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Abstract

This thesis is situated in the scope of human action recognition and is concerned with

two major objectives. First, it presents a comparative study of five different multiple

instance learning (MIL) approaches and relates the results to those reported for state-of-

the-art approaches in this field. Second, this work considers whether a sparse, part-based

representation is able to support the consecutive classification process.

We investigate a non-negative matrix factorization with sparseness constraints and

determine how such a representation contribute to performance improvements. Further-

more, we analyse the impact of a structured initialization towards a better part-based

representation and present results for two different nearest neighbour approaches in a face

recognition experiment. In the main part of this thesis we investigate, whether a MIL

concept is suitable for an action recognition task. We perform a thoroughly and detailed

evaluation of different MIL approaches on the Weizmann action dataset and the KTH

benchmark.

Results on the ORL database of faces demonstrate that sparse, part-based representa-

tion beneficially supports the subsequent classifier. In particular, if the level of sparseness

is significantly greater than those obtained by an unconstrained matrix factorization, then

both classifiers achieved an increased performance compared to the unconstrained feature

representation. Results of our comparative study in HAR showed that three out of five

MIL methods achieved competitive or better accuracies compared to a linear SVM clas-

sifier, when evaluated on the Weizmann dataset. Evaluations on the KTH benchmark

demonstrate, that the best MIL approach (miGraph) performed equally well up to a mod-

erate level of noise. Finally, a solid comparison with recent approaches in the field of

human action recognition complements the discussion of both datasets.

Keywords. human action recognition, multiple instance learning, non-negative matrix

factorization, sparse coding.
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Kurzzusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der automatischen Erkennung von

menschlichen Bewegungsmustern in Videosequenzen. Das hauptsächliche Ziel der

Arbeit ist eine Vergleichsstudie von fünf unterschiedlichen Klassifikatoren, die alle im

Kontext von ‘multiple instance learning’ (MIL) definiert sind. Ein weiteres Thema

dieser Arbeit ist die Problematik der Merkmalsrepräsentation. Hier wird untersucht, in

wieweit eine zusätzliche Limitierung der Merkmale auf Objektteile den nachfolgenden

Klassifikationsprozess unterstützen kann.

Im Speziellen wird eine Variante der ‘non-negative matrix factorization’ (NMF) un-

tersucht, die eine weitere Restriktion in der Repräsentation erlaubt. Zusätzlich wird der

Einfluss einer strukturieren Initialisierung dieser Faktorisierung analysiert. In der Folge

werden zwei unterschiedliche Klassifikatoren (‘k-nächste Nachbarn Algorithmus’) evaluiert

und deren Resultate im Kontext der Gesichtserkennung verglichen. Im Hauptteil dieses

Werks erfolgt eine intensive Auseinandersetzung mit MIL, die der Frage nachgeht, ob ein

solches Konzept für die Problemstellung der Erkennung von Bewegungsmustern geeignet

ist.

Im Bereich der Gesichserkennung konnte gezeigt werden, das sich die alternative

Repräsentation von Merkmalen positiv auf das Klassifikationsergebnis auswirkt.

Eine geeignete Parametrisierung des Faktorisierungsprozesses erlaubte eine höhere

Erkennungsrate im Vergleich zu der Standardmethode. Die Ergebnisse der Studie im

Bereich menschliche Bewegungsmuster zeigten, dass drei von fünf MIL Ansätzen bessere

oder zumindest gleichwertige Resultate erzielten, wenn sie mit einer herkömmlichen

Klassifikationsmethode verglichen werden. Die Auswertung auf einer umfangreicheren

Datenbank lassen den Schluss zu, dass zumindest ein MIL Algorithmus (miGraph)

gleichwertig performant ist, sofern das Rauschen einen moderaten Anteil nicht übersteigt.

Ein umfangreicher Vergleich mit anderen Arbeiten im thematischen Umfeld rundet die

Evaluierung auf der jeweiligen Datenbank ab.
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If you would be a real seeker after truth, it is

necessary that at least once in your life you

doubt, as far as possible, all things.

