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Abstract

English

Obesity is nowadays one of the most severe health problems. It causes differ-
ent diseases that reduce life quality. The existence of a mathematical model
that could simplify the testing of new research ideas, before time and costs
consuming in vitro and in vivo experiments are employed, is of major interest
and importance.

Here three different models of adipogenesis are presented. One model
consists of a system of ordinary differential equations and is able to reproduce
the gene expression profiles of some of the well known adipogenesis regulators,
inhibitors and markers like Pparg, Cebpa, Gilz, Gata2, Fabp4 and Scd1.
Another model is based on an echo state network that models the interactions
between the key players of adipogenesis. This model is capable of predicting
the gene expression levels in response to a certain adipogenic cocktail out
of the gene expression levels in response to other adipogenic cocktails. The
third model is based on so called ”essential genes“. From these genes a subset
is chosen to be employed in the parameter estimation of the model. The
”impact“ of each gene on the dynamic behavior of the model is computed. In
this way a list of new genes, sustained by biological research, is proposed for
further studies. These genes could play an important role in the process of
adipogenesis.

Keywords: adipogenesis, mathematical model,in silico,
differential equation, neural network, ”essential“ genes
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German

Übergewicht ist ein Gesundheitsproblem welches immer mehr Menschen be-
trifft. Es verursacht Krankheiten die die Lebensqualität einschränken. Um
auf diesem Gebiet schneller und effektiver Fortschritte zu erzielen würde ein
matematisches Modell für die Adipogenese vom großen Nutzen sein.

Es werden drei Modelle erarbeitet. Das erste wird durch ein System von
Differentialgleichungen dargestellt. Dieses ist in der Lage die Expression-
sprofile der wichtigsten Adipogeneseregulatoren, -Inhibitoren und -Marker
wie Pparg, Cebpa, Gilz, Gata2, Fabp4 and Scd1 vorherzusagen. Ein weiteres
Modell beschreibt die Interaktionen zwischen den bekanntesten Adipogene-
sefaktoren durch ein Echo State Netzwerk. So ist es möglich die Expression-
sprofile der Gene, die von einem bestimmten Adipogenesecocktail verursacht
werden, vorherzusagen. Für das dritte Modell wird zuerst eine Liste von so
genannten ”essentiellen“ Genen erstellt. Aus dieser Liste werden dann Gene
bestimmt die in das Modell eingesetzt werden. Der ”Einfluss“ dieser Gene
wird berechnet. Somit werden neue Gene vorgeschlagen die eine wichtige
Rolle in der Adipogenese spielen könnten.

Stichwörter: Adipogenese, mathematisches Modell,in silico,
Differentialgleichung, Echo State Netzwerk, ”essentielle“ Gene
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Chapter 1

Introduction

Nowadays obesity constitutes a severe health problem. Affected people tend
to develop cardiovascular diseases and non-insulin-dependent diabetes mel-
litus (NIDDM). Formation of adipose tissue is due to two processes. New
fat cells develop and the total fat cell number increases (hyperplasia). The
already existing fat cells increase their storage capacity of triglycerides (hy-
pertrophy). A detailed understanding of the mechanisms governing these
processes would be an important step in preventing obesity and the related
health problems.

In vitro the process can be studied using different cell lines. The most
often used are the 3T3-L1 and 3T3-FA442A lines originally created by Green
and Kehinde [11, 12]. Numerous in vitro and in vivo experiments have dis-
covered some of the transcription factors, adipogenic factors and cell-cycle
factors that play a key role during adipogenesis.

The development of preadipocytes into adipocytes is called adipogenesis
(see Figure 1.1). For a detailed description see [9]. In vitro the process is in-
duced by exposure of the preadipocytes to a cocktail consisting of fetal bovine
serum (FBS), dexamethasone (DEX), isobuthymethylxanthine (IBMX) and
insulin. As a result, the cells enter the clonal expansion phase followed by
terminal differentiation. During the clonal expansion of 3T3-L1 cells at least
one cell-cycle is traversed. The terminal differentiation phase is marked by
metabolic programs typical for mature fat cells.

A detailed review of the existing information on the key players required
for a successful adipogenesis can be found in [32, 8]. The master regula-
tors are considered to be Pparg and Cebpa. Evidence [27] shows that Pparg
is capable of launching the process of adipogenesis; Pparg is necessary and
sufficient. In [7] it is suggested that Cebpa induces adipogenesis through
Pparg. There are evidence that the cross-regulation of Cebpa and Pparg
controls the transcriptional pathway of adipogenesis [37]. Two other impor-
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Figure 1.1: The development of a preadipocyte into a mature adipocyte.
During this process the preadipocyte traverses different phases and expresses
well known regulators like Cebpa and Pparg (adopted from [9]).

tant regulators are Cebpb and Cebpd. They induce the expression of Pparg
and Cebpa. Other adipogenic factors are Srebp1c, Klf5, Pcreb, Krox20 and
Camp. An overview of the interplay of the mentioned factors is presented in
Figure 1.2. Other regulators are cell-cycle-related proteins and some negative
factors that inhibit the expression of Pparg, Cebpa, Cebpb and Cebpd. In
[32] the negative factors and some of the most studied positive factors that
control adipogenesis are summarized into one diagram (see Figure 1.3).

