineering (SPLE). The reason for this is the independent start of the con-
ference series in Europe and America. Today these conferences are merged and named
Software product line conference (SPLC) so the american notation is adopted [PBvdL05].

Additionally, there are some other naming conflicts like core asset development which
is the same as domain engineering and product development as a synonym for application
engineering. In this master thesis, the terms software product line engineering, domain
engineering and application engineering are used. Only the illustrations used from the
Software Engineering Institute have their original American naming scheme.

Table 2.1 lists all essential differences in the terminology.

Product Line Product Family
Product Development Application Engineering
Core Asset Development Domain Engineering
Product Customisation
Business Unit Product Line
Software Core Assets Platform

Table 2.1: SPLE - Synonymous terminology [LCP+00]

2.1.4 SPL development processes

The paradigm of software product line engineering differentiates between two respectively
three processes[PBvdL05; Ins08; Sch07]. These processes are all iterative and partially
parallel.
Domain engineering is the process which is responsible for creating the platform, defining
and realising all the commonalities as well as variabilities of the software product line.
Section 2.1.4.2 deals with this process. The second process is called application engineer-
ing where all the applications are built by using the domain artefacts and exploiting the
variability of the software product line. Detailed information is given in Section 2.1.4.3
Management is the third process and deals with the economic aspects of the software
product line. This part of the development is handled as own process in the SEI frame-
work (Figure 2.3(a)) whereas it is a part of domain engineering in the other framework.
Detailed information is given in Section 2.1.4.1. Figure 2.3 shows two different graphics
for the development process, called the framework for software product line engineering.
They differ in few points, but both can be found in the literature and both introduce the
main processes.

Another two interesting graphics illustrating the goal of SPLE are shown in figure 2.4.
Figure 2.4(a) gives an idea how strategic reuse is realised. The business strategy is as
important as the technical strategy to reach an efficient reuse level.
Figure 2.4(b) shows again an illustration of software product lines with all three processes.

2.1. SOFTWARE PRODUCT LINE ENGINEERING 9

The business goals in the application domain lead to an architecture representing the base
for creating products with components. As the graphic shows, the business strategy is on
the top. Every process follows the strategy.

Product
Development

Core Asset
Development

Management

(a) SPLE framework (SEI [Nor02])

Application N - Artefacts incl. Variability Model
Application 1 - Artefacts incl. Variability Model

Application
Requirements
Engineering

Application
Realisation

Application
Design

Application
Testing

Requirements Architecture Components

A
pp

lic
at

io
n

En
gi

ne
er

in
g

Tests

Product
Management

Domain
Requirements
Engineering

Domain
Realisation

Domain
Design

Domain
Testing

Domain Artefacts incl. Variability Model

Requirements Architecture Components Tests

D
om

ai
n

En
gi

ne
er

in
g

(b) SPLE framework [PBvdL05]

Figure 2.3: Development process for SPLE

STRATEGIC
REUSE

BUSINESS STRATEGY

TECHNICAL STRATEGY

(a) Strategic reuse [Nor07]

BUSINESS GOALS/
APPLICATION DOMAIN

ARCHITECTURE

COMPONENTS
and SERVICES

pertain to

share an

are built from

is satisfied by

used to structure

PRODUCTSPRODUCTS

Product lines
• take economic advantage of commonality
• bound variation

(b) SPLE process[Nor07]

Figure 2.4: Development process for SPLE

10 CHAPTER 2. RELATED WORK

2.1.4.1 Management

As already mentioned, the management process involves economic aspects of the software
product line. The business strategy and the product portfolio are the main parts. The
company goals are the base for the so called product roadmap determining the ongoing and
future set of product types, the commonalities and the variabilities. The roadmap also
defines a schedule of market introduction. For software product line success, the manage-
ment must be closely linked to the other processes [PBvdL05; Nor02; CJNM05; Sch07].
This behaviour is illustrated in Figure 2.3(a).

The management also controls the iteration between application and domain engi-
neering to stay on the roadmap. In traditional software engineering, the management is
responsible for creating a single result in a defined amount of time, so product management
in product lines differs in some points from single systems:

• The goal is to generate a complete product portfolio (product variants / roadmap)

• The product variants are similar

• The platform for the product variants is crucial because it affects all products

An often used definition of product management in software product line engineering is:

Product management is the sub-process of domain engineering for controlling the de-
velopment, production, and marketing of the software product line and its applications
[PBvdL05].

The products must make the best use of the domain artefacts and variabilities and the
domain artefacts must be feasible for the products of the roadmap. Therefore, the man-
agement is involved in the whole process of software product line engineering [CJNM05]
(See Figure 2.3(a)).

2.1.4.2 Domain engineering

The process domain engineering defines the commonality and the variability of the soft-
ware product line. In cooperation with the management (Section 2.1.4.1), the set of
applications will be selected. Now the reusable artefacts can be constructed to determine
the variability. Both figures 2.5 illustrate domain engineering [PBvdL05; Nor02; Sch07].
Figure 2.5(a) shows subprocesses which will be discussed now. The input for domain
requirements engineering is the roadmap from the management which causes reusable
requirements as output. The format of these requirements is not specified and may be
textual or anything else. These requirements are not for special applications, but for all
possible applications of the product line. In this process, the chosen approach to start a
product line must put into practice. Further information about the starting-approaches
can be found in Section 2.1.4.4.

The domain design subprocess takes all requirements as input and creates a reference
architecture. During this stage, technical reasons may influence the internal variability.

2.1. SOFTWARE PRODUCT LINE ENGINEERING 11

After defining the reference architecture, domain realisation is done. Reusable compo-
nents can now be designed and implemented. It is possible to test the implemented
components against their specification to reduce the later testing of the whole application.
This subprocess is called domain testing. All the individual subprocesses discussed are
iterative. Figure 2.5(b) shows the same processes in another way. The output is again
reusable artefacts (core assets), which the company uses to implement all products of the
roadmap [CJNM05]. Production constraints influencing the development may be external
or company specific standards which must be applied to all products [Nor02].

Product
Management

Domain
Requirements
Engineering

Domain
Realisation

Domain
Design

Domain
Testing

Domain Artefacts incl. Variability Model

Requirements Architecture Components Tests

D
om

ai
n

En
gi

ne
er

in
g

(a) Domain engineering [PBvdL05]

Domain Engineering

Domain
Engineering

Management

Product constraints
Styles, patterns,

frameworks
Production constraints

Production strategy
Inventory of

pre-existing assets

Production line scope
 Core assets
 Production plan

(b) Core asset development [Nor02]

Figure 2.5: Domain engineering

12 CHAPTER 2. RELATED WORK

2.1.4.3 Application engineering

The application engineering process tries to achieve a high reuse of the domain artefacts
during the creation of a new application [PBvdL05; Nor02; Sch07]. Exploring the vari-
abilities of the product line should lead to many resulting applications. Figure 2.6 shows
two views on application engineering.

Application N - Artefacts incl. Variability Model
Application 1 - Artefacts incl. Variability Model

Application
Requirements
Engineering

Application
Realisation

Application
Design

Application
Testing

Requirements Architecture Components

A
pp

lic
at

io
n

En
gi

ne
er

in
g

Tests

(a) Application engineering[PBvdL05]

Application Engineering

Application
Engineering

Management

Requirements
Product line scope
Core assets

Production plan
+ +

Products

(b) Core asset development [Nor02]

Figure 2.6: Application engineering

This process is also divided into subprocesses as illustrated in Figure 2.6(a).

Application requirements engineering is the first step in developing the specification of
the application requirements. Differences between the reusable domain artefacts provided
and the necessary requirements can be found, because the domain artefacts are the only

2.1. SOFTWARE PRODUCT LINE ENGINEERING 13

input for this subprocess with the product roadmap kept in mind. The result of this sub-
process is a requirement specification for an application.
Modifying the reference architecture to fit the needs of a specific application is done in
application design. The reference architecture and the specification are the input param-
eters and the output is an adjusted architecture for a single application.
Now the application is created in the subprocess application realisation. Reusable com-
ponents are selected and configured. It is also possible to implement application specific
parts. The result is a running application which will be tested in the last subprocess called
application testing.
Figure 2.6(a) illustrates the set of applications resulting from application engineering in
the software product line. The graphic 2.6(b) gives another view on application engineer-
ing by taking again the domain artefacts in respect to the roadmap to create customised
products. Here an explicit connection to the management is shown.

2.1.4.4 Approaches for software product line development

A company decides to develop a software product line, but how to get it started? Basi-
cally, there are three different approaches starting with a software product line [Nor07;
KAG+07].
These approaches depend on the strategy of the user or company and there is no formula
to select the right one.

Proactive
In this case, the Domain Engineering Process is the first step. The development process
must take into account all feasible products of the Software Product Line. The complete
set of all artefacts is developed from scratch which is, of course, a risk for the company.
This needs predictive knowledge and a clear strategy. After the SPL has been constructed,
the new products will come to market quickly with a minimum of coding effort by explor-
ing the variability.

Reactive
The reactive approach starts with just one or a few more products. These are used for
domain engineering and for further products. This leads to lower costs at the beginning
of a new project compared to the proactive approach, but the architecture and the core
artefacts must be robust, extensible and appropriate to future needs.

Incremental / Extractive
This approach starts with existing software products or systems. Then reusable artefacts
are extracted to create a first version of a software product line. Further products extend
the artefacts incrementally.
Companies dealing with risky products may develop the products this way.

14 CHAPTER 2. RELATED WORK

2.1.5 Variability

[PBvdL05] defines variability this way:

Documenting and managing variability is one of the two key properties characterising
software product line engineering. The explicit definition and management of variability
distinguishes software product line engineering from both singles-system development and
software reuse.

Variability is defined during the domain engineering process where it is refined in all
subprocesses (see Figure 2.5(a)). Variability describes the ability of domain artefacts to
be used in different applications of the product line roadmap [BC05; BFG+01; PM06].
Two important terms are variability subject which is a variable item in the real world and
variability object, as a specific instance of the subject. For example, a feed system would
be the subject and a two meter long and one meter high conveyor band would be the object.
Further abstractions which are interesting related to variability in software product line
engineering are variation points and a variant. This is the representation in a context of
the variability subject (variation points) and the variability object (variation). A simple
example makes it more clearly. Let us take again the variation subject feed system with
objects like conveyor band and a rotary table. The context in the demonstration is a
logistics system so the variation point is feed system and a variation could be a rotary
table for the logistics system.

The variation points and the variants are used to define the variability of a software
product line. When creating a SPL, first, all variation subjects must be declared, then the
variation points have to be worked out and finally the according variations. To document
the variability, the following questions have to be answered:

What varies? The mapping between the real world and the variation points should be
documented.

Why does it vary? The reason can be internal like technical constraints or external like
laws, standards or needs of stakeholders.

How does it vary? All possible variants should be documented and linked to the domain
model elements.

From whom is it documented? There is a difference between extern and intern. Some
documents are only for internal use and some are relevant for the stakeholder.

Figure 2.7 shows a graphical notation to model variability. It defines the variation
points, the variation and the dependencies between them. Dependencies are divided into
variability and constraint dependencies.

A short example in the context of this master thesis is given in Figure 2.8. Sample
variations like rotary tables and conveyor bands of the feed system and dependencies
between single variations can be seen. Dependencies between variations are, for example,
the rack servicing unit which is needed if a crane should be part of the system. There
is also a dependency between a variation (crane) and a variation point (control) which
implies, that a crane can only be realised with a control. The control itself may be either
the basic or the advanced implementation (alternative).

2.1. SOFTWARE PRODUCT LINE ENGINEERING 15

Variation point Variant

[name]

VP

[name]

V

Variability dependencies

alternative

optional

mandatory

Constraint dependencies

requires v -vp
requires v-v
requires vp-vp

requires_v-vp

requires_v-v

requires_vp-vp

excludes v-vp

excludes vp-vp

excludes v-v

excludes vp-vp
excludes v-v
excludes v-vp

Figure 2.7: Graphical notation for variability [PBvdL05]

VP

Feed
system

Rotary table

V

Conveyor
band

V

VP

Storage

Crane

V

manual

V

Rack servicing
 unit

V

Requires_v_v

VP

Control

Basic

V

advanced

V

Requires_v_vp

Figure 2.8: Graphical notation example

In big projects, there are thousands of variation points and variations, so the organisa-
tion and optimisation is a challenging research area [LP07]. Several tools provide different
selection methods where variability can be easily handled. For example, dependencies are
checked during the selection process [NTB+08] (see also 2.1.8). Variation management is
a main-criteria when selecting a tool for big software product lines.

16 CHAPTER 2. RELATED WORK

2.1.6 SPLE in action

Now the key principles were discussed, but who uses software product lines already and
what are the problems in practice. Many companies switched to SPL development to
create more products in a shorter time, for example Nokia R©. Here the use of SPLE is
obvious because of the properties of a mobile. Nokia R© increased the production of different
mobiles from originally 5 per year to 25-30 per year [Nor07; Bos05]. In 1999 the product
line for Nokia R© browsers and tools started [Jaa02].

Starting in the year 2000, Bosch Gasoline Systems R© tried to reach new high cost
sensitive market segments (Engine Control Unit: ECU). They had one standard platform
which had to deal with small products as well as with high end systems. That was the
problem, because constraints like power consumption in tiny projects with their complex
platform occurred. Bosch introduced a software product line which took 6 years. Now
software product lines are successful within Bosch, and a lot of change happened within
the management structure [TMKG07; STB+04].

SPLE is also a topic in the development of mobile games because the mobiles provide
different platforms where the games should be adapted, also screen resolutions and the
keypad are relevant [ACA08].

Another interesting project in respect of this work is the use of SPL for metal processing
lines which are PLC controlled [SMBU07]. Each single machine is PLC-controlled and
there is a master-controller handling the communication between them. After introducing
the product line, changes to the metal processing line, e.g. other finalisation with thinner
metal were easy to realise.

2.1.7 Hall of fame

The Software Product Line Hall of Fame honors software product lines that can serve as
examples to software product line developers [Wei08].

At each Software Product Line conference, the audience nominates several systems or
projects for induction to the Hall of Fame [WCKK06; Ins]. The main goal of this procedure
is to find and show the best examples in the field to improve SPL in practice. All members
of the SPL hall of fame are listed at http://www.sei.cmu.edu/productlines/plp_hof.html.
For example the Hall of Fame Inductee from the 11th SPLC (2007) was Bosch with Gaso-
line Systems Engine Control Software, as mentioned in Section 2.1.6.

There are 5 criteria for the election to the SPL hall of fame:

• There is a clear separation between whether a software is part of the product line or
not.

• The commonalities and variabilities of the SPL are known and there is an underlying
design for the SPL.

• The SPL has had a strong influence on other product lines. It showed how things
can be done and maybe others have stolen or borrowed ideas and concepts to create
their own SPL

http://www.sei.cmu.edu/productlines/plp_hof.html

2.1. SOFTWARE PRODUCT LINE ENGINEERING 17

• Commercial success of the SPL.

• Sufficient documentation of the SPL should be available.

The four judges of the SPL hall of fame are:

- David M. Weiss, Avaya Labs Research (Chair)

- Paul C. Clements, Software Engineering Institute

- Kyo Kang, Pohang University of Science and Technology

- Charles Krueger, BigLever Software

2.1.8 Supported product line approaches and tools

As already mentioned the development process of an SPL is a difficult and expensive task.
So the motivation is high to buy and use tools which reduce these costs. There are several
commercial tools available, like GEARS from BigLever, or pure::variants professional from
pure systems [Kru08; Beu08]. GEARS is an integrated SPL development framework, which
can be used during many stages of SPL engineering by extending the current software
engineering toolset of a producer. More information, web seminars and some downloads
are available at http://www.biglever.com.

The second commercial tool which is presented in this work is pure::variants from pure
systems. It is an eclipse based application that supports domain engineering as well as
application engineering so it handles variability in all steps of an SPL. Pure::variants also
provides integration to other development tools, because this is very important for this
kind of software. Further information can be found at http://www.pure-systems.com/pv.

Research tools like DOPLER (Decision-Oriented Product Line Engineering for Effec-
tive Reuse) also exist. This tool was developed by the Johannes Kepler University Linz
[DRGN07].

An example of free software is the FAMA framework (FAMA FW) which is available
under the lesser gnu public licence (LGPL). It is an eclipse plugin which manages variabil-
ity and provides solvers and reasoners to explore the product line [TPB+08]. Additional
information can be found on http://www.isa.us.es/fama/.

FLiP is a similar eclipse plugin dealing with SPL [ACN+08].
There are more applications available dealing with software product line engineering,

but the most popular are listed above. Section 2.1.8.6 shows other metamodeling tools
which are able to handle SPLE.