Rene Descartes

Chapter 1

Introduction

1.1 Motivation

This thesis is situated in the scope of human action recognition (HAR), an emerging

research direction in the area of computer vision during the last decade. The interest in

this area is motivated from different fields of application. The fast growing amount of

on-line videos for example, raises new challenges in the context of semantic search. The

increasing number of surveillance cameras in a broader area of every day live promise a

wide field of applications. While manual inspection of this data become more and more

impractical, efficient methods for automatically recognizing unexpected action could help

us to observe critical areas at lower costs and could raise public safety. Similar methods

can be applied to sport videos, where the analysis of strategies and tactical movements

become a typical business for trainers and athletes.

It is important to thoroughly define the context of HAR, to distinguish our work from

similar research directives. Since recognition of actions can be performed at different levels

of abstraction, Moeslund et al. [46] introduced a taxonomy on that issue. Their hierarchy

established action primitives, actions and activities as basic concepts. The authors defined

action primitives as simple gestures at limb level, actions as cyclic or single whole-body

movements, and activities as a number of subsequent actions. Following these definitions,

we concentrate on actions as single body movements and do not consider interactions

between persons [56] or objects. Furthermore, the objective of HAR is contrary to the

field of gait recognition. Opposite to the goal of identifying personal styles of e.g. walking,

we have to generalize across these variations. Finally, it is important to mention that we

assume full-body movements, i.e., the whole human body has to be visible in the video

1



1.1. Motivation 2

data, and do not consider partial occlusions.

The process of feature extraction and representation is significant in every recognition

framework. First, the procedure has to preserve the relevant information from the visual

environment and, second, the encoding has to be sufficiently rich to allow for robust

classification. Due to the holistic nature of our feature extraction and the fact that complex

actions could be composed of multiple limb movements, we hypothesize that a intermediate

part-based representation of these features would support the later classification process.

In particular, we consider an algorithm called non-negative matrix factorization (NMF),

that allows only additive combination of intermediate parts, as one method to achieve this

kind of representations.

Machine learning concepts stimulated the field of computer vision over many years.

Discriminative classifiers like Support Vector Machines (SVM) have been used by many

authors [28, 33, 43, 47, 58] as part of their action recognition framework. Another popular

method for supervised learning is k-nearest-neighbour (k-NN) classification. This simple

but fundamental algorithm was used by e.g. [18, 38]. More sophisticated approaches,

like cascaded Linear Discriminant Analysis classifier (LDA) used by Roth et al. [55]

or probabilistic models used by Niebles et al. [48], demonstrate the variety of machine

learning methods in the area of HAR.

When applying supervised learning techniques, one decisive question emerges: How

much annotation is needed? The assumption of perfect labelled data results in limitations

for many proposed algorithm, when dealing with real world applications. For example,

manual annotation of many hours of surveillance videos is tedious and expensive. One

possibility to overcome this limit is Multiple Instance Learning (MIL). Inspired by the

recent advances in the field of face detection [5] and visual tracking [6], we strongly suspect

that this learning concept fits well into the context of HAR. The application of MIL in

this context is motivated in the following.

In the concept of MIL, samples (denoted as instances) are organized in bags and a bag

is simply a set of instances, which share a common label. In the scope of action recognition

a bag comprises all frames from a video presenting a specific action. Moreover, each frame

itself is represented by multiple image regions, which describe the locations of a single

or multiple persons performing that action. Hence, a instance or sample denotes the

encoding of an region showing the human body performing an specific action, and this

instance is extracted from a single frame of the video. The MIL concept assumes a bag

being positively labelled, if it contains at least one instance describing the specific action,
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whereas a negative bag contains only instances describing other actions.

These samples could be extracted manually or automatically using for instance the

method proposed by Dalal & Triggs [13]. As a consequence of an automatic process, these

samples might be misaligned with the human body and false detections may occur. To

create a perfectly labelled training dataset for supervised learning, one would need to either

manually localize the human body in every frame or filter out imperfect detection results.

In addition, each sample has to be labelled according to the performed action. Differently

in case of MIL, where only bags are annotated. Moreover, based on the MIL assumption, a

bag labelled positive (e.g., for action walking) comprises instances representing a walking

action as well as negative instances, e.g., those caused by an imperfect detector. The

objective in MIL is to derive a classifier that deals with the ambiguous instances within

the labelled trainings bags.