In order to discover the factors that determine a preadipocyte to develop
into an adipocyte, high-throughput analysis methods and proteomics can be
used. One of the most efficient way to measure gene expression is microarray
analysis. It was developed in the 1990s and today is one of the most often used
analysis technique. One reason that led to this is the possibility of measuring
thousands of genes simultaneously. Proteomics is a large-scale method for
analyzing proteins. Protein levels for a few proteins can be determined by
western blots.

2



Figure 1.2: Positive transcription factors (adopted from [32]).

Figure 1.3: Positive and negative regulators of adipogenesis (adopted from
[32]).
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1.1 Objectives

Although until now a lot of experiments were conducted in order to eluci-
date the factors and their interactions responsible for the development of
preadipocytes into adipocytes, no mathematical models of adipogenesis on
molecular level are available. A model would enable in silico testing of dif-
ferent hypotheses without the costs and time needed for in vitro and in vivo
testing.

Starting from the available information on adipogenesis, the key factors
involved and a number of large scale experiments, three mathematical models
were derived.

• One model combined the factors in Figure 1.2 and Figure 1.3. The
regulation was described by a system of ordinary differential equations
whose coefficients were determined from measured data.

• One model used an echo state network for the interaction of the fac-
tors. The input to the echo state network was the time course of the
adipogenic cocktail. The output of the model was the time course of
two proteins known as markers for adipocytes.

• One model was based on ”essential“ genes. The interactions between
them were specified by differential equations. The parameters of the
model were determined from measured data.

4



Chapter 2

Methods

In the first section of this chapter the concept of the differential equation
model is described. The second section shows how an echo state network was
used to model the process of adipogenesis. In the last section of this chapter
the third model is presented.

2.1 Ordinary differential equation model

Many of the factors involved in the process of adipogenesis are known. Some
of them are considered to play a key role because their absence would lead to a
stop in the development of preadipocytes into adipocytes. Current knowledge
is gathered in the review article [32] and presented in Figure 1.2 and Figure
1.3. For this model the shown factors are extended by two adipocyte markers.
Figure 2.1 presents these factors and their dependencies.

2.1.1 Gene expression data

Raw data (.cel files) from an adipocyte differentiation microarray experiment
[1, 18] were downloaded from Gene Expression Omnibus (GEO) (GSE6794).
3T3-L1 fibroblasts were cultured in vitro and induced to differentiate using
standard DMI protocol. At successive time-points (PC, 0h, 6h, 12h, 24h, 48h,
3d, 4d, 7d, 28d) cells were collected, and processed for microarray analysis
using Affymetrix Murine 11k A and B arrays. Data was normalized using
gcrma (R/Bioconductor) and results from the Mu11kA array were combined
with results for complementary probesets of Mu11kB arrays. Relative gene
expression levels (log2ratios) from each time point versus the pre-confluent
state were determined and averaged over 3 biological replicates.

Since between gene expression levels on day 7 and day 28 of differentiation
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Figure 2.1: Interplay of the key regulators of adipogenesis and adipocyte
markers. The regulators are divided into positive factors (blue ellipses) and
negative factors (red rectangulars). The yellow circles stand for the adipocyte
markers. The influence of the input cocktail is marked by chain dotted
arrows. Positive regulation is denoted by regular arrows and the negative
regulation by dashed arrows. The markers are determined by the master
regulators Cebpa and Pparg (dotted arrows).

no major differences exist, the last time point of the measurements was not
considered. In order to obtain a continuous signal the measured data was
interpolated using cubic splines with a resolution of one minute. The data
processed in this way was used in the differential equation model.

2.1.2 Model description

The model was described by a system of ordinary differential equations
[5, 4]. Each factor that is known to exhibit positive regulation was de-
scribed through an ordinary differential equation (ODE). The factors that
are responsible for negative regulation were present in the ODEs of the other
factors, but were not be described by an ODE. Because of simplicity reasons
these factors had no input.
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Looking at Figure 2.1, the ODE of Cebpa was written as:

d Cebpa(t)

dt
= a1 ∗ Pparg(t) + a2 ∗ Cebpb(t) + a3 ∗ Cebpa(t)

Cebpa(t), Cebpb(t), Pparg(t) were the gene expression levels of Cebpa,
Cebpb and Pparg considered as functions of time. In this way each of the
regulators was described. a1, a2, a3 were the parameters that scale the
influence of each of the involved genes. The system consisting of 10 ODEs
and 28 parameters is shown bellow. The parameters were determined based
on microarray data.



d Cebpa(t)

dt
= a1 ∗ Pparg(t) + a2 ∗ Cebpb(t) + a3 ∗ Cebpa(t)

d Pparg(t)

dt
= a4 ∗ Srebp1c(t) + a5 ∗Klf5(t) + a6 ∗ Cebpa(t)

+ a7 ∗ (Cebpb(t) + Cebpd(t)) + a8 ∗ Pparg(t)

+ a9 ∗Klf2(t) + a10 ∗ Tcf4(4)

d Cebpb(t)

dt
= a11 ∗ Creb(t) + a12 ∗Krox20(t) + a13 ∗Gata23(t)

+ a14 ∗ Tsc22d3(t)

d Cebpd(t)

dt
= a15 ∗DEX(t) + a16 ∗ Srebp1c(t) + a17 ∗ Cebpb(t)