There are numerous approaches which support software product lines. The most salient
are Domain Specific Languages (DSL), Generative Programming (GP), Model Driven
Engineering (MDE) and Domain Specific Modeling(DSM) [EV05]. All these approaches
are model-driven and not code centric, which is the other software development strategy
and the main idea is to get a higher level of abstraction. Models are also used to hide
implementation details. The use of such a development strategy is recommended if many
products will be generated within this scope and a basic skill in this area is given [KT08].

http://www.biglever.com
http://www.pure-systems.com/pv
http://www.isa.us.es/fama/

18 CHAPTER 2. RELATED WORK

The next Section gives a short introduction to all principles and shows that they share
many techniques and concerns. Domain specific modeling and domain specific languages
are discussed in more detail because they are important for the implementation part of
this master thesis.

2.1.8.1 Domain specific languages

Domain specific languages are nothing new and sometimes they are called micro- or little
languages. Most of the older programming languages like Cobol or Fortran came from
specific domains. Later they have evolved to be more general to solve a broader problem-
spectrum [vDKV00].
The most common definition of a DSL is :

A domain-specific language (DSL) is a programming language or executable specifica-
tion language that offers, through appropriate notations and abstractions, expressive power
focused on, and usually restricted to, a particular problem domain [vDKV00].

The language is either textual or graphical but DSLs are not only programming lan-
guages, they can also act as specification language. If a DSL contains a compiler which
generates executable code, it is called application specific language and the compilers name
is application generator. A DSL is also able to generate other output like documents. An
example therefore is LATEX. Today many domain specific languages like SQL oder HTML
exist. When browsing through the IEEE database, there are many publications about
DSLs for various domains. The design of a DSL includes 2 basic steps:

Analysis: Identify the problem domain and explore it to gather as much information as
possible. Then this knowledge is clustered in a couple of notations. The designed
DSL should describe applications in the problem domain. This process is also called
domain engineering as in SPLE.

Implementation: The designed constructs are implemented and provided to the user,
as library or repository. After creating DSL based programs, a compiler translates
them.

A guide for building a powerful DSL is not published yet, but useful information on
what not to do can be found in [KP09].
The advantages of using a domain specific language are that problems are handled in
the problem domain. Because of the high abstraction, domain experts are able to create
programs without real programmer knowledge. They are self-explaining and documenting
and improve the productivity but there are disadvantages too. For example, the design
and setup time is high and cost intensive so an efficient management should think of the
scope and the business strategy, similar to SPLE.

Domain specific languages are able to implement a software product line.

2.1. SOFTWARE PRODUCT LINE ENGINEERING 19

2.1.8.2 Generative programming

Generative programming is also able to implement software product lines and generate
applications with a given definition. In most cases these definitions are made with domain
specific languages which take reusable components within the variability. GP works not
in the problem domain but rather in a feature perspective [ABM09; EV05].
The mapping between the problem- and solution-space is the key principle in generative
programming [Cza04]. This perspective has at least two different views. The configuration-
and transformational-view. The configuration view describes a rule-based transformation
of a selected feature-set in the problem domain to implemented components in the solution
space. The transformational view bases on a DSL in the problem- and an implementation
language in the solution-space as well as the mapping between them.
In a simple summary, it can be stated that one or more DSLs, a mapping and components
are the main parts in generative programming.

2.1.8.3 Model driven engineering

Model driven engineering defines, as the name says, the model as the basic concept. It is
an initiative of the Object Management Group (OMG) [Gro09]. The definition of a model
is:

The model is a simplification of a system built with an intended goal in mind. The
model should be able to answer questions in place of the actual system [BG01].

These models should be easier to use than the original system and all models conform
to a metamodel definition. The metamodel is the specification which defines a set of
concepts and relations between them.
Model driven architecture (MDA) was the beginning of MDE and based on the Unified
Modeling Language (UML) but the new trend in MDE is pretty close to a DSL [KT08].
MDA enables a specification of a system which is independent of the platform (PIM)
and a platform specific variant called platform specific model (PSM) or independent of
all computing details (CIM). The transformation between PIM and PSM can be done
automatically.

2.1.8.4 Domain specific modeling

Domain specific modeling can be seen as MDE with a DSL and it is similar to generative
programming. The 3 integral parts are as mentioned a DSL, a framework and a generator.
DSM is unsuitable for new projects, as are many other modeling techniques [KT08].
Figure 2.9 shows how developers have bridged the gap between the idea and the finished
product by raising the level of abstraction. The first step is to solve the problem in the
corresponding domain with a high abstraction level, then the mapping to code is done. In
case of UML or another general purpose modeling language a mapping to the specification
of UML is done before generating the code.

With regard to business values, DSM increases the productivity by about 300-1000%
in comparison with general purpose modeling. For example, Nokia applied a DSM solution
as SPL and reported a 1000% increase in productivity (see Section 2.1.6). The motivation

20 CHAPTER 2. RELATED WORK

Domain
idea

Finished
product

Assembler
Map to code, implement

Map to code, implement

Map to UML

No need

to map

Code

UML model

So
lv

e
pr

ob
le

m
 in

 d
om

ai
n

te
rm

s

Domain
model

Domain
framework

generate code

Figure 2.9: Bridging the abstraction gap from idea to implementation [KT08]

for DSM is similar to SPLE and all factors from Section 2.1.2 apply to DSM too.
The characteristics of DSM are [KT08]:

Narrow focus: The modeling can be used only for this domain and its applications which
means a narrow problem and solution domain.

High level of abstraction: The models map exactly to the problem and the generators
to the solution domain.

Full code generation: Static and dynamic code is created by the generators and one
source model is able to create multiple targets. For example: One model is the basis
for the code, suggestions, documentation and other output. See chapter 3 for the
implemented targets in this work.

Representation: In most cases, graphical models are closer to the problem domain than
text.

Large number of users: Because of the simplicity not only programmers are able to
use DSM.

2.1.8.5 Comparison: UML vs. Domain specific modeling

The question regarding the difference between UML and DSM often arises although the
names should give the answer. The main difference is the narrow focus of DSM and the
tight mapping of the models to the problem space. UML models often result in large and

2.1. SOFTWARE PRODUCT LINE ENGINEERING 21

complex abstractions because a unified modeling is always more complex than a domain
specific but there are of course advantages for UML.
Another big gap is the code generation, which is state of the art in DSM with good
quality, because the generator fits to the domain. It is obvious, that one generator for all
applications does not exist [KT08].
A study on maintainability shows, that DSM generated code is easier to handle than
UML-made code [CRR09].

2.1.8.6 Metamodeling tools

In contrast to the tools for SPLE, other available software can be used which follows the
SPLE approaches listed in Section 2.1.8. These tools are called metamodeling tools and
the following pages will present the most popular. MetaEdit+ R© is described in detail,
because it is used for the implementation.

DSL tools for Visual Studio: Microsoft R© DSL tools are available as an extension for
the VisualStudio. The current version is 2008 but for Visual Studio 2005, there is also
a plugin called DSL tool. This extension provides all tools, which are necessary to
define a domain specific language, develop models with this DSL and generate code of
those new application models (metamodeling environment / modeling environment
/ code-generation)[GVDV08]. The following descriptions are for DSL-Tools 2005,
but there are only marginal changes to Version 2008 [Mic08b]. The meta-modeling
process is done in three steps. First the domain model notation, representing the
structure is defined visually. It shows the inner structure and the relationship be-
tween classes. Possible constructs are classes, properties, inheritance, embedding
and reference. Embedding means, that a class X is a subclass of another, whereas
a reference implies the use of another class. Links between classes are defined with
relationships. Here, for example, the cardinality or inheritance is defined.
After the domain model notation, domain constructs have to be defined, which is a
challenging task, because everything has to be done in an XML notation. The last
step is to create relationships between domain notation and constructs. There is also
a wizard which provides several templates for languages (task Flow/ class diagrams/
minimal language/ component models).

After creating the metamodel it is possible to model a specific application. The last
action is to start the generation of real code. Here, Microsofts R© DSL tool is based
on the transformation of templates. These templates may include control-, directive-
or textblocks [KMML07][Mic08a]. Validations of the model must be written in C#.

Generic modeling environment: The Generic modeling environment (GME) is a Win-
dows based, programmable graphical modeling tool suite (open source). It has been
developed at the Institute for Software integrated Systems (ISIS) at Vanderbilt Uni-
versity. This metamodeling language is based on the UML class diagram nota-
tion [fSis09; Siv08b]. The constraints are written in Object Constraint Language
(OCL) and managed in the constraint manager. All models are stored in a rela-
tional database as XML files. GME can be extended by writing components in any
language. The metamodel concept is based on folders which contain models, Atoms,

22 CHAPTER 2. RELATED WORK

References, Connections and Sets. GME is COM based, so any COM enabled lan-
guage can be used for model interpretation. (COM is a technology for inter-process
communication on Windows platforms)

Generic Eclipse Modeling System: The Generic Eclipse modeling system (GEMS)
is a part of the Eclipse Generative Modeling Technologies (GMT) project. GMT
tries to create prototypes in the area of MDE [Ecl09b; Ecl09a]. GEMS is a plugin
for the eclipse IDE and like the platform is open source on the Eclipse license.
GEMS is also developed at Vanderbilt University Institute for Software Integrated
Systems (ISIS) and other companies. The main goal is to bridge the gap between
existing metamodeling tools like GME and Eclipse modeling techniques like Eclipse
Modeling Framework (EMF) and Graphical Modeling Framework (GMF). GEMS
provides a graphical language for the metamodel which contains entities, attributes,
relationships, connections and constraints. These are written in Java, OCL or Prolog
and can be used as triggers. Java based code generators are also available.

Domain Modeling Environment: The Domain Modeling Environment (DOME) is
an open-source multiple platform tool under the GNU license and is written in
Smalltalk [Hon09]. DOME supports graphical developing, analyzing and transform-
ing models. Built-in notations like UML and Petri-Nets can be extended or a to-
tally new definition can be created. New concepts are made with the DOME tool
specification language. Components are objects, classes, property and relationship
definitions and connector types.

openArchitectureWare: openArchitectureWare (oAW) is a modular MDD/MDA gen-
erator framework which evolved from a Sourceforge project into a rich toolkit for
model driven software development [ope09; Ecl08]. oAW moved to the Eclipse GMT
project (see 2.1.8.6) with several sub-projects like Xpand, Xtend and Xtext as a
result. oAW was not seen as a ”prototype and research project” so it had to leave
GMT on 1st December 2008, but now it is back as an Eclipse project. oAW is suit-
able to generate, transform and check models [RBKS07]. Because of the evolution at
Eclipse it has strong support for the Eclipse Modeling Framework (EMF) although
other models are possible too. The metamodel is called Ecore. The validation is done
using the first-order-language CHECK which is an equivalent to OCL. To generate
code with oAW, all models have to be combined into one model using a model to
model transformation which is provided by the language EXTEND. After combining
the models, the template language Xpand can be used for code-generation.
XText is also a part of the oAW framework which supports a textual DSL develop-
ment. Figure 2.10 was taken from [Sen07] and modified to illustrate the discussed
basic architecture of oAW.

MetaEdit+: MetaEdit+ R© is an integrated environment to generate modeling tools and
generators for an application. Between 1988 and 1995 this tool was developed
as a prototype in the Syti and MetaPHOR research projects at the University of
Jyväskylä. The commercial tool has been available since 1993 and the current ver-
sion 4.5. MedaEdit+ R© is a repository based client server tool which is available for all
major platforms (Windows, Linux, MacOs X, HP-UX, Solaris). The tool is divided

2.1. SOFTWARE PRODUCT LINE ENGINEERING 23

Ecore

Metamodel II Metamodel I

Model II Model I

Custom
Textual Editor

Textual
Syntax Spec

xText

Ch
ec

ks

Generated Code
(any textual artefact)

Xpand

Xtend Xtend

buildsinstanceof instanceof

instanceofinstanceof

Xtend

Figure 2.10: oAW architecture (modified [Sen07])

in two main programs, the MetaEdit+ R© Workbench and the MetaEdit+ R© Modeler.
In the workbench, a new domain specific language can be defined, whereas the mod-
eler follows these definitions. Figure 2.11 shows the architecture of MetaEdit+ R©.
The software is network-based, so all definitions and the object repository can be
used parallel in the network to create new applications.

MetaEdit+ R© applies the GOPPRR metamodeling language. This is the acronym
for graph/ object/ property/ port/ role/ relationship. GOPPRR extends GOPRR
with the port-concept [Siv08a],[Siv08b]. The following list describes all types of the
GOPPRR language. The order is mixed to make it more logical [Met08],[Siv08b].

Graph: The graph is the collection of objects, relationships, roles and shows the
connections between them. Modeling applications are done in the graph.

Object: An object is the main-element in the graph and can be placed on it’s own.

Relationship: A relationship is a connection between objects. They are connected
via roles.

Role: The role defines, how an object takes part in a relationship.

Port: A port is an optional but detailed specification for a connection at an object
and constraints can be made here. A conveyor has for example two ports.

Property: All other types can have properties such as name and description, or
other objects.

24 CHAPTER 2. RELATED WORK

Diagram Editor

Matrix Editor

Table Editor

Browsers

Report and Code
Generation

Method Tools

API & XML
connectivity

Browsers

MetaEdit+ Client

MetaEdit+ Client

Object
Repository

MetaEngine

N
et

w
or

k

Network

MetaEdit+ Client

Figure 2.11: Architecture of MetaEdit+ R© [PK07]

Section 3.2.2 should clarify all types.

MetaEdit+ R© allows two ways of defining a new language, either graphical or form
based. Graphical means drawing diagrams like UML class-diagrams with objects
and properties. Form based generation works with dialogs for each language type.
Because the definition is saved as XML, it is possible to continue a graphical language
with form-editors. Graphical metamodels are more suitable for smaller languages or
to document the modeling language. Form-based metamodeling is appropriate for
layered structures and complex references [PK07].

In MetaEdit+ R© there is fixed set of possible constraints.

Object connectivity i.e. amount of objects in a relationship

Object occurrence i.e. specified number of objects in a graph

2.1. SOFTWARE PRODUCT LINE ENGINEERING 25

Ports involved in binding i.e. ports of a certain type must have specified values

Property uniqueness i.e. unique values for a specified property

The code-generation is done by crawling through the designed models, extracting
the information and forming an output in a predefined format. This predefined
format can be achieved by creating a custom generator. The generator is defined
with MetaEdit reporting language (MERL R©). MERL R© is a simple scripting lan-
guage which is tailored for creating code generation definitions. Browsing through
the model is easy with several commands and the output can be launched in an
application or stored in a file.

MetaEdit+ R© also provides an API for communication. It implements a SOAP
server, so other applications must implement a client to send SOAP-calls. SOAP
means simple object access protocol which is a network-based protocol to exchange
data in an XML form. Therefore, MetaEdit+ R© functions are available in almost
any programming-language. Functions may access and change conceptual elements
(graphs/ objects ...) which is not possible with MERL scripts. By writing external
programs, the fixed set of constraints can be extended.

At the vendor-website http://www.metacase.com, there are many documentations
and tutorials available [Met08; Tol06; Siv08b; PK07].

A short evaluation is done in A.2.

http://www.metacase.com

26 CHAPTER 2. RELATED WORK

2.1.8.7 SPLE tooling benefit analysis

The performance of an SPL implies an efficient domain- and application engineering pro-
cess, the latter is more important. A way to improve these processes is visual tool support.
This Section deals with a domain specific benefit analysis for SPLE software-tools in re-
spect of the implementation.

It is difficult to compare all tools for software product line engineering because there
are many approaches for the implementation. For each single approach there are also
several tools. It depends on the domain and the output of the application. In cooperation
with the master thesis of Andrea Leitner, a list of criteria is elaborated to rate SPLE tools
[Lei09]. Some of the criteria were taken from existing papers [DSF07; DRGN07; LCP+00]
and new ones were added. To see the whole list please see appendix A.1. Generally, there
are three main groups. Criteria regarding the product line, the management and technical
criteria. Examples of SPL criteria are attribute management or product derivation. Man-
agement deals with traceability management, impact analysis and reporting. Technical
criteria are for instance access modes, usability or accessibility.

Regarding a complete mapping from the problem to the solution space, domain specific
modeling is an appropriate approach for a software product line in this specific domain.
Table 2.2 shows a comparison of widely used tools for SPLE. MetaEdit+ R© is a tool for a
DSM approach. (see Section 2.1.8.4)

The weights are domain specific for the the logistics application of the master thesis.
This is just a tiny subset of available tools, but they are the most popular ones. All tools
of Section 2.1.8.6 could also be a part of this table. Based on a comparison of [Siv08b],
tests with the software and positive industrial feedback, MetaEdit+ R© was elected as the
DSM exponent.

Table 2.2 shows the result of the comparison with the specific weights for this domain.
MetaEdit+ R© is most suitable, followed by pure:variants.

As mentioned, the weighting of the single criteria depends on the application. In this
work a rich attribute management to manage thousands of objects is not important, be-
cause there are only a few different parts. To find these parts, the domain specific language
is used with different symbols. In contrast, product derivation is important but this should
be covered by the DSL too. An essential role in this domain is rule and error checking to
create reasonable and correct systems.

For these reasons it is difficult to compare different tools of software product line en-
gineering.