Negative instances originated by false detections are one argument for using MIL,

imprecise temporal segmentation of actions is another one. It is difficult do define the

exact beginning and ending of an action within a continuing video stream. Nevertheless,

MIL is able to handle this issue, due to the MIL assumption. Additional frames from the

beginning or end will generate further negative samples within the bag. However, under

the assumption that the positive action is performed between start and end frame, there

will be at least one positive instance. Therefore, the label of the bag will be positive for

the particular action.

Consequently, the effort of manual annotation could be heavily reduced using auto-

matic person detection methods, and the labelling could be performed based on sequence

labels, in contrast to a frame based interpretation.

The next section summarises recent approaches in the scope of HAR, without claiming

completeness. The reader is referred to Poppe [51] for a more comprehensive overview on

vision based human motion analysis.

1.2 State of the Art in HAR

Similar to the task of object recognition in single images, where a vast number of feature

detectors and descriptors have been developed [44], action recognition caused different

novel techniques for detecting and describing local portions in space and time, often called

spatio-temporal volumes.

Efros et al. [18] for example proposed an approach on action recognition several years

ago. Motivated from broadcast videos, where humans are typical around 30 pixels tall,
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they introduced a novel motion descriptor for recognizing actions at a distance. For that

they computed spatio-temporal volumes of each individual person by tracking them from

frame to frame. The representation is based on optical flow images in x and y direction

and since these are known to be noisy, their blurred versions are used for later recognition

in order to deal with small misalignments in space and time.

Alike traditional interest point detectors Laptev and Lindeberg [32] extended the no-

tion of spatial interest points to a temporal dimension. They introduced a detector that

is sensitive to pixel values with significant local variations in space and time. Their ex-

periments demonstrated that such locations often correspond to interesting events in the

video. By clustering local volumes around these events they evaluated a single action

model for a walking person and where able to detect and estimate the pose in the test

videos.

A novel approach to extract spatio-temporal features was proposed by Dollar et al.

[15]. As an alternative to space-time interest points [32], their detector is sensitive to

local intensity variations in the image that contain periodic frequency components. The

spatio-temporal neighbourhood of the detected location was used to compute different

descriptors, where a flat representation of image gradients in combination with a Principle

Component Analysis (PCA) worked best. This method was used later on by the same

author [33] and others [47] within their frameworks.

Other approaches pursued a dense sampling approach, i.e., Schindler and van Gool

[58]. They used form features based on Garbor filter banks and a dense optical flow

representation to encode the discriminative patterns in various response maps. Their

classifier, a combination of linear SVM, evaluates unseen videos frame-by-frame. The au-

thors claimed that a small portion of the action video is sufficient to achieve robust and

accurate recognition results. Interestingly they found out that an additional weighting

between appearance and motion features increases the overall accuracy. However, exper-

iments showed contradictory results, when comparing results from two state-of-the-art

benchmark datasets in action recognition. This leads us to the conclusion that no general

valid statement could be made. In section 3.4.1 we describe our results on an experiment

investigating the influence of static and dynamic feature combinations.

Junejo et al. [28] proposed an alternative concept to overcome several limitations of

current methods like simple background, static camera, or limited view variations. They

considered action recognition under view changes and developed a representation of ac-

tions that captures structure of temporal similarity and dissimilarity. These descriptors
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are extracted from the self-similarity matrix of different patch based or body part tra-

jectory representations of human actions. Neither multi-view correspondence estimation

nor explicit modelling of body parts is needed by their concept. Although designed for

recognition across multiple viewpoints they showed state of the art performance results

on the single view Weizmann database (see section 3.3.2 for a description of this dataset).

However, their approach need a sufficient large number of frames per video to extract a

useful similarity matrix and therefore processing the whole video data is usually required.

Ali et al. proposed a new kind of kinematic features set and showed improved perfor-

mance by using MIL in an human action recognition task [2]. The contribution of their

work is twofold. First they developed a new set of features that are derived from the

optical flow of a sequence of images. They call them kinematic features motivated by

the assumption that different aspects of dynamic motion patterns within the optical flow

field can be represented more discriminative compared to the standard flow. Second and

more related to our work is their computation of kinematic modes and the application of

multiple instance-based learning in the context of human action recognition. Following

the spirit of the diverse density framework originated by [14] they projected their feature

representation into a single instance space and a k-NN classifier was trained to predict the

actions in unseen videos.

