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Abstract

As object oriented software tends to be very complex, the automatic generation and ex-
ecution of tests is very important. The focus of this thesis thus comprises the automatic
generation of test data for jUnit tests. Additionally, Design by Contract� annotations
consisting of pre- and postconditions might be available. These speci�cations of the
method under test state whether the method can be executed or a potential fault is
detected respectively. Whereas a postcondition can simply be checked for compliance,
ful�lling the precondition is a more complex task, as all paramteres must comply with
the precondition as well.

If such a parameter is a complex type (a class or an interface), an instance has to
be generated and its state has to be modi�ed to comply with the precondition of the
method under test. The jCAMEL tool, which focuses on the generation of these tests
automatically currently uses a random strategy. An object is instantiated and methods
are called at a random basis until the target state is reached. As such method invocation
sequences tend to be complex, the random strategy performs poorly.

The proposed approach tackles this problem of low-perfomance by transforming the avail-
able Design by Contract� speci�cations of the requested class into a planning domain.
The precondition of the method under test is translated to a planning problem. A plan-
ner then generates a plan, a sequence of actions that transform an initial state the newly
instantiated object is in, into the requested goal state. This way, the compliance with
the necessary precondition can be ensured. The resulting plan can be retranslated into
Java code and then be used as a parameter for the method under test that ful�lls the
precondition.

Our approach enables jCAMEL to generate specialized tests for methods that use pa-
rameters with complex requirements fast and goal oriented. As a result, the plan-based
approach improves test coverage substantially over the random strategy.



Zusammenfassung

Objektorientierte Software ist in den meisten Fällen sehr komplex. Daher wird das Au-
tomatisieren von Testerzeugung und Beurteilung immer wichtiger. Diese Arbeit beschäf-
tigt sich mit der Testdatenerzeugung für jUnit Tests unter Verwendung von Design by
Contract� Annotationen. Ein jUnit Test besteht aus einem Aufruf einer Methode einer
Klasse und dem Vergleich des erwarteten und eingetro�enen Ereignisses. Ist diese Soft-
ware mit Design by Contract� Annotierungen spezi�ziert, kann aus der Überprüfung
der Nachbedingung der Methodenspezi�kation entschieden werden, ob sich die Methode
korrekt verhalten hat, oder ob die Spezi�kation verletzt wurde, was auf eine fehlerhafte
Implementierung schlieÿen lässt.

Um eine Methode aber aufrufen zu können, ohne die Vorbedingung der Design by Con-
tract� Spezi�kation zu verletzten, müssen alle Parameter so erstellt werden, dass sie der
Vorbedingung entsprechen. Handelt es sich um einen nicht-primitiven Datentyp, eine
Klasse oder ein Interface, so muss eine Instanz erzeugt werden, und darauf Methoden
aufgerufen werden, bis diese Instanz in einem Zustand ist, die der Spezi�kation der ge-
testeten Methode genügt. Solche Sequenzen können sehr komplex werden, sodass der
bereits bestehende Ansatz, das randomisierte Aufrufen von Methoden, schnell an seine
Grenzen stöÿt.

Der in dieser Arbeit entwickelte Ansatz stellt eine Erweiterung des jCAMEL Tester-
zeugungswerkzeugs dar, welches basierend auf Design by Contract� Spezi�kation eben
solche jUnit Tests erstellt. Hierfür wird die Spezi�kation der zu erzeugenden Klasse in
eine Planungsdomäne überführt. Die Vorbedingung der zu testenden Methode wird in
ein Planungsziel konvertiert. Mit dieser Information wird nun ein bestehender Planer
aufgerufen. Der entstehende Plan, der einer Aufrufsequenz von Methoden auf ein Ob-
jekt entspricht, wird nun in Java Code zurücktransformiert. Dieses Objekt ist nun in
einem Zustand in dem es der Vorbedingung der zu testenden Methode entspricht und
kann als Parameter verwendet werden.

Das dadurch erzeugte Objekt ermöglicht es, im Gegensatz zur den meisten Fällen der ran-
domisierten Erzeugung von Objekten, auch Methoden mit nicht-primitiven Parametern
zu testen, und führt daher zu stark erhöhter Testabdeckung.
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1 Motivation

Modern software projects are complex. Testing this software is a time and resource con-

suming task. Almost 50% of development costs are spent for testing activities [Tas02].

One important factor when testing software is using the right data to �nd erros. Gen-

erating this data by hand is time-consuming and error-prone. Moreover, handwritten

tests and test data often lacks of satisfactory test coverage.

The above mentioned problems can be handled better, if the data and the tests are

generated automatically. One such approach of generating test data for Java programs

is the jCAMEL [GPW08] tool developed at the Institute for Softwaretechnology, Graz

University of Technology. It aims for generating jUnit-Tests for Design-by-Contract

annotated Java classes.

One key feature is generating tests for given methods of a class. As methods may contain

parameters, these paramters need to be generated to call the method. As the method is

annotated with Design-by-Contract annotations, the parameters can be restricted. An

integer parameter may need to be within a given range, or an object must be in a given

state. Several value generators for di�erent data types already exists. If the parameter

of the method under test is an object-reference, the generation of the object becomes a

complex task. The current idea is to generate an object by calling its constructor, and

then randomly call methods until a before speci�ed timeout is reached. If the state is

reached, the object can be used as parameter for the method under test. This solution

has some drawbacks. It is not guaranteed that the generation of an object in a desired

target state succeeds in the given time.

Example 1: Consider an example method that needs to be tested, that takes a reference

to a java.util.Stack as its single parameter as shown in Listing 1.1. The Design by

Contract� annotation forces this stack to have at least �ve elements.

10



Chapter 1. Motivation

@Pre(" stack.size() >= 5")

public void useStack(Stack stack) { ... }

Listing 1.1: The sample method useStack takes one input parameter. The above Modern
Jass annotation forces the parameter to contain at least �ve elements.

The Stack class contains 60 public methods, where 6 methods can be used to add content

to the stack, and 10 will remove at least one element or clear the whole stack. Therefore

we have a probability of p(addElement) = 0.1 to select a method that will lead into the

desired direction. Using the above example, the generation process needs to call at least

�ve push-operations without calling any remove method. This leads to the following

probability to generate a valid object:

p(addElement) = 0.1

p(stackSize = 5) = p(addElement)5

p(stackSize = 5) = 0.00001

Having a probability of 0.001% is not acceptable. Using more steps than the minimum

of �ve, the probability of generating a valid object may increase, but is still not satis-

factory. Furthermore, the probability of accidently clearing the stacks content increases

too. �

Therefore, a new generation strategy should be developed. As the jCAMEL tool needs

annotated java classes to generate tests, this information can be used to implement the

new strategy. This should be done using as many public available and well documented

software packages as possible. The idea of using a planning system that is based upon the

Design by Contract� annotations to generate a valid object as parameter was developed.

The system should translate the DbC-annotations into a format already implemented

planners understand. Then the planner is invoked to generate a plan. Afterwards, the

generated plan has to be converted to the internal data structure of jCAMEL, to be able

to generate a jUnit test.

11



Chapter 1. Motivation

Figure 1.1: Overview of the systems generation strategy. The source code of the software
under test is taken and transformed to a representation an already existing planner is
able to understand. This planner is then used to generate a valid sequence of actions, that
transform the object into the desired goal state. After this step is done, the algorithm
transforms the planners output into a sequence of Java-code that can be used within a
jUnit test case.

This thesis is structured as follows. Chapter 2 will give an overview on the used technolo-

gies. In Chapter 3 we will explain the approach we have chosen to solve the problems

pointed out in this motivation. Furthermore, we will review related work and alternative

approaches in Chapter 4.

Chapter 5 shows the design and functionality of the implementation. In Chapter 6 we

show how the system is able to generate test data using some two studies. In Chapter 7

we will conclude about the work being done and give an outlook on what can be improved

or extended.

12



2 Preliminaries

This section will introduce all technologies necessary to understand the presented ap-

proach. First of all we will introduce a running example used to point out our ideas and

give formal de�nitions on concepts used within this thesis in Section 2.1. The ideas of

Design by Contract� will be discussed in Section 2.2. After that, jCAMEL, the test data

generation tool developed at Graz University of Technology by Galler et al. [GPW08]

wich will be extended within this work, is described in Section 2.3. Furthermore the

ideas of AI-planning will be reviewed in Section 2.4. Within that section we will discuss

what planning is and introduce some major planning description languages as one of

them, PDDL [GIP+98], will be used within this thesis.

2.1 Basics

In this Section, we will give basic de�nitions we will use to point out our ideas throughout

this work. First of all, we will introduce the example classes used to describe our ideas.

Then we will give formal de�nitions on concepts used.

2.1.1 The Stack

We will use a stripped down version of the java.util.Stack class to demonstrate the basic

ideas of our approach. The methods have been annotated using Modern Jass [Rie07]

Design by Contract� speci�cations.

13



2.1. Basics Chapter 2. Preliminaries

1 @Invariant ("size_ >= 0")

2 @Model(name="mSize", type="int")

3 public class Stack {

4 private int size_;

5

6 @Post("mSize == 0)

7 public Stack () { ... }

8

9 @Post("size() == @Old(size(), int) + 1")

10 public void push(int element) { ... }

11

12 @Pre("size() > 0")

13 @Post("size() == @Old(size(), int) - 1")

14 public void pop() { ... }

15

16 @Pre("size() > 0")

17 @Post("size() == @Old(size(), int )")

18 public int peek() { ... }

19

20 @Pure

21 @Also(

22 @SpecCase(pre="size() > 0", post = "@Return == false"),

23 @SpecCase(pre="size() == 0", post = "@Return == true")

24 )

25 public boolean isEmpty () { ... }

26

27 @Pure

28 @Post(" @Return == mSize ")

29 public int size() { ... }

30 }

Listing 2.1: The annotated Stack class used as running example within this thesis. The
constructor creates an object of class Stack that is empty. push(int) adds one element
to the stack, whereas pop() removes the top element. peek() returns the top element
and does not changes the stacks content. The method size() is used to return the stacks
current size, and is marked as pure, which means that it does not change anything within
the object, and can be used within other method contracts. isEmpty() returns whether
the Stack has elements or not. Its speci�cation is split into two SpecCase annotations.
The invariant of the private �eld size_ ensures that the size of the stack can never
become negative. There is one model variable mSize to demonstrate the usage of model
variables and how our approach deals with them.

14



2.1. Basics Chapter 2. Preliminaries

2.1.2 Definitions of a Class

Within this Section, we will give formal de�nitions of concepts used throughout this

thesis. We will start by de�ning an object oriented class in a formal way. Upon that, we

will build the concepts of State Variables, the public visible state of a class and State

Manipulators, which will change this State Variables.

De�nition 1: Class

Galler et al. [GWW10] de�ne a class as a triple C = 〈c,m, f〉. Where c is the set of

public available Constructors. f is the union of public, protected and private �elds:

f = fpub ∪ fprot ∪ fpriv, and m the set of all methods.

m =
⋃

vis∈

8>>>>><>>>>>:
pub,

prot,

priv

9>>>>>=>>>>>;

⋃
ret∈

8><>:
void,

nvoid

9>=>;

⋃
abs∈

8><>:
abs,

con

9>=>;

absmvis
ret

Here vis denotes the visibility of the methods, which is either public, protected or private,

ret states whether the method returns a value (nvoid) or not (void) and abs denotes

whether the method is concrete (con) or abstract (abs). �

Example 2: Using the De�nition of a class as triple C = 〈c,m, f〉 the set of constructors
C of the Stack example given in Listing 2.1, is the only available public constructor:

c = {Stack()}. There are no public or protected �elds in this examples. Therefor

fpub = ∅ and fprot = ∅. There is one private �eld: fpriv = {size_}. Thus we write

f as f = fpub ∪ fprot ∪ fpriv = ∅ ∪ ∅ ∪ {size_} = {size_}. There are two concrete

methods that do not return a value, namely push and pop. Thus conmpub
void = {push, pop}.

The three other methods do return a value and are also concrete methods: conmpub
nvoid =

{peek(), size(), isEmpty()}. As there are no more methods in this example, all other

sets of methods are emtpy. We can now write the set of methods as:

m = conmpub
void ∪

conmpub
nvoid ∪

absmpub
void ∪ . . . ∪

absmpriv
nvoid

m = {push(int), pop()} ∪ {peek(), size(), isEmpty()} ∪ ∅ . . . ∪ ∅

m = {push(int), pop(), peek(), size(), isEmpty()}

15



2.1. Basics Chapter 2. Preliminaries

So we can write the class of Stack as:

C(Stack) = 〈{Stack()}, {push(int), pop(), peek(), size(), isEmpty()}, {size_}〉

�

De�nition 2: External State.

For a class C = 〈c, fpub ∪ fprot ∪ fpriv, conmpub
void ∪ conmpub

nvoid ∪ absmpub
void ∪ . . .∪ absmpriv

nvoid〉 the
external state is the set ES(C) of all public accessible �elds and non-void methods:

ES(C) = conmpub
nvoid ∪ f

pub

�

Example 3: Using the Stack from Listing 2.1 for De�nition 2 we can write its external

state as:

conmpub
nvoid = {size(), peek(), isEmpty()}

fpub = ∅

ES(Srack) = {size(), peek(), isEmpty()}

�

De�nition 3: State Manipulators.

We de�ne the set of operations SM(C) of a class C = 〈c, fpub ∪ fprot ∪ fpriv, conmpub
void ∪

conmpub
nvoid ∪ absmpub

void ∪ . . . ∪ absmpriv
nvoid〉 that might manipulate the object's external state

ES(C) as the union of public available constructors and concrete methods:

SM(C) = c ∪ conmpub
nvoid ∪

conmpub
void

�

Example 4: The Stacks State Manipulators

Having the De�nition of Potential State Manipulators we write the set of State Manip-

ulators of the Stack SM(Stack), where we give the Stack as

16



2.2. Design by Contract� Chapter 2. Preliminaries

C(Stack) = 〈{Stack()}, {push(int), pop(), isEmpty(), peek(), size()}, {size_}〉, as:

SM(Stack) = c ∪ conmpub
nvoid ∪

conmpub
void

c = {Stack()}
conmpub

void = {push(int), pop()}
conmpub

nvoid = {size(), peek(), isEmpty()}

SM(Stack) = {Stack()} ∪ {push(int), pop(), } ∪ {peek(), size(), isEmpty()}

SM(Stack) = {Stack(), push(int), pop(), peek(), size(), isEmpty()}

�

2.2 Design by Contract™

The basic idea of Design by Contract� is having a contract between the calling software

module, and its callee. Such a contract between the caller and the callee consist of three

parts [Mey92]:

Precondition A precondition states what the module expects when it gets called. Refer-

ring to the Stack example given in Listing 2.1, the precondition of calling a stacks

pop method would be having a non-empty stack.