Further to the information given in Section 2.1.8.6, Figure 2.12 shows the simplified
architecture of MetaEdit+ R©. The key element is the object with properties, ports, rela-
tionships and roles.
The generators extract the information of the graph-model to create code or reports.

2.1. SOFTWARE PRODUCT LINE ENGINEERING 27

T
o
o
ls

pu
re

:v
ar

ia
nt

s

G
ea

rs

Fe
at

ur
e

M
od

el
in

g
P

lu
gi

n

X
Fe

at
ur

e

M
et

aE
di

t
+

Criterion Weight Rating Rating Rating Rating Rating

Attributes Management 2 5 7 5 5 2
Feature and Variability Modeling 4 10 9 10 7 7
Feature Metamodel Maturity 2 3 1 8 6 8
Constraint Checking and Propagation 8 10 8 8 8 9
Product Derivation 8 10 9 7 7 9
Domain Engineering Management 5 7 8 5 5 5
Repository 3 6 9 6 6 6
Traceability Management 3 4 4 1 4 5
Impact Analysis 5 4 8 2 2 9
Reporting 1 8 9 2 2 9
Access Mode 10 2 1 2 2 9
Technical Environment 10 8 4 5 5 9
Usability 6 6 8 3 4 7
Automatic Filters 1 5 3 3 3 6
Tool Configuration 7 7 2 3 10 9
Extensibility 9 10 5 6 4 5
Flexibility 10 8 6 6 6 10
AOB 6 9 5 6 7 7
Benchmark 1000 723 566 506 542 782

Table 2.2: Results of the SPLE tool evaluation for this thesis

28 CHAPTER 2. RELATED WORK

MetaEdit+ R© also offers a SOAP interface to read or change the model definition.

Repository
MetaEdit+

Objects
properties

Graph

Generators (MERL)

Roles
properties

Relationship
properties

Rules

Ports
properties

De�nition / Usage

Generator X1 Generator X2

SOAP

Figure 2.12: Brief overview MetaEdit+ R© architecture

2.2. PROGRAMMABLE LOGIC CONTROLLERS 29

2.2 Programmable logic controllers

This Section gives an introduction to programmable logic controllers (PLC) with the
main focus on programming a PLC. Therefore, the standard IEC 61131 and the extension
IEC 61499 are discussed and some approaches to new programming schemes and research
projects which are relevant to this work are shown.

2.2.1 History and definition

The history of PLC is easy to understand and quick to tell. The complexity of controlling
automation systems was growing very fast and most processes were critical. Functions for
combinations were also needed (for example logical AND). The first implementations were
relays and contactors. Later, the transistor became more interesting because it is tinier
and more efficient. Then, the so called hard-wired-logic arose which offered functions to
use but changes in the logic were impossible. That is why programmable logic controllers
became popular. In 1968 the first concept of a PLC was introduced by General Motors. In
1969 the prime off the shelf PLC appeared (MODICON 084). The automotive sector was
the first and most important field of application and from 1975 many vendors came into
existence [ZLRK04]. PLCs seems to be the most cost effective way to implement realtime
control in an industrial environment. In 1995 over ten million PLC had already been sold
[Ver96].

The IEC 61131 definition of a PLC is:

A digitally operating electronic system, designed for use in an industrial environment,
which uses a programmable memory for the internal storage of user-oriented instructions
for implementing specific functions such as logic, sequencing, timing, counting and arith-
metic, to control, through digital or analogue inputs and outputs, various types of machines
or processes.

2.2.2 PLC platform and workflow

A typical PLC platform is built of seven basic blocks which can be seen in Figure 2.13.
The blocks are the inputs and outputs, controlled by a processor. The processor includes a
memory (RAM+ROM) and a communication interface. The memory can be programmed
with an external device. Communication interfaces can be used to exchange information
with other PLCs or extension modules. This communication may be based on different
technologies like Bus systems, Ethernet or wireless links. A power supply is needed to
provide the energy for all components [Bol06; ZLRK04; Kas08].

The simple basic execution of a standard PLC is shown in figure 2.14. First all inputs
are scanned, then the program is executed and finally the outputs are written. The
inputs control the logical behaviour of the program. This sequence will be cyclically
repeated. Figure 2.14 is simplified and so watchdogs of modern PLC were omitted and
communication takes place in the block program execution [Bol06; Kas08].

30 CHAPTER 2. RELATED WORK

Programming
device Program & data

memory
Communications

interface

Processor
Output
inter-
face

Input
inter-
face

Power supply

Figure 2.13: PLC hardware [Bol06]

Scan all inputs

Main program

Write outputs

Figure 2.14: PLC workflow (modified from [Kas08])

2.2.3 The IEC 61131 standard

Programmable logic controllers became very important and many vendors tried to break
into this new market. All companies had their own philosophy and so a broad spectrum
of different systems came into existence. There was a need for a standard which was first
addressed in the 1970s. The International Electrotechnical Commission (IEC) committed
the first draft of the standard for programmable control systems, IEC 1131 in 1979. This
draft was split into five parts. An international committee was set up 1987 to create part
three which is called Programming Languages for programmable controllers (1131-3). This

2.2. PROGRAMMABLE LOGIC CONTROLLERS 31

Section was published in 1993, the second version with Corrigendum and Amendment in
the year 2003.
Currently, a harmonisation between this standard and other relevant standards for dis-
tributed systems like IEC 61499 has been done (see Section 2.2.5 for more information
about IEC 61499)[Ver96; MGM05; ope08; Bec98].

Today the standard IEC 1131-3 is adopted by the most global PLC players, some of
whom have made a few changes. A deeper look inside this standard is given in Section
2.2.4. Because of the evolution, different notations of this standard exist. The German
institute for standardization (DIN) started with DIN 61131 and the IEC adopted this
name. IEC 61131 is popular and used in this work.

The whole standard is divided into eight parts and respects programmable logic con-
trollers and their associated peripherals (programming tools / human machine interfaces).
Table 2.3 shows an overview of all eight topics. More information can be found at

Part Short description
1 General information / definitions
2 Hardware and tests
3 Programming languages (more details in Section 2.2.4)
4 User guidelines
5 Providing user oriented communication
6 Reserved part
7 Fuzzy control programming released
8 Guidelines for the application and implementation

of programming languages

Table 2.3: IEC 61131 parts

PLCOpen [ope08]. PLCOpen is a global independent association supporting IEC 61131-
3. Several technical committees within this organisation are dealing with the standard,
functions, certification, communications, safe software and XML. The XML group tries to
create XML schemes which are the basic for interoperability.

2.2.4 PLC programming (IEC 61131-3)

Part three of IEC 61131 deals with programming a PLC. An elegant way to split this part
into two Sections is shown in Figure 2.15. The two parts are discussed in the following
Sections in detail [ope08; vdW99].

The main goal of the standard IEC 61131-3 is, to make programs and systems inter-
changeable. This is the basic step for research and developing common architectures and
schemes.

2.2.4.1 Common elements

Data typing

Programmable logic controllers use data types as do many other software systems. Pre-set
types like boolean, integer, date and time or strings and user defined data types, so called

32 CHAPTER 2. RELATED WORK

The IEC 61131-3 Standard

Common Elements

Programming Languages

Figure 2.15: Parts of 61131-3 [vdW99]

derived data types. It is also possible to declare an input as a type. Common elements
are not clearly defined, because, for example, the length of an integer varies. So on several
PLCs the integer has a length of 32 bit whereas other systems use 16 bit. In this detail,
the standard is ambiguous.

Variables

Variables are mapped to explicit hardware addresses (in- or outputs) in programs, re-
sources or configurations. Detailed information on these terms is given in the following
Section. This mapping creates hardware independency. The scope of the variables is local,
as in other languages and an initial value may be set. It is also possible to create global
variables. This is often done to exchange information between functions.

Configuration, resources and tasks

Figure 2.16 illustrates the software model of IEC 61131-3.
The highest level is the configuration. It defines the hardware composition, all process-

ing resources as well as all in- and outputs. In such a configuration one ore more resources
may be defined. These resources are able to execute IEC 61131-3 programs. Additionally
they may contain one ore more tasks controlling a periodical or triggered (input) program
execution.
A program may be written in any language which is defined in IEC 61131-3 and usually
contains a set of functions and function-blocks, implementing the logical behaviour.

Standard PLC applications have one program running in one configuration in the
standard resource. The standard offers scope for distributed and future systems.

Program organisation units (POUs)

Programs, function-blocks and functions are called program organisation units. Functions
are similar to functions of higher programming languages and there are also predefined
operations like time or string manipulating functions.
Function-blocks are similar to classes so they have a defined interface and internal data.
Function-blocks may implement a required control operation and can be seen as a black
box with in- and outputs. Many instances of a function-block are possible and also a kind

2.2. PROGRAMMABLE LOGIC CONTROLLERS 33

Con�guration

Resource

Task Task

Program Program
FB FB

Resource

Task Task

Program Program
FB FB

FB
Function
Block

Access path

Execution
control path

Figure 2.16: IEC 61131-3 software model [vdW99]

of derivation is feasible. Any of the defined languages may be used again.
A modern written program is almost a set of functions and function blocks.

Sequential function charts (SFCs)

The sequential function chart is related to a Petri Net or a state machine and illustrates
the logical behaviour with loops and branches or parallel activities. It shows each step
with a transition between the blocks. A SFC is often used to discuss the system because it
is easy to read for non-technicians. Figure 2.17 shows a simple sequential function chart.
Some papers declare the SFC as a programming language [Ver96].

2.2.4.2 Programming languages

Four programming languages are defined within the standard IEC 61131-3. Two of them
are textual and two are graphical. Table 2.4 lists all four languages [Ver96; vdW99; Bol06].

Textual Graphical
Structured Text (ST) Ladder Diagram (LD)

german: KOP Kontaktplan
Instruction List (IL) Functionblock Diagram (FBD)
german: (AWL) Anweisungsliste german: (FUP) Funktionsplan

Table 2.4: IEC 61131-3: Programming languages

Every programming language can be transformed to any of the other ones. For exam-
ple: a ladder diagram can be converted to an instruction list without losing information

34 CHAPTER 2. RELATED WORK

Start

State/sleep Output

Stop Final step

Transition condition

Initial step in which the system
is held ready to start

Transition condition

etc

Figure 2.17: Sequential function chart [Bol06]

but some types do not offer the full functionality. Figure 2.18 shows a simple example in
all four different languages.

Instruction lists are similar to assembler and were developed in Europe.

Structured text is a high level and powerful language with roots in ADA, Pascal and C.
Complex or mathematical blocks can be written in this language. Structured text is
not case sensitive. As in higher languages, the IF and FOR statements are available.

The function block diagram has blocks as basic programming elements which are con-
nected. The data flow is from the inputs (left) to the outputs (right).

The ladder diagram can be seen as a relay ladder logic which is easy to read and has
its roots in the United States. Normally this language is used for boolean logic.
Counters and timers are not implemented in this language. The horizontal lines
on both ends represent the power rails which are connected with single circuits. A
ladder diagram is read from left to right and further, from top to bottom.

2.2.5 IEC 61499

This standard was published in 2005 by the International Electrotechnical Commission as
an extension to IEC 61131, to manage distributed systems. The interoperability between

2.2. PROGRAMMABLE LOGIC CONTROLLERS 35

Structured Text

Instruction List

Ladder Diagram

Function Block Diagram

C := A AND NOT B;

LD A
ANDN B
ST C

 A B C
-| | ---|/|-----------()

A
B

C

Figure 2.18: IEC 61131-3: Languages

different systems like PLCs and application specific ICs as well as covering several suppliers
is a main goal of the standard. Programming languages were added to the existing ones,
for example Java and Delphi. The two standards differ in the system layer, which is
new in IEC 61499, the interface of function blocks and the new execution control chart
[GHE08]. The new system layer allows the development of the system, with all controllers
and devices in one project. The cyclic execution of programs changed to event driven
processing. Therefore every function block has a port DATA and EVENT as in- and
output. Figure 2.19 shows a simple average value calculator based on IEC 6131 and IEC
16499. The data ports are the same, but additionally, there are event-ports for control.
The function-block is not executed in every cycle, only if the event starts the task. Further
information can be found at [Hol08].

Average Average

Weight Old Value
New Value

FC AverageCont
FC AverageCont1

Event

Event

Real

Real

INIT

REQ

INITO

CNF

FB AverageCont

New Value Average

Weight Old Value

Real

Event

Event

Figure 2.19: IEC 61499: Example function-block [GHE08]

The programming methods currently follows the IEC 61131 standard. This standard
is dominating the PLC-market although the IEC 61499 has reached the end of its life cycle

36 CHAPTER 2. RELATED WORK

[GHE08]. Both standards will coexist for the next 10 years. Another important point is
the software of all PLC vendors. They also have to adapt their tools which will take time.
Some ongoing projects show that both techniques can coexist [HGHV07].

2.2.6 Modern approaches

Conventional software development for programmable logic controllers was discussed in
the previous Sections, but the productivity and the speed is moderate so much research is
done in creating new schemes and code generation for PLC. This Section gives an intro-
duction to some important new approaches. The majority are at a research stage and not
all information is published especially the PLC code generation. In practice these modern
approaches are rare.
The title Software product lines for PLC of [SMBU07] would suggest relevant information
for this work, but there is no technical information given. Only financial benefits are
discussed.
Some PLC vendors implement new approaches like Bernecker and Rainer (B&R) by of-
fering Matlab R© add-ons.
There are also some code generation techniques based on IEC 61499.

2.2.6.1 Object orientation

Partially, all modern programming languages are object oriented, but the IEC-61131-3
languages are not. Much research is being done in developing prototypes for PLC pro-
gramming, implementing this paradigm. The description language is the unified modeling
language (UML) with extensions (see Section 2.2.6.3) [HP07].
Function-blocks are like objects, but the control logic is the challenge [BF01]. Clean imple-
mentation of function-blocks leads to meachatronic objects including the hardware and its
control software. These blocks can be implemented independently from the main program
and so, object libraries may be created.

2.2.6.2 Petri nets

Petri nets allow a formal verification of an algorithm, which is almost impossible with
standard PLC implementations. This is one goal of this approach. After modeling the
application with Petri nets, a code generator creates the program as an instruction list or
ladder diagram. Basically, there is a one to one correspondence of code and net elements,
so the produced code remains readable. The Petri nets used are called Signal Interpreted
Petri Nets (SIPN) [Fre00].
[FW06] presents a toolbox support to implement such systems. It is designed as an
integrated development environment (IDE), written in C#. Figure 2.20 shows the concept
of this IDE. Important parts in respect of this work are the editor(ED) which allows the
creation of the SIPN and the PLC implementation generator (PIG). The PIG creates a
text-file, including the program as an instruction list which is imported in the supplier
depended tool. This toolbox is freely available at http://www.eit.uni-kl.de/frey.

http://www.eit.uni-kl.de/frey

2.2. PROGRAMMABLE LOGIC CONTROLLERS 37

Graphical Editor

SIPN

Export To PNML

Export to IEC 61131-3 (IL)

Export to NuSMV

SIPN Editor (ED)

SIPN
in

PNML
Reach. Analysis Reach.

Graph

Verification Evaluation

Export to Modelica

Reachability Analyzing Tool (RAT)

PLC Implementation Generator(PIG)

Export to GraphViz

Figure 2.20: Signal Interpreted Petri Nets: toolbox concept [Fre00]

2.2.6.3 UML extension

An extension to the unified modeling language (UML) which was adapted for the special
purpose control engineering is able to create code for programmable logic controllers. This
allows a structured and modular development. Further, a code generator creates the PLC
code as structured text [BDKB07].
[YF06] present a prototype to transform models which are defined by UML to a PLC
language. Real-Time Studio from Artisan R© was used as modeling tool. The paper also
presents some problems with this approach. A further step is the adaption to UML 2.0.

2.2.6.4 Virtual reality

This approach uses a virtual environment to model the system. Every configuration is
done in a graphical way in this simulated environment and every sensor and actor is also
an element in this system. All single objects are connected via predefined boolean objects.
Afterwards a special compiler creates the code as instruction list [BDKB07; SO96].

2.2.7 Model driven design

MEDEIA is a new collaborative EU project with the title Model-Driven Embedded Sys-
tems Design Environment for the Industrial Automation Sector. The project started in
the year 2008 with a duration of 36 months [MED08].

38 CHAPTER 2. RELATED WORK

The main goal is to reduce the system design time by 25%. Key elements are, for ex-
ample, a formal framework for model-driven component-based development and an easy
modeling method for domain experts.
The technical approach MEDEIA is based on automation components which are the in-
tegral part. Figure 2.21 shows the principles of this project. An automation component
contains the general model of the functionality and the interface definitions.

Domain
speci�c models

Domain speci�c
implementations

Interface
speci�cation

Internal
behaviour

Comm.
Local I/Os

Hierarchical
aggregation

Model execution
--> simulationVeri�cation

Automation
Component

model

Legend Model transformation Model representation

Figure 2.21: MEDEIA: Technical approach [MED08]

Chapter 3

Design and implementation

This chapter deals with the design and implementation of a domain specific architecture for
programmable logic controllers in a logistics application. Firstly, all requirements which
lead to an appropriate architecture are listed. Afterwards the implemented software is
specified. At the end of this chapter, an evaluation is listed which includes a comparison
between the new paradigm and conventional PLC programming.