+ a18 ∗Runx1t1(1) + a19 ∗ Cebpζ
d Srebp1c(t)

dt
= a20 ∗ Insulin

d Klf5(t)

dt
= a21 ∗ Cebpb(t) + a22 ∗ Cebpd

d Krox20(t)

dt
= a23 ∗ FBS(t)

d Creb(t)

dt
= a24 ∗ IBMX(t)

d Fabp4(t)

dt
= a25 ∗ Pparg(t) + a26 ∗ Cebpa(t)

d Scd1(t)

dt
= a27 ∗ Pparg(t) + a28 ∗ Cebpa(t)

The input to the system consisted of the time course of the adipogenic
cocktail (see Figure 2.2). The concentration of each substance of the cocktail
that was used in the model can not be compared to the real concentration
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(a) FBS (b) Insulin

(c) DEX (d) IBMX

Figure 2.2: Standard adipogenic cocktail.

in in vitro experiments. However, the values used in the model proved to be
useful during parameter estimation. The time courses of the gene expression
of Fabp4 and Scd1 constituted the output of the model. In this case these
two proteins were considered as markers for mature adipocytes.

2.1.3 Implementation

The parameters of the model were determined so that the gene expression
level of the proteins matched the measured data. This task was done using
the SBToolbox2. This is a toolbox for systems biology that was developed
for Matlab (Mathworks Inc., Natick, USA).

The SBToolbox2 [15] provides functionality for modeling, simulation and
analysis of biochemical systems. This toolbox requires Matlab version 7.1 or
higher and the SBPD project for the parameter estimation functionality.

The system of ODEs was transfered to Matlab and the parameter esti-
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mation tool was used. Since for the estimation of the 29 parameters only one
microarray experiment was available, the estimation was limited. The com-
puted values were used as a starting point. The system was simulated with
these values and the resulted expression levels of the genes were compared to
the measurements. The SBToolbox2 allows the use of events. Events define
changes in the parameters or ODEs of the system. With the help of events,
the values of the parameters were changed at certain time points during
simulation so that the measured data could be reproduced by the model.

2.2 Echo state network model

In the previous section, the interaction between the regulators of adipoge-
nesis was modeled using ordinary differential equations. In this section the
interactions were modeled using an echo state network [14].

2.2.1 Principles of echo state networks

Neural networks [25, 36] can be divided into two types. There are feedforward
networks and recurrent networks. The typical structure of these two types
of networks is presented in Figure 2.3. As shown, the major difference is the
”direction“ of information processing. In the feedforward neural network the
activation travels from the input through the hidden units (if present) and
then reaches the output. In the recurrent neural network there is at least
on cyclic path that the activation passes through. An echo state network
is a special recurrent neural network in which only certain connections are
trained while others remain fixed.

Figure 2.3: Typical structure of a feedforward network and a recurrent net-
work (adopted from [14]). The direction of the information processing is
marked with red arrows.
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DMI DM DI MI D M I

Cebpa 100% 130% 0% 0% 0% 0% 0%
Fabp4 100% 80% 90% 0% 90% 0% 0%

Table 2.1: Western bolts derived protein levels in response to different input
cocktails (derived from Figure 2.4).

2.2.2 Gene expression and protein level data

For this model the same gene expression data (see subsection 2.1.1) as for
the ODE model was used, as well as protein levels of differentiating 3T3-L1
preadipocytes presented in [16]. The measurements of the protein levels were
done by western blots on day five of adipogenesis. The results are shown in
Figure 2.4. This experiment was used in an unconventional way.

The protein levels in response to DMI were considered to be 100%. In
addition, these protein levels were considered to be equivalent to the corre-
sponding gene expression measured on day five of the microarray experiment.
The protein levels measured in response to the other adipogenic cocktails
(Table 3.1) were determined as percentage of the response to DMI. Table 2.1
was derived from Figure 2.4. 0% percent was used when the protein levels
in response to the adipogenic cocktails were equal to the NCS case. The
measured gene expression levels in response to DMI were multiplied with the
percentage values from Table 2.1 to obtain the corresponding gene expression
levels in response to the other adipogenic cocktails.

Figure 2.4: Protein levels of Cebpa and Fabp4 determined by western blots
(adopted from [16]).
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2.2.3 Model description

The echo state network (ESN) used in this approach was shown in Figure 2.5.
The choice of an ESN for this task was based on the fact that all biological
networks are recurrent networks.

Figure 2.5: Structure of the echo state network modeling the differentiation
process (adopted from [14]). The dotted arrows stand for connections that
are trained. All other connections are fixed. The internal units (on the gray
background) form the dynamic reservoir of the echo state network.

The most important mathematical characteristics [14] of the ESN model
are summarized here. The input to the ESN network was referred to as u(n).
The vector describing the state of the internal units was called x(n). y(n) was
the output of the network. n denoted the time points of the simulation. The
ESN model possessed K input units, N internal units and L output units.
The input was connected to the dynamic reservoir through the matrix of
weights Win ∈ RN×K. The weights of the dynamic reservoir were gathered in
the matrix W ∈ RN×N. The matrix Wout ∈ RL×(K+N) contained the weights
from the dynamic reservoir to the output units. Since there also existed
connections from the output units to the dynamic reservoir there was also
the matrix of these weights Wback ∈ RN×L.

The activation of the internal units was computed using the following
equation:

x(n+ 1) = f(W inu(n+ 1) + Wu(n) + Wbacky(n)), (2.1)

where f was the component wise transfer function of the internal units,
u(n+ 1) was the external input. The output of the ESN was computed with
the following equation

y(n+ 1) = fout(Wout(u(n+ 1),x(n+ 1),y(n))), (2.2)
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where (u(n+ 1),x(n+ 1),y(n)) denoted a vector resulted from the concate-
nation of the input vector, internal state vector and output vector. fout was
the transfer function of the output units.