It is obvious that the applied representation has to be sufficiently rich to allow for

robust recognition of the action. It also seems to be accepted in the community that a

combination of multiple cues (e.g. appearance and motion) beneficially supports the later

classification. The reader is referred to the work of Wang et al. [65] for a comprehensive

study on valuable detector/descriptor combinations.

One study that clearly showed the benefit of appearance and motion features was

presented by Mauthner et al. [43]. Their framework for classifying short action sequences

is able to recognize human actions by using only two frames. They showed that similar

poses present in different actions lead to an ambiguous representation in the appearance

cue. These actions can be distinguished by the additional use of motion information.

Therefore, a histogram based representation of both pixel intensity and dense optical

flow features was used and further processed by applying a NMF to get compact and

robust features. Multiple SVMs complete their frame-wise action recognition system and

during experiments they showed highly competitive performance results on the Weizmann

database.
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Contrary to the previous work Thurau and Hlaváč [62] ignored motion features at all.

They concentrated on the idea of view or pose based action recognition from single images

and image sequences. Assuming that different actions share common pose appearances,

their approach represented different actions as histograms of pose primitives. These proto-

typical pose descriptors are learned from training data by separating them from clutter via

simple background subtraction. During training NMF is used to build a lower dimensional

representation of both human poses and background. Agglomerative clustering reduced

the number of prototypical descriptors and an additional information criteria introduced a

weighting for more informative cluster entities w.r.t particular actions. They showed high

competitive recognition performance on the Weizmann dataset when dealing with single-

and multi-frame evaluation.

While the aforementioned methods consider action recognition and assume a separate

preprocessing step for localizing them, more advanced approaches perform both objectives

simultaneously.

Niebles et al. [48] presented an unsupervised learning method that is able to recognize

and localize multiple actions. Based on space-time interest points [15] they used a k-

means clustering with a Euclidean distance metric to derive a code book representation.

The authors empirically evaluated two probabilistic models and showed their robustness

against noisy features. Although Niebles et al. claimed their method to be unsupervised

in the sense of action classes, the number of different actions has to be known in advance.

However, their algorithm is able to recognize and localize multiple actions, even in long

video sequences.

A different method aiming recognition and localization was introduced by Mikolajszyk

and Uemura [45]. They learned a vocabular forest by extensive feature extraction out of

the trainings data using different detectors and features describing gradient, edge, as well

as motion information. The authors used a model-based approach to represent actions in

order to encode global structure and the relations among moving parts. The major contri-

bution of their work was a model based action representation that makes their approach

able to localize multiple actions in the image, while a robust and efficient processing was

achieved by the use of multiple vocabular trees.

A recent approach for HAR was proposed by Yao et al. [72]. Their Hough transform-

based voting method is able to classify and localize actions in a probabilistic framework.

Yao et al. trained one single classifier, while sharing common features across multiple

action classes. Their representation is a composition of low-level features derived from
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gradients and optical flow estimates. By utilizing randomized trees and following a dense

sampling strategy they achieved state-of-the-art performances on different standard bench-

marks including UCF sports dataset [53] and several surveillance scenarios from the UCR

Videoweb activities dataset 1.

Another bag-of-word approach was proposed by Laptev et al. [33]. They addressed the

problem of more realistic HAR. In particular, they considered an automatic annotation

and segmentation of the video data by the use of movie scripts and subtitle information

in combination with automatic text classification algorithms. They used a combination

of shape and motion features to describe the location around previous detected space-

time interest points. Like other authors [38, 48] they build a bag-of-word representation

for both HOG and HOF features and evaluated various grid configurations for feature

extraction in the space time volumes. They demonstrated the robustness of their method

with 10 % decrease in accuracy in the presence of 40% label noise on the KTH dataset and

other more challenging benchmark datasets. However, their automated video annotation

algorithm is limited to scenarios where scripts and subtitles are available.