3.1 Requirements

The domain of this work is a logistics system which is built of conveyors, rotary tables,
cranes and a high bay racking.
Figure 3.1 shows a photo of the ”real world system”, which is located at the Institute of
Technical Informatics. It is built with logistics parts from Fischertechnik and controlled
by a Siemens R© S7 PLC. Figure 3.2 shows some impressions of the system.

Figure 3.1: Real world logistics system

Most of the PLC basic functionality was developed in a BsC project by Wolf and
Weber [GH09]. They also developed a simple fix graphical user interface with WinCC R©

to control the system. The resulting inflexible system led to the need for this thesis.
The requirements of the implementation can be separated into three main classes: business
goals, technical goals and process goals. The analysis of all goals will lead to an appropriate

39

40 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.2: Impressions

architecture.

Business goals mainly deal with financial aspects and future development of the com-
pany domain. Reduce the development costs and speed up time to market. A wide
range of individual products of high quality, so a mass customisation in the special
domain and a high reuse should be achieved.

Process goals list the features which the process should provide. It should be possible to
create assemblies of a logistics system in a graphical way and the set of objects should
be extensible for new features (creating a reusable object pool). Single objects should
be adaptable for customer needs concerning the domain. The graphical specified
logistics model should be transformed to a functional PLC program with a consistent
documentation. Then the code is downloaded with the SIMATIC R© manager, a

3.1. REQUIREMENTS 41

programming tool from Siemens R©. The management controls all activities. Figure
3.3 shows the simplified target process.

Extensible object-pool

Graphical assembly
and con�guration of a

logistic system

DocumentationPLC program

Import in Simatic Manager
Program the PLC

Create objects

Management
(Business Strategy)

Generators

Figure 3.3: Implementation SPL architecture

Technical goals contain the reuse aspect of developed function blocks and other source-
files in all possible configurations, so a common interface has to be designed. Another
requirement is to generate deployable code for a Siemens R© PLC with the SIMATIC R©

Manager. This code should be readable, maintainable and extensible for developers.
The target system is a SIMATIC R© S7-300. The software should be network based, so
the object repository is available on any computer in the local area network (LAN).

Another important aspect is the improvement in the quality in the whole process as
well as in the generated code and the documentation.

42 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.2 Product line architecture

This software product line implementation meets all requirements of the previous Section.
The challenge is to map this approach to programmable logic controllers.
With referenece to the benefit analysis of Section 2.1.8.7 MetaEdit+ R© is used to realise
the domain specific modeling architecture.

3.2.1 Introduction

Figure 3.3 shows the simplified target architecture of the implemented domain specific
SPL. Remembering the SPL development process of Section 2.1.4, the domain engineering
contains the creation of domain specific artefacts. In this thesis these artefacts are all re-
quired logistics objects of the implementation and the generators. These objects are stored
in a pool to be used in the application engineering process. Most of this functionality is
provided by MetaEdit+ R©. Management, with respect to the business strategy, defines
necessary and added objects and is involved in every decision. It deals with exploring the
domain and future needs.

Application engineering contains the graphical assembly and configuration of the logis-
tics system. After defining the logistics system, the PLC code and a consistent documen-
tation is generated. Additionally generated reports, for example a hardware suggestion
are discussed later. The created PLC program is imported in the Siemens R© programming
tool SIMATIC R© Manager and then deployed on the target system.

As mentioned, most of the basic functions for the PLC of the logistics system were
already implemented by a previous project. So the starting approach of the software prod-
uct line is incremental (see Section 2.1.4.4). The artefacts are extracted from the existing
code and defined for a useful handling in the domain. Of course, several adaptations were
required to create reusable objects and a common interface as well as removing errors
which are exposed.

The next step is the creation of the domain specific model. Therefore, the whole
domain-knowledge is clustered and components and connections are defined. Using the
MetaEdit+ R© GOPPRR meta-model, the models are designed. Figure 3.4 illustrates a
simplified assembly.

Object 1
 properties

Port

Port

Port

Port

connection Object 2
 properties

Graph

Figure 3.4: GOPPRR Model definition

Every object has ports which enable a connection. The connection to another object

3.2. PRODUCT LINE ARCHITECTURE 43

defines the role of the object. For example, there are the ports left and right at each
conveyor and a connection of port right at object 1 to port left at object 2 defines the
roles of both objects. Object 1 is the left neighbour of object two and object 2 is the right
neighbour of object 1. To capture the assembly, a walk through the graph from role to
role is done.

3.2.2 Domain model

As described in Section 2.1.8.6, MetaEdit+ R© applies the GOPPRR metamodelling lan-
guage. This Section shows the implementation of the logistic model in MetaEdit+ R©. The
logistics system is broken down into single objects with properties and constraints with
respect to the platform architecture. The high bay racking, a gantry crane, conveyors,
rotary table and rack servicing units are implemented. These objects can be placed and
connected in a defined graph with constraints. The following Sections will deal with the
modeling in the GOPPRR-order.

3.2.2.1 Graph

The implemented graph Logistic System contains all available objects, connections between
them and roles. The rules for connecting objects are also defined here. For example: a
conveyor can not be connected to the high bay racking, only rack servicing units are able
to be direct neighbours. Further object and role occurrence constraints are predefined
within the graph, such as the limit of right neighbours of a conveyor, which is one. The
graph can be seen as an environment with available objects and the rules for creating one’s
own models. The graph itself has properties like name and customer.
All parts of the graph are shown in Table 3.1. Detailed information is given in the corre-
sponding Sections.

Relationships Roles Objects
Connection Left Neighbour High bay racking

Right Neighbour Gantry crane
Atledge1 Short X conveyor
Atledge2 Short Y conveyor

Long X conveyor
Long Y conveyor
Rack servicing unit
Rotary table
Emergency stop

Table 3.1: Parts of the model Logistic System

3.2.2.2 Objects and properties

Table 3.1 shows all implemented objects, which are available for the user but there are
more in the model definition which are nested into other objects. For example: a PLC-

44 CHAPTER 3. DESIGN AND IMPLEMENTATION

connector object for a conveyor which contains all required addresses is a property of the
conveyor or the superclass conveyor is not available for a user who is modeling the system
too. All objects, their properties and a short description is given in the following Sections.
Some properties are checked against rules, when they are entered. For example input and
output addresses are tested with a regular expression which ensures a correct input. An
example would be 4.1 : the regular expression allows a digit, followed by a dot and again
a digit.

High bay racking

The high bay racking type model is illustrated in Figure 3.5. It contains a name which
is numerical and checked when typed in and the ranges in X- and Y-direction (rows/-
columns). Additionally the amount and the position of connections to rack servicing units
are selectable. The property documentation allows a user to link an object to the high
bay racking, for example, a PDF-file.

High bay racking
Name
Range X/Y
Connections 1/2
Connection position
Documentation
PLC addresses High rack addresses

Start-address X/Y
Sensor X addresses
Sensor Y addresses
Start-address Z
Sensor Z addresses
Start-address motor
Motor addresses

High rack X addresses
input address i

High rack Y addresses
input address i

High rack Z addresses
input address i

High rack m-addresses
output address i

*

Figure 3.5: Type model: High bay racking

The property PLC addresses contains a sub-object which itself contains sub-objects for
all necessary addresses. Start-addresses X/Y, Z and motors are needed to parameterise a
helper function which fills all I/O addresses automatically (see Section 3.4.5). They are
not necessary because the user is able to enter all values manually. The addresses are
checked through regular expressions.
Currently, the high bay racking is limited to 10 columns and 5 rows, because the real
world model has this maximum-size. Only smaller configurations are possible.
The high bay racking has two ports for connections. One is optional, marked with a
asterisk. The only valid neighbours to a high bay racking are rack servicing units.

3.2. PRODUCT LINE ARCHITECTURE 45

Rack servicing unit

Each rack servicing unit contains a name, documentation and PLC addresses which include
both transportation directions (motor rotation) and the ”occupied” sensor. The model is
shown in Figure 3.6.

Rack servicing unit
Name
Documentation
PLC addresses rack-feeder addresses

Clockwise rotation
Anticlockwise rotation
Sensor

Figure 3.6: Type model: Rack servicing unit

The rack servicing unit has two connectable ports: The port with the hollow for the
high bay racking which must be connected with a high bay racking or left unconnected
when packets are deployed manually. The second port may be connected to any conveying
unit.
Additionally a checkbox is implemented which enables the display of all addresses of an
object in the layout. This feature is common to all conveying units.

Conveyors

The conveyors are implemented as four separate type models (X-Y—short-long) altough
there is only one corresponding object in the PLC layer below. The reason is to support
dimension checking, to provide a nice layout and adequate prompts. A further reason is
a logical check. A Y-conveyor cannot be connected to a rotary table at port X or another
X conveyor without a rotary table. The conveying units have a name, documentation and
an address mapping which is different. Both models are shown in Figure 3.7.

A long conveyor may have one or two sensors for commission detection and is illustrated
left in Figure 3.7. This is selectable and implies an additional field in the address object
which may be empty, if only one sensor is used. If two sensors are used a check for a
corresponding address is done. The graphical object also reflects the correct sensor count.
All conveyors have two ports. If a conveyor is an endpoint of the system, one port remains
unconnected.

46 CHAPTER 3. DESIGN AND IMPLEMENTATION

Long conveyor
Name
Documentation
Sensor amount
PLC addresses

Conveyor addresses
clockwise rotation
anticlockwise rotation
Sensor 1
Sensor 2*

Short conveyor
Name
Documentation
PLC addresses Conveyor addresses

Clockwise rotation
Anticlockwise rotation
Sensor

Figure 3.7: Type model: Conveyors

Rotary table

The rotary table is the only object with more than two ports and connections. It may be
connected up to four times with conveyors. The model includes a name, documentation
and the addresses object. This object contains all required PLC I/O’s. Two outputs for
the conveyor rotation, two outputs to rotate and 3 inputs for the commission sensor and
position switches. Figure 3.8 shows the basic rotary table object.

Rotary table
Name
Documentation
PLC addresses Rotary table addresses

clockwise rotation
anticlockwise rotation
Sensor
Senosr pos. 1
Sensor pos. 2
Turn to pos. 1
Turn to pos. 2

Figure 3.8: Type model: Rotary table

Gantry crane

The type model of a gantry crane is illustrated in Figure 3.9. It includes a name, doc-
umentation, start-addresses to fill the addresses for the PLC automatically (see Section
3.4.5) and the address mapping. The mapping contains the outputs to move the crane up,
down, left and right. The fifth output controls the vacuum pump which is responsible for

3.2. PRODUCT LINE ARCHITECTURE 47

lifting objects. The inputs are for all sensors needed to recognise the position of the crane
(center / left / right / up / commission detection). The gantry crane has two manual
switches which allow manual movement, so these inputs are also in the address-mapping.

Gantry crane
Name
Documentation
PLC addresses
Start-address inputs
Start-address outputs

Gantry crane addresses
Up and down
Left and right
Sensors (c/l/r/u/d)
vacuum pump
manual switches

Figure 3.9: Type model: Gantry crane

Emergency stop

This object just includes a name, documentation and the PLC address of the emergency
stop unit because no additional information is needed. Every graph, and so every appli-
cation needs one emergency halt object.

3.2.2.3 Ports

As mentioned in the special object Sections, there are 8 different ports implemented in this
work. Table 3.2 summarises all available ports which enable connections between objects.

Port Object and description
Left Left end of every conveying unit
Right Right end of every conveying unit
Atledge1 Connection point for the high bay racking (ledge 1)
Atledge2 Optional connection point for the high bay racking (ledge 2)
Rotary table gate 1 Rotary table top
Rotary table gate 2 Rotary table right
Rotary table gate 3 Rotary table bottom
Rotary table gate 4 Rotary table left

Table 3.2: Available port types in the model logistics system domain

The ports allow the definition of the assembly. Additionally, error-checks can be done
by analysing the ports. The arrangement around a rotary table can also be done with the
help of ports.

48 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.2.2.4 Roles

The required roles in the implementation are a right and a left neighbour and two for at
ledge. This definition is done with MetaEdit+ R©. If a conveyor is connected with another
one using port right, the object is in the role of left neighbour. With this knowledge the
whole system assembly can be interpreted. Going to the system is just going from role to
role, so from the left neighbour to the right one.
Two further roles are needed to complete the system. AtLedge1 and 2 which define the
position of the rack servicing units at the high bay racking.

3.2.2.5 Relationship

The implementation includes only one relationship, the connection, which connects convey-
ing units, the gantry crane and the high bay racking. This is the only needed relationship
because it represents the possible transportation paths.

3.2.2.6 Model representation

The implemented MetaEdit+ R© model was illustrated with photos of the real-world system
to reach a high degree of usability and abstraction. So domain experts are able to assemble
new applications without knowledge of programming a PLC. Creating a new application
is like using a CAD (Computer Aided Design) software with domain specific libraries.

Figure 3.10 shows the graphical model implementation of a rotary table , the conveyors
and a rack servicing unit. The highrack and all other objects are illustrated in the same
way.

The parameters are prompted with input dialogs and may be displayed, if the user
desires (see conveyor 6 and 5).

3.2.2.7 Current domain model limitations and solutions

The current limitations of the system are a result of the real-world system. The high bay
racking and the gantry crane are limited to one in each application. If a future system
should have more than one of these objects, then a naming scheme has to be implemented
to name the functions dynamically as done for the conveyor system (see Section 3.3.1.2).
Additionally, a dynamic creation of some helper flags (i.e. rising edge detection for the
sensors) has do be done.
The limitation of two rotary tables can be removed by increasing the length of the job
word and adjusting the interface.

3.2. PRODUCT LINE ARCHITECTURE 49

Figure 3.10: Model: Visual representation

50 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.2.3 Domain Specific application modeling

Figure 3.11 illustrates an overview of the whole implemented architecture. The domain
model creation with all required components, rules and relationships is shown at the top
of the graphic. The green frames identify the domain, whereas the black frames are ap-
plication specific.
Below, the assembly of an application takes place. The components are the main parts
which are instanced, parametrised and arranged as needed. The management controls
both the above mentioned actions. The generators base on the graph modeling and ex-
tract needed information to generate the output. Each generator requires different input
information to prepare the files. Detailed information about the generators can be found
in Section 3.4. The generators are domain specific.

Graph Modeling

ComponentsInstance
Parameterise

Assembly

Generators
AWL templates

ComponentsRules Relationships

DSM Creation | DSM Features

Output

FB FCDB Documentation

Generators
AWL templates

M
anagem

ent

Generators
HTML/XML templates

HW Suggestion

M
etaEdit+ D

atabase

OB

Generator Mapping

HTML & XMLSPS Domain (AWL)

Figure 3.11: Implemented architecture

The database, respectively the repository of MetaEdit+ R© contains the models, rules
and the generators.

The output is discussed later in more detail.

3.2. PRODUCT LINE ARCHITECTURE 51

3.2.3.1 Model verification support

The error checking has three basic stages. The first stage is done continuously while creat-
ing the model, the second after the modeling process and the third during translation. The
first two tests are implemented in MetaEdit+ R©, the third is a syntax check in SIMATIC R©

Manager.

MetaEdit+ R© constraints include the maximal appearance of objects in the graph and
valid connections are parts. It is not possible to connect objects which must not be
neighbours. The roles of objects are tested too, so every conveyor can be a right
neighbour once at most to avoid multiple connections. All this checking is done direct
with the constraints MetaEdit+ R© provides. The input values can also be checked
with regular expressions to ensure that PLC-addresses have the right format and the
name is a number. As mentioned, these tests are made on the fly while modeling
the system.

MetaEdit+ R© generator based error checking will be discussed in detail in Section
3.4.1.

SIMATIC R© Manager checks the syntax during translation. This error check is more
important while creating the generators and the model to see syntax errors. Incorrect
variable names or missing symbollist entries as well as general syntax errors are
displayed.

3.2.4 Application modeling process

Figure 3.12 shows the whole application modeling process. The MetaEdit+ R© client re-
ceives the implemented logistics metamodel by connecting to the repository in the network.
For each new application a Logistic System graph (see 3.2.2.1) has to be created. Assem-
bling the system is an iterative task, done by selecting and placing logistic objects in the
graph. Then, the instanced objects are parameterised. During the composition integrated
error checks are performed. For example, connection checks which ensure a correct binding
between objects and defined values for addresses or names.
After composing the logistics system, the generators are used. Basically there are two dif-
ferent types. As mentioned, MERL R© is read-only, so write access is only possible through
the SOAP interface. Therefore the Autofill generator is implemented in JAVA to write
addresses to the model. Some error-checks are also implemented in JAVA due to the rich
libraries which make list-handling easier to check double addresses.