The model had four input units, each one receiving the time course of an
ingredient of the adipogenic cocktail. Through testing, the following param-
eters of the ESN model proved to be the best choice:

• the dynamic reservoir had 30 units,

• 20% of the reservoir units received the input signals,

• the inputs were scaled with 0.9,

• the transfer function of the reservoir units was tanh,

• 10% of the reservoir received feedback from the output,

• the feedback from the output was scaled with 0.1,

• the output units used a linear transfer function,

• the output weights were learned using Bayesian regularization in a
Levenberg-Marquardt algorithm.

2.2.4 Implementation

The ESN model was implemented in Matlab. The mechanisms of the ESN
were implemented in concordance with the formulas presented earlier. The
Bayesian regularization method used for the computation of the output weights
was provided by Matlab. When leave-one-out cross-validation was used, the
training presented some subtleties. Since six different input/output exper-
iments were used for training, it was important that between the different
experiments, the ESN had enough time to prepare for the next experiment.
The solution was to feed the network with noise between the different exper-
iments.

In order to test the model, two scenarios were created. In the first scenario
the ESN model was simulated using DMI as input cocktail. In this case
the time course of the genes expression levels of the adipogenesis regulators
constituted the output of the network (16 output units). The same regulators
as in the ODE model were used. The ESN model was tested on the data
derived from the western blots.

In the second scenario, the ESN was used in a slightly different man-
ner. The concept of leave-one-out cross-validation was applied. For this, the

12



I/O cases Train Test

Case I DMI, DM, DI, MI, D, M I
Case M DMI, DM, DI, MI, D, I M
Case D DMI, DM, DI, MI, M, I D
Case MI DMI, DM, DI, D, M, I MI
Case DI DMI, DM, MI, D, M, I DI
Case DM DMI, MI, DI, D, M, I DM
Case DMI DM, MI, DI, D, M, I DMI

Table 2.2: ESN model - input/output cases. Here the exact train and test
data is presented. The name of the cases corresponds to the adipogenic
cocktail that was used for testing.

microarray analysis data and the western blot data were used. Out of the
measured protein levels, proportional gene expression levels were computed.
In this way seven different input/output cases were available. These were
used in the following way. Six of them were employed in the training phase
and the seventh was used in the testing phase. This was done for each of the
resulted input/output cases during seven simulations of the model. During
each simulation a new set of parameters, that corresponded to a new ESN
model, were computed. The exact training and testing data were presented
in Table 2.2. The ESN model had 2 output units because during western
blotting only Cebpa and Fabp4 were measured. The Matlab code for this
scenario is provided in the Appendix.

2.3 ”Essential“ genes model

In the previous two sections, the process of adipogenesis was modeled using
two different models. In the beginning, a system of ordinary differential equa-
tions was used. Afterwards an echo state network modeled the interactions
between the regulators of the process. In both approaches, the used regula-
tors are well known key players of adipogenesis (see [32] and [8]). The third
way of describing adipogenesis is not restricted to the well known regulators.
First, a set of ”essential“ genes was determined. Then, these genes were used
to model adipogenesis. For this model the name essential genes model (EG
model) will be used.

13



2.3.1 ”Essential“ genes

Out of different experiments a set of new genes with common characteristics
were identified. In [16] a list of IBMX regulated genes was determined. For
this, 3T3L1 cells were treated with DMI or DI. Out of this data, the IBMX
regulated genes were identified. A list of DEX-regulated genes is presented
in [6]. In order to identify (see Figure 2.6) the ”essential“ genes, first a list of
IBMX and DEX regulated genes was set up. These genes were than compared
to results form three different microarray experiments. A gene is considered
to be an ”essential“ gene if in at least one of these experiments a log fold
change (two fold change) of at least one was measured.

Figure 2.6: Selection of the ”essential“ genes.

Possible connections between the identified genes were determined using
STRING 8 [22] from different sources like experimental repositories, com-
putational prediction methods and public text collections. In this way, an
association network was generated. The genes that presented at least four
connections were chosen for modeling. These could correspond to hubs. Hubs
tend to be more important than the other nodes of a network. Hubs also
have the tendency to be far away from each other and often present no di-
rect link. The association network can be visualized using Cytoscape [26].
Cytoscape is an open source software project that allows the integration and
visualization of biomolecular interaction networks with expression data in a
unified framework.

The time courses of the gene expression levels were computed by cubic
interpolation. The used data included microarray data used in the ODE
and ESN model [1]. 3T3L1 and MEF cells were measured during induced
adipogenesis. The results from the 3T3-L1 [13] and MEF cells are available
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under ArrayExpress E-MARS-2 and ArrayExpress E-MARS-13. The heat
map of the gene expression levels was plotted using Genesis [3, 2].