Postcondition The postcondition de�nes the result of the operation. Sticking to the

stack example, the postcondition of the pop method would be: the element on top

was returned and removed from the stack.

Invariant The invariant de�nes a state that has to be true before, during and after the

call to the method occured. For example, a member value has not to be changed

during the whole call of a classes method.

In terms of Hoare logic [Hoa69], we can now understand a contract as follows. Given a

module S a contract consists of the set of preconditions P that hold before executing S.

After executing S, the postcondition Q must hold. The invariant I holds before and after

the execution. Thus, we can give the annotated method as the following Hoare-triple:

{P} ∧ {I} S {Q} ∧ {I}

17



2.2. Design by Contract� Chapter 2. Preliminaries

Example 5: An example Contract.

Using the Stack's method pop shown in Listing 2.1 we give the precondition P as P =

size() > 0 and the postcondition as Q = size() == @Old(size(), int) − 1. When

executing the method, the Design by Contract� system will check if the return value of

size() is greater than zero. If this precondition holds, the method is executed. If not, a

precondition error is raised, which means that the method was called incorrectly. After

the execution of pop the postcondition is checked. If the size was not decreased by one,

a postcondition error is generated, stating that the implementation did not comply with

its contract. �

In addition to the concepts of pre- and postconditions, Design by Contract� systems such

as Modern Jass [Rie07] o�er several additional annotations we need for our approach:

pure methods, multiple speci�cations, pre-state access of variables and functions, and

model �elds.

Pure methods are side e�ect free methods, that do not alter any member variable of the

class. Pure methods are the only methods that are allowed to be used within contracts

of other methods. As the methods are executed when the contract is checked, non-pure

methods would change the softwares behaviour.

Example 6: Pure Methods.

The Stack from Listing 2.1 contains two methods that are �agged as pure, namely

isEmpty() in line 20 and size() in line 27. Both methods return values but do not change

anything within the class. Thus they can be used within other method contracts. �

To allow to specify multiple behaviour of one single method, it is possible to annotate

a method with more than one pair of pre- and postcondition, where one precondition

maps to one postcondition:

P1 → Q1 ∧ . . . ∧ Pn → Qn

If no precondition is satis�ed when the annotated method is called, a precondition error

is raised.

Example 7: Multiple Speci�cations.

Using the Stack's method isEmpty() from Listing 2.1, one can see that there is an @Also

18



2.2. Design by Contract� Chapter 2. Preliminaries

annotation from line 21 to 24 containing two speci�cations SpecCase. One states that

if the value of size() is greater than zero, the return value must be false. The other one

that the return value is true if size() is zero. �

Design by Contract� systems allow to accesss the value of a variable or function before

the method was executed, within a postcondition. This is used when specifying how a

value has changed or not. Within Modern Jass, this annotation is called @Old.

Example 8: Pre-state access.

The Stack's methods push(int), pop() and peek() from Listing 2.1 contain postconditions

that make use of the @Old keyword. The postcondition of push(int) states that the value

of size() after the execution must be the value of size() before executing push(int) plus

one. Thus it tells the system that the value of size() must have increased by one. The

same applies to pop() and peek() where pop is speci�ed to decrease the value of size()

whereas peek() is not allowed to change it at all. �

The concept of model �elds was introduced by Cheon et al. [CLSE05]. A model �eld

is a special �eld that exists only in the context of the classes speci�cations and is used

to describe the internal state of the object. It abstracts the type and name of real

implementation. Thus, it is possible to write speci�cations that do not directly relate

to one special implementation [GWW10].

Example 9: Model Fields.

Our Stack example from Listing 2.1 contains one model variable: mSize which repre-

sents the current size of the stack. mSize can be used in any speci�cation dealing with

the current stack size, regardless how the real implementation is named. Thus, it would

be possible to have one implementation where the method to access the actual size is

called size() and another implementation where this method might be called depth(),

without changing the speci�cations. The speci�cations of size() and of the constructor

Stack() make use of the model �eld. �

During execution of an annotated module, the contract will be checked. If the contract

is violated by any of the two involved parties, the program is terminated immediately.

Design by Contract� thereby eases fault localization. If the precondition is violated, the

bug is most likely within the callers code or the callee was misused. If the postcondition
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was false, the bug will be within the called software module. Hereby we can identify

three main advantages of using Design by Contract�. First of all, the contracts can be

used as documentation of the software. Moreover, the contracts can be checked after

each refactoring step to ensure the functionality of the refactored code. Therefore the

contracts can be seen as quality assurement technique. At last, contracts assist in fault

localization.

De�nition 4: Contract of a Class.

We de�ne a Contract of a class C = 〈c, fpub∪fprot∪fpriv, conmpub
void∪ conm

pub
nvoid∪ absm

pub
void∪

. . . ∪ absmpriv
nvoid〉 as DbC(C) = 〈mf, inv,mc〉, where mf is the set of model �elds in the

classes constract and inv is the invariant of the class C.

Furthermore, mc is the set of method speci�cations mc = {ms1 . . .msm}, where one

method speci�cation belongs to one constructor cj ε c or one method mk ε m of class C.

One method speci�cation ms is de�ned as the tupel of ms = 〈specs, pure〉 where pure is
a speci�cation element that tells the system that no changes to the objects state happen

when invoking the annotated method. specs is a set of pre- and postcondition pairs

spec = 〈P,Q〉. Thus we can write mc as:

mc = {〈{〈P 1
1 , Q

1
1〉, . . . , 〈P 1

n , Q
1
n〉}, pure〉, . . . , {〈Pm

1 , Q
m
1 〉, . . . , 〈Pm

k , Q
m
k 〉}, pure〉}.

If a pre- or postcondition is not given, we de�ne it to be true. �

Example 10: The contract of the Stack

Having the Stack from Listing 2.1 according to De�nition 1 as

C(Stack) = 〈{Stack()}, {push(int), pop(), isEmpty(), peek(), size()}, {size_}〉, the con-
tract DbC(C) = 〈mf, inv,mc〉 is composed as follows:

The set of model �elds mf is {mSize} as it is the only model �eld used. The set

of invariants inv contains one element, namely that the �eld size_ ε fpriv never gets
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negative: inv = {size_ >= 0}. The complete Contract DbC(Stack) is now:

DbC(Stack) = 〈{mSize}, {size_ >= 0},

{

mcStack = 〈{〈true,mSize == 0〉}, ∅〉,

mcpop = 〈{〈size > 0, size == @Old(size)− 1〉}, ∅〉,

mcpush = 〈{〈true, size == @Old(size) + 1〉}, ∅〉,

mcpeek = 〈{〈true, size == @Old(size)〉}, ∅〉,

mcsize = 〈{〈true,@Return == mSize〉}, pure〉

mcisEmpty = 〈{〈size > 0,@Return == false〉, 〈size == 0,@Return == true〉}, pure〉

}〉

�

2.3 jCAMEL

The jCAMEL test case generation system is developed at Graz University of Technol-

ogy by Galler et al. [GPW08] as an extension of JET [CRM07] which was developed to

automatically generate a sequence of test cases for java programs based on Design by

Contract� annotations given in JML, the Java Modelling Language [LC04]. Instead of

JML, these Design by Contract�-annotations for use with jCAMEL are written in Mod-

ern Jass [Rie07]. A test case for one java class consists of a sequence of method-calls of

the class under test. As many methods contain parameters, these parameters have to be

generated by jCAMEL to be able to actually call it. Therefor some parameter generation

sub-systems have been developed to generated the correct instance of parameters:

Random The random data generator can be used for any parameter type. If the pa-

rameter is a reference to an object, the random generator instantiates one object

and randomly calls methods of this instance to generate a valid, thus contract

satisfying, object to use as parameter for a method call. As already pointed out in

Section 1, this strategy is not satisfying as it is not able to generate a valid object
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in many cases. This generator is always used as fallback-approach, if any of the

other generation strategies fail.

Z3 Constraint Solver For primitive data types as integers the Z3 SMT Solver [dMB08]

of Microsoft is used.

Regular Expressions This data generator can be used to generate strings that need to

satisfy a given precondition.

Manual Data As a test engineer might want to test the software with very special test

values there is a possibilty to specify test data by hand.

Mock Objects The idea of mock objects was introduced by Mackinnon, Freeman and

Craig in 2001 [MFC01]. Mock Objects simulate the behaviour of real objects

and can be used as replacement. An example scenario of use would be using

mock objects during testing, when real objects are nor available or to complicated

to con�gure, such as network connections to a server or a complex structure of

objects. To use such a mock object, the following information is required:

� What type to mock

� Which methods are called, and how often this is expected

� The allowed input values to these methods and their return values

Using this expected behaviour, mock objects can signal that they where miss used if

some call happens, that was not speci�ed before. Thus, by removing dependencies

to real objects, tests become lightweight and independent from system components.

Within jCAMEL, mock objects are used as an alternative to randomly generating

a real object. Tests have shown, that this approach outperforms the random

strategy by about 30% with respect to function coverage for the used case studies

[GMW10]. The approach developed within this work is also compared using the

same reference case studies.

2.3.1 Denotable

As already pointed out, a test case consists of a series of method calls with according

parameters. To internally map this sequence, the concept of Denotables introduced by

the JET toolkit is used. A Denotable �uniformly represent various kinds of Java values

and objects that can be part of a test case [jet].� This structure is used within jCAMEL
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Figure 2.1: The Denotable for the example code given in Listing 2.2. The Denotable
containing the method pop is the one returned by jCAMEL. It contains the previous
method invocations as preamble. The list of parameters is again a Denotable.

Stack v0 = new Stack ();

v0.push (-3);

v0.push (2);

v0.pop();

Listing 2.2: The serialized Denotable of the Stack example given in Figure 2.1. At �rst,
the Stack is instantiated. The following method invocations operate on the previously
instantiated object.

to represent a test case. To store a test case this structure is searilized to a Java class

and saved to a �le. An example Denotable of the code shown in Listing 2.2 is given in

Figure 2.1.
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2.4 Planning

�The task of coming up with a sequence of actions that will achieve a goal is

called planning.� [RN02]

Planning can be described as �nding a sequence of actions, that will bring a system from

its initial state S to a desired goal state G. Such a system must provide descriptions of

what an action may change in the world and when the execution of the action is valid.

The description of which conditions must hold before execution of an action A is valid,

can be referred as precondition P of the action, whereas the list of changes is called the

e�ect E. In terms of Hoare logic [Hoa69] such an action can be written as:

{P} A {E}

Now a plan can be described as sequence of actions a1 . . . an that lead from the initial

state S to the goalstate G. The plan is valid if the following sequence can be proven:

{S} plan {G} ⇔{S} a1 {E1} ∧

{P2} a2 {E2} ∧

∧ . . . ∧

{Pn} an {G}

De�nition 5: Planning Domain.

We de�ne the planning domain being the set D of actions ai: D = {a1, ..., an} whereas
an action is the above given tuple of an action name, parameters, precondition and e�ect:

a = 〈name, parameters, P,E〉. �

Example 11: An example domain.

We use a data structure as an example domain. Assume that there are two actions within

the planning domain. One is called push and increases the size of structure by one. This

action can be called at any time. Thus its de�nition is: apush = 〈push, ∅, true, size+ 1〉.
Moreover, there is an action pop that reduces the size by one, and is only allowed to

be called when the size is greater than zero: apop = 〈pop, ∅, size > 0, size − 1〉. The

resulting planning domain now is:

D = {〈push, ∅, true, size+ 1〉, 〈pop, ∅, size > 0, size− 1〉} �

24



2.4. Planning Chapter 2. Preliminaries

De�nition 6: Initial State.

We de�ne the initial state S to be the set of all predicates that describe the initial state

of the world: S = {pi, ...pk} �

Example 12: An example initial state.

Using the domain from Example 11 we assume the data structure is intially empty. We

can now give the initial state according to De�nition 6 as: S = {size == 0}. �

De�nition 7: Planning Goal.

We de�ne the planning goal to be a set G containing all predicates p that describe the

desired state of the world: G = {p1, ..., pn} �

Example 13: An example goal.

Using the domain from Example 11 we want the data structure to have at least two

elements. We can now give the planning goal according to De�nition 7 as: G = {size >=

2}. �

De�nition 8: Planning Problem.

A planning problem is de�ned as the tupel PP = 〈D, I,G〉 where D is the planning

domain consisting of all available actions: D = {a1, ..., an}, S is the initial state and G

is the desired goal state, which is a set of facts about the world: G = {p1, ..., pn} �

Example 14: An example problem.

Using Examples 11 and 13 we have a planning problem PP = 〈D,G〉 consisting of the

domain: D = {〈push, ∅, true, size + 1〉, 〈pop, ∅, size > 0, size − 1〉}. Initially the stack

is empty, thus S = {size == 0} and the goal is G = {size >= 2}. �

De�nition 9: A Plan.

We de�ne a plan P as a ordered set of actions ai that transfer a given initial state S into

goal state G, whereas an action ai can occure multiple times within P : P = {a, ..., a}�

Example 15: The resulting plan.

Using the planning problem from Example 14, the plan to get a data structure that has

at least two elements is calling the push method twice:

P = {push, push}
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Two assumptions need to be made to make the above de�nitions being correct. Modern

planners rely on both the Closed World Assumption and the Frame Problem:

The Closed World Assumption

The Closed World Assumption states, that if a term can not be proven to be true, it

can be considered false. If a planner uses the Closed World Assumption only terms need

to be given that are true in the current state. This reduces the amount of statements

within planning domain descriptions. [RN02]

The Frame Problem

The Frame Problem was introduced by McCarthy and Hayes [MH69] in 1969. It states

that a machine is not able to decide which conditions will not have changed when

invoking an action, unless it is explicitly stated what will not change. This problem

a�ects the design of planners, as they only require action descriptions that state what

actually changes by invoking the described action.