After checking the composition for correctness, the MERL generators for source code
and documentation generation may be started. The hardware suggestion may be generated
too.
The output of the source code generator contains AWL and SCL files as well as the
symbollist. The documentation is organised as a website with HTML and CSS files.
The hardware suggestion is an XML document. The target systems are the SIMATIC R©

Manager for the code, a web-browser for the documentation and an editor for the hardware
suggestion.

52 CHAPTER 3. DESIGN AND IMPLEMENTATION

Repository
(MetaEdit)

Application modeling

MetaEdit Client : Graph

Compose the
application

integrated error-checks

Generators

Auto�ll
Helperfunctions

Source-code
generation

DocumentationJAVA
programms

Hardware
suggestion

Output
- AWL code
- SCL code
- Symbollist

- Web-based
 documentation
- Instructions

- XML �le

A
PI

 (S
O

A
P)

Network

Target systems
-Simatic
 Manager
 deployment

- Web-browser - Editor or web-
 browser

Error-
checking

Figure 3.12: Application generation workflow

3.3. PLC TARGET PLATFORM ARCHITECTURE 53

3.3 PLC target platform architecture

The target platform is a Siemens R© SIMATIC R© S7-300 using programming techniques of
IEC 1131-3.

3.3.1 Functions and components

As already mentioned the basic functionality for a single logistics system was implemented
by a BsC project [GH09]. The creation of a common, flexible and extensible software was
the main task in the PLC layer in this project. Some functionality was added and other
parts were removed from the basic system. This Section describes the PLC architecture
of the implementation regardless of a special hardware configuration.
As depicted in 2.2.4.1, program organisation units are used for PLC programing and these
blocks are the main parts in all figures which show the architecture of sub-systems. The
blocks are drawn as a rectangle with the name in the top left, the internal name right
aside. In the top right corner, the letters S or D indicate a static or dynamic source gen-
eration of the object. A static source generation extracts model information and reuses a
given block whereas a dynamic generation extracts many information from the application
model to create and parameterise one target artefact.
The body of the rectangle includes the main functionality.

3.3.1.1 Main task

The top layer of the PLC program structure is the main-task, called OB1 as is illustrated
in Figure 3.13. All functions which should be provided by the system must be listed here,
so the content is generated dynamically. The functions inside are dynamically generated
too, depending on the modeled functionality of the system. If functions are not needed
in the particular project they are not in the main task so Figure 3.13 shows an example
application with a gantry crane, a high bay racking and a conveyor system.

3.3.1.2 Conveyor system

Figure 3.14 shows the composition of the conveyor function. Some objects like helper flags
were omitted for simplification, only relevant parts are illustrated. Helper flags would be,
for example, rising edge detection on a sensor input. The two static objects are the generic
function blocks conveyor and rotary table. These static function-blocks are configurable
and therefore applicable for each conveyor and rotary table of a system. The rotary table
includes a second static function block: a FIFO buffer for queuing jobs.

The conveyor system function instantiates as many function blocks as needed in the
modeled application which implies a dynamic set of data blocks for each conveyor. The
naming scheme here is (100 + the name of the conveyor) per definition, a number. For
example conveyor 3 has 103.AWL as data block file. Currently there is a limitation of
49 conveyors per system which could be extended easily because the only limitation is
the chosen naming convention (the SIMATIC R© Manager requires files which must have
numbers as names).

54 CHAPTER 3. DESIGN AND IMPLEMENTATION

Gantry crane
- Gantry crane implementation

DFC 5

Countermodule
- Incremental counter

SFB 2

High bay racking
- High bay racking
 implementation

DFC1

Convyeor system
- Conveyor assembly

DFC15

Main task D
- Instantiates all necessary
 functions

OB 1

WinCC calculations
- Visualisation for WinCC
- Emergency halt

DFC 4

Figure 3.13: Simatic PLC program architecture: Main task (OB1)

Rotary tables are also instantiated on demand. The current maximum is two, because the
job-byte is limited, but it is possible to extend this limitation. Because of the physical
limitation of two objects in our lab, this was not in the scope of the work. The naming
convention sets the data block label of each rotary table at 150 added to its name.
The conveyor system is created dynamically with the the information the model provides,
which includes the sensor count and the neighbours. These are important, because the
job has to be transfered between adjacent conveying units. The job is a double word and
contains the destination information of the commission. It ”travels” with the commission
along the system. Figure 3.15 shows the configuration of the job double word from Wolf
and Weber [GH09]. The first 20bit are for the high bay racking and the last 12bit are for
the rotary tables. The 4 info bits for the high bay racking indicate if the packet should be
swapped to a rack servicing unit or switch the storage inside the rack. The rotary table
bits define where to pick up and deliver the commission.

Figure 3.16 shows the usage of the rotary table bits. The job must be preset to define
the path through the conveying system.

3.3. PLC TARGET PLATFORM ARCHITECTURE 55

Global data
- Data exchange

DDB10

Connector
- job exchange data

DDB20

Rotary table
- Basic and universal rotary table
 functionality

SFB13

Conveyor
- Basic and universal conveyor
 functionality

SFB 12

Rotary table
- Data block of the
 instance

DDB X

Conveyor
- Data block of the
 instance

DDB X

FIFO bu�er
- Job queuing

SFB11

Conveyor system D
- conveyor assembly and
 functionality
- job exchange

FC15

Figure 3.14: Simatic PLC program architecture: Simplified conveyor system

High bay racking

delivery position pick up position info

Rotary table 1 Rotary table 2

source sourcetarget target

32 bit instruction word

Figure 3.15: Instruction word format

To create assemblies freely, a common and uniform interface between the conveying
units is needed. This interface is discussed in Section 3.3.2.

The rotary table includes a FIFO buffer to store parallel jobs. If a conveyor has a
rotary table as neighbour, the position is stored in the data block, so the rotary table
knows the pick-up-position. The position is derived from the graphical arrangement in
the model.
The rack servicing unit is handled like a short conveyor, so its function-block is also the
standard conveyor function-block. The internal label of a rack servicing unit is 200 added
to its name.

56 CHAPTER 3. DESIGN AND IMPLEMENTATION

Rotary table

01
1

01
1

00
1

00
1

010

100

010

100

Figure 3.16: Rotary table direction codes

3.3.1.3 High bay racking

As described in Section 3.2.2.2, the amount of rows and columns is adjustable as well as the
location and the number (1/2) of delivery positions. The function High Bay Racking (see
Figure 3.13) implements the entire high bay racking functionality. Figure 3.17 illustrates
the main parts.

The controller handles the operation sequence and is generated dynamically because
of the dump position variability. The function-block initialisation prepares for operation.
The variability is the number of columns and rows of the actual application. This applies to
Go to commission which includes the calculation of the distance between source and target,
a static function block. Load and unload a commission are responsible for manoeuvring
the commission between the conveyor system and the high bay racking, again depending
on the number of dump possibilities. The job buffer is a static function-block which stores
up to ten jobs. The connector is needed again for job exchange between the high bay
racking and the conveyor system. This exchange is only possible if the rack servicing unit
is ready and the crane is in a valid deposit position. If the conveyor is not ready, the crane
waits till a deposition is possible.

3.3. PLC TARGET PLATFORM ARCHITECTURE 57

Deploy commission
- Put the commission to the
 rack or the rack servicing unit

DFB 5

Load commission
- Take the commission from the
 rack or the rack servicing unit

DFB 4

Go to commission
- Puts the crane to the target
 position

DFB 3

Initialisation
- Initialisation of the high bay
 racking

DFB 1

Controller
- Control the
 work�ow of the
 high bay racking

DFB 6

High bay racking D
- High bay racking function
- Job transfer to conveyors

FC1

Job bu�er
- Job-queuing

SFB 8

Global data
- Data exchange

DDB10

Connector
- Job exchange

DDB20

Job bu�er
- Data block of the
 instance

SDB 2

Deploy commission
- Data block of the
 instance

DDB 6

Load commission
- Data block of the
 instance

DDB 5

Go to commission
- Data block of the
 instance

DDB 4

Initialisation
- Data block of the
 instance

DDB 3

Controller
- Data block of the
 instance

SDB 1

Distance calculation
- Calculates the distance to
 the target position

SFB 2

Figure 3.17: Simatic PLC program architecture: Simplified high bay racking

58 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.3.1.4 Gantry crane

The gantry crane function provides the functionality to pick and put commissions. Its basic
components are shown in Figure 3.18. This function has only one variability which is the
width of a commission. All other functionalities are static. Initialisation is required for the
use of the crane, to go to a defined initial position. Load and unload are implemented as
state machines and are responsible to take and deposit commissions from a mobile unit to
the conveyor system. The gantry crane requires an incremental counter to go to required
positions. The counter is a static predefined Siemens R© library module.

Unload
- Load the commission into the
 system

SFB22

Countermodule
- Incremental counter

SFB 2

Unload
- Data block of the
 instance

SDB23

Load
- Data block of the
 instance

SDB24

Initialisation
- Data block of the
 instance

SDB22

Load
- Unload a commission of the
 logistic system

SFB23

Initialisation
- Initialisation of the gantry
 crane

SFB20

Gantry crane D
- Gantry crane function

FC 5

Figure 3.18: Simatic PLC program architecture: Simplified gantry crane

3.3. PLC TARGET PLATFORM ARCHITECTURE 59

3.3.2 Transportation interface and queuing

The basic interface principle is similar to a handshake protocol. Every involved object has
a ready-out to signalise the readiness. In addition there are request inputs, either for a
left- or right running direction. Communication is done via variables which are stored in
a global data-structure (connector). This is a common way for data exchange in standard
IEC 1131. The communication pipes are generated dynamically which map adjacent job
in and outs. All communication variables needed for each conveying unit are listed in
Table 3.3.

Variable
ready-out
request for right running direction
request for left running direction
packet count down
job-in-left
job-in-right
job-out-left
job-out-right

Table 3.3: Transportation interface variables

Additionally a counter is necessary for the interface the value of which is one if there
is a commission processed and is reset from the following neighbour. The rotary table
follows this interface by doubling all variables for both directions and a FIFO buffer to
store queued jobs. In addition there are four ready outs for each neighbour.

An example data-exchange between two conveyors is:
Generate a request for a running direction. If the neighbour is ready, the conveyor starts,
sets his ready to false and increments the counter. Additionally, the job is stored in the
variable job-out. Depending on the amount of commission detection sensors the neighbour
starts and waits to detect the commission with the first sensor. If the packet is there, the
counter from the first conveyor is reset and the job will be copied in.
If the neighbour is not ready due to a holdup the conveyor stops and waits till readiness.
A rotary table will copy the request into its FIFO so no request will be lost.

60 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.3.3 Assembly generation

This Section deals with the assembly of the platform functions and components. It helps
to understand the work, done by the generators.
Depending on the model constellation, a defined functionality is needed. This logic is
covered by the function-blocks and therefore instances (datablocks) have to be created,
connected and parametrised. The parameters result due to the model definition.
The function-block itself has several dependencies which have to be considered, for exam-
ple, a FIFO buffer of the rotary table or the counter module for the gantry crane. These
additional function-blocks have to be added too. Several logic implementations are created
using the format SCL. These files have to be linked to the corresponding functions.

As shown in Section 3.3.1 different functionality is separated in functions which also
have to be created, if these components are in the assembly. This procedure has to be
done up to the OB1, the master function. The illustrations of the previous Section show
most of the dependencies between the blocks.

The interface for conveying units has to be built if required. The exchange data block
with all pipes is needed too.

3.4. GENERATORS 61

3.4 Generators

Almost all generators are implemented in MERL R©, the reporting language which is pro-
vided by MetaEdit+ R©. These generators are only able to read the system specification
and produce output. Whenever write access is needed, a MERL R© generator starts an ex-
ternal Java program which communicates via SOAP with MetaEdit+ R©. The generators
are an integral part of this work. They contain the domain specific knowledge to build all
needed outputs. Figure 3.11 illustrates the information extraction of the different sources
of the model. The output format is tailored to the target and no intermediate format is
needed.

3.4.1 Error checking

The generator based error checking is implemented in two ways: directly in MERL R© and
using of the Java API. These checks include the size of the high bay racking which is
limited and the connections of the rack servicing unit which must fit to the dimensions.
Additionally, the existence of all important values is tested. This could be done while
modeling with constraints, but it is not practical if some values are entered later. Objects
with no neighbours are listed as a warning. If there is no emergency halt, an error is shown
because it is mandatory.
A Java program is used to find double used addresses and names in the system. It is easier
to implement such a functionality in Java than in MERL R©. MetaEdit+ R© would provide
a uniqueness constraint, but this matches all models of the type Logistic system which is
not acceptable, because it should be possible to model many different applications.

3.4.2 PLC code generator

The PLC code generator is the most complex one and creates all necessary files for the
PLC, which can then be translated and directly deployed. This Section gives a brief
overview of the generator tasks. Figure 3.19 shows an example procedure of code genera-
tion. This diagram shows the simplified creation of artefacts for a conveyor.

If there are conveyors in the model definition, the function conveyor has to be created
which contains all conveying units and this function has to be included in OB1 to execute
it. Afterwards the required function-block has to be created. Now the model is scanned to
find all conveyors and extract information. All conveyor-addresses are written in the sym-
bollist file. Essential helper flags for all conveyors are created (i.e. rising edge detection).
Afterwards the interface is generated, which means the creation of the corresponding en-
tries in the connector data block. Finally, an instance of the function-block conveyor is
created and parametrised with the model-information. This process is illustrated on the
right of the diagram.
The conveyor is connected with global addresses like the emergency stop and reset. The
neighbours define further connections. If the neighbour is a conveyor or a rack servicing
unit, the interface definition is written and the corresponding sensors are wired. If there
is a rotary table alongside once, again the interface definition is written and the position
(left/right/top/bottom, see 3.16) is defined. If there a conveyor is of the type X and the
left neighbour of the rotary table, then it is connected at the left side. The rotary table
contains a FIFO buffer, so the ready-IN of the FIFO must be connected to the conveyor.

62 CHAPTER 3. DESIGN AND IMPLEMENTATION

Create function „conveyor“

Include function conveyor in OB1

Create function-block FB conveyor

Create helpmarkers

Create DB conveyor

Instantiate and parametrise DB‘s in
the function conveyor

Symbollist

Create DB connector-interface

Extract model information

Are there conveyors ?

yes

for each conveyor

Generate
artefacts for conveyor

FIN

no

Write �xed values
Reset

Emergency halt

Generate
DB for conveyor

Write interface de�nition
Neighbour sensors
Request and Ready

Neighbour ?
conveyor

Write interface de�nition
Rotary tableposition
Request and Ready

Rotary table

Write counters
Up/down for both directions

Write Ready IN
Fifo bu�er DT

Write job in/out
Neighbours connection

Addresses to namingconvention

Edgedetection sensors

Job and Ready In-outs

Extract model information

Figure 3.19: Simplified PLC code generator functionality (conveyor example)

The final step is to initialise the counters which must be unique in the whole system and
to connect the corresponding job in and outs of the neighbours.

This example will produce several to each other consistent files as output: The sym-
bollist, conveyor FB, X conveyor DB, connector DB or entries in the DB, helper flags DB
or entries in the DB, conveyor function, OB1.

Seen more abstract, as mentioned, the knowledge is stored in the generator and the
required AWL or SCL files are generated.

3.4.3 PLC hardware parts list generator

This generator creates a hardware suggestion by a given logistics system. To create this
recommendation, several hardware specific assumptions were necessary, which are listed
below.

• Possible in- and output blocks of the PLC hardware have four or eight ports.

3.4. GENERATORS 63

• Every conveyor and rotary table has its own Profi Net switch with in- and outputs.
This is due to the distances in real world applications so every switch is connected
through a bus system with the controller. One switch also implies, that no in- and
outputs of different components are combined.

• The high bay racking uses a WLAN link for the in- and outputs.

The generator extracts the model information of each single object, with all dependen-
cies, to create the output file. The format is XML, because this is a common file format
for interacting with future software implementations. Listing 3.1 shows a sample hard-
ware suggestion and includes a high bay racking and a gantry crane, so the extra objects
IWLANLINK and MOBY-Counter module are needed. Additionally all in- and outputs
of each object with a corresponding recommendation are shown.

Listing 3.1: Hardware parts list suggestion (XML excerpt)

<?xml version=” 1 .0 ” encoding=”UTF−8” ?>
<HardwareSuggestion>

<ProjectName>Demo</ProjectName>
<Customer>Hase l sbe rge r</Customer>
<ExtraObjects> IWLANLINK [Hochregal]</ ExtraObjects>
<ExtraObjects> MOBY−Countermodule [Porta lkran]</ ExtraObjects>
<ro ta ry t a b l e>
<Name>1</Name>
<NeededDIN>3</NeededDIN>
<NeededDOUT>4</NeededDOUT>
<Suggest ion>
<Switch>1</ Switch>
<DI4>1</DI4>
<Sta r taddre s s>1</ Sta r taddre s s>
<DO4>1</DO4>
<Sta r taddre s s>1</ Sta r taddre s s>

</ Suggest ion>
</ rota ry t a b l e>
. . .
. . .