Niebles and Fei-Fei [47] proposed a hierarchical approach that combines static shape

features and motion features based on spatio-temporal interest points [15] on the lower

layer and proposed a constellation model by combining parts on an intermediate layer of

their hierarchical model. Exploring the contribution of different feature types they empir-

ically showed that on the Weizmann dataset the combination of both features provides the

best representation. In addition, the motion cue is preferable when using a single feature

type.

Recently, another hierarchical framework was presented by Kovashka and Graumann

[31]. They extended the bag-of-word representation of videos and proposed a novel com-

pound feature-centred descriptor that is build on multiple levels of their hierarchy. A

specific neighbourhood formation in space and time is used to generate the compound

feature on the next upper level. The initial descriptors are conducted either from dense

interest points and their HoG3D features [30] or from HOG [13] and HOF [43] repre-

sentations for a sparse sampling strategy. They evaluated their framework on the UCF

sports benchmark as well as on the KTH dataset of actions. Section 3.3.2 provides a brief

description of the KTH data.

Special focus has been pointed towards efficient methods by the promise of interesting

application areas. Like Mikolajszyk and Uemura [45], Roth et al. [55] proposed a very
1http://vwdata.ee.ucr.edu

http://vwdata.ee.ucr.edu
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efficient method for recognizing human actions. While using the same representation as

[43] to guarantee effective and real-time feature extraction, an efficient cascaded Linear

Discriminant Analysis (LDA) classifier significantly speeds up the overall performance

of their framework compared to SVM based approaches. In addition, they empirically

demonstrated that a weighting between different cues such as motion and appearance

does not help to increase the performance and refuted suggestions by other authors [58].

Roth et al. achieved state-of-the-art performance results on standard benchmark datasets

and showed that their framework is able to detect human actions on more challenging

data in real-time.

Mauthner et al. presented a novel prototype-based action recognition framework in

[42]. A sufficiently rich representation based on multiple feature cues was used to derive a

vocabular tree for each feature channel individually. To further increase the classification

performance, they proposed a temporal weighting of cues that depends on the current input

data. Since this weighting is estimated during training, their method allows an efficient

action recognition on a short-frame basis. A comprehensive evaluation was performed on

the KTH and the Weizmann dataset and their approach outperformed existing state-of-

the-art methods.

1.3 Objectives and Outline of the Thesis

We summarized the main objectives of our work in the following.

• We consider whether a sparse part-based representation is able to support the sub-

sequent classification stage. We investigate a constrained NMF approach as well as

a structured initialization method to obtain such a representation. We evaluated

the proposed feature encoding in the context of face recognition and in an action

recognition framework.

• The major objective is a comprehensive analysis of five different MIL approaches in

the scope of HAR. We performed a thoroughly evaluation using two state-of-the-art

benchmark datasets and compared our results with those achieved by other authors.

The remainder of this thesis is structured as follows:

Chapter 2 concerns the issue of sparse part-based representation, discusses the NMF

with sparseness constraints and the particular choice of encoding parameters. It

presents results of two nearest neighbour classifiers and demonstrates the advantages

of the particular feature encoding regarding recognition performance.
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Chapter 3 introduces the basic concept of MIL, reviews the investigated MIL ap-

proaches, describes the evaluation schema of our comparative study and presents

results on two different action recognition benchmarks.

Chapter 4 provides a brief summary of this work and reviews our contributions.



Reality is only a Rorschach ink-blot, you know.

Alan Watts

Chapter 2

Sparse Representation

Contents

2.1 Part-based and Sparse - Two Principles . . . . . . . . . . . . . . 10

2.2 Part-Based Representation via Sparse NMF . . . . . . . . . . . 12

2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

The major objective of this chapter is to empirically demonstrate that a sparse part-

based representation supports the consecutive classifier. Hence, we evaluated the sparse

non-negative matrix factorization (NMF) approach [26] in a face recognition task, that was

designed as an intermediate evaluation step towards our main topic – HAR. Although, any

other recognition task would have been appropriate, we focussed on this restricted problem

domain, to concentrate on an extensive exploration of the parameter space. This would

have been costly with the datasets used in section 3.3.2. Furthermore, the visualization

of e.g., basis faces allows an intuitive interpretation and the effect of different sparseness

constraints can be easily illustrated. This would have been more complicated in case

of HAR, since the histogram-based features decompose the geometric information of the

subjacent image. However, we used the methods and findings described here to encode

the features for our comparative study in the context of HAR (see chapter 3).