2.4.1 Planning Languages

This Section will give an overview of planning languages that have been developed. At

�rst we will look at STRIPS, which PDDL is based on. We will use PDDL within this

thesis as planning language.

STRIPS

STRIPS was introduced by R. E. Fikes and N. J. Nillson in 1971 [FN71]. It is important

to distinguish between the STRIPS-language which is explained now, and the STRIPS-

planner. STRIPS is one of the oldest and most simple representations of operators.

It was originally invented to control a robot called �Shakey�. Shakey is able to drive

through its world by the means of many connected rooms, push boxes and use light

switches. Because of its simplicity and of its expressiveness the STRIPS-language became
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on of the most used notions for planning problems and is used in many other planning

systems.

The STRIPS-language describes object states and operators acting on these states.

States are a conjunction of facts, which are ground literals. Only literals which are

true are noted in STRIPS (see the Closed World Assumption). A goal is a conjunc-

tion of facts, which need to be reached by invoking the operations. Each operator has

a precondition which needs to be completely ful�lled in order to execute the operator.

Executing the operator changes the current world state, which is expressed by two sets

of literals. At �rst there is an add lists, which contains literals which are true after

invoking the operation. Literals that are false after executing the operation are denoted

in the delete list, as removing facts from the current world state means that they become

false.

PDDL - Planning Domain Definition Language

The Planning Domain De�nition Language was developed by Drew McDermott and the

IPC-1 committee [GIP+98]. It's attempt is to provide a single language to de�ne classical

planning problems, to make planners comparable that participate in the International

Planning Competition [ica]. PDDL is syntactically based on LISP and hence it is a

pre�x language. In PDDL, a planning task consists of:

Objects Objects that exist in the planning domain. PDDL supports typing of Objects.

Predicates These Predicates describe the state of the objects in the world.

Actions Actions may change the state of the world by manipulating the values of the

Predicates and Fluents (the representation of numbers within PDDL). An action

contains at least the following properties: parameters, the precondition and the

e�ect.

The parameters state on which objects in the planning domain actions should be

applied. The precondition must be true, to execute the given action. When the

action was executed, it has changed the world. Thus, the e�ect describes how the

world changes. Listing 2.3 shows an example PDDL action description. The List

of action forms up the planning domain as de�ned in De�nition 5.
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(: action load

:parameters (?o ?v ?l)

:precondition (and (object ?o) (vehicle ?v) (location ?l)

(at ?v ?l) (at ?o ?l))

:effect (and (in ?o ?v) (not (at ?o ?l)))

)

Listing 2.3: An example of a PDDL-action. It describes how to load an object o from a lo-
cation l into a vehicle v. The action is taken from the logistic problem (logistics-strips), a
standard planning problem, which is part of the International Planning Competition [ica]
domains.

Initial states Predicates that are true when starting with the planning process, accord-

ing to De�nition 6.

Goal states The states that form up the goal to be achieved, as given in De�nition 7.

These �ve components are divided up into two �les: the domain �le and the problem

�le. The planning domain �le consists of the objects, predicates and operators that are

available in the planning domain, whereas the problem �le contains the initial and goal

states for one speci�c planning problem. The PDDL standard has evolved over the last

years and got more and more features. As not every planner supports all features of

PDDL, a domain �le always contains the list of features used, like STRIPS, ADL or

numeric variables.

2.4.2 PDDL4J

PDDL4J [Pel09] was initially developed by Damien Pellier, assistant professor at Univer-

sité Paris Descartes, and is hosted at sourceforge. It was released under the french open

source license CeCILL-B. It is intended as PDDL parsing library for use in Java-based

planners. It parses PDDL and maps it to an internal object structure. PDDL4J is used

within this work as part of the conversion step. We build the internal object structure

within our tool and serialize the structure into �les. During development of our approach,

bugs have been found and corrected and the �xes were contributed back.
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Approach
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We have described the jCAMEL tool in Section 2.3. It aims on automatic unit test

generation for a given software that was written in Java. It currently lacks of the

ability to generate complex objects as test data, that ful�ll the currently tested methods

speci�cation.

In Section 2.2 we have described the concepts of Design by Contract�. jCAMEL expects

the software under test to be annotated with Modern Jass annotations, an Design by

Contract� speci�cation language. In Design by Contract� a speci�cation, a contract, of

a software is provided to enhance fault localization. This contracts consist of a precon-

dition P and a postcondition Q, where P must hold before execution of an annotated

module, and Q must hold afterwards.

We then described the idea of planning, where a sequence of actions is searched within

a planning domain D = {a1, ..., an}, that transform an initial state S into a goal state

G. One action description consists of a precondition, telling the planner when it is

allowed to be used. Furthermore, it has an e�ect on the world, being listed in the e�ect

statement.

We propose the idea of using the information given in the contracts and transform them

into a planning problem. That means, that for an object, that has to be in a speci�c

state, we use the contracts information about how the methods of the class change

the objects state. This information can be converted, as both planning and Design by

Contract� rely on the concepts of having pre- and postconditions. It can than be passed

to the planner, which will generate a sequence of actions, that relate to the invocation

of methods of the class. The goal state can be extracted from the speci�cation of the

currently tested method we are generating parameters for, the method under test.
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Summing up, the generation process can be given as the algorithm shown in Listing 3.1.

The contract DbC(C) is converted in the planning domain D as described in Section 3.1.

Then the Goal G is generated from the contract of the method under test: DbC(mut)

which is introduced in Section 3.2. The domain and goal form up the planning problem

according to De�nition 8. Then the planner is executed and the returned plan P is

converted into the internal data structure of jCAMEL, which is covered in Section 3.4.

Denotable AITypeValueGenerator(DbC(C),Pre(mut))

{

D := generatePlanningDomain(DbC(C));

G := generateGoalFile(Pre(mut ));

P := runPlanner(D, G);

denotable := convertPlanToDenotable(P);

return denotable;

}

Listing 3.1: The generation process as abstract algorithm. First of all, the planning
domain D as de�ned in De�nition 5 is generated using the contract DbC(C) of the
requested type C. Then the corresponding goal G is build from the precondition of the
method under test, Pre(mut). These two �les are then passed to the planner, which
returns the sequence of actions that transform the object from an initial state into the
speci�ed goal state. This plan is then converted into a sequence of Java code, internally
represented as a Denotable.

3.1 Generation of the Planning Domain

To generate the planning domain it is necessary to know which method invocation

changes the state of the object and what exactly gets changed. This information is

available as pre- and postcondition pairs in the method speci�cation. As not the whole

contract of a class will be usable and not all methods of the class will have in�uence on

its internal state, we will introduce the concepts of State Variables and Action Methods,

that are based on the de�nition of a class and of a contract we gave in Section 2. We

will show that having these two concepts, we are able to give an interpretation function,

that will translate from a contract to a planning domain.
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De�nition 10: State Variables

We de�ne SV (C) as the set of State Variables of a class C = 〈c, fpub∪fprot∪fpriv, conmpub
void∪

conmpub
nvoid ∪ absmpub

void ∪ . . . ∪ absmpriv
nvoid〉. Methods within these state variables will not

change the state itself as they are required to be �agged as pure within their method

speci�cation ms ε mc of the classes contract DbC(C) = 〈mf, inv,mc〉. Thus the set

of state variables is the intersection of conmpub
nvoid and the set of pure methods p, where

p = {∀ msm ε mc | msm = pure} and the public �elds fpub.

Thus we can write the set of State Variables as:

fpub ∪ (conmpub
nvoid ∩ {∀ ms ε mc | ms = pure})

�

Example 16: The Stack's State Variables

Having the Stack from Listing 2.1 as C(Stack) = 〈{Stack()}, {push(int), pop(), isEmpty(), peek(), size()}, {size_}〉
and the two speci�ed method size() and isEmpty() within the Stacks contract DbC(Stack),

we can write the State Variables of the Class Stack as:

fpub = ∅
conmpub

nvoid = {peek(), size(9, isEmpty()}

{∀ msm ε mc | msm = pure} = size(), isEmpty()

SV (Stack) = ∅ ∪ ({peek(), size(), isEmpty()} ∩ {size(), isEmpty()})

SV (Stack) = {size(), isEmpty()}

The Stacks State Variables that are relevant for generating the planning domain are

size() and isEmpty(). �

De�nition 11: Action Methods

We de�ne the set of Action Methods of a class C, AM(C) as the set of State Manipulators,

that contains at least one State Variable sv ε SV (C) and is not �agged to be pure.

AM(C) = SM(C) ∩ {∀spec ε ms|sv ε SV (C) ⊂ Qspec ∧ pure = ∅}

Thus all constructors and methods, that have a postcondition Q telling the system that

it will change one State Variable form up the set of Action Methods AM(C), where

changing a State Variable re�ers to having the State Variable in a statement of Q. �
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Example 17: The Stack's Action Methods

The Stack is given as C(Stack) = 〈{Stack}, {push, pop, peek, size}, {size_}〉 and its set

of State Manipulators as SM(Stack) {Stack(), push(int), pop(), peek(), size(), isEmpty()}.
The contract is

DbC(Stack) = 〈{mSize}, {size_ >= 0},

{

mcStack = 〈{〈true,mSize == 0〉}, ∅〉,

mcpop = 〈{〈size > 0, size == @Old(size)− 1〉}, ∅〉,

mcpush = 〈{〈true, size == @Old(size) + 1〉}, ∅〉,

mcpeek = 〈{〈true, size == @Old(size)〉}, ∅〉,

mcsize = 〈{〈true,@Return == mSize〉}, pure〉

mcisEmpty = 〈{〈size > 0,@Return == false〉, 〈size == 0,@Return == true〉}, pure〉

}〉

Therefore, the set of Action Methods AM(Stack) is calculated as follows:

SV (Stack) = {size(), isEmpty()}

SM(Stack) = {Stack(), push(int), pop(), peek(), size(), isEmpty()}

mcStack = 〈{〈true, size() == 0}〉, ∅〉

mcpop = 〈{〈size() > 0, size() == @Old(size(), int)− 1}〉, ∅〉

mcpush = 〈{〈true, size() == @Old(size(), int) + 1}〉, ∅〉

mcpeek = 〈{〈true, size() == @Old(size(), int)}〉, ∅〉

mcsize = 〈{〈true,@Return == mSize}〉,pure〉

mcisEmpty = 〈{〈size > 0,@Return == false〉, 〈size == 0,@Return == true〉},pure〉

AM(Stack) = AM(Stack) ∩ {∀spec ε ms|sv ε SV (C) ⊂ Qspec}

AM(Stack) = {Stack(), push(int), pop(), peek()}

�

A planner expects a description of the planning domain as a set of actions D = {a1...an}
as de�ned in De�nition 5. These action descriptions contain a precondition aprei that

must be satis�ed when the speci�c action is executed. Furthermore, the actions have
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e�ects on the current state which are given in the e�ect statement aeffecti . An e�ect

description in PDDL is a calculation directive how to calculate the new state out of the

previous state.

As de�ned in De�nition 4, Design by Contract� speci�cations consist of a precondition

P that must hold, when the speci�ed method is invoked and a postcondition Q that must

hold after execution. The Design by Contract� postcondition Q is a logic description of

the state after execution of the speci�ed method.

Since a Design by Contract� postcondition can contain a calculation directive as logic

description how the state changes, we can assume that PDDL e�ects are a subset of

Design by Contract� postconditions. We interpret a Design by Contract� precondition

as an action's precondition and a Design by Contract� postcondition that consists of cal-

culation directives as a PDDL action's e�ect. Conditions that do not contain calculation

directives can not be translated to PDDL and are ignored.

De�nition 12: Interpretation Functions.

We de�ne an interpretation function Φ(spec) that translates from one speci�cation

spec = 〈P,Q〉 that is part of a method speci�cation ms = 〈specs, pure〉 εmc of a con-

tract DbC(C) = 〈mf, inv,mc〉. This function contains two parts. One for translating

the precondition P , and one for translating the postcondition Q.

For transforming a contract's precondition P and postcondition Q to a PDDL action de-

scription with precondition aprei and e�ect aeffecti we de�ne the Interpretation Functions

as follows:

Φpre(P )→ aprei

Φpost(Q)→ aeffecti

�

Example 18: Interpretation Functions.

We use the Stack from Listing 2.1. Having the class as C(Stack) = 〈{Stack}, {push, pop,
peek, size}, {size_}〉, its set of State Manipulators is SM(Stack) = {Stack, push, pop}.
Having the speci�cation of pop as specpop = 〈{〈size() > 0, size() == @Old(size(), int)−
1〉}, ∅〉, the example interpretation of its State Manipulator pop is now:
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Φ(pop)→Φpre(specpop(P1)),

Φpost(specpop(Q1))

Φ(pop)→Φpre(size() > 0),

Φpost(size() == @Old(size(), int)− 1)

Which then becomes: apop = 〈pop, ∅, size > 0, size− 1〉 �

Thus the planning domain for a class C contains at least one action description for every

element of the set of State Manipulators SM(C) the class o�ers, as it is possible that a

method contains multiple speci�cations.

In Design by Contract� it is valid that an action method am ε AM(C) contains more

than one Design by Contract� speci�cation (specj) as shown in Example 7. Thus the

approach must create an action description for each speci�cation of the Action Methods

amεAM(C), where specpre is the according precondition and specpost the postcondition

of the speci�cation spec.

As Java and Modern Jass allow a wider range of valid characters as part of method

names than PDDL, names must be mangled. This is achieved by a mangling function

µinout(name) which maps between an input and an output language.

De�nition 13: Name Mangling.

We de�ne the name mangling functions µinout(name) as functions that translate from valid

names in the input language in to a valid name in the output language out:

µjavapddl (java_typename)→ pddl_typename

µpddljava(pddl_typename)→ java_typename

µpddljava(µ
java
pddl (typename))→ typename

�
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Not available Characters in PDDL

PDDL supports a more narrow range of valid input characters. Table 5.3.1 gives a

collection of unsupported characters and their occurences in Java and how we translate

them to valid input.

Mangling of State Manipulators

Fully quali�ed method names in Java consist of the name itself, and a list of their fully

quali�ed parameter type names. This fully quali�ed name is translated by concatenating

the name and parameter type names. See Example 19.