3.4.4 Application documentation generator

The documentation is dynamically created and organised as a website. The documenta-
tion MERL R© script generates *.HTML files with embedded Javascript functions and a
corresponding stylesheet. The advantage of a web site is the interactive behaviour. It is
possible to link corresponding objects in contrast to a text based documentation.
MetaEdit+ R© allows to export a click able application model image with Javascript com-
mands. This image is shown on the main page of the documentation. Clicking on an
object shows detailed information.

64 CHAPTER 3. DESIGN AND IMPLEMENTATION

Generally spoken the documentation is separated into six areas. (Screenshots are shown
in the Appendix A)

Home. The start page allows direct access to all sub pages and shows the schematic of the
system. A table with all objects used is available as well as a detailed listing of them.
The single objects also include documentation which was linked into the objects, for
example, a *.pdf file and the corresponding link to the pin binding page. Figure 3.20
shows the index page of the documentation (A.6 illustrates the information below
the clickable image).

Figure 3.20: Documentation: Main site

Pin binding page shows all addresses and their usage. It is thought of as a wiring
diagram and may be printed (see Figure A.7).

List generated files opens a folder, where all files are stored (see Figure A.8).

Recommended tests are dynamically generated and include standard test instructions
for the high bay racking and the conveyors. The implementation suggests so called
In-Rack-Tests to check the ranging as well as all the possibilities for roll in and out.
If a gantry crane is used a pick and place test is suggested. These tests have to be
done manually (see Figure A.9).

Available instructions. The protocol implies a specific command for a packet on the
way through the system. Each new system has new commands which are calculated
dynamically and presented on this site. Additionally, a Javascript calculator helps
to generate commands which have to be in a hexadecimal format (see Figure A.10).

3.4. GENERATORS 65

Show the hardware suggestion shows the XML based file with a suggestion for the
possible hardware of the system. The DDD can be found at A.6, a screenshot at
A.11.

3.4.5 Address filling assistant

Two generators are implemented for address filling. One for the high bay racking and
one for the gantry crane. Both generators use extern programs which are implemented
in Java, because MERL R© scripts treat the model as read only. The start is done with a
BAT file and response is given through a DOS window. These Java programs use the API
(SOAP) to get write access. The high bay racking and the gantry crane have option fields
start-address for in- and outputs. Starting from these addresses the external generator fills
in all addresses automatically. Previously manually declared values are not overwritten.

3.4.6 Online help generator

The Help generator opens a window with a short description of each generator and the
abbreviations.
CleanCodeDir deletes all previously generated files in the code directory. This helps to
find actual code files.

66 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.5 Application development environment

This Section discusses the software packages used and gives a short introduction to the
created user interface. Downloading the program to the Siemens R© PLC is also covered.

3.5.1 Used hardware and software

As mentioned in several Sections, MetaEdit+ R© (version 4.5 Dev 92) is used to model the
logistics system and to implement the generators. Some of the generators are implemented
in Java by using Eclipse (3.3.0 SDK). The Java runtime environment is version 1.6.0-07-
b06.

Additionally, Siemens R© Software is needed to implement the platform architecture.
For this, the SIMATIC R© Manager version 5.4 SP3 is used. A simple GUI with WinCC R©

flexible Version 2007 is also created.

3.5.2 User interface

This Section describes the most important parts of the basic GUI which is shown in Figure
3.21.

The top left frame shows all available objects for the domain specific application. By
selecting the required object, it may be placed in the drawing area. To the right of these
objects is the connection for linking objects in the area.
Below the available models there is a list of all instanced objects with their names. At
bottom left are all the parameters of a selected object.
The tool bar in the middle at the top shows all generators. The names are short forms
of the generators discussed in Section 3.4. Sequential screenshots of this GUI in use are
shown at A.7. Build in functions like zoom or using the grid are available too.

3.5.3 Migrating the application to the PLC

If the modeling of a new logistics system is done and all files are generated, the PLC
programming may start. To copy programs to a PLC, the SIMATIC R© Manager from
Siemens R© is used.

Hardware configuration

First of all the hardware configuration has to be defined with the integrated hardware
configuration tool. If the hardware is similar to a previous project, it is possible to copy
existing configurations for new applications. These settings specify all PLC hardware
modules like counter modules, basic in- and outputs, communication between Siemens R©

modules in the system and their addresses. The generated XML file hardware suggestion
helps to specify and address new configurations.

If this configuration is done, the hardware is ready to execute programs.

3.5. APPLICATION DEVELOPMENT ENVIRONMENT 67

Generators

Model-Objects

Connection

Instanced
objects

Object
information

Figure 3.21: Application modeling user-interface

Application Software

When creating programs for a PLC there are two ways to use the inputs. The simpler way
is to use the direct address in the source code. The more elegant method is a symbollist,
where the mapping between symbolic names and addresses is done. To generate code with
symbols the symbollist is the first required input. This list is generated by the implemented
software and may be imported directly to the SIMATIC R© manager.
Now the symbolic names are mapped to the hardware and the system is ready to be used
with these names.
The next step is importing all generated files from the code directory. There is a naming
convention, so all files have a number as prefix. This number is important because it
specifies the sequence of translation which must be in the right order. First, all function-
blocks, SCL functions and global data blocks with the prefix 1 are needed, afterwards the
data blocks (2) of all function-block instances. The next required input are the functions
(3) and the last source is OB1, the main task with prefix 4. The sequence should be put
in the correct order and now the translation can be started by pressing CTRL+B in the
Simatic R© Manager. This process will take about a minute depending on the size of the
project. After the translation all compiled objects are available in the folder blocks as
FUP sources.

68 CHAPTER 3. DESIGN AND IMPLEMENTATION

Now all files can be downloaded to the PLC and the system is ready to work.

3.5.3.1 Files

All functions, function-blocks and data blocks are generated as separate files. Most of
the files are *.AWL which is the implementation of instruction list (see Section 2.2.4.2)
from Siemens R©. Buffers and state machines are implemented in structured control language
(*.SCL), a structured text approach. The files are generated dynamically, so the number of
conveyors in the model implies the number of data block files. The advantage of using AWL
files is the visualisation in the SIMATIC R© development environment. After translating
them, the view can be switched to FUP which is often favoured by programmers. Thus
the generated source is easily read- and maintain-able.

3.6. EVALUATION 69

3.6 Evaluation

This Section tests the implementation against the requirements of the first Section in this
chapter (see 3.1).

3.6.1 Business evaluation

A business goal was to reduce the time to market which is related to the development
speed, so a comparison between the conventional PLC programming and the use of the
implemented domain specific generation is done to assess the success of this business goal.
Therefore a test-setup was modeled in both possible ways. This setup is illustrated in
Figure 3.22 .

Figure 3.22: Assembly used for comparing DSL- and conventional development

3.6.1.1 Application development

Hardware modeling is ignored because this effort is equal in both variants. The reference
workstation, which is used for the test is a Pentium Core 2 Duo with 2.2GHz (E4500) and
1GB RAM. The installed operating system is Windows XP Professional (SP2) and the
Siemens R© Software SIMATIC R© Manager V 5.4 SP3. When doing conventional program-
ming it is assumed that the basic function-blocks were available and adaptations are only
done as in real world clone and own reuse, so the comparison is justifiable. Furthermore
there is no debug time included, which is high in PLC programming and the skill of the
developer is as high as those of the function-block developers.

70 CHAPTER 3. DESIGN AND IMPLEMENTATION

Conventional development

First of all a graphical layout is drawn to help during the whole development process to
recognize the neighbours and all required objects and their relations. The first program-
ming step is to create the symbollist which maps all in- and output addresses to symbolic
names which are used for programming (14 min). Then, the interface module (Connector)
is created and includes all involved objects (15 min). Additionally, helper flags are needed
for most of the instances (15 min). The main conveyor function with all the dependencies
and interfaces is implemented next (70 min). The high bay racking adaptation includes
reworking of all sensors in all functions and function-blocks and the interface to the con-
veyor system. The connections to the rack servicing unit which implies the job exchange
and the location have to be defined (60 min).
The modifications of the gantry crane are moderate, only the packet width and the inter-
face to the conveyor system has to be adapted (10 min).
Overall, the development modification time is about 3 hours, without any debugging,
documenting and other output-files.

Domain specific development

Modeling the system starts with dragging and dropping the required objects into the plane.
Then, the addresses are set, based on the hardware suggestion. Some of the conveyors
were set manually, the others by using the helper functions. Existing documentation of
the function-blocks was added to the single objects. This work was done in 11 minutes.
This time includes generation of all required source files, and documentation too (see 3.4).
The translation of the source files takes about 90 seconds with the SIMATIC R© Manager.
All in all the project is ready for use in about 13 minutes.

Comparison of development methods

Three hours development time with the conventional PLC programming method seems to
be very optimistic: a work day with 8 hours would be more realistic but it could also take
longer if a short documentation is added and some problems occur during programing.
With regard to the persistent documentation and high quality code, or system updates
and all other benefits of a software product line the 8 hours are easily justifiable and of
course a lower bound. A more serious estimation is difficult.
In contrast the domain specific implementation is very much faster (13 minutes). An
interesting point is the symbollist, which is generated first in conventional programming
and takes the same time as the whole domain specific generation, where it is generated
after all objects are known.

The increase in productivity is much more than the average which is between 300%
and 1000% but the setup time has to be considered (see Section 3.6.1.2). Learning the
software and modeling the language takes time (see A.2).

A major benefit is that no programming expert is needed after creating the software
product line. The domain knowledge is stored in the generator and anyone can reuse
this knowledge to create new applications after a short introduction. To create this SPL,
however, a domain expert and a competent PLC programmer are required.

3.6. EVALUATION 71

3.6.1.2 Time to market and costs

Discussing the goal time to market is difficult. The previous Section has shown a massive
reduction in development time so new applications have a faster time to market. In con-
trast, the setup time of the full software product line takes about twice the time compared
to that of a single system.
The BsC PLC automation project took about 430 hours and the implementation of this
work was done in approximately 900 hours. These 900 hours can be split into two equal
parts for implementing the SPLE PLC platform and the SPL architecture tool.
Figure 3.23 illustrates this times (simplified). The slopes equate the development time of
the BsC project and the time of creating a domain specific application with the tool.

A comparison of the SPLE can be done in two ways which is discussed in the following
description.

Single System development takes about 430 hours so the break even point in Figure
3.23 is between 2 and 3 systems. The often found break even point in the literature
could be approved (see Section 2.1.2, Figure 2.2).

Clone and own is a common way of reuse in the industry so a comparison with the
SPLE implementation is interesting. Alltough the speedup is about the factor 35,
the implemented system needs about 59 different applications to reach the break
even point. The slope of clone and own in Figure 2.2 is much more flat than that
of single system development. Tue to the fact, that 8 hours development time for
clown and own is the best case, 59 different systems is the worst case for the break
even point in the implemented system.

Break-even
point

Single system
Costs

Software product line

B
sC

 P
ro

je
ct

S
PL

E
 d

ev
el

o
p
m

en
t

S
PL

E
 P

LC

 S

PL
E

p
la

tt
fo

rm

to

o
l
ar

ch
.

Clone and own

1 2 3
different systemsNumber of

Figure 3.23: Evaluation: Costs

72 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.6.2 Process evaluation

The target process of Section 3.1 (Figure 3.3) was implemented. The MetaEdit+ R© DSM
implementation offers a domain specific object pool which is extendable.
Composition of new applications is done in a graphical way (Figure 3.24). Adding and
connecting objects is done by drag and drop. The instanced objects are customisable to
specific needs.
After defining the application, all source files and the documentation are generated auto-
matically with generators. These source files are copied to the PLC to use the new system.

Figure 3.24: Implementation GUI

3.6.3 Technical evaluation

The requirement of reusing function-blocks could be achieved due to a robust platform
architecture. A common interface between conveying units lead to a flexible application
generation.
The generated source files are in the *.AWL format and may be imported into the
SIMATIC R© Manager to download them to the target PLC. Due to the format, they
are read-, maintain- and translatable.
The MetaEdit+ R© architecture enables a network usage of the implementation.

3.6.4 Notes on quality

Section 2.1.2 deals with the theoretical quality increase of software product lines due to
the review of the platform many times. This work approves this statement.

3.6. EVALUATION 73

Many errors in the PLC code were found in different assemblies of the systems. These
errors had no impact in previous, only in new compositions. So the effective reuse leads
to less errors in the single components and improves the quality of the SPL and the ap-
plications.
The review and use of single components also leads to more comments in the code and a
better readability.

The persistent documentation also brings an increase in quality. The level of informa-
tion is tailored to the application and no unnecessary extra information is given.

74 CHAPTER 3. DESIGN AND IMPLEMENTATION

Chapter 4

Outlook

General trends in the field of software product line engineering and programmable logic
controllers are discussed in this chapter. Additionally some ideas for future work relating
to this thesis are given.

4.1 General trends

Time to market, high quality and flexibility are, nowadays, important success factors.
The market will be more aggressive for companies in the near future so companies have
to deal with software reuse to be competitive. Software product line can be useful guides
but they are not a magic formula. Other software approaches with respect of reuse and
management may also be successful.

Programmable logic controllers are the main players in the automation sector and they
will stay in this market segment, so the software development has to change. Not only
code generators for PLC such as code generation from Petri nets will be the solution, the
whole design flow should be reviewed.
A further important step will be a harmonisation between PLC vendors and a clear stan-
dard. So programs and configurations would be easily portable between different systems.
In times where products and systems are getting cheaper and cheaper, the price is a main
factor. So every PLC code should work on every system and the need for special, vendor
dependent tools would be obvious.
The harmonisation between the two standards IEC 61131 and IEC 61499 is also challeng-
ing. The question is, if this is really the right way. Programmable logic controllers are
now time-triggered but then they lose this behavior due to the events in the new standard.
The basic idea is good, because reuse and interoperability are key motivations.

75

76 CHAPTER 4. OUTLOOK

4.2 Ideas for future work

The current visualisation of the whole project is static, so it would be a nice challenge to
create it dynamically from the application model. WinCC R© is unsuitable because it uses
predefined addresses for the control. An OPC Server (object linking and embedding for
process control) in combination with a web-server could be generated on project demand.
The current implementation provides all instructions already in HTML pages, so this can
be the base.
Another possibility is the further development of variations and more functionality in the
current implementation. For example, RFID-readers (Radio Frequency Identification) for
detecting packets could be added to the model.
During this master thesis it became apparent that the hardware configuration may be done
also automatically. Creating this configuration file out of the model definition would be a
next step completing a full code generation for software and the hardware. An example
for a usable hardware is generated as an XML file with a generator, which could be the
basis for further development.
The transformation of the domain specific model only works with the SIMATIC R© software
(AWL which is different to other textual languages) and a Siemens R© hardware currently,
so it would be interesting to implement generators for other manufacturers.

Chapter 5

Concluding remarks

The design and implementation of a domain specific architecture for programmable logic
controllers was the work of this thesis, applying a modern software paradigm to PLC.
This thesis shows, that the paradigm software product line engineering is able to be im-
plemented for a specific domain for PLC to achieve strategic reuse.

The thesis started with an introduction and motivation to create a domain specific
architecture for PLC. Chapter 2 contained the related work, starting with Section 2.1 by
discussing the field software product line engineering as state of the art in effective software
reuse. Section 2.2 covered the topic of programmable logic controllers. After getting an
overview on both main topics, Chapter 3 discussed the design and implementation of the
domain specific architecture for the logistic system. The last Chapter 4 provided a further
outlook on general trends and ideas for future work.

77

78 CHAPTER 5. CONCLUDING REMARKS

Appendix A

Appendix

A.1 Product line and DSM tool comparison criteria

Some of the criteria were taken from existing papers [DSF07; DRGN07; LCP+00] and new
ones were added in cooperation with the Master thesis of Andrea Leitner [Lei09].

Nr. Criterion Definition
Product Line Engineering criteria

1 Attribute management • Differentiate between SPL requirements
and product requirements
• Manage requirements attributes (identi-

fier, description, justification, cost,...)
• Ability to capture future requirements
• Ability to capture new requirements dur-

ing derivation
• Autobuild with given specifications (min-

ing)

2 Feature and variability mod-
eling

• Help to model FODA-like concepts (fea-
ture decomposition, feature type, cardi-
nalities, dependency links,...)
• Support different abstraction levels
• Support global constraints

3 Feature metamodel maturity • Allow to define a PL metamodel
• The tool should be unambiguous
• Support product line evolution

79

80 APPENDIX A. APPENDIX

Nr. Criterion Definition
4 Constraint checking and prop-

agation
• Support validation checking for the PL

model and metamodel
• Check consistency of product model and

PL model
• Check consistency of model and artefact

base
• Support constraint propagation
• Compare artefacts to a ”standard”
• Rule-checking

5 Product derivation • Help to derive specific products with guid-
ance and visualization

6 Domain engineering manage-
ment

• Support the creation of domain artefacts
• Support the management of domain arte-

facts
• Map domain artefacts to corresponding

features
• Search functions, to find a suitable arte-

facts

7 Repository • Version management of artefacts, docu-
ments or possibility to integrate such a
tool
• Re-create any version of a product
• Compare different versions of a product

Management criteria
8 Traceability management • Support requirements traceability with ex-

ternal documents
• Support traceability management of inter-

requirements links
• Support metamodel traceability
• Traceability between and within assets

(linkage ...)