2.1 Part-based and Sparse - Two Principles

Part-based representations are motivated by psychological and physiological findings, and

several theoretical approaches for object recognition are drawn upon such theories [7,

10
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17]. Lee and Seung demonstrated that NMF is able to learn a part-based representation

in the context of face recognition [34]. The same authors [35] as well as Paatero [50]

proposed different algorithms for this factor analysis technique, however, the multiplicative

algorithms by Lee and Seung have been widely used for various problems in computer

vision due to their simplicity. Guillamet et al. [23] compared the representations obtained

by NMF and Principal Component Analysis (PCA). They empirically demonstrated the

advantages of NMF in a patch classification framework and showed better result compared

to PCA, especially, for scattered classes. Furthermore, NMF was used to classify faces in

[24], but the technique of factor analysis has been used in other research areas as well.

Shahnaz et al. [60] for example introduced a method to identify and cluster semantic

textual features within documents.

A few years ago sparse representations have become popular in the area of signal

processing and information theory. Donoho provided an abstract framework on this issue

in [16]. He showed that the combinatorial problem of finding sparse solutions to systems

of linear equations can be solved by minimizing the L1 norm. Wright et al. [71] used these

findings and proposed a robust method for face recognition in the presence of occlusion.

Their algorithm encodes the test image as sparse linear combination of the trainings data

and models the sparse error caused by the occlusion. They achieved superior performance

results using raw images without any dimension reduction or feature selection.

Another interesting approach was proposed by Agarwal et al. [1]. The authors fo-

cussed, in contrast to Wright et al., on an object detection task, i.e., distinguish between

object and non-object images and additionally localize the objects present in the image.

They performed feature extraction on interest points and automatically constructed a

vocabulary based representation for each object. The learned classifier used information

regarding the spatial relations among parts and were evaluated on challenging natural

imagery.

The combination of these two principles, the part-based representation derived via

NMF and a sparse encoding, was exploited by Heiler and Schnörr [25] and Hoyer [26].

Both approaches extended the basic NMF formulation by introducing sparseness con-

straints and derived different algorithms to solve the modified problem statement. Heiler

and Schnörr defined the sparsity-constrained NMF problem by introducing sparseness in-

tervals, that have to be predefined by the user. They developed efficient algorithms based

on second order cone programs (SOCP), which could be solved efficient and fast. The

performance evaluation demonstrated that their methods perform similar compared to
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the multiplicative update algorithm by Lee and Seung, with faster convergence and higher

accuracy for high-dimensional datasets. They achieved similar reconstruction errors with

less computational effort compared to Hoyer’s approach.

However, in our work we focused on the work of Hoyer [26] due to two major reasons.

First, the sparseness could be accurately controlled for basis vectors and coefficients using

one value for each. This confines the number of parameters, which have to be optimized

during training. Second, both methods perform almost equally well w.r.t the reconstruc-

tion error, while [25] is the faster algorithm. Since our evaluation focused on comparing

MIL algorithm, we decided to accept the increased computational effort in the representa-

tion stage of our framework. The final and more practical reason was that the algorithm

of Heiler and Schnörr depend on a commercial SOCP solver 1.

2.2 Part-Based Representation via Sparse NMF

This section introduces the basic concepts and methods used in our experiments. Starting

with the multiplicative algorithm for NMF proposed by Lee and Seung [35], we give a brief

review of Hoyer’s sparse NMF extension [26], present a structured initialization approach

for NMF and conclude with a brief overview of the two nearest neighbour classifiers used

in Section 2.3.

Non-negative Matrix Factorization: The problem statement of a NMF can be writ-

ten as follows. Given am×n non-negative matrix V, find two non-negative factor matrices,

W and H such that

V ≈WH, (2.1)

where W is a m × r matrix of basis vectors and H is the r × n matrix of coefficients.

Usually, r is chosen such that r � n, to reduce the dimensionality of the feature space.