Constructors are handled equaly. Their fully quali�ed type name additionaly includes

the class' package and name. This information is also used when translating from Java

to PDDL. All translated names are lower cased.

Example 19: Name Mangling of a Java Function.

Consider the Stack being in package java.util and using integers as containing data

type. The translation of its paramterless constructor and the push method that takes

one argument will look as follows:

constructor = public java.util.Stack()

µjavapddl (constructor)→ java_util_stack

method = public void push(int element)

µjavapddl (method)→ push_int

�

De�nition 14: We can now de�ne the transformation of a class C = 〈c, fpub ∪ fprot ∪
fpriv, conmpub

void∪conm
pub
nvoid∪absm

pub
void∪. . .∪absm

priv
nvoid〉 and a contractDbC(C) = 〈mf, inv,mc〉

into a planning domain D = {a1, ..., an} as:

D = {a | ∀am ε AM(C) : ∀spec ε am : aam,spec = 〈µjavapddl (am), ∅, Φpre(specpre), Φpost(specpost)〉}
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So for every speci�cation of every action method of C a PDDL action speci�cation is

generated using the mangled name and the interpretations of the pre- and postcondi-

tion. �

Example 20: Interpretation of the Stack.

Using the Stack's class de�nition of

C(Stack) = 〈{Stack()}, {push(int), pop(), isEmpty(), peek(), size()}, {size_}〉 and its

contract as

DbC(Stack) = 〈{mSize}, {size_ >= 0},

{

mcStack = 〈{〈true,mSize == 0〉}, ∅〉,

mcpop = 〈{〈size > 0, size == @Old(size)− 1〉}, ∅〉,

mcpush = 〈{〈true, size == @Old(size) + 1〉}, ∅〉,

mcpeek = 〈{〈true, size == @Old(size)〉}, ∅〉,

mcsize = 〈{〈true,@Return == mSize〉}, pure〉

mcisEmpty = 〈{〈size > 0,@Return == false〉, 〈size == 0,@Return == true〉}, pure〉

}〉

the interpretation according to the interpretation functions given in De�nition 12 is now:

D = {〈Stack, ∅,¬instantiated, instantiated ∧ size() = 0〉, 〈push_int, ∅, instantiated ∧
size() > 0, size()+1〉, 〈pop, ∅, instantiated ∧ size() > 0, size()−1, 〉〈peek, ∅, instantiated ∧
size() > 0, size() = size()〉}. The according serialization as PDDL is given in List-

ing 3.2. �

3.2 Generation of the Planning Goal

The planning goal de�nition in PDDL contains two main parts. One is the initial state,

where the planner should start planning from. The other one is the desired goal state,

the planner should achieve.

The initial state description needs to contain all state variables sv ε SV (C) used in
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(: action java_util_stack

:precondition (not (stack_instantiated ))

:effect (and (stack_instantiated) (and (assign (size) 0.0))))

(: action push_int

:precondition (stack_instantiated)

:effect (increase (size) 1.0))

(: action pop

:precondition (and (stack_instantiated) (> (size) 0.0))

:effect (decrease (size) 1.0))

(: action peek

:precondition (and (stack_instantiated) (> (size) 0.0))

:effect (assign (size) (size )))

Listing 3.2: The planning domain generated from the Stack example given in Listing 2.1.

Type used PDDL Type Default-Value
boolean fact false (being not de�ned)

numeric values �uent 0.0
references fact null (fact is not de�ned)

Table 3.1: Default values for state initialization

the planning domain. These state variables need to have initial values assigned. If a

postcondition of a constructor does not state all state the values of all state values, we

use default values which are given in Table 3.2.

To generate the goal state, the Design by Contract�-precondition of the method under

test must be analyzed. Every part of the precondition P that contains at least one state

variable svi ε SV (C) of the current generated parameters class need to be taken into

account. All other parts can be ignored as they don't include relevant information for

the current generation request.

De�nition 15: Relevant parts of the speci�cation.

We de�ne R as the set of relevant parts of a speci�cation R = {p1, ..., pn}. A part pi
of a speci�cation is de�ned as one logic expression. Thus a speci�cation can be seen as

the conjunction of parts p using the logic operators ∧, and ∨. A part is relevant if it
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@Pre(" stack != null && stack.size() >= 2 && number < 0")

void useStack(Stack stack , int number)

{ ... }

Listing 3.3: An example method that needs a Stack with size 2 as one parameter and
a primitive as second parameter. For generation of the Stacks instance, jCAMEL will
select our planning approach.

contains at least one state variable svi ε SV (C). �

Example 21: Relevant parts of the speci�cation.

We use the method useStack(Stack stack, int number) from Listing 3.3. It's precondition

consists of three parts. Part one forces the parameter stack to be not null. Part two

requires the method size() of the parameter stack to return a value greater than or equal

to two. The third and last part requires the second parameter number to be smaller

than zero.

After generation of the planning domain according to Section 3.1 the set of state variables

is known to be SV (Stack) = {size(), isEmpty()}. Analyzing the precondition shows

that only one part contains one of these state variables. All others can be ignored

when generating the planning goal. The remaining parts of the precondition can now

be translated into PDDL using the same conversion rules as when transforming the

planning domains preconditions.

One more part contains information about the Stack's state: stack != null tells the

planning system that it needs to return an instance. If the speci�cation would be stack

== null the planning system does not need to be invoked and a NullDenotable can

be returned immediately. If no speci�cation is given that states wether the reference

must not be null or not the system generates an instance by default. �
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(:init (= (size) 0.0))

(:goal (and (stack_instantiated) (>= (size) 2)))

Listing 3.4: The according planning goal and initial state for the example given in
Listing 3.3. The initial state is created using the types default values as shown in
Table 3.2.

3.3 Running the Planner

After the two input �les for the planning process, the domain D and the goal description

G, have been generated, the planner needs to be started. As PDDL is used as planning

language within the bi-annual planning competitions [ica], a wide range of planners exist

that will understand the input, and will produce a standardized output.

3.4 Generation of Java Code based on a Plan

When the planner successfully returned a plan P , it needs to be converted back into

a sequence of java code. The returned plan consists only of a sequence of actions.

These actions need to be mapped back to concrete methods of the class using the name

mangling function µpddljava. As the planner will have no information about parameters of

the method these parameters need to be created during translation of the action. They

will be generated by recursively calling the whole test data generation process for the

current action, as shown in Listing 3.5. We call this strategy Optimistic Test Data

Generation, which we will cover in detail in Section 3.5.3.

3.5 Details

This Section covers details of our approach. In Section 3.5.1 we will describe details on

the special handling of constructors. Then we will point out our ideas of translating

speci�c Design by Contract� speci�cations into their according PDDL representation
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Denotable convertPlanToDenotable(Plan P)

{

Denotable result := empty

foreach (action in P) {

result := addMethodInvocation(action)

foreach (paramter in action) {

callTypeValueGenerator(paramter , method_specification)

}

}

return result

}

Listing 3.5: Pseudocode algorithm for retranslating the plan to a Denotable. For each
action a in the plan P a method invocation is added to the denotable. If this method
invocation needs parameters, they are generated by calling the according type value
generator.

in Section 3.5.2. At the end, we will compare two di�erent concepts of dealing with

unknown information in Section 3.5.3, where we describe our idea of Optimistic Test

Data Generation and Section 3.5.4, which deals with Pessimistic Test Data Generation.

We will close with a review, why we have chosen Optimistic Test Data Generation as

our approach.

3.5.1 Handling of Constructors

As the set of State Manipulators of a class C = 〈c, fpub∪fprot∪fpriv, conmpub
void∪conm

pub
nvoid∪

absmpub
void∪ . . .∪absm

priv
nvoid〉 contains both constructors c ε C and public concrete methods it

is necessary to invoke a constructor call before any method. Furthermore, a constructor

must be called only once. Therefore, we introduce a predicate pinstantiated that states

whether a concrete object of the class C was instantiated using a constructor c ε C.

To ensure that a constructor is used only once, we add the negated predicate pinstantiated
to every precondition of a constructors action aprec . Furthermore, pinstantiated is added to

the actions e�ect aeffectc . Thus a constructor's action description will always look like

shown in Example 22.
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Moreover, we add the predicate pinstantiated to every method's action precondition aprem

to ensure a planner will use actions that relate to concrete instance methods only, after

constructing an instance of class C. The name of the predicate is composed of the lower

cased class name and the term �instantiated�.

De�nition 16: Special Interpretation of Constructors.

We de�ne pinstantiated to be a predicate that is true after a constructor has been called

once. The precondition for calling a constructor is extended by not having called a

constructor before.

We have de�ned a class as C = 〈c, fpub∪fprot∪fpriv, conmpub
void∪ conm

pub
nvoid∪absm

pub
void∪ . . .∪

absmpriv
nvoid〉. As a constructor needs to be called before any call to a concrete instance

method who form up our State Manipulators together with constructors, we have to

ensure that one constructor call is an action, the planner chooses �rst. This is done

using a special interpretation function Φconpre(c) and Φ
con
pre(c):

Φconpre(c)→ ¬pinstantiated ∧ Φpre(c)

Φconpost(c)→ pinstantiated ∧ Φpost(c)

�

Example 22: Adding the Instantiated Predicate to a constructors action.

Assuming that the Stacks parameterless constructor would not have any speci�cation at

all, the resulting action description would look like in Listing 3.6. The name is mangled

using the mangling function µjavapddl given in De�nition 13:

(: action java_util_stack

(: precondition (not (stack_instantiated )))

(: effect (stack_instantiated ))

)

Listing 3.6: The translation of the Stacks parameterless constructor to a PDDL action.
Assuming the constructor had no Design by Contract�-speci�cation the precondition
would be having not yet instantiated the stack. Using this action within a plan results
in an instantiated object of the class Stack.
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3.5.2 Translation of Specifications

In this Section we will go into detail how the translation from the Design by Contract�

pre- and postcondition of a methods speci�cation is done. For each translatable part of

a speci�cation, we will give the according interpretation function Φ.

We use only those parts of the speci�cation that contain at least one State Variable

of C as de�ned in De�nition 10 for the translation of the pre- and postcondition. If a

part does not contain any State Manipulator it is ignored. A part of a speci�cation is

de�ned as one logic statement. The concatenation using logic operators form up a pre-

or postcondition. For details on what we de�ne to be a relevant part of a speci�cation

see De�nition 15.

Arithmetical Operations

Arithmetical operations can be translated to PDDL using �uents. Fluents are the PDDL

representation of numbers.

@Post("a() == b() + 17")

public void calc (){ ... }

Listing 3.7: An example annotation stating that the execution of calc leads to a() having

the value of b() plus 17.

The interpretation function of an arithmetical operation are:

Φ(id1 == id2 + id3)→ (and (assign id1 id2) (increase id1 id3))

Φ(id1 == id2 − id3)→ (and (assign id1 id2) (decrease id1 id3))

Φ(id1 == id2 ∗ id3)→ (and (assign id1 id2) (scale−up id1 id3))

Φ(id1 == id2 / id3)→ (and (assign id1 id2) (scale−down id1 id3))

(: action calc

:effect (and (assign (a) (b)) (increase (a) 17))

)
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@Pre("true || (false && true )")

public void do(){ ... }

Listing 3.9: Example of logic conjunctions within a precondition.

Listing 3.8: The translation of the example annotation given in Listing 3.7 into PDDL.

Logic Conjunctions

Logic conjunctions within preconditions can be translated directly to an actions precon-

dition description, as shown in Listing 3.10.

Φ(exp1 && exp2)→ (and Φ(exp1) Φ(exp2))

Φ(exp1 || exp2)→ (or Φ(exp1) Φ(exp2))

(: action do

:precondition (or (true) (and (not(true)) (true )))

)

Listing 3.10: Translation of logic conjunctions into PDDL

OLD-values

Design by Contract� systems support accessing the value of a variable before the invo-

cation of a method in its postcondition, which is explained in Section 2.2. This pre-state

value can be accessed in any part of a postcondition. As PDDL is evaluated from left

to right, the ordering of condition parts is decisive for the evaluation of arithmetical

operations. If we would translate the postcondition as a simple arithmetical expression,

the e�ect would not be correct when an old value is accessed after the original value has

changed.
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@Pre("true")

@Post("x() == @Old(x(),int) + 1 && y == @Old(x(),int)")

public void do() { ... }

Listing 3.11: An example postcondition with two value assignments. If the pre-state
access, the @Old annotation is not handled correctly we can see unde�ned behaviour de-
pending in the order of the speci�cation's parts. An example of invalid value assignment
based on this speci�cation is given in Table 23

(: action do

:precondition (true)

:effect (and (increase x 1) (assign y x))

)

Listing 3.12: An incorrect translation of the postcondition given in Listing 3.11. The
ordering of the condition's parts e�ects the evaluation as the old value is ignored, as
shown in Table 23.

Example 23: Ignoring the old value leads to incorrect behaviour.

As described, the ordering of statements might have in�uence on the evaluation if we

introduce no mechanism to access old values. Listing 3.11 shows a postcondition where

the ordering has in�uence on the evaluation when the pre-state values will not be handled

correctly.

statement x y

initial 1 1

(increase x 1) 2
(assign y x) 2

after evaluation 2 2 %
correct assignment 2 1

Table 3.2: Incorrect values during evaluation of the PDDL action e�ect, because no
pre-state helper variables are used. See Listing 3.12 for the according planning domain
action.
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statement x y _pre_x

initial 1 1 -

(assign _pre_x x) 1
(increase x 1) 2
(assign y _pre_x) 1

after evaluation 2 1 !
correct assignment 2 1

Table 3.3: Correct values during evaluation of the PDDL action e�ect due to the use of
old value helpers.

If the parts of the postcondition would have di�erent ordering, the evaluation would

be correct. To overcome this issue we assign the old value to a helper variable before

every other statement in the e�ect list to access it within the rest of the e�ect statement

without any side-e�ect. The name of such a variable is composed of the string _pre_

and the variables name. This limits the range of valid State Variable names. Thus, State

Variable names that start with _pre_ should not be used within Design by Contract�

contracts as they might interfere with these helper variables.

Example 24: The implicit framing condition.
Using the postcondition from Listing 3.11 a correct translation looks like in Listing 3.13.
The value of x is assigned to an helper variable and then the values can be changed as
stated in the postcondition.