A.1. PRODUCT LINE AND DSM TOOL COMPARISON CRITERIA 81

Nr. Criterion Definition
9 Impact analysis • Perform impact analysis when changing

requirements or models
• Perform impact analysis when changing

interlink requirements

10 Reporting • Ability to generate reports

Technical criteria
11 Access mode • Allow multi-user access

• Allow access with profiles (define the
metamodel / use it)

12 Technical environment • Support synchronization
• Interoperability: support import and ex-

port from other tools (APIs, neutral for-
mat files, etc.)

13 Usability • Intuitive usage
• Stability and efficient support
• Offer high accessibility of functions, zoom,

views, ...
• Ability to handle great amount of artefacts

14 Automatic filters • Automatic filters on requirements presen-
tations and report generation

15 Tool configuration • The tool should be configurable for specific
user needs
• Adaption to current organisation

16 Extensibility • Should be extensible to integrate existing
platforms into the PL

17 Flexibility • Changes should be possible at each stage
of development (also in derived products).

82 APPENDIX A. APPENDIX

Nr. Criterion Definition
18 AOB • Tool costs and training costs /amortisa-

tion time
• Light charge of installation, maintenance

and migration cost
• Vendor stability
• Flexible licensing service

Table A.1: Criteria to rate SPL tools

A.2. SMALL EVALUATION OF METAEDIT+ 83

A.2 Small evaluation of MetaEdit+

The installation of MetaEdit+ R© is very simple and causes no problem when using a
Windows R© environment. There are several examples which came within the distribution.
The included help is organized as a website which is detailed and in most cases enough
for upcoming problems.

Help and examples are also provided at www.metacase.com/ and in the forum http:

//www.metacase.com/forums/. The developers of the software try to help as well and
quickly as they can. Very powerful illustrations are given with webcasts at http://www.

metacase.com/resources.html. There is also a book available dealing with domain specific
modeling which includes many examples for in MetaEdit+ R© (see [KT08]).

At the MetaCase R© website it is possible to download an operative 30 day trial version.
Getting familiar with MetaEdit+ R© takes about one week, but more refinement is learned
later.
Giving an accurate time is difficult, because the learning is iterative project work. The
scripting language MERL R© is easy although control-loops have to be made in a recursive
way. The Generator Editor helps with creating scripts. The API has to be used if
the model is changed, because the MERL R© scripts are read only. In this work Java
was used to update the model via SOAP. MetaEdit+ R© provides a WSDL (Web Service
description language) file which can be imported to Eclipse to generate all necessary classes
for communicating with the server. The provided functionality is a little bit bulky but all
required functions could be implemented.

www.metacase.com/
http://www.metacase.com/forums/
http://www.metacase.com/forums/
http://www.metacase.com/resources.html
http://www.metacase.com/resources.html

84 APPENDIX A. APPENDIX

A.3 Application workflow: Example

This Section shows an example work flow: from opening the software, to deploying the
code to the PLC. The first step is to start MetaEdit+ R©. The Startup Launcher will
list all available repositories. After login to the repository master MetaEdit+ R© starts
this project. Now there are three columns: Projects which shows the current tree (mas-
ter), Graphs with already assembled logistics systems and Objects of a graph. A new
graph is created by using a toolbar-button and entering the properties. A stored graph is
opened just by double-clicking. Now, an empty real modeling window appears (see Section
A.12). Logistics objects are taken from the list and placed in the drawing area using drag
and drop. Each object is parameterised by double-clicking. To connect the objects the
relationship-object (arrow symbol) has to be used (An illustration of this iterative work is
given at A.7). The addresses of the gantry crane and the high bay racking may be filled
automatically with a generator by giving a start-address-parameter. After assembling the
logistics system model an error-check is recommended which is implemented as a genera-
tor. If the logistics system is properly designed and error-free the code and documentation
generation can start by activating the appropriate generator. Now all relevant files are
generated and stored in the default working (owners documents) directory of MetaEdit+ R©

in the CODE directory whereas the documentation is in the FSDOKU directory. Code
can be imported into a SIMATIC R© Manager project as source. The deployable blocks are
generated by compiling the objects in the correct order (ascending filenames). Afterwards
the blocks are available in the corresponding directory and ready to be deployed to the
hardware.
Now the logistics system is ready to use and execute job commands after an initialising
process. If a high bay racking or a gantry crane are part of the system, the implemented
WinCC R© GUI has to be started (see illustration A.4). There are graphical user inter-
faces for each object: the init button triggers initialisation. At the high bay racking the
switch manual/auto has to be switched to auto, because the initial value is not defined in
WinCC R©. The format of the command is shown in Figure A.1. Generally the command
of Weber and Wolf is used. It is a 32 bit word with all the information a packet needs
for handling. The first 20 bit are for the high bay racking, and the last 12 bit are for the
rotary tables.

High bay racking

delivery position pick up position info

Rotary table 1 Rotary table 2

source sourcetarget target

32 bit instruction word

Figure A.1: Transport instruction word

The connector data block handles data exchange between all objects, so a control com-
mand must be written to the corresponding address in the connector datablock (DB20).
The simplest way to set values in the connector data block is to start the online-view of the
hardware and open the block. To submit a job, for example, to a conveyor the instruction
has to be copied into this field.

A.3. APPLICATION WORKFLOW: EXAMPLE 85

BIT Instruction BIT Instruction
d c b a
0 0 Nothing 0 0 Nothing
1 0 Deploy to conveyor 1 0 Load from conveyor
1 1 Deploy to high bay racking 1 1 Load from highrack

Table A.2: Instruction notation

Figure A.2: Connector data exchange

The documentation helps to generate the commands which is illustrated in figure A.10.
A list shows the available targets and the corresponding numbers. These numbers are dec-
imal, but the SimaticManager needs hexadecimal values. Therefore, the calculator in the
page can be used, which is also able to include high bay racking options. The instruction
to send a packet to conveyor 11 would be 130, for example. By copying this value to
the calculator field and clicking Generate the command for the data block is generated.
If a high bay racking option is selected and a target position is given, the instruction is
generated accordingly. After copying this value which always starts with DW#16# to a
JOB IN X in the Connector data block and storing the value to the hardware the conveyor
is ready to execute the instruction. This process is a bit difficult, but dynamic creation
of the system would need a dynamic user-interface. This could be work for the future.
The usage of the high bay racking and the gantry crane is simpler because there exists a
WinCC R© interface where the JOB may be inserted as a decimal value. These parts are
semi-static and modified from [GH09]. A job word must be stored to the data block before
a packet is on the conveyor.

Figure A.3 again shows the bits for the rotary table. If a packet should go from left to

86 APPENDIX A. APPENDIX

top at rotary table one, the corresponding command without high bay racking interaction
would be : XXXXXXXX.XXXXXXXX.XXXX.XXXXXX.010011

Rotary table

01
1

01
1

00
1

00
1

010

100

010

100

Figure A.3: Rotary table direction codes

Figure A.4: WinCC High bay racking GUI

A.4. GENERATED DOCUMENTATION: SCREENSHOTS 87

A.4 Generated documentation: Screenshots

This Section shows screenshots of the generated documentation.

Figure A.5: Documentation: Main page (1) Physical representation

Figure A.6: Documentation: Main page (2) Component listing

88 APPENDIX A. APPENDIX

Figure A.7: Documentation: Pin binding

Figure A.8: Documentation: Generated files

A.4. GENERATED DOCUMENTATION: SCREENSHOTS 89

Figure A.9: Documentation: Recommended tests

Figure A.10: Documentation: Instructions

90 APPENDIX A. APPENDIX

Figure A.11: Documentation: Hardware suggestion

A.5. INSTALLATION GUIDE 91

A.5 Installation guide

This installation guide assumes a running Windows environment with the installed Siemens R©

SIMATIC R© toolkit. At least the SIMATIC R© Manager and WinnCC R© flexible. If the
repository is already set up and a new client is added please skip the steps three to six.
The installation disk of the implementation contains the following structure:

logisticSystem

FSDOKU

CODE

JavaSource

AddressChecker.bat

CleanUpCode.bat

GCPrefill.bat

HRPrefill.bat

Please follow the next instructions to install the implementation:

1. Get a license key for MetaEdit+ R© from the Keymanager at the institute.

2. Install MetaEdit+ R© with the key. MetaEdit+ R© will create the default working
directory in the users document order. Then a restart should be done.

3. Copy the Modeldefinition-folders logisticSystem, FSDOKU and CODE to the work-
ing directory. The CODE directory is empty and the generated code will be placed
here. FSDOKU contains the generated web based documentation and a pdfs folder
which includes sample documentations of single objects.

4. Copy the Java classes to a favoured folder or to a new folder in the working directory.

5. Copy the four *.bat files: CleanUpCode, AddressChecker, HRPrefill and GCPrefill
to the working directory. They will call the java classes so an adoption has to be
done to update the location.

6. Now MetaEdit+ R© can be started and the repository logisticSystem should be avail-
able and the software is ready to use. Otherwise please check the working directory
which must contain this folder (Step 3).

7. Optional network configuration: If this client uses a remote repository the program
can be started after the installation: The menu contains the option Repository /
Add Repository to List which allows connection to a network repository.

92 APPENDIX A. APPENDIX

A.6 Detailed design document: Hardware suggestion

Listening A.1 shows the DDD for the hardware suggestion.

Listing A.1: DDD for hardware suggestion XML

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

< !ELEMENT Switches (#PCDATA)>
< !ELEMENT Switch (#PCDATA)>
< !ELEMENT DO8 (#PCDATA)>
< !ELEMENT DO4 (#PCDATA)>
< !ELEMENT DI8 (#PCDATA)>
< !ELEMENT DI4 (#PCDATA)>
< !ELEMENT Customer (#PCDATA)>
< !ELEMENT Sta r taddre s s (#PCDATA)>
< !ELEMENT ProjectName (#PCDATA)>
< !ELEMENT NeededDOUT (#PCDATA)>
< !ELEMENT NeededDIN (#PCDATA)>
< !ELEMENT Name (#PCDATA)>
< !ELEMENT ExtraObjects (#PCDATA)>
< !ELEMENT Desc r ip t i on (#PCDATA)>
< !ELEMENT Suggest ion (((Descr ipt ion , Mobile Unit ,

GroundFloor Unit) | (DI8 , DO8, DI4 , DO4, Switches) | (Switch ,
((DI8 , Star taddres s , DO8) | (DI4 , Star taddres s , DO4)) ,

S ta r taddre s s)))>
< !ELEMENT ro ta ry t a b l e ((Name, NeededDIN , NeededDOUT,

Suggest ion))>
< !ELEMENT Conveyor ((Name, NeededDIN , NeededDOUT, Suggest ion))>
< !ELEMENT High Rack ((Name, NeededDIN , NeededDOUT, Suggest ion))>
< !ELEMENT Mobile Unit ((Switch , DO8, Star taddres s , DI4 ,

S ta r taddre s s))>
< !ELEMENT GroundFloor Unit ((Switch , DI8 , Star taddres s , DI8 ,

Star taddres s , DI4 , S ta r taddre s s))>
< !ELEMENT Gantry Crane ((Name, NeededDIN , NeededDOUT, Suggest ion

))>
< !ELEMENT OverAllSums ((NeededDIN , NeededDOUT, Suggest ion))>
< !ELEMENT HardwareSuggestion ((ProjectName , Customer ,

ExtraObjects +, ro ta ry ta b l e +, Conveyor+, High Rack ,
Gantry Crane , OverAllSums))>

A.7. SEQUENTIAL APPLICATION GENERATION: SCREENSHOTS 93

A.7 Sequential application generation: Screenshots

Figure A.12: Application generation 1: New domain component (+parameterisation)

Figure A.13: Application generation 2: Building the logistics system

94 APPENDIX A. APPENDIX

Figure A.14: Application generation 3: Building the logistics system

Figure A.15: Application generation 4: Building the logistics system

A.7. SEQUENTIAL APPLICATION GENERATION: SCREENSHOTS 95

Figure A.16: Application generation 5: Parameterisation

Figure A.17: Application generation 6: Building the logistics system

96 APPENDIX A. APPENDIX

Figure A.18: Application generation 7: Parameterisation

Figure A.19: Application generation 8: Code generation

A.7. SEQUENTIAL APPLICATION GENERATION: SCREENSHOTS 97

Figure A.20: Application generation 9: Load the generated code into the Simatic R© Man-
ager

98 APPENDIX A. APPENDIX

Bibliography

[ABM09] Ritu Arora, Purushotham Bangalore, and Marjan Mernik. Developing sci-
entific applications using Generative Programming. In Software Engineering
for Computational Science and Engineering, 2009. SECSE ’09. ICSE Work-
shop on, pages 51–58, May 2009. (Cited on page 19.)

[ACA08] V. Alves, T. Camara, and C. Alves. Experiences with Mobile Games Product
Line Development at Meantime. In Proc. 12th International Software Prod-
uct Line Conference SPLC ’08, pages 287–296, 2008. (Cited on page 16.)

[ACN+08] V. Alves, F. Calheiros, V. Nepomuceno, A. Menezes, S. Soares, and P. Borba.
FLiP: Managing Software Product Line Extraction and Reaction with As-
pects. In Proc. 12th International Software Product Line Conference SPLC
’08, pages 354–354, 8–12 Sept. 2008. (Cited on page 17.)

[BC05] Felix Bachmann and Paul C. Clements. Variability in Software Product
Lines. Technical report, Software Engineering Institute, 2005. (Cited on
page 14.)

[BDKB07] M. Bergert, C. Diedrich, J. Kiefer, and T. Bar. Automated PLC software
generation based on standardized digital process information. In Proc. ETFA
Emerging Technologies & Factory Automation IEEE Conference, pages 352–
359, 25–28 Sept. 2007. (Cited on page 37.)

[Bec98] Beckhoff. Einführung in IEC-1131-3 Programmierung. Technical report,
Beckhoff Industrie Elektronik, 1998. (Cited on page 31.)

[Beu08] D. Beuche. Modeling and Building Software Product Lines with
Pure::Variants. Software Product Line Conference, 2008. SPLC ’08. 12th
International, pages 358–358, Sept. 2008. (Cited on page 17.)

[BF01] M. Bonfe and C. Fantuzzi. Object-oriented approach to PLC software design
for a manufacture machinery using IEC 61131-3 norm languages. In Proc.
IEEE/ASME International Conference on Advanced Intelligent Mechatron-
ics, volume 2, pages 787–792, 8–12 July 2001. (Cited on page 36.)

[BFG+01] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, J. Henk Obbink,
and Klaus Pohl. Variability Issues in Software Product Lines. In van der
Linden [vdL02b], pages 13–21. (Cited on page 14.)

99

100 BIBLIOGRAPHY

[BG01] J. Bezivin and O. Gerbe. Towards a precise definition of the OMG/MDA
framework. In Automated Software Engineering, 2001. (ASE 2001). Proceed-
ings. 16th Annual International Conference on, pages 273–280, Nov. 2001.
(Cited on page 19.)

[Bol06] W. Bolton. Programmable Logic Controllers, Fourth Edition. Newnes, 2006.
(Cited on pages 29, 30, 33 and 34.)

[Bos05] Jan Bosch. Software Product Families in Nokia. In Obbink and Pohl [OP05],
pages 2–6. (Cited on page 16.)

[CJNM05] Paul C. Clements, Lawrence G. Jones, Linda M. Northrop, and John D.
McGregor. Project Management in a Software Product Line Organization.
IEEE Software, 22(5):54–62, 2005. (Cited on pages 10 and 11.)

[CRR09] Lan Cao, Balasubramaniam Ramesh, and Matti Rossi. Are Domain-Specific
Models Easier to Maintain Than UML Models? Software, IEEE, 26(4):19–
21, July-Aug. 2009. (Cited on page 21.)

[Cza04] Krzysztof Czarnecki. Overview of Generative Software Development. In
Jean-Pierre Banâtre, Pascal Fradet, Jean-Louis Giavitto, and Olivier Michel,
editors, UPP, volume 3566 of Lecture Notes in Computer Science, pages 326–
341. Springer, 2004. (Cited on page 19.)

[Dav87] Stanley M. Davis. Future Perfect. Addison Wesly, 1987. (Cited on page 5.)

[DRGN07] Deepak Dhungana, Rick Rabiser, Paul Grünbacher, and Thomas Neumayer.
Integrated tool support for software product line engineering. In ASE ’07:
Proceedings of the twenty-second IEEE/ACM international conference on
Automated software engineering, pages 533–534, New York, NY, USA, 2007.
ACM. (Cited on pages 17, 26 and 79.)