2.3.2 Model description

Inspired by the model described in [10, 30] for keratinocyte migration, a
similar model for adipogenesis was formulated. The ”essential“ genes were
employed in a neural network model. The dynamics of the model were defined
as a system of differential equations. Such a differential equation is presented
by equation 2.3.

dgi(t)

dt
=

1

τi

(
gi(t− 1) +

N∑
j=1

wij ∗ A(gj(t− 1)− δj)

)
+ Ii ∗ exp(ki ∗ t)

(2.3)

The functions and variables used in 2.3 had different meanings. The
change in the gene expression level of gene gi depended on the other N
genes. The time constant of the change was τi. The activation function of
the genes was called A and was defined as A(x) = 1

1+exp(−x)
. δj was an offset

term. The term Ii ∗ exp(ki ∗ t) accounted for the external input to each gene.
The weights wij described the strength of the interaction between gene gi

and gene gj.
For each of the N genes gi the following parameter were determined:

• 1 time constant τi,

• N weights wij connecting gene gi to the other N genes,

• 1 offset term δi,

• 1 amplitude Ii of external input,

• 1 argument ki of the external input.

For this model N*(N+4) parameters were determined.

2.3.3 Implementation

The identification of the ”essential“ genes was implemented using the pro-
gramming languages C and C++. The parameters of the model were de-
termined using Matlab and the provided Genetic Algorithm Toolbox. The
parameters were determined so that the mean squared error between the
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measurements and the simulation was minimized. The mean squared error
(MSE) between the measurements M and the simulation S for N genes and
T time points was defined as:

MSE =
1

TN

N∑
i=1

T∑
t=1

(M(i, t)− S(i, t))2 (2.4)

The parameters of the model were determined by a genetic algorithm [23,
24, 28] employing 5000 generations, each with a population of N*(N+4)*10
individuals.
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Chapter 3

Results

In the first subsection the results of the ODE model are shown. The results
of the second model follow in the second subsection. The thirst subsection
is dedicated to the results obtained from the third model. These results are
discussed in the next chapter.

3.1 ODE model can compute gene expression

profiles of well known regulators of adi-

pogenesis

The model described in subsection 2.1.2 on page 6 was simulated using the
SBToolbox2. The computed time courses of the employed regulators matched
the measured data. Gene expression levels of the two adipocyte markers (Fig-
ure 3.1) were shown. The gene expression levels of Pparg and Cebpa (Figure
6.1) which are considered to be the master regulators of adipogenesis were
presented in the Appendix. These results were obtained if the model’s in-
put was the well-known adipogenic cocktail (Insulin, DEX, IBMX and FBS).
The time courses of the other regulators exhibited the same similarity to the
measured data.

The model was also simulated for other different inputs. Three simula-
tions were performed in which either Insulin, DEX or IBMX was not used.
In other three simulations FBS together with either Insulin, DEX or IBMX
formed the input. These six different input cocktails together with the initial
input cocktail were described in Table 3.1.

The simulation results for the different input cocktails were shown in
Figure 3.2 and Figure 6.2. Figure 6.2 can be found in the Appendix. Only
the gene expression levels of Cebpa were plotted.
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(a) Scd1 (b) Fabp4

Figure 3.1: ODE model - gene expression levels of adipocyte markers.

Input FBS Insulin (I) DEX (D) IBMX (M)

DMI x x x x
DM x x x
DI x x x
MI x x x
D x x
M x x
I x x

Table 3.1: Ingredients of the different input cocktails.

3.2 ESN model predicts higher gene expres-

sion of Cebpa in the absence of Insulin

The ESN model described in section 2.2 on page 9 was employed in two
scenarios. First the model was trained using DMI as input cocktail. The
output units computed the time courses of the gene expression levels of the
regulators of adipogenesis. The gene expression levels simulated during the
training phase, together with the measured gene expression levels, were shown
in Figure 3.3. Here only the gene expression levels of the 2 markers were
shown. The quality of the simulated gene expression levels of the other
regulators was similar.

Then the network was tested using different adipogenic cocktails (Table
3.1). Figure 3.4 showed the simulated gene expression levels for the case in
which DM was used as input cocktail.
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(a) Input cocktail DM (b) Input cocktail DI

Figure 3.2: ODE model - gene expression level of Cebpa for different input
cocktails.

(a) Fabp4 (b) Scd1

Figure 3.3: ESN model - simulated and measured gene expression levels of
Fabp4 and Scd1 during the training phase.

3.3 ESN model is able to predict correct gene

expression levels of Cebpa and Fabp4 in

response to Insulin

In the second scenario the concept of leave-one-out cross-validation was used.
The results in response to I were shown in Figure 3.5. The results in response
to DMI and D were presented in Figure 6.3 and 6.4 in the Appendix.

19



Figure 3.4: ESN model - case DM: Time courses of Cebpa.

Bdnf Bhlhb Cd36 Cebpa Egr1 Id2 Myc Pparg

τ -2,611 -1,668 -12,67 -4,410 -0,791 -1,384 -1,151 -3,316
δ 1,554 1,373 1,664 1,916 0,037 -1,588 1,261 2,132
I 1,229 0,556 0,104 0,507 1,033 0,438 1,851 0,701
k -0,035 -0,011 -0,005 0,001 0,003 0.006 -0,001 -0,003

Table 3.2: EG model - values of the parameters tau, δ, I and k.

3.4 EG model proposes a list of new genes

that could play important roles during

adipogenesis

This section is dedicated to the results obtained by the EG model described in
section 2.3 on page 13. First a set of ”essential“ genes was determined. These
genes were shown in Figure 3.11. The heat map of the genes was presented
in Figure 3.6. Out of these genes a subset was chosen for modeling. The
selected genes were shown in red circles in Figure 3.11.