(: action do

:precondition (true)

:effect (and (assign _pre_x x)

(increase x 1)

(assign y _pre_x ))

)

Listing 3.13: The implicit framing condition achieved by assigning values before changing
them. This ensures order-independent, correct evaluation of the statements as shown in
Table 24.

�
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Boolean values: Handling true and false

Due to the nature of PDDL, the boolean values true and false do not exist by default.

They have to be abstracted by predicates. Each generated planning domain will contain

a predicate true that is valid during the whole planning process. False can now been

translated to not(true).

If a state variable sv ε SV is a boolean state variable, it is translated to a PDDL

predicate psv.

Φ(sv == true)→ (sv)

Φ(sv == false)→ (not(sv))

@Pre(" state_variable () == false")

@Post(" state_variable () == true")

public void do() { ... }

Listing 3.14: A boolean state variable used in a method speci�cation.

Thus, the action de�nition will look as in Listing 3.15. The actions precondition is the

negated predicate psv and the postcondition is psv according to the name mangling rules

given in De�nition 13.

(: action do

:precondition (not (state_variable ))

:effect (state_variable)

)

Listing 3.15: Translation of the boolean state variable from Listing 3.14 into PDDL

47



3.5. Details Chapter 3. Approach

@Post("x() == @Old(x(), int) - 1 && x() == y() + 1")

public void do { ... }

Listing 3.16: An example method with a postcondition that contains two parts giving
expectations for the same State Variable.

Having more definitions of the same State Variable

If a method speci�cation spec contains more parts that de�ne the result of the same

State Variable it is su�cient to use only one part as e�ect of the corresponding action,

as the other parts contain di�erent calculation rules for the same State Variable. All

parts must de�ne the same value calculation. An example postcondition is given in

Listing 3.16

Here it is su�cient to use either the information that x is decreased by one or that x

is calculated by adding one to the value of y, as both calculations must yield the same

result.

Having more Specifications of one Method

If a state manipulator sm ε SM(C) of a class C = 〈c, fpub ∪ fprot ∪ fpriv, conmpub
void ∪

conmpub
nvoid∪absm

pub
void∪. . .∪absm

priv
nvoid〉 contains more method speci�cations spec ε msmethod ε mc

within the classes contract DbC(C) = 〈mf, inv,mc〉, we have to create one planning do-
main action for each speci�cation spec.

Example 25: A Method with more than one speci�cation.

We use an example class C with one State Variable SV (C) = {state} and one State

Manipulator SM(C) = {set}. The contract DbC(C) = 〈mf, inv,mc〉 of class C is

DbC(C) = 〈∅, ∅, {msset = 〈{〈x > 0, state() == false〉, 〈x <= 0, state() == true〉}, ∅〉}〉
as given in Listing 3.17. Thus we have two speci�cations spec in the set of method

speci�cations for method set. Using a parameter greater than zero results in setting

the State Variable state to false. Using a paramter less than or equal to zero sets state

to true. Therefore, the result of invoking the according action ai within the planning

domain D = {a1, ..., an} depends on which precondition holds.
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@Also(

@SpecCase(pre="x > 0", post=" state() == false"),

@SpecCase(pre="x <= 0", post=" state() == true") )

public void set(int x) { ... }

Listing 3.17: An example method with two speci�cations. Using a parameter greater
than zero results in setting the State Variable state to false. Using a paramter less than
or equal to zero sets state to true. The generated PDDL actions are given in Listing 3.18.

When such an action is used within a plan the retranslation step needs to take care of

correct parameter creation. Only the part of the speci�cation that relates to the action

is passed to the parameter generation of jCAMEL. This ensures, that the precondition

of the correct speci�cation holds when invoking the method, and the assumptions made

by the planner are correct afterwards. If we would pass the whole set of speci�cation

the generated parameter might ful�ll the uninteded part of the speci�cation and the

planned object would not reach the desired state. This depends on the implementation

of the used value generator.

(: action set_1

(: precondition (> x 0))

(: effect (not (state )))

)

(: action set_2

(: precondition (<= x 0))

(: effect (state))

)

Listing 3.18: The two generated PDDL actions for the State Manipulator given in List-
ing 3.17

Getter and Setter-Methods

Getter and Setter-Methods are methods that set a private or protected �elds value. We

expect a setter methods pre- and postcondition to specify the state of the reference of

the parameter used to set the �eld. This means, it has to be stated, that a reference will
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be null or not. Furthermore, the postcondition has to state if the �eld was set to be null

or not by using either the associated getter method, or a model variable as described in

the next Section.

If a �eld was set to be not null, we will generate a predicate that states that the reference

is not null. Otherwise, the predicate will be removed from the domain, by negotiation.

Thus, we interpret speci�cations containing getter methods that compare references

as:

Φ(getX() == null)→ ¬getX

Φ(getX()! = null)→ getX

Model-Variables

Model variables can be used within Modern Jass as substitute for real implementations

within speci�cations as described in Section 2.2. These model variables can substitute

a State Variable sv ε SV (C) of a class C = 〈c, fpub ∪ fprot ∪ fpriv, conmpub
void ∪ conmpub

nvoid ∪
absmpub

void ∪ . . . ∪ absmpriv
nvoid〉. Thus a method speci�cation can include a model variable

instead of a State Variable. We now have to map between a state variable and its

representing model variable. This is done by checking the postcondition of the State

Variables Design by Contract�-speci�cations. If the return statement contains a model

variable, all occurrences of the model variable within the contract can be replaced by

the State Variable.

Example 26: Model Variables and State Variables

We use a the class Stack from Listing 2.1 with one model variable mSize. According

to De�nition 10, the set of State Variables of the example Stack class is SV (Stack) =

{size()}. The contracts of the methods given in Listing 2.1 either contain a State

Variable size() or the corresponding model variable mSize. Checking the postcondition

of size() tells the system that the method returns the value of the model variable. Thus

we can substitute all occurences of mSize by size() without changing the contracts

meaning. �
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@Pre(" stack != null && stack.size() >= 2")

public void methodUnderTest(Stack stack) { ... }

class ComplexType{

@Pre("a > 0")

@Post("hasA() == true")

public void setA(int a) { ... }

@Pre("b < 0")

@Post("hasB() == true")

public void setB(int b) { ... }

}

class Stack {

@Post("size() == 0")

public Stack () { ... }

@Pre("type != null && type.hasA() && type.hasB ()")

@Post("size() == @Old(size(), int) + 1")

public void push(ComplextType type) { ... }

}

Listing 3.19: An exemplary method under test. The speci�cation forces the input pa-
rameter to have at least 2 elements. Pushing elements to the Stack is allowed only if
both methods of the complex type have been called with the right parameter.

3.5.3 Optimistic Test Data Generation

As already pointed out, two main strategies for the generation of the planning domain

can be identi�ed. We call the �rst one Optimistic Test Data Generation. Consider the

example given in Listing 3.19. A test for the methodUnderTest should be generated.

Therefore, a Stack needs to be instantiated as parameter. Furthermore, this Stack needs

to have at least two elements of some complex type. This instance of the complex type

needs to be in a very speci�c state.

To achieve this state, jCAMEL will choose the AITypeValueGenerator as its �rst gener-
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(: action Stack

(: precondition (true))

(: effect (and (= (size) 0) (stack_instantiated) )

)

(: action push

(: precondition (stack_instantiated ))

(: effect (increase (size) 1))

)

Listing 3.20: The resulting planning domain of the Stacks push method and constructor
from Listing 3.19. So the action can called at any time after construction of the class,
resulting in an increasing size.

ation strategy to generate an instance of Stack. The AITypeValueGenerator will receive

the speci�actions of methodUnderTest as well as all speci�cations of the Stack as its

input data. As already pointed out, the speci�cations of the Stack will become the plan-

ning domain, and the speci�cations of the methodUnderTest will become the planning

goal or problem. When generating the planning domain, only those parts of the meth-

ods annotation will be translated to an action speci�cation, that deal with the Stacks

internal state. The complete precondition of the Method push deals with the input

parameter, and is thus not of interest in the current conversion step. The postcondition

deals with the internal state of the object and therefore is of interest. It will be converted.

The only precondition for calling this method is that the class is instantiated, and the

postcondition tells the system, that it will raise the size by one. The expected result is

shown in Listing 3.20.

After converting the Stacks speci�cations the the planning domain, the precondition of

the methodUnderTest will be converted to the planning problem. As Optimistic Test

Data Generation is de�ned, only those parts of the speci�cations that directly relate

to the current parameter will be taken into account. In this example it is the whole

speci�cation, telling the system that the parameter has to be instantiated and contain

at least two elements. The expected problem de�nition is given in Listing 3.21. The

planner is now called with this information, and is expected to return a sequence that

leads to the desired state. This is: construction of the class, and calling the push method
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twice. On retranslation from the planners solution to Java code, the translator will map

the actions to methods of the class Stack.

(:goal (and (stack_instantiated) (>= (size) 2) ) )

Listing 3.21: A goal de�ntion forcing the two facts, having an instantiated class contain-
ing at least two elements, to become true.

First of all, the constructor is called. Then the �rst push method is called on the re-

sulting object. The translator now needs to check if there are any parameters, that are

not known by now. As the parameter of type ComplexType is currently not known to

the system, it needs to call the jCAMEL generation algorithm to receive one. jCAMEL

will choose an appropriate generation strategy and return an object of ComplexType

that full�ls the push methods speci�ction. In this case, it will also call the AITypeValue-

Generator, passing the precondition of push(int) and the whole list of speci�cations of

ComplexType. AITypeValueGenerator will invoke the same steps as already described

and tries to return the object. When calling the setA/B Methods of ComplexType it

will again call jCAMEL to receive corresponding values. After that, the instance of

ComplexType is ready and passed to the calling instance of the AITypeValueGenerator

which now tries to get parameters for the second call to the push method, and �nally

returns the complete sequence of Java code.

Through recursively calling of the whole jCAMEL-process the AITypeValueGenerator

only needs those parts of information that are currently related to the problem and can

ignore the rest. This strategy gives the system the ability to change the generation

strategy during the generation process even for the same type of requested parameter.

If one step fails it can be replaced by another generation strategy. This gives better

failover capabilities.

Thus the optmistic part of the generation process is delegating creation of data to sub-

sequent instances and expect that these instances will know how to create these data.
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Stack s0 = new Stack ();

ComplexType c0 = new ComplexType ();

c0.setA (1);

c0.setB (-1);

s0.push(c0);

ComplexType c1 = new ComplexType ();

c1.setA (2);

c1.setB (-5);

s0.push(c1);

Listing 3.22: The expected sequence of Java code, that generates a stack containing two
valid instances of ComplexType. For the speci�cations of the classes see Listing 3.19.
The integer parameters used here are generated by recursively calling jCAMEL with the
methods speci�cation as parameter.

3.5.4 Pessimistic Test Data Generation

Pessimistic Test Data Generation can be seen as direct opposite to Optimistic Test Data

Generation. Here the planning system tries to generate as much data as possible within

one step, as it assumes that data can only be generated when everything is known to

do so. Using the example from Listing 3.19, the generation approach would work as

follows:

First of all, the system needs to check which parameters of the methodUnderTest are

requested. This is a Stack containing valid objects of type ComplexType. For each of the

methods of ComplexType this check must be done also. This results in having Objects of

type ComplexType in a speci�c state and having an instance of Stack in a speci�c state.

All information of these two types are incorporated into a single planning domain. The

desired state of these Objects can now be expressed within one single planning problem.

For each possible di�erent instance of the same type, di�erent planning goal facts and

planning variables need to be generated. This changes the layout of planning domain and

planning problem and yields a more complex output of the conversion algorithms. Also

retranslation will become more complex, as instances need to be clearly seperated. As
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advantage, one can see that the complete example can be planned within one planning

step. If an error occures during one of the translation steps or the planner can not return

a result, as it is simply not possible, the whole generation process will fail.

For generation of data other than instances of classes, so called primitive data, the Pes-

simistic Test Data Generation still needs to call jCAMEL. We have chosen to implement

the Optimistic Test Data Generation strategy, because of its better failover capabilities.

The two strategies are compared in Table 3.4.

Strategy Advantages & Disadvantages
Optimistic: + Better failover capabilities.

+ Reusable planning domains.
− Slower, as planner might needs to be invoked more than once.

Pessimistic: + Faster, as planner needs to be invoked only once.
− Planning domains must be generated for each problem individually.
− If any substep fails, the whole generation procedure will fail.

Table 3.4: Comparison of the two previously describes generation strategies.
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3.6 Limitations

As all �uents and predicates that are used within a planning domain D = {a1, ..., an}
need to be declared and initialized in the planning goal de�nition, we assign a default

value to every variable. If no speci�cation of the class' contract DbC(C) = 〈mf, inv,mc〉
contains an initialization of the variable the default value will be used throughout the

planning process. This might lead to a not solvable planning problem. Thus, if a

constructor of the class changes the value of one State Variable the speci�cation must

contain this fact.

Furthermore, two valid Modern Jass constructs can not be translated to PDDL as there

is no corresponding expression. These are the forall and exists keywords, where it is

possible to speci�cy expectations on the content of collections, as lists or arrays. PDDL

does not support the idea of collections. Therefore, a translation is not possible.

The main limitation of our approach is, that e�ects within PDDL describe how the state

changes, and postconditions within Design by Contract� give an de�nition on how the

state must look like after executing. As already pointed out, the description of how the

state changes can be seen as a subset of the possibilities Design by Contract� o�ers

when specifying postconditions. If a speci�cation contains such a description we are

able to generate the according PDDL action. Otherwise, a translation is not possible.

Thus we have to limit the valid set of Design by Contract�-annotations our approach

can handle.
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4 Related Work and Alternative

Approaches

Generation of test data is a wide �eld of research. There exist many approaches to

generate test data. Some of them are directly related to our approach, and will be

discussed in Section 4.1. Then we give an overview of di�erent approaches, such as

random generation or using evolutionary algorithm in Section 4.3.