[DSF07] O. Djebbi, C. Salinesi, and G. Fanmuy. Industry Survey of Product Lines
Management Tools: Requirements, Qualities and Open Issues. Requirements
Engineering Conference, 2007. RE ’07. 15th IEEE International, pages 301–
306, Oct. 2007. (Cited on pages 26 and 79.)

[Ecl08] Eclipse. openarchitectureware in Eclipse.
http://www.eclipse.org/gmt/oaw/, 2008. (Cited on page 22.)

[Ecl09a] Eclipse. GEMS: Generic Eclipse Modeling System.
http://www.eclipse.org/gmt/gems/, 2009. (Cited on page 22.)

[Ecl09b] Eclipse. GMT: Generative Modeling Technologies.
http://www.eclipse.org/gmt/, 2009. (Cited on page 22.)

[EV05] Jacky Estublier and Germán Vega. Reuse and variability in large software
applications. In Michel Wermelinger and Harald Gall, editors, ESEC/SIG-
SOFT FSE, pages 316–325. ACM, 2005. (Cited on pages 17 and 19.)

BIBLIOGRAPHY 101

[fEA08] Information Technology for European Advancement. ITEA2 Homepage,
2008. (Cited on page 6.)

[Fre00] G. Frey. Automatic implementation of Petri net based control algorithms
on PLC. In Proc. American Control Conference the 2000, volume 4, pages
2819–2823, 28–30 June 2000. (Cited on pages 36 and 37.)

[fSis09] Institute for Software integrated systems. GME: Generic Modeling Envi-
ronment. http://www.isis.vanderbilt.edu/Projects/gme/, 2009. (Cited on
page 21.)

[FW06] G. Frey and F. Wagner. A Toolbox for the Development of Logic Controllers
using Petri Nets. In Proc. 8th International Workshop on Discrete Event
Systems, pages 473–474, 10–12 July 2006. (Cited on page 36.)

[GH09] Weber Jörg Günther and Wolf Hannes. Lagerverwaltung. Bachelor-Thesis,
Graz University of Technology, 2009. (Cited on pages 39, 53, 54 and 85.)

[GHE08] Christian Gerber, Hans-Michael Hanisch, and Sven Ebbinghaus. From IEC
61131 to IEC 61499 for distributed systems: a case study. EURASIP J.
Embedded Syst., 2008(2):1–8, 2008. (Cited on pages 35 and 36.)

[Gro09] Object Management Group. Object Management Group website.
http://www.omg.org/, 2009. (Cited on page 19.)

[GVDV08] Gerardo de Geest, Sander Vermolen, Arie van Deursen, and Eelco Visser.
Generating Version Convertors for Domain-Specific Languages. Reverse En-
gineering, 2008. WCRE ’08. 15th Working Conference on, pages 197–201,
Oct. 2008. (Cited on page 21.)

[HGHV07] M. Hirsch, C. Gerber, H.-M. Hanisch, and V. Vyatkin. Design and Imple-
mentation of Heterogeneous Distributed Controllers According to the IEC
61499 Standard - A Case Study. In Proc. 5th IEEE International Confer-
ence on Industrial Informatics, volume 2, pages 829–834, 2007. (Cited on
page 36.)

[Hol08] Inc Holobloc. Resources for the New Generation of Automation and Control.
http://www.holobloc.com/, 2008. (Cited on page 35.)

[Hon09] Honeywell. DOME: Domain Modeling Environment .
http://www.htc.honeywell.com/dome/, 2009. (Cited on page 22.)

[HP07] Kwan Hee Han and Jun Woo Park. Development of Object-Oriented Mod-
eling Tool for the Design of Industrial Control Logic. In Proc. 5th ACIS
International Conference on Software Engineering Research, Management
& Applications SERA 2007, pages 353–358, 20–22 Aug. 2007. (Cited on
page 36.)

[Ins] Software Engineering Institute. Product Line Hall of Fame. (Cited on
page 16.)

102 BIBLIOGRAPHY

[Ins08] Software Engineering Institute. SPLE.
http://www.sei.cmu.edu/productlines/index.html, 2008. (Cited on pages 6
and 8.)

[Jaa02] A. Jaaksi. Developing mobile browsers in a product line. 19(4):73–80, 2002.
(Cited on page 16.)

[KAG+07] Uirá Kulesza, Vander Alves, Alessandro Garcia, Alberto Costa Neto, Elder
Cirilo1, Carlos J. P. de Lucena, and Paulo Borba. Mapping Features to
Aspects: A Model-Based Generative Approach7. In Early Aspects: Current
Challenges and Future Directions, Lecture Notes in Computer Science, pages
155–174. Springer Berlin / Heidelberg, 2007. (Cited on page 13.)

[Kas08] Wolfgang Kastner. Speicherprogrammierbare Steuerungen. Technical report,
Lecture notes, Technical university Vienna, 2008. (Cited on pages 29 and 30.)

[KMML07] T. Kosar, M. Mernik, and P.E. Martinez Lopez. Experiences on DSL Tools
for Visual Studio. Information Technology Interfaces, 2007. ITI 2007. 29th
International Conference on, pages 753–758, June 2007. (Cited on page 21.)

[KP09] Steven Kelly and Risto Pohjonen. Worst Practices for Domain-Specific Mod-
eling. Software, IEEE, 26(4):22–29, July-Aug. 2009. (Cited on page 18.)

[Kru08] C.W. Krueger. The BigLever Software Gears Unified Software Product Line
Engineering Framework. Software Product Line Conference, 2008. SPLC
’08. 12th International, pages 353–353, Sept. 2008. (Cited on page 17.)

[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain Specific Modeling Enabling
full code generation. WILEY Interscience, 2008. (Cited on pages 17, 19, 20,
21 and 83.)

[LCP+00] Bass L., Clements, P., Donohoe, P., McGregor, J., and Northrop L. Fourth
Product Line Practice Workshop Report. Technical Report CMU/SEI-2000-
TR-002 (ESC-TR-2000-002), Software Engineering Institute. Carnegie Mel-
lon University, 2000. (Cited on pages 8, 26 and 79.)

[Lei09] Andrea Leitner. A software product line for a business process oriented IT
landscape. Master’s thesis, Graz University of Technology, 2009. (Cited on
pages 26 and 79.)

[LP07] F. Loesch and E. Ploedereder. Optimization of Variability in Software Prod-
uct Lines. In Proc. 11th International Software Product Line Conference
SPLC 2007, pages 151–162, 2007. (Cited on page 15.)

[MED08] MEDEIA. Medeia. http://www.medeia.eu/, 2008. (Cited on pages 37
and 38.)

[Met08] MetaCase. Domain-Specific modeling with MetaEdit+, 2008. (Cited on
pages 23 and 25.)

BIBLIOGRAPHY 103

[MGM05] G. Music, D. Gradisar, and D. Matko. IEC 61131-3 Compliant Control Code
Generation from Discrete Event Models. In Proc. IEEE International Sym-
posium on Mediterrean Conference on Control and Automation Intelligent
Control, pages 346–351, 2005. (Cited on page 31.)

[Mic08a] Microsoft. Domain-Specific Language Tools .
http://msdn.microsoft.com/en-us/library/bb126235(VS.80).aspx, 2008.
(Cited on page 21.)

[Mic08b] Microsoft. Domain-Specific Language Tools Changes.
http://msdn.microsoft.com/en-gb/library/bb932387.aspx, 2008. (Cited
on page 21.)

[Nor02] L.M. Northrop. SEI’s software product line tenets. 19(4):32–40, 2002. (Cited
on pages 9, 10, 11 and 12.)

[Nor04] Robert L. Nord, editor. Software Product Lines, Third International Con-
ference, SPLC 2004, Boston, MA, USA, August 30-September 2, 2004, Pro-
ceedings, volume 3154 of Lecture Notes in Computer Science. Springer, 2004.
(Cited on page 105.)

[Nor07] Linda Northrop. Fourth Product Line Practice Workshop Report. Technical
report, Software Engineering Institute. Carnegie Mellon University, 2007.
(Cited on pages 2, 9, 13 and 16.)

[NTB+08] Daren Nestor, Steffen Thiel, Goetz Botterweck, Ciarán Cawley, and Patrick
Healy. Applying visualisation techniques in software product lines. In SoftVis
’08: Proceedings of the 4th ACM symposium on Software visuallization, pages
175–184, New York, NY, USA, 2008. ACM. (Cited on page 15.)

[OP05] J. Henk Obbink and Klaus Pohl, editors. Software Product Lines, 9th Inter-
national Conference, SPLC 2005, Rennes, France, September 26-29, 2005,
Proceedings, volume 3714 of Lecture Notes in Computer Science. Springer,
2005. (Cited on pages 100 and 105.)

[ope08] PLC open. PLC open. http://www.plcopen.org, 2008. (Cited on page 31.)

[ope09] openArchitectureWare.org. openarchitectureware.
http://www.openarchitectureware.org/, 2009. (Cited on page 22.)

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software Product
Line Engineering. Springer, 2005. (Cited on pages 5, 6, 7, 8, 9, 10, 11, 12,
14 and 15.)

[PK07] Risto Pohjonen and Steven Kelly. Interactive Television Applications using
MetaEdit+. Model-Driven Development Tool Implementers Forum (MD-
DTIF07), 2007. (Cited on pages 24 and 25.)

[PM06] Klaus Pohl and Andreas Metzger. Variability management in software prod-
uct line engineering. pages 1049–1050, 2006. (Cited on page 14.)

104 BIBLIOGRAPHY

[RBKS07] M. Regensburger, C. Buckl, A. Knoll, and G. Schrott. Model Based Develop-
ment of Safety-Critical Systems Using Template Based Code Generation. In
Dependable Computing, 2007. PRDC 2007. 13th Pacific Rim International
Symposium on, pages 89–92, Dec. 2007. (Cited on page 22.)

[Sch07] Gernot Schmölzer. A Model-based Software Product Line Architecture for
Data-intensive Systems. PhD thesis, Technical university Graz, 2007. (Cited
on pages 5, 8, 10 and 12.)

[Sen07] Paulus Sentosa. Generation of Text Editors for Custom Domain Specific
Language on the Eclipse Platform. Master’s thesis, Hamburg University of
Technology, 2007. (Cited on pages 22 and 23.)

[Siv08a] S. Sivonen. DSML for Developing Repository-Based Eclipse Plug-Ins. Soft-
ware Product Line Conference, 2008. SPLC ’08. 12th International, pages
356–356, Sept. 2008. (Cited on page 23.)

[Siv08b] Sanna Sivonen. Domain-specific modelling language and code generator for
developing repository-based Eclipse plug-ins. VTT Publications 680 VTT,
Espoo, Finland., 2008. (Cited on pages 21, 23, 25 and 26.)

[SMBU07] D. Sellier, M. Mannion, G. Benguria, and G. Urchegui. Introducing Software
Product Line Engineering for Metal Processing Lines in a Small to Medium
Enterprise. In Proc. 11th International Software Product Line Conference
SPLC 2007, pages 54–62, 2007. (Cited on pages 16 and 36.)

[SO96] Dieter Spath and Ulf Osmers. Virtual Reality - An Approach to Improve
the Generation of Fault-Free Software for Programmable Logic Controllers
(PLC). In ICECCS, pages 43–46, 1996. (Cited on page 37.)

[STB+04] Mirjam Steger, Christian Tischer, Birgit Boss, Andreas Müller, Oliver
Pertler, Wolfgang Stolz, and Stefan Ferber. Introducing PLA at Bosch Gaso-
line Systems: Experiences and Practices. In SPLC, pages 34–50, 2004. (Cited
on page 16.)

[TMKG07] C. Tischer, A. Muller, M. Ketterer, and L. Geyer. Why does it take that
long? Establishing Product Lines in the Automotive Domain. In Proc. 11th
International Software Product Line Conference SPLC 2007, pages 269–274,
2007. (Cited on page 16.)

[Tol06] Juha-Pekka Tolvanen. MetaEdit+: integrated modeling and metamodeling
environment for domain-specific languages. In OOPSLA ’06: Companion to
the 21st ACM SIGPLAN symposium on Object-oriented programming sys-
tems, languages, and applications, pages 690–691, New York, NY, USA,
2006. ACM. (Cited on page 25.)

[TPB+08] Trinidad, P., Benavides, D., Ruiz-Cortes, A., Segura, S., and A. Jimenez.
FAMA Framework. In Proc. 12th International Software Product Line Con-
ference SPLC ’08, pages 359–359, 2008. (Cited on page 17.)

BIBLIOGRAPHY 105

[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages:
an annotated bibliography. SIGPLAN Not., 35(6):26–36, 2000. (Cited on
page 18.)

[vdL02a] F. van der Linden. Software product families in Europe: the Esaps & Cafe
projects. 19(4):41–49, 2002. (Cited on page 6.)

[vdL02b] Frank van der Linden, editor. Software Product-Family Engineering, 4th In-
ternational Workshop, PFE 2001, Bilbao, Spain, October 3-5, 2001, Revised
Papers, volume 2290 of Lecture Notes in Computer Science. Springer, 2002.
(Cited on page 99.)

[vdLBK+04] Frank van der Linden, Jan Bosch, Erik Kamsties, Kari Känsälä, and J. Henk
Obbink. Software Product Family Evaluation. In Nord [Nor04], pages 110–
129. (Cited on page 6.)

[vdW99] E. van der Wal. Introduction into IEC 1131-3 and PLCopen. The Application
of IEC 61131 to Industrial Control: Improve Your Bottom Line Through
High Value Industrial Control Systems (Ref. No. 1999/076), IEE Colloquium
on, pages 2/1–2/8, 1999. (Cited on pages 31, 32 and 33.)

[Ver96] A.A. Verwer. Teaching open standards for PLC programming. Mechatronics
in Education: Delivery of a New Engineering Discipline into the Workplace,
IEE Colloquium on, pages 8/1–8/7, 26 Mar 1996. (Cited on pages 29, 31
and 33.)

[WCKK06] D.M. Weiss, P.C. Clements, Kyo Kang, and C. Krueger. Software Product
Line Hall of Fame. Software Product Line Conference, 2006 10th Interna-
tional, pages 237–237, Aug. 2006. (Cited on page 16.)

[Wei05] David M. Weiss. Next Generation Software Product Line Engineering. In
Obbink and Pohl [OP05], page 1. (Cited on page 6.)

[Wei08] D.M. Weiss. The Product Line Hall of Fame. Software Product Line Confer-
ence, 2008. SPLC ’08. 12th International, pages 395–395, Sept. 2008. (Cited
on page 16.)

[YF06] M.B.Y. Younis and G. Frey. UML-based Approach for the Re-Engineering of
PLC Programs. In Proc. IECON 2006 - 32nd Annual Conference on IEEE
Industrial Electronics, pages 3691–3696, 6–10 Nov. 2006. (Cited on page 37.)

[ZLRK04] Yong Zhou, Thies Lauk-Reineke, and Christian König. Das System SPS.
Technical report, Lecture notes, Technical university Braunschweig, May
2004. (Cited on page 29.)

	Contents
	Introduction
	Motivation and goal
	Structure of the thesis

	Related work
	Software product line engineering
	Introduction to SPLE
	Motivation for SPLE
	Terminology
	SPL development processes
	Management
	Domain engineering
	Application engineering
	Approaches for software product line development

	Variability
	SPLE in action
	Hall of fame
	Supported product line approaches and tools
	Domain specific languages
	Generative programming
	Model driven engineering
	Domain specific modeling
	Comparison: UML vs. Domain specific modeling
	Metamodeling tools
	SPLE tooling benefit analysis

	Programmable logic controllers
	History and definition
	PLC platform and workflow
	The IEC 61131 standard
	PLC programming (IEC 61131-3)
	Common elements
	Programming languages

	IEC 61499
	Modern approaches
	Object orientation
	Petri nets
	UML extension
	Virtual reality

	Model driven design

	Design and implementation
	Requirements
	Product line architecture
	Introduction
	Domain model
	Graph
	Objects and properties
	Ports
	Roles
	Relationship
	Model representation
	Current domain model limitations and solutions

	Domain Specific application modeling
	Model verification support

	Application modeling process

	PLC target platform architecture
	Functions and components
	Main task
	Conveyor system
	High bay racking
	Gantry crane

	Transportation interface and queuing
	Assembly generation

	Generators
	Error checking
	PLC code generator
	PLC hardware parts list generator
	Application documentation generator
	Address filling assistant
	Online help generator

	Application development environment
	Used hardware and software
	User interface
	Migrating the application to the PLC
	Files

	Evaluation
	Business evaluation
	Application development
	Time to market and costs

	Process evaluation
	Technical evaluation
	Notes on quality

	Outlook
	General trends
	Ideas for future work

	Concluding remarks
	Appendix
	Product line and DSM tool comparison criteria
	Small evaluation of MetaEdit+
	Application workflow: Example
	Generated documentation: Screenshots
	Installation guide
	Detailed design document: Hardware suggestion
	Sequential application generation: Screenshots

	Bibliography