These selected genes were connected by parameters in a system of differ-
ential equations. The heat map of the weights was shown in Figure 3.7. The
other parameters were presented in Table 3.2.

Based on the computed weights of the EG model a diagram of the network
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Figure 3.5: ESN model - case I using leave-one-out cross-validation: gene
expression level of Cebpa (upper plot) and Fabp4 (lower plot) during testing
phase.

was drawn. Only weights having an absolute value higher than four were
considered. The strength of the drawn connections was proportional to the
weights. The sign of the weights was shown using different types of arrows.
The resulting network can be seen in Figure 3.8.

The parameters were computed so that the mean square error between
the simulated and measured gene expression levels was minimized. With
the determined parameters, the mean squared error is equal to 0.15. The
simulated and measured gene expression profiles are presented in Figure 3.9.

After the parameters of the model were determined, the ”impact“ of each
gene on the dynamic behavior of the model was determined. The impact
was measured as the mean squared change in the gene expression levels. The
results are shown in Figure 3.10.
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Figure 3.6: EG model - heat map of the 80 identified essential genes.
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Figure 3.7: EG model - heat map of the estimated weights.

Figure 3.8: EG model - network determined from the essential genes and the
estimated weights.
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(a) Measurements (b) Simulation

Figure 3.9: EG model - measured and simulated gene expression levels.

Figure 3.10: EG model - impact of the essential genes measured as the re-
sulted mean squared change in the gene expression profiles.
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Figure 3.11: EG model - association network of the identified essential genes.
The genes selected for modeling are shown in red circles.
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Chapter 4

Discussion

4.1 Ordinary differential equation model

Three mathematical models of adipogenesis were developed. For each model
miscellaneous approaches were used leading to a characteristic prediction
behavior.

The ODE model was simulated using the standard adipogenic cocktail
DMI and the computed approximation of the measured data was good. The
simulated gene expressions did not perfectly match the measured data, but
it was obvious that they shared some characteristics. One of them was that
the gene expression reached a saturated value that did not drastically change
after day four of adipogenesis. In general the forms of the curves were similar
to each other.

The gene expressions of Scd1 and Fabp4 correlated with the biological
understanding of adipocyte markers. Starting with about day four of differ-
entiation, the markers exhibited very high gene expression levels.

The simulated gene expressions of the master regulators Pparg and Cebpa
and adipogenesis markers Scd1 and Fabp4 matched the measured data. The
simulation results for the other factors were also good, but these were not
shown for clarity reasons.

The network was also simulated using different input cocktails (DM, DI,
MI, D, M, I). Cebpa was chosen for comparison because the protein levels
of it were determined in [16] using the same input cocktails. It is clear that
the ODE model computes gene expression levels and not protein levels. But
here a general comparison is done, not a comparison of the exact numbers.
The gene expression levels on day five of differentiation were considered for
comparison, since western blots were done on day five.

The computed gene expression profiles did not match the results of the
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western blots. The model predicted high gene expression levels for all the
used input cocktails. The western blots experiments showed that the protein
levels of Cebpa were high for DMI and DM, but low for all other input
cocktails (no difference compared to the control case). In case of DM, the
simulation results matched the western blots results (high gene expression
levels and high protein levels). In all other cases the simulation results did
not match the western blots results.

The response of Cebpa to different input cocktails was almost equal. Only
the gene expression levels in the end of the differentiation process were, in
some cases, different (see y-axis of the plots). This revealed that the model
did not show a good generalization capacity. Only on one input cocktail,
different to the one used to determine the model’s parameters, the model
computed a result similar to results obtained through other techniques. This
is probably due to the fact that the parameters of the model were computed
from only one experiment. These parameters are capable of reproducing the
data they were computed from. If more measurements were available that
could be used for parameter estimation, the generalization capacity of the
model would increase.

4.2 Echo state network model

The ESN model was trained on the gene expression data obtained during the
microarray experiment. All adipogenesis regulators known from the ODE
model were considered. In this way, gene expression levels of 14 regulators
were used. The input to the ESN model was the time course of the standard
adipogenic cocktail DMI. During the training phase, the gene expression
levels of the 14 regulators were almost equal to the measured gene expression
levels.

The network trained in this way was used to simulate the gene expression
levels of the adipogenesis regulators for different input cocktails. The pre-
dicted gene expression level of Cebpa when DM was used as input cocktail
did not match the measurements but was higher than in the DMI case. This
fact corresponds to the current knowledge that that adipogenic cocktail DM
(lacking Insulin) induces higher gene expression levels of Cebpa compared to
the adipogenic cocktail DMI.

In the other cases the performance of the model was not good. It seems
that the ESN model adjusted to well to the training data.

The ESN was also trained using leave-one-out crossvalidation. In this
case the output of the ESN model comprised of the gene expression levels of
Cebpa and Fabp4. The best results were obtained when the ESN model was
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tested on the input cocktail I. This means that the parameters of the ESN
model were computed from the input/output data of DMI, DM, DI, MI, D
and M and that the gene expression levels of Cebpa and Fabp4 were simulated
in response to the input cocktail I. In this case the exhibited generalization
quality was very good. The model is suited to be used in other biologically
interesting scenarios.

The ESN model exhibited also a very good generalization quality when it
was trained on DMI, DM, DI, MI, M, I and tested on the adipogenic cocktail
D. The simulated gene expression levels of Fabp4 were almost equal to the
measured data, but this was not the case for Cebpa. In the other cases, the
generalization performance was limited.