4.1 Related Work

In this Section, we will give an overview of work related to this thesis. First of all,

we will discuss the approach introduced by Andreas Leitner [Lei04] that is intendet to

automatically generate tests for Ei�el� [Mey87] programs based on their contract. This

approach is related to the one presented in this work. After that, we will review the

ideas of Gupta et al [gup04, GFB+07], who extended the Graphplan planning algorithm

to generate test data. After dealing with related approaches, we will give an overview

of alternative ways to generate test data. We will take a look at KORAT [BKM02],

which also uses Design by Contract�-annotations to support the generation of software

tests. We then give an overview of Random approaches in Section 4.3.2 which overall

tends to generate a high number of tests. Within this Section, we will discuss two

extensions that try to overcome the limitations of generating data randomly, namely

Directed Automated Random Testing [GKS05] in Section 4.3.2 and Feedback Directed

Random Test Generation [PLEB07] in Section 4.3.2.
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4.1.1 System Testing with an AI-Planner

One of the �rst work done in the area of AI-planning systems used to generate test

data, was carried out by Adele Howe et al. [vMSDH00, MHvML]. Their approach is an

extension of Sleuth, an automatic test generation system. They have created a planning

domain representing the command language of a tape store machine. Based on this

planning domain, a test engineer had to specify the goal of the testcase by de�ning the

planning goal and initial state. The planner (UCPOP [PW92]) then generates the plan,

that is converted back to the command language automatically. The set of generated

command is then used as a test series.

Their basic intention was to prove whether a planner would come up with reasonable

and understandable test cases. They compared the automatically generated tests with

the ones a test engineer would generate by hand.

They conclude, that using planners to come up with test sequences has some advantages

over doing it by hand. First of all the generated sequence is correct, thus the set of

commands will not violate any syntactic rules. Furthermore, the test sequences generated

by the planner di�er from the ones test engineers generated. They argue, that this would

give another view of the system under test, as test engineers might be to close to the

system.

4.1.2 The Planning Extension for TestStudio

In his master thesis, �Strategies to Automatically Test Ei�el Programs� [Lei04], Andreas

Leitner introduced an extension to TestStudio [Ciu04, Gre04]. TestStudio was developed

at ETH Zurich to automatically generate tests for Ei�el programs. As Ei�el� natively

supports the concept of Design by Contract�, the system uses this speci�cations to

generate planning problems as in our approach.

As illustrated in Figure 4.1, the test data generation process of the system is designed

as follows. First of all, the Problem Generator creates a planning problem based on the

Design by Contract�-speci�cations of the Ei�el� source code. This planning problem

is then passed to the planning system. They use bifrost [Jen03], a planner using bi-
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nary decision diagrams and extNADL as planning problem description language. After

successfully planning, the plan is retranslated to Ei�el� code and executed. If the pre-

condition of the currently tested method is violated, the planning problem is enriched

with information gathered during execution of the planned piece of code. Using the

enriched planning problem, these steps are repeated until either the requirements are

ful�lled or a timeout has been reached.

Figure 4.1: The planning �owchart of Leitners extension to TestStudio [Lei04]. First of
all, the Ei�el� sourcecode, namly the Design by Contract� speci�cations are translated
into a planning problem. This planning problem is then executed by a planner to
generate a weak plan. This plan is retranslated to Ei�el� code and executed. If the
execution does not satisfy the goal, data gathered during execution is used to re�ne the
plan. This loop is done until the generated plan ful�lls the requirements.

Their approach lacks one main feature. They are not able to generate tests for methods

that need parameters. This is one of the main di�erences to our approach. By using our

so called Optimistic Test Data Generation approach, we are able to do so, by delegating

the generation of parameters to a second planning instance. As the planner operates on

binary decision diagrams, Leitner had to limit his approach to use only boolean facts
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within planning domains. Furthermore, he adds integers with a precision of two bits, by

abstracting them to two boolean values.

4.1.3 MEA-Graphplan

The MEA-Graphplan technique was developed by Gupta et al. [gup04, GFB+07] as an

extension of the Graphplan algorithm, a planning technique. One of the problems that

Graphplan su�ers is the possibility of state space explosion. During the graph expansion

phase, Graphplan has no information about whether executing an action leads towards

reaching a goal or not. If the program under test is complex, and real world problems

tend to be complex, the possibility of state space explosion is high. The Idea behind

MEA-Graphplan is to inform the graph expansion algorithm whether an action leads

towards reaching a goal or not. This is done by generating a regression matching graph,

which then is used to direct the graph expansion. The regression matching graph is

generated from each goal condition by regressing backwards until any of the given start

conditions is reached. Now the standard Graphplan algorithm is adapted to only consider

actions that are in the same level of the regression matching graph.

Furthermore, they proposed a general system to apply AI-planning techniques to soft-

ware testing. This framework consists of two modules. The Planning Domain Generator

and the Planner itself. The Planning Domain Generator is used to create the input

parameters for the planner, based on the software under test (like out of UML State

Chart Diagrams). They introduce the following set of input parameters to the Planning

Domain Generator {S, Of , Vf , T, C} , whereas S is the already mentioned state spec-

i�cation, Of is a set of operations de�ned by the software under test which alter the

state space, Vf is a set of function which return information about the state space. T

represents the testing requirements and C some global constraints. The Planning Do-

main Generator now generates planning parameters {O, s0, g} and passes it to the AI

planner which tries to �nd a sequence of actions a that lead from the initial state s0 to

the goal state g by invoking operations O.
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Figure 4.2: The automated planning system (APS) as proposed by Gupta et al. [gup04].

4.1.4 Dingels et al.

Dingels et al. [DFQ07] compared three di�erent planning techniques (namely GraphPlan,

UCPOP, ForwardSearch) about their abilities to generate test data. To do this, methods

of a Java program are annotated with pre & post conditions using javadoc comments.

Then test cases are written and a result is speci�ed as a test goal (i.e. goal: collec-

tion_under_test.isEmpty() == true ). The pre and postconditions of the methods and

the test goal are compiled into the compared planners languages. Then the planners try

to �nd valid method call sequences to reach the desired object state. The sequences are

then translated into real JUnit test cases. They conclude that GraphPlan is the most

usefull planner of the three compared ones, because of his immense performance. They

where capable of generating planning domains containing boolean facts only.

4.2 Comparison to related work

We have shown, that our approach, Planning4ObjectCreation, was able to generate test

data for the case studies, the random approach wasn't able to generate. As Howe et al.

[vMSDH00, MHvML] and Leitner [Lei04] have also used planners for the generation of

test data we will give an overview of the main di�erences. Table 4.2 gives a direct com-

parison. Both approaches, Planning4ObjectCreation and the one of Leitner use Design

by Contract�-speci�cations to generate the planning domain D and the planning goal

G, whereas Howe et al. build these by hand. Leitner is not able to generate parameters

for generated sequence of methods, thus the approach is not able to generate a test

sequence that needs parameters. If the planned sequence violates a contract because of

too unprecise speci�cations, Leitner enriches the speci�cation with information gathered

during the �rst execution and restarts the generation process. If our approach fails to

generate it either returns an empty object or uses a fall back strategy such as random
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generation. Both strategies are not as sophisticated as the one Leitner uses, and there-

fore constitute an area of further improvement of our system. Dingels et al. [DFQ07]

also use a planner for generating test sequences. They are able to do so for boolean

predicates only, which are added to the code for the purpose of planning only. We use

already existing Design by Contract� annotations that where originally not designated

for test data generation.
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4.3 Alternative Approaches

This sections cover alternative approaches to generate test data. First of all, we will

discuss KORAT [BKM02]. Then we will give an overview of random test data gener-

ation strategies in Section 4.3.2. We will discuss DART [GKS05], Directed Automated

Random Testing a system design for randomly generating test data for C programs and

Feedback-directed random test generation [PLEB07]. Furthermore we will review test

data generation using evolutionary approaches in Section 4.3.3.

4.3.1 KORAT

Boyapati et al. introduced KORAT [BKM02]. KORAT is a speci�cation based test

data generation framework for Java programs. The authors use method speci�cations,

for instance JML [LC04] annotations (any method speci�cation can be used, as long as a

converter is provided) to generate a predicate in terms of a boolean method, which maps

to the methods preconditions. Furthermore, a list of boundary values for the tested

methods input parameters is needed. Korat generates all non-isomorphic test values

between these boundary values, which ful�ll the previously generated java predicates.

For each isomorph class of input values, the lexically smallest is chosen. To prevent

state space explosion when generating new input values, the execution of predicates is

being observed. Any �elds, that are not read during the execution of the predicate may

not be considered any more when generating di�erent input for these predicates. This

Method can be referred as Speci�cation Based Test Data Generation.

4.3.2 Random Test Data Generation

Generating test data using a random method is quite simple to accomplish and according

to Forrester and Miller [FM] has a high chance of �nding real software bugs. A problem

of generating test data using random generators only is the potential low path-coverage.

Many interesting tests may not be generated [Edv99]. To solve that kind of problems, re-

cent approaches tend to use coverage information to guide the generation process. These

directed random test data generation methods will be covered in the next section.
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Directed Random Test Data Generation

Directed Automated Radmon Testing, DART was introduced by Godefroid et al. [GKS05].

DART consists of three steps:

1. automatic extraction of the program interface

2. automatic generation of a test driver

3. automatic generation of program test data

We will focus on Step 3 of their approach, the automatic generation of program test

data. DART was built to generate tests for C-programs. Its generation process uses

both symbolic execution and real execution of the software under test . First of all, a

function to be tested is called with a randomly generated input vector v. During the

real execution using this vector, each branching statement is recorded. These branching

statements are transformed into symbolic constraints. For each branching statement, a

new vector is generated using symbolic execution, so that it will force the branch to take

the other, not yet tested, direction. This is done by altering the collected contraints and

trying to ful�ll them. Consider the following example:

After executing some C-code, the predicate sequence collected looks as fol-

lowing, where x0 and y0 are symbolic variables: < x0 6= y0, 2∗x0 6= x0 +10 >.

To let the program execute the path which will take the alternative second

branch, the constraint needs to be altered as following: < x0 6= y0, 2∗x0=x0+

10 >. [GKS05]

After solving these constraints, the values are stored and used during the next test run.

This leads to higher branch coverage as simple random testing would do.

Feedback Directed Random Test Generation

The approach of Pachecho et al. is called �Feedback-directed random test genera-

tion� [PLEB07] and is implemented in the tool RANDOOP. In their approach, they

do not only generate test data, they generate complete test-suits for object-oriented pro-

grams. A test of an object-oriented program can be seen as a sequence of method calls
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with arbitrary inputs, which can either be a primitive value, or an object reference.

To generated such a sequence, a random public method of given classes is selected.

Some random chosen methods and values are generated and added to the sequence of

calls seqs. This sequence is executed with the randomly generated values, and checked

against some given contracts. If the sequence does not violate any contract, and has not

been generated before, it is saved for further use.

Such contracts may be [PLEB07]:

� A method may not throw a NullPointerException if no input was null

� A method must not throw AssertionErrors

An important part is the generation of the random values needed as parameters:

� If it is a primitive type, it is randomly selected from a previously speci�ed pool of

values. These pool is generated by the user.

� If the parameter is a reference type, an object needs to be created. This is done

by using either one of the previously generated sequences out of seqs, generating

a new sequence, or using null. Selecting one of these three alternatives is done

randomly.

Generating these sequences is done until a speci�ed time limit is reached. After this, a

test case is generated out of each sequence.

4.3.3 Test Data Generation using Evolutionary Algorithms

Michael et al. introduced GADGET [MMS01], a test data generation tool based on

genetic algorithms. GADGET uses condition-decision coverage as its testing objectives.

Before using Genetic Algorithms to generate speci�c test data, the software under test is

executed with randomly generated input. After this execution, a so called coverage table

is generated, with the state of each condition. This coverage table is used to determine

whether a branch was already tested or not. For each requirement the Genetic Algorithm

is initialized and tries to �nd a solution. Whenever the Genetic Algorithm generates a

possible solution which ful�lls any of the given requirements the solution is saved for
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further use and the coverage table is updated accordingly. The test data generator keeps

trying to ful�ll any requirement until all requirements are ful�lled or no further solutions

can be extracted. By trying to ful�ll a given criterion, GADGET �nds solutions for many

other requirements. Michael et al. call this phenomenon �serendipitous satisfaction�. For

each of the not yet ful�lled testing requirements, a �tness function is generated and the

problem of �nding a possible solution is mapped to a minimization problem.

Evolutionary algorithms depend on two operators, inspired by biology:

Crossover Crossover takes two data strings, so called genomes. It selectes a random

pivot point and concantenates the front part of the �rst string and the tail of the

second string around that pivot point. For example, the two strings 11001100 and

01011001 can be crossed by randomly selecting the third position as pivot. The

result would be: 11011001. [Mit98]

Mutation Mutation randomly �ips one bit inside the data. Taking the above result string

as example, 11011001, may be �ipped at the last position to result in 11011000.

Flipping random bits occurs on each position with a low but equal probability.

[Mit98]

When generating test data using evolutionary algorithms, the set of input values can

be represented by a genome sequence. Generating a new set of test data now is based

on altering the current set of data using the two genetic operators previously descriped,

namely crossover and mutation. Selecting a set of test data from a pool of already

generated data is done by their �tness, calculated using a speci�c �tness functions, i.e.

the branch coverage achieved by the data set.

Miller et al.[MRZ06] extended the approach introduced by Michael [MMS01] by using

Program Dependence Graph Analysis to generate better constraints for the Genetic

Algorithm. One problem the authors see at the approach of Michael et al. is that

GADGET depends on the serendipitous satisfaction phenomenon. It is possible, that

GADGET may not �nd input for a speci�c test requirement. Using �tness functions that

rely on the coverage information only, is that sets of boolean values might all have the

same �tness, as they all lead to the same branching behaviour. The Genetic Algorithm

can not prefer one set of values over the other, if they have the same �tness function

which makes selecting the potentially better input for mutation undecidable.
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Implementation
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5 Implementation

First of all, the theoretical background of in�x to pre�x conversion will be illustrated

in Section 5.1, as it is fundamental for the design of the application. Then, the system

design will be shown in Section 5.2. In Section 5.3 we will go into detail how we have

implemented the approach introduced in Section 3. We will point out the limitations

that have emerged during implementation of the approach in Section 5.4.

5.1 Infix to Prefix

Translating from Modern Jass speci�cations to PDDL can be seen as translating from

an in�x to a pre�x language.