Even if only a small amount of data was available, a model was derived
that was able to predict the gene expression levels of Cebpa and Fabp4 in
response to an adipogenic cocktail that was never ”seen“ by the model.

4.3 ”Essential“ genes model

”Essential“ genes were identified from different experiments and their expres-
sion profiles were used in the parameter estimation of the EG model. The
computed mean squared error between the measurements and the simulation
results was very small. Then the impact of each gene on the dynamical be-
havior of the model was computed. This impact could be an indicator for the
importance of each gene in the process of adipogenesis. It is not a surprise
that Cebpa and Pparg had the highest impact. The model confirmed once
again the important role played by this two regulators. But more interest-
ing are the other genes that also exhibited a high impact. These could be
important regulators of adipogenesis.

In the computed network of the ”essential“ genes one of the strongest
predicted connections was between Bdnf and Pparg. In [33] evidence was
presented that shows sensitivity of Bdnf to overexpression of Cebpb. The
connection between Cebpa and Pparg is well known. In [31] a study was
presented in which gene transfer of Bdnf in mice led to weight loss and to
alleviation of obesity related insulin resistance. Another article [20] shows a
direct link between eating behavior and Bdnf activity.

According to the EG model another important regulator of adipogenesis
was Bhlhb. In [38] and [29] it was shown that inhibiting of Pparg is possible
through Bhlhb.

A connection between Pparg and Id2 is studied in [19]. Overexpression
of Id2 induced expression of Pparg and mice lacking Id2 expression exhibited
reduced adiposity. Furthermore the article presented results confirming the
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role of Id2 in the modulation of Pparg expression.
Myc was able to inhibit adipocyte differentiation through blocking Cebpb

and Cebpd caused activation of Cebpa and Pparg [34, 35]. It was shown that
Egr1 and Egr2 (Krox20) have different roles in adipogenesis. While Krox20
is known to play a positive role (see ODE model and [32]), adipogenesis is
inhibited by ectopic expression of Egr1 and potentiated by knockdown of
Egr1 [17].

Cd36 is implicated in the transport of long chain fatty acids. It was also
shown that mice in which the corresponding gene was deleted were save from
high fat diet induced obesity. In [21] it was demonstrated that Cebpa, one
of the key factors of adipogenesis, regulates the expression of Cd36.

The list of proposed genes is reasonable from a biological point of view.
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Chapter 5

Conclusion

There exists no mathematical model of adipogenesis on molecular level and
the complicated mechanisms governing this process are far from being eluci-
dated. Here three different mathematical models were proposed.

A mathematical model provides an in silico test environment that is faster
and cheaper than the in vitro or in vivo equivalent. In this way it is easier
to conduct a preliminary examination of new research ideas.

Nevertheless a mathematical model is always an abstraction of a biological
process. The simplicity of the model is opposed to the complexity of the
process. A model never reflects the hole biological truth but it is able to
make predictions that can be used to determine new insight to the biological
process.

The more complicated a model is (the more factors it considers) the more
conditions are needed for reliable parameter estimation. The performance
and the generalization ability of each model increases with the number of
different conditions that were considered for data measuring.

The use of a mathematical model also allows target ranking. In this way
the impact on the dynamical behavior of the model of each of the considered
factors can be computed.

A model offers the possibility of in silico testing of biological hypothesis
before investing time and money in in vitro and in vivo testing. In this way
testable hypothesis can be formulated and the results could be helpful in
deciding over further research.
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Chapter 6

Appendix

6.1 ODE Model - parameters and additional

results

(a) Pparg (b) Cebpa

Figure 6.1: ODE model - gene expression levels of master regulators.

Events E1 E2 E3 E4 E5 E6 E7
Simulation time 0 720 2000 3000 4000 6000 8000

Table 6.1: Events at which the ODE parameters change. The total simula-
tion time was of 10080 which corresponds to 7 days of differentiation with
a resolution of 1 minute. The corresponding parameter values were listed in
Table 6.2.
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E1 E2 E3 E4 E5 E6 E7

a1 3e-4 0
a2 18e-4 0
a3 -3e-4 0
a4 -54e-4
a5 -4e-4
a6 32e-4
a7 12e-4
a8 -39e-4
a9 63e-4
a10 -42e-4
a11 4e-3 1e-9 0
a12 1e-8 1e-5 0
a13 -6e-5 0
a14 -6e-5 0
a15 1e-9
a16 1e-9 2e-3 0
a17 15e-4 0
a18 -9e-9 -5e-3 0
a19 -16e-4 -21e-3 4e-4
a20 3e-4 -15e-5
a21 14e-4 -24e-4 -42e-4 0
a22 14e-4 0
a23 -15e-4 15e-4 -13e-4 16e-4 -1e-4 -15e-4
a24 6e-5 -7e-5 15e-4 0
a25 1e-4 1e-5
a26 1e-5 2e-4 1e-5
a27 1e-5 1e-4 0 1e-7
a28 2e-2 1e-4 1e-7

Table 6.2: Computed values of the ODE model parameters. The parameter
values change at different events E1 to E7. The events are described in Table
6.1.
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(a) Input cocktail MI (b) Input cocktail D

(c) Input cocktail I (d) Input cocktail M

Figure 6.2: ODE model - simulated gene expression level of Cebpa for differ-
ent input cocktails.

6.2 ESN model - sample Matlab code for the

implementation of the model using leave-

one-out cross-validation

%% Echo state network model using leave one

%% out cross validation

%% Trains the model and than computes the

%% mean squared error of the model

%% during training phase

%%

close all

clear all

clc
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%load data for the different input cocktails

load(’DMI_LOO.mat’);

load(’DI_LOO.mat’);

load(’DM_LOO.mat’);

load(’MI_LOO.mat’);

load(’I_LOO.mat’);

load(’M_LOO.mat’);

load(’D_LOO.mat’);

% set initial state of the random generator

% reproducibility of results

rand(’state’, 1);

randn(’state’,1);

% define random sequence between each

% input/ouput data

%time steps of random input

rt = 1000;

%random iput

ri = randn(size(inputD,1),rt);

%random output

ro = randn(size(outputD,1),rt);

%train time

tt = size(inputD,2);

% total input and output

input = [inputDMI ri inputDI ri inputDM ri ...

inputMI ri inputI ri inputM ri ...

inputD ri];

output = [outputDMI ro outputDI ro outputDM ...

ro outputMI ro outputI ro outputM ...

ro outputD ro];

%iterating through the 7 input/output cases

for k = 1:1:7

%training phase

%preparing input/output data

[train_input train_output ...
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test_input test_output ...

text data_index fig] = create_in_out_LOO ...

(input,output,k,rt,tt);

N = 30; %units in dynamic reservoir

L = size(train_output,1); %output units

K = size(train_input,1); % input units

%weights from the input to the dynamic reservoir

w_scale = 0.9;

connect = 0.1;

C = rand(N,K)<connect ;

C=C.*(2*randint(N,K)-1);

Win = w_scale .* C;

% weights in the dynamic reservoir

W0 = randn(N,N);

[V,D] = eig(W0);

lambda_max = max(max(abs(D)));

W1 = W0./abs(lambda_max);

alpha = 0.9;

W = alpha.*W1;

% weights from the output units back to the

% dynamic reservoir

connect_back = 0.01;

C_back = rand(N,L)<connect_back ;

C_back = C_back.*(2*randint(N,L)-1);

wb_scale = 0.1;

Wback = wb_scale*C_back;

%training with teacher forcing

net_delay = 2;

noise_scale = 0.01;

X = zeros(size(train_input,2),N);

%for each time step

for i = net_delay+1:1:size(train_input,2)

noise = randn(1,N)*noise_scale;

X(i,:) = tanh(Win *train_input(:,i-...

(net_delay))+W*X(i-1,:)’+...

+Wback*train_output(:,i - ...
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net_delay)+noise’);

end

%computing Wout with Bayesian regulation

startM = 1;

m = X(data_index,:);

a = ones(1,size(m,1))’;

M = [a m]’;

T = output(:,data_index);

net = newff(minmax(M),size(T,1),{’purelin’}...

,’trainbr’);

net.trainParam.epochs = 50;

randn(’seed’,11);

net = init(net);

[net tr] = train(net,M,T);

Y = sim(net,M);

%mean squared error

mse_train_cebpa(k) = sum((Y(1,:)-...

train_output(1,data_index)).^(2))/(length(Y(:,1)))

mse_train_fabp4(k) = sum((Y(2,:)- ...

train_output(2,data_index)).^(2))/(length(Y(:,2)))

%test phase

[mse_test_cebpa(k), mse_test_fabp4(k)] = ...

test_ESN_LOO_reg(test_input,test_output,...

net,X,Win,W,Wback,1000,text,fig);

end

%% Computes the mean squared error

%% of the network

%% RETURN VALUES:

%% ec = mean squared error of Cebpa

%% ef = mean squared error of Fabp4

%% INPUT PARAMETERS:

%% u = random input to the ESN

%% d = random output of the ESN;

%% net = network computing the output

%% of the ESN

%% Win = weights from the input units

%% to the dynammic reservoir
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%% W = weights of the dynamic reservoir

%% Wback = weights from the output

%% units back to the dynamic reservoir

%% r = delay

%% text, fig = used for ploting

function [ec,ef] = test_ESN_LOO_reg(u,...

d,net,X,Win,W,Wback,r,text,fig)

random_input = randn(size(u,1),r);

random_output = randn(size(d,1),r);

u = [random_input u];

d = [random_output d];

for j = 2:1:size(u,2)

Y(j-1,:) = sim(net,[1 X(j-1,:)]’);

%no teacher forcing is used anymore

X(j,:) = tanh(Win *u(:,j-1)+W*...

X(j-1,:)’+Wback*Y(j-1,:)’);

end

day5 = 0;

cebpa_esn = Y(r+day5+1:end,1);

cebpa_meas = d(1,r+day5+1:end-1)’;

fabp4_esn = Y(r+day5+1:end,2);

fabp4_meas = d(2,r+day5+1:end-1)’;

ec = sum((cebpa_esn - cebpa_meas).^(2))...

/(length(cebpa_esn));

ef = sum((fabp4_esn - fabp4_meas).^(2))...

/(length(fabp4_esn));

37



6.3 ESN Model - additional results

Figure 6.3: ESN model - case DMI using leave-one-out cross-validation: gene
expression level of Cebpa (upper part) and Fabp4 (lower part) during testing
phase.

Figure 6.4: ESN model - case D using leave-one-out cross-validation: gene
expression level of Cebpa (upper part) and Fabp4 (lower part) during testing
phase.
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