Converting from in�x to pre�x notion can be achieved by traversing a syntax tree in

depth-�rst order [GY05]. The Sun Java Compiler API[vdA06] o�ers an easy and �exible

way of accessing the syntax tree of java code, which Modern Jass-annotations are. This

can be done using the abstract syntax tree and the corresponding tree visitor, which is

explained in detail in Section 5.2.

Conversion works through traversing the tree in depth-�rst manner and is shown in the

example from Listing 5.1. While traversing the tree, the symbol of the current node is

written to the output, as shown in Figure 5.1.

(x + y) - ((2 * a) + b)

Listing 5.1: Example in�x expression
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Figure 5.1: This �gure illustrates the traversion of the tree representation of the expres-
sion: (x+ y)− ((2 ∗ a) + b). The tree is traversed in depth �rst order.
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- + x y + * 2 a b

Listing 5.2: Resulting pre�x expression of the in�x expression given in Listing 5.1

5.2 Design

This Section contains a description of the implemented classes and their purpose. The

system was designed with adaptability in mind. The main advantage is the easy ex-

changeability and extendability of the used subsystems. Through the three main inter-

faces, it is possible to completely exchange the underlying planning system. It is possible

to use di�erent planners, that even use di�erent planning problem de�nition languages,

such as PDDL or ADL. Figure 5.2 gives an overview of the two main components and

their interfaces.

AITypeValueGenerator The AITypeValueGenerator is the main class of this project. It

will be called by jCAMEL whenever a parameter is requested that is an instance

of a class.

AITypeValueGeneratorConfig The class AITypeValueGeneratorCon�g is in charge of

all con�guration data management needed by the application. Based on external

con�guration �les, it is possible to change the used planning subsystem and the

related components.

PlannerFactory The PlannerFactory is responsible for construction the correct Planner

and Plan2Denotable classes and �lling them with con�guration values. For more

details on con�guration of the system see Section 5.2.1.

Contract2PlanningLanguage This interface is used for the Design by Contract� to

planning language conversion. Di�erent planners may use di�erent planning prob-

lem languages, such as PDDL. The implementing class of this interface is re-

sponsible for converting the method speci�cations correctly. The correct Con-

tract2PlanningLanguage implementation is declared in the planners con�guration

�le.

Contract2PDDL This class is in charge of starting the generation process. For each

method of the class under test the PDDL-actions will be generated. Figure 5.5

gives an idea how this works.
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Figure 5.2: Overview of the system. There are three main interfaces: Con-
tract2PlanningLanguage is responsible for generation of the planning domain D and the
planning goal G that form up the planning problem PP as de�ned in De�nitions 5, 7
and 8. It can be seen as the implementation of the interpretation function of a contract
DbC(C) of a class C as given in De�nition 14 in Section 3.1 and Section 3.2. The in-
terface Planner is in charge of starting the planner and handling its in and output as
explained in Section 3.3. Plan2Denotable is then used to translate the planners output,
the plan P, into the internal code representation of jCAMEL, namely Denotables, as it
was introduced in Section 3.4.
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Figure 5.3: Design of the application.
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Figure 5.4: Overview of the generation process. At �rst, an instance of the Con-
tract2PlanningLanguage, in this case Contract2PDDL is called to generate both the plan-
ning domain D and the planning goal G that form up the planning problem PP . Then
this planning problem PP is passed to an instance of Planner, that will invoke an exter-
nal planner. The generated plan P is then passed to an instance of the Plan2Denotable
interface, which translates the plan back to a Denotable, the internal data structure of
jCAMEL.
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Figure 5.5: Generation of PDDL operators for one class. For each speci�cation spec of a
classes contract DbC(C) = 〈mf, inv,mc〉 as de�ned in 4 an Abstract Syntax Tree (AST)
is generated from the pre- and postcondition using the Java Compiler API [vdA06] and
is then passed to a TreeVisitor using the generatePrecondition(preconditionAST, contex-
tInfo) and generatePrecondition(preconditionAST, contextInfo) methods. The resulting
PDDL objects are then serialized to the domain and goal �le, to be passed to the planner.
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Plan2Denotable This is the abstract base class for parsing the generated plans. The

implementation of this class hierarchy is based on the template pattern[FFBS04].

Parsing some elements of the plan �le is delegated to the implementing classes,

like the IPCPlan2Denotable class, which is in charge of handling plans that are

compatible with the requirements of the International Planning Competitions [ica].

Planner The planner class is a wrapper for calling a speci�c planner. One main im-

plementation is provided. The Con�gurableBinaryPlanner can be used to execute

any third-party-planner which is available on the system. For details on how to

con�gure the used planner see Section 5.2.1.

PDDLTreeVisitor The PDDLTreeVisitor is responsible for traversing the abstract syntax

tree of the methods speci�cation. The AST is generated using the Sun Java Com-

piler API[vdA06] and is represented in the CompilationUnitTree class. While

traversing this tree, it will generate the according PDDL-object structure provided

by PDDL4J [Pel09] which is then serialized to a �le. Together with the PDDL-

Constants class, the TreeVisitor acts as the Interpretation Function Φ(DbC) of the

classes contract, as given in De�nition 14.

PDDLConstants The PDDLConstants class is a dictionary of PDDL-operator names

and their Java equivalents. As PDDL operators di�er in pre- and postconditions,

there are two implementations of the abstract base, which are in charge of handling

the operator conversion correctly. The PDDLConstants class delegate the correct

PDDL serialization to the external library PDDL4J [Pel09].

NameMangler The correct mangling of names is essential when generating PDDL-�les,

as PDDL has a more restricted set of valid characters. This class is used for

mangling names of methods and variables into valid PDDL names and can be used

as dictionary when reconstructing the Denotable from the generated plans. This

class implements the name mangling function µinout(name) given in De�nition 13.

For details on what denotables are, see Section 2.3.1.

MethodContextInfo This class is responsible for holding context information on what is

currently being converted. It holds lists of currently seen functions and predicates.

This information is used to reduce the number of used functions and predicates.

If a de�ned function is never used within a pre- or postconditions it is not used

when generating the PDDL-header. This reduces planning time and �le size and

helps keeping the �les readable.
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5.2.1 Configuration

Con�guration �les are used to make the data generation system more �exible. The

following properties can be adapted using the con�g �les. These �les are XML-�les, as

XML is used throughout the rest of the test data generation system.

Global options. The global options are valid for the whole test data generation system.

Two main settings can be changed here. The location of the intermediate PDDL-

�les produced by our system and the used planner. Based on this information the

planner speci�c options can be loaded.

Planner specific options. All information needed for a speci�c planner are speci�ed

here. This are:

� The type of the planner. At most cases this will be the Con�gurableBinary-

Planner.

� The type of input the planner is capable to handle. This work focuses on

PDDL-based planners. Extending the system to handle alternative planners

is possible by implementing the according interfaces.

� Path to the planner binary.

� Name of the planner binary.

� Command line parameters to pass to the planner.

� Type of the output �le generated by the planner. This is important, as

di�erent planners produce di�erent output. According to this information,

the PlannerFactory can load the proper Plan2Denotable implementation.
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5.3 Implementation Details

Im this Section, we will give details on the implementation of the approach as described

in Section 3.

5.3.1 Generation of the Planning Domain

Generating the planning domain D = {a1, ..., an} means according to De�nition 14

of Section 3.1, that we have to generate a planning action ai for each speci�cation

spec ε ms ε mc of a classes Action Methods contract. This is done by using the

PDDLTreeVisitor class. This class behaves according to the TreeVisitor Design Pat-

tern [FFBS04]. Thus, it visits all nodes within an Abstract Syntax Tree (AST) in depth

�rst order, which is exactly what we need, as we translate from an in�x to a pre�x

language, as shown in Section 5.1.

When determining the relevant parts of a speci�cation according to De�nition 15 we

compare the occurrence of a State Variable within a part of a speci�cation with the

set of currently known State Variables. If it is in the set of known State Variables

and does not belong to a parameter of the currently translated speci�cation, the part

being examined is considered as relevant. Listing 5.3 shows an example method with a

speci�cation consisting of two parts, where only the �rst one refers to a State Variable,

whereas the other part contains a reference to the parameter's State Variables which are

not relevant for the generation of the planning domain. Thus, the selection of a method

like in Listing 5.3 or a member �eld that starts either with nothing or the keyword this

is considered to be relevant, and is added to the set of currently known State Variables.

Thus, we dynamically expand the set of known State Variables during the translation.

Name Mangling

In Section 3.1 we have pointed out that the subset of available characters in PDDL is

signi�cantly smaller then the one available to Java. Thus we have introduced a name

mangling function µinout(name) in De�nition 13, that maps from a method's name in Java

to a valid name in PDDL. This functionality is implented within the class NameMan-
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@Pre("this.size() > 0 && other.size() > 0")

public void switch(Stack other)

Listing 5.3: An example method with a speci�cation consisting of two parts, where only
the �rst one refers to a State Variable, whereas the other part contains a reference to
the parameter's State Variable. We assume that the class containing these method has
a State Variable called size(). The parameter used here is the Stack from Listing 2.1.

gler. Table 5.3.1 gives an overview of unsupported characters in PDDL an how we map

them to valid names. The NameMangler class o�ers two method, mangleMember(String

memberName, int spec_counter) and lookup(String actionName).

The method mangleMember(Member member, int spec_counter) is the implementation

of the mangling function µjavapddl (name). The �rst parameter is an instance of the an Action

Method am ε AM(C) of the current class C, which is used to generate the planning

domain. The second parameter is used to determine which speci�cation spec ε ms ε mc

of the classes contract DbC(C) = 〈mf, inv,mc〉 of a method is translated. As an Action

Method might have more than one speci�cation, this reference is necessary. Details on

that are given in Section 2.2, where we describe the possibility of Design by Contract�

systems to have more then one speci�cation for a method. At �rst the members name

is translated according to De�nition13. The name consists of the name of the member

and the names of all parameters. If it is a constructor it also includes the classes name

and package. Within this name, all occurring invalid characters are replaced by their

translation according to Table 5.3.1. Then the speci�cation counter is appended to the

resulting name. If the method has no parameters, the brackets are not translated, as

they don't carry any information.

When mangling a members name, the member, the used speci�cation spec and its as-

signed name is stored within the NameMangler class for later retrieval by the function

lookup(String actionName).
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Java Occurrence Translation

Opening and Closing
Brackes: (, )

Used in Method and Con-
structor names to give the
list of arguments.

Replaced by an underscore:
_

The dollar sign: $ Used as generic delimiter in
method names

Replaced by three under-
scores: ___

Dots: . In method and constructor
names it is used as package
seperator.

Replaced by an underscore:
_

Table 5.1: Unsupported characters in PDDL and their translation from Java.

5.3.2 Generation of the Planning Goal

The determination of relevant parts of speci�cations for the generation of the planning

goal G is done in opposite of the determination when generating the domain D. Thus,

we consider only those parts of speci�cations to be relevant, that contain State Vari-

ables of parameters. Using Listing 5.3 as example, the second part of the speci�cation:

other.size() > 0 would be relevant when generating in instance of the parameter named

other.

5.3.3 Execution of the Planner

Both the planning domainD and the planning goal G that form up the planning problem

PP are held within the object structure of PDDL4J. They are then serialized to two �les,

the domain �le containing the planning domain, and the goal �le. These �les, and the

desired plan output �le are passed to the planner binary. The exact call to the planner

binary is con�gured through the con�guration interface given in Section 5.2.1.

If the planner returns a valid plan, which is determined by its return value, the plan

�le is passed to an instance of the Plan2Denotable interface, which will now generate a

Denotable.

If no valid plan was returned, the generation process is stopped and the con�gured

fallback strategy is used. There are two possibilities: returning a Denotable containing

null, or using a di�erent generation strategy.
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5.3.4 Generation of Java Code from a Plan

As described in Section 5.3.1 we use the class NameMangler as the implementation of

the mangling function µinout(name) to do the mapping between PDDL action names and

Java method names and vice versa, according to De�nition 13. If the invocation of the

planner was successful, a valid plan is returned.

An implementation of the interface Plan2Denotable, in our case IPCPlan2Denotable, is

now in charge of opening the plan �le and translating it into a Denotable as described

in Section 3.4. Therefore, we parse the �le for actions. Every action is looked up within

the name mangling class, using the method lookup(String actionName). The lookup

method returns the associated class' member and the speci�cation spec that was used

to generate the according planning domain.

A Denotable is instantiated with the looked up member. If there is already a sequence of

Denotables, this sequence is added as preamble to the current Denotable. If the method

or constructor invocation we have retranslated from the plan needs a parameter to be

called with, our system calls the jCAMEL tool to retrieve a set of arguments, that ful�ll

the current members speci�cation spec. If one of the parameters needed to call the

member is a non-primitive type, jCAMEL will choose our approach to generate a valid

object. This leads to recursive invocation of the AITypeValueGenerator. If a maximum

number of recursive invocations has occurred, the system stops generating parameters

in order to prevent endless recursion. The thereby generated parameters are added to

the Denotable. Then the next action is retrieved from the plan.

After the last action is retranslated, the Denotable is returned to the calling jCAMEL

instance, which now generates the test for the method under test with the currently

created object as parameter.

Example 27: A returned plan and its Denotable.

Listing 5.4 shows a returned plan of getting our Stack example to have 2 elements. The

plans �rst action is associated with the constructor call, and then there are two actions

that belong to the method push(int). When reading the �rst line, IPCPlan2Denotable

will call lookup(�STACK�) of the NameMangler class which will return the according

constructor of the class Stack, and it's speci�cation. The class Stack was de�ned as

C(Stack) = 〈{Stack()}, {push(int), pop(), isEmpty(), peek(), size()}, {size_}〉 in Ex-
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ample 2 with it's contract being

DbC(Stack) = 〈{mSize}, {size_ >= 0},

{

mcStack = 〈{〈true,mSize == 0〉}, ∅〉,

mcpop = 〈{〈size > 0, size == @Old(size)− 1〉}, ∅〉,

mcpush = 〈{〈true, size == @Old(size) + 1〉}, ∅〉,

mcpeek = 〈{〈true, size == @Old(size)〉}, ∅〉,

mcsize = 〈{〈true,@Return == mSize〉}, pure〉

mcisEmpty = 〈{〈size > 0,@Return == false〉, 〈size == 0,@Return == true〉}, pure〉

}〉

As the constructors precondition is only true no parameter needs to be generated to be

able to call the constructor. Thus the current created Denotable D1 contains only

the constructor invocation. The next call is: lookup(�PUSH_INT�), which returns

the according Action Method push(int) and it's contract mcpush = 〈{〈true, size ==

@Old(size, int)+1〉}, ∅}〉. A new Denotable D2 is generated with the invocation if push

as it's parameter. Furthermore, jCAMEL is called to retrieve an integer that ful�lls the

speci�cation of push(int). As no speci�cation limits the parameter, an integer within

all possible integer values is returned. The previous Denotable D1 is added as preamble

to the current Denotable. The same applies to the second invocation of push(int). Fig-

ure 5.6 shows the generated Denotable of this example. We assume, that jCAMEL has

returned -3 and 2 as requested integers. The last generated Denotable, D3 is returned

to jCAMEL. �
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0.001: (STACK) [1]

1.002: (PUSH_INT) [1]

2.003: (PUSH_INT) [1]

Listing 5.4: An IPC-conform plan that calls three actions. The �rst relates to the
constructor of the Stack example class given in Listing 2.1. The following two are
associated with the method push(int). The �rst number is the time step the planner
will invoke the action, the number at the end the costs the planner estimates for calling
this action. Both features are currently not used, but we will give an overview of potential
usage of them in Section 7. The name surrounded by the brackets is name of the used
action.

Figure 5.6: The Denotable generated from the plan given in Listing 5.4. We assume,
that jCAMEL has returned -3 and 2 as requested integers.
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5.4 Limitations and Assumptions

During development of the tool presented in this thesis, some limitations have emerged.

First of all, no planner that was submitted to the last years planning competition was

able to handle domains that contained e�ects generated from multiplications and divi-

sions. This is due to the fact, that using multiplications and divisions let the search-space

become non-linear, which these planners where not developed for. Thus, we are not able

to create objects that need either a multiplication or a division within one of their Ac-

tion Methods postcondition to reach a requested target state. Actually none of our case

studies presented in Section 6 contained such a postcondition.

Additionally, we have made some assumptions on the used Modern Jass annotations.

In the translation step, our implementation does not support the use of boolean return

values as part of a speci�cation unless it is compared with a boolean value. Thus a

speci�cation telling that a parameter of the class Stack from Listing 2.1 named stack

can not be empty is not allowed to be written as: !stack.isEmpty(). It has either to

be written as stack.isEmpty() != true or as stack.isEmpty() == false.

Moreover, when specifying an arithmetic operation, the State Variable beeing assigned

needs to be on the left side of the comparison. Thus it is possible to specify: x() ==

@Old(x(),int) + 1 but not @Old(x(),int) + 1 == x(). Also this sort of statements

did not occur in the used case studies.
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6 Empirical Evaluation

In this section the implemented system is tested against chosen case studies. To show the

di�erences of the implemented planner based approach to the already existing random

data generator the generated tests are compared to those generated by the random

approach which is described in Section 2.3.

All experiments where carried out on the same machine (Intel®Core�2 Quad CPU

Q9400, 2.66GHz and 4GB RAM) and using the same software con�guration. Each

approach was executed using the same parameter con�guration:

Mutating probability The mutating probability de�nes whether or not, the random ap-

proach should continue calling random methods on an object. The value used was

0.5.

Attempts This parameter de�nes how many tests for a single method should be gener-

ated. We have used one attempt during our experiments.

Planner This parameter is used to set the planner the AITypeValueGenerator uses.

During the test series we have used sgplan6 [HWHC06].

Fallback The used fallback approach, when the planning step fails. We have chosen to

return a Denotable containing null, thus stating that no instance was generated.

After execution of the test generator, the resulting tests are classi�ed into the following

categories:

succeeding If a testcase succeeds, both the precondition and the postcondition of the

method under test are satis�ed.

failing Failing tests do satisfy the precondition of the method under test, but violate

the postcondition. These tests might reveak ab implementation fault.
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meaningless Meaningless tests do not satisfy the precondition of the method under test.

Thus the input parameters for the method under test are not correctly generated.

First of all, we will compare our approach using the StackCalc case study, a stack based

calculator in Section 6.1. In addition we will take a look at a real world application in

Section 6.2.

We will compare our results both using the number of successful generated tests (those

tests that are not meaningless), and the achieved line and branch coverage. We will

examine how may lines and branches of the software under test where covered by the

generated tests. We both give the average and the standard deviation of the according

metrics. Both approaches are given one chance to generate parameters for a method

under test. Thus, the number of generated tests re�ects the amount of methods an

approach is able to generate parameters for.

6.1 StackCalc

The �rst case study used to compare our results was an implementation of a stack

based calculator. The case study contains 43 classes, most of them beeing operator

implementations that need a stack in some speci�c con�guration to operate on. Table 6.1

contains the amount of Modern Jass speci�cations occuring in the case study.

Speci�cation Amount
@Pre 40
@Post 21
@SpecCase 44
@Pure 4
@Also 15
@Helper 3

Table 6.1: Amount of Modern Jass annotations in the StackCalc implementa-
tion [GMW10].

This case study contains 34 methods within 28 classes that contain non-primitive pa-

rameters. 15 of these parameters refer to a stack beeing in a speci�c state. The whole

case study contains 109 methods. We have been able to generate tests for each of these

methods. Table 6.2 gives the amount and classi�cation of the generated test, whereas
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Metric AI Random

Avg. Succ. 83.40 56.20
Dev. Succ 5.24 0.98
Avg. Fail. 7.40 4.00
Dev. Fail. 5.24 1.26

Avg. Meaningless 17.80 49.60
Dev. Meaningless 2.40 1.02

Table 6.2: Number of generated tests within the StackCalc case study. The amount of
meaningless tests drops signi�cantly, when the planner based approach is used.

Table 6.3 shows the achieved coverage for the whole case study. The achieved function

coverage, thus tests that were not meaningless, increases by about 50%, leading to an

increased line coverage of 25%.

The numbers �uctuate as some primitive parameters are generated with di�erent ap-

proaches, such as random, that might not always return valid data. We thus ran 100

iterations of each generation algorithm, to balance the results.

For a second series of experiments, we have limited the generated tests to the implemen-

tation of operators to be able to directly compare the two approaches. The results show,

that our approach is able to generate tests for each operator, which the random strategy

can not. An operators speci�cation requires a stack having some elements to operate

on. Table 6.4 shows the resulting test classi�cation, and Table 6.5 gives the achieved

coverage.

Metric AI Random

Avg. Line Coverage 0.71 0.57
Dev. Line Coverage 0.02 0.01

Avg. Branch Coverage 0.34 0.24
Dev. Branch Coverage 0.06 0.03

Table 6.3: Line and branch coverage of the generated tests of the StackCalc case study.
The achieved line coverage increases by about 25% by using our proposed planner based
strategy.
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Metric AI Random

Avg. Succ. 13.47 1.43
Dev. Succ 0.50 0.78
Avg. Fail. 2.16 0.07
Dev. Fail. 0.50 0.25

Avg. Meaningless 0.00 14.11
Dev. Meaningless 0.00 0.89

Table 6.4: Number of generated tests for operators only of the StackCalc case study. The
number of meaningfull tests shows that the random approach is not able to generate the
required parameters su�ciently, as the planner based approach does. 15 methods have
been tested.

Metric AI Random

Avg. Line Coverage 0.21 0.04
Dev. Line Coverage 0.00 0.01

Avg. Branch Coverage 0.06 0.00
Dev. Branch Coverage 0.00 0.01

Table 6.5: Line and branch coverage of the generated tests for operators only of the
StackCalc case study.

6.2 BillingSoftware

The BillingSoftware application is part of a mobile phone billing application, developed

by an international telecommunications infrastructure company.

The case study consists of 41 classes, with a total of 249 methods (methods of the

classes and their base classes). Additionaly, it uses six libraries, where no speci�cations

are available. The case study contains 71 methods that need an object as parameter.

The jCAMEL tool is designed to generate tests within one thread. We had to exchange

one class (an implementation of a blocking queue) of the case study, as it caused a

deadlock, when used within a single-threaded environment. We have therefor created a

new implementation of the used queue interface, that does not block a single threaded

application.

Furthermore, we had to exchange a parser class that was inside of one external library. It

is in charge of parsing the incoming billing messages, that are received over the network.
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It then returns a message object. As these messages are received as byte arrays and

there is no speci�cation available how they have to look like, we have chosen to provide

an implementation that will return valid message objects. If there is a speci�cation for

the parsers byte array input, the according input value generator of jCAMEL would

provide valid data.

Both of these changes are available to both test data generation strategies, and thus do

not distort the results.

Table 6.6 shows the number of generated tests. Our approach is able to generate 59.07

more tests on average, that are not meaningless, compared to the random strategy. Thus,

the generated test data satis�es the precondition of the method under test. This leads to

signi�cantly higher line coverage, as shown in Table 6.7. The line coverage doubled, by

using our planning based strategy. The branch coverage does not increase signi�cantly,

as the additionally tested code contains only branches, that do input checking.

The most complex parameter requested, needed a total of 30 method invocations to

achieve the target state. Each method invocation need a complex parameter as well.

The random approach on average fails after the �rst generated method invocation. Thus,

our approach is able to generate parameters with high con�guration complexity.

Table 6.8 shows the average generation time for both case studies in seconds. Row �per

succ.� gives the average time required to generate a non-meaningless test. Planning

domains and the resulting plans within the StackCalc case study are relatively small.

Hence the generation time does not di�er signi�cantly from the random strategy. For

the BillingSoftware case study, the generated planning domains are complex. The long

sequence of method invocations our approach is able to handle leads to increased plan-

ning time. With respect to successfully generated tests, the overhead caused by using a

planner decreases.
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Metric AI Random

Avg. Succ. 185.53 126.97
Dev. Succ 2.97 2.21
Avg. Fail. 6.13 5.62
Dev. Fail. 2.97 0.66

Avg. Meaningless 51.34 110.41
Dev. Meaningless 2.98 1.98

Exceptional 6 6

Table 6.6: Number of generated tests of the BillingSoftware case study. Using the
planner based strategy, the amount of meaningless test drops signi�cantly.

Metric AI Random

Avg. Line Coverage 0.40 0.20
Dev. Line Coverage 0.02 0.01

Avg. Branch Coverage 0.18 0.16
Dev. Branch Coverage 0.03 0.01

Table 6.7: Line and branch coverage of the generated tests of the BillingSoftware case
study. Because of the higher amount of succeeding tests generated, the average line cov-
erage over all 100 test series doubles. The branch coverage does not increase signi�cantly.
This is due the fact, that the additionally tested code contains only branches, that check
whether the input was correct, which it always will, if the precondition holds.

AI Random

StackCalc
overall 162.07 107.02
per succ. 1.78 1.77

StreamingFeeder
overall 495.96 166.93
per succ. 2.59 1.25

Table 6.8: Average test generation time in seconds over all 100 experiment iterations.
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7 Conclusion

Our presented test data generation strategy transforms Design by Contract� annotations

into a planning domain. We have shown that this technique is quali�ed for automatic

test data generation. Testing a method requires instantiating objects as parameters,

that have to comply with the methods precondition. If that speci�cation forces the

parameter to be in a very speci�c state, a random generation will likely fail. Thus using

the contract of the parameters type, and the precondition of the method under test to

generate a planning problem has exposed to be suitable for generating these parameters.

The sequence generated by a planner re�ects the series of method invocations that will

bring the object into the required state.

The results show, that our approach is highly applicable to the problem of generating

parameters that must satisfy strong preconditions. It clearly outperforms the random

strategy in both function and line coverage. For the StackCalc case study, our approach

was able to improve the function coverage by about 50% leading to an improved line

coverage of about 25%. For the BillingSoftware case study, the function coverage im-

proved about 45%, leading to a line coverage improvement of 100%, as methods with

long bodies became testable.

Analysis of the generated test has shown, that the planner based strategy performs very

good for speci�c categories of classes, and poorly for others. Our approach is applicable

for all kinds of data structures, such as lists or stacks, as their speci�cations �t perfecty

to planning. Furthermore, classes that have a high amount of getter and setter methods,

and are therefore highly customizationable, are good targets for planning.

Our approach does not �t to classes that deal with high level calculations, such as math

libraries. Through its dependence on the presence of Design by Contract� annotations,

methods that use parameters from external libraries where no speci�cations are available
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can cause troubles. Our approach will instantiate such an external object, but will not

invoke any actions. If the method under test has a precondition containing expectations

over that parameter, the generation likely will fail. This also applies to external objects

that have no speci�cations but highly depend on their parameters state. Thus, an

automatic reasoning over the non-available speci�cations, as Leitner [Lei04] does, might

be a promising �eld of further research.

7.1 Further Research

In this thesis, we have shown that the developed approach works. There are further

issues one can focus on.

A possible �eld of further research, is using the possibility of adding time and cost con-

straints to the planning domain. When adding costs to actions, they could be assigned

proportional to the amount of parameters of the method, that the action was generated

from. Adding execution time information to the action could be done using heuristics

determining how long a method potentially needs to execute. Doing this, would enable

user of the planning system to decide whether to generate simple, cost e�ective instances

of a requested object, or preferring sequences that would speed up the test execution.

Using cost e�ective action sequences would speed up the data generation time, as less

parameters would need to be generated.

If an error occured during generation of the planning domain, or the planner is not

able to come up with a valid sequence of actions, better failover capabilities could be

implemented. Currently we return a Denotable containing null as the generated value.

A strategy like Leitner [Lei04] has chosen, using runtime information to enrich the spec-

i�cations, would be promising.

Another point that could be looked at, is the support of Modern Jass annotations we

currently can not parse, due to the assumptions made in Section 5.4.

Furthermore a comparison of di�erent planning paradigms, according to Dingels et

al. [DFQ07] would be promising.
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The most challenging task we will focus on, is to support all Design by Contract�

postconditions, not alone those with a calculation description. Therefore, we have to

develop a new planning system since this limitation is based on the usage of PDDL. A

SMT Solver could be used for evaluation of the postconditions. This would enable the

planning system to convert postconditions as �@Return == x() % 2�, which is no direct

calculation rule, but describes the state after executing the annotated method.
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