NMF constrains all non-zero elements in W and H to be positive and every column vector

v in V can be written as v ≈ Wh. This is an approximation by a linear combination

of all basis vectors, but contrary to PCA, this combination is purely additive. We used

the multiplicative update rule and the squared error function (euclidean distance) as pro-

posed in [35] as a baseline for our evaluation. The resulting optimization problem can be
1MOSEK: http://www.mosek.com

http://www.mosek.com
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described as
min
W,H

‖ V −WH ‖2

s.t. 0 ≤W,H.
(2.2)

This problem is convex in either W or H, therefore only local optimal solutions are

guaranteed.

NMF with Sparseness Constraints: Since our objective is to investigate sparse part-

based representations, we used the approach proposed by Hoyer [26]. Contrary to Hoyer,

who has only demonstrated that his algorithm is able to derive a part-based representation,

we have investigated whether such an representation can increase the performance of the

consecutive classifier. In the following we give a brief overview of this algorithm.

Hoyer’s NMF extension allows the user to control the sparseness of W and H explicitly.

The sparseness measurement used in [26] is defined as

sparseness(x) =
1√
n− 1

(√
n− ‖ x ‖1
‖ x ‖2

)
, (2.3)

where n denotes the dimensionality of x. This measure, which is based on the L1 and L2

norm, evaluates to zero, if all components of x have identical magnitude. On the other

hand, a value of one can only be attained, if and only if exactly one non-zero component

exists in x. The constrained NMF problem can therefore formulated as follows:

min
W,H

‖ V −WH ‖2

s.t. 0 ≤W,H

sparseness (wi) = Sw

sparseness (hi) = Sh,

(2.4)

where wi denotes the ith column of W (i.e., a basis vector) and hi denotes the ith row

of H. Hoyer’s NMF algorithm is a projected gradient descent algorithm that utilizes a

projection operator, which guarantees the sparseness constraint for all columns of W and

rows of H during each iteration.

NMF Initialization: We already mentioned previously that NMF may converge to a

local solution. It heavily depends on the starting conditions, to which solution the NMF

converges. The initial estimates for W and H affect the final solution and the number of

iterations till convergence. Most applications initialize both matrices with random positive
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numbers. However, we show in section 2.3 that a more structured initialization leads to a

better part-based representation.

In our framework the Non-Negative Double Singular Value Decomposition (NNDSVD)

schema was used to avoid the initialization dilemma. This method, proposed by Boutsidis

and Gallopoulos [9], exploits the SVD as a optimal rank-r approximation of the matrix

V, where r denotes the number of basis vectors (also known as modes). The algorithm

computes the r leading singular triplets of matrix V = UΣV∗. In each iteration step

j = 1 . . . r, a matrix Cj = ujv>j is obtained and its non-negative section Cj
+ is used to

form the maximum singular triplet (u, s,v). The column wj of W is then initialized to u

and the row hj of H is set to v> scaled by the singular value s.

The NNDSVD provides initial values that enables the subsequent NMF algorithm to

reduce the initial residuals after very few iterations [9]. Furthermore, the algorithm is able

to exploit some of the inherent structure of the data. Primarily, the deterministic nature

of NNDSVD provides the follow-up NMF with a static initialization, i.e., multiple runs

will converge to the same local minima.

Nearest Neighbour Classifier: This chapter was intended to demonstrate that a

sparse representation supports the consecutive classifier. Therefore, we evaluated the

performance of a nearest neighbour (NN) classifier using these features.

Every classifier is based on some similarity measurement and in the absence of prior

knowledge, the Euclidean distance is a widely used metric for that purpose. However,

we want to emphasize that the basis vectors of NMF are non-orthonormal, contrary to

those derived by PCA. The additional constraints regarding non-negativity cannot yield

orthonormal bases.

To compensate for that, we evaluated an additional classifier approach and made

sure that our results aren’t affected by this issue. The Large Margin Nearest Neighbour

(LMNN) classifier was introduced by Weinberger et al. [69]. They proposed a method

for learning a Mahanalobis metric from labelled examples in a NN classification frame-

work. Figure 2.1 illustrates the schematic overview of this method. The left side shows

the local neighbourhood of sample xi based on the Euclidean distance before training.

The objective during learning is to optimize a metric, such that k-nearest neighbours of

xi always share the same class label. Simultaneously the metric has to separate examples

from different classes (blue and red samples) by a large margin. The result of the trainings

step is illustrated on the right side of fig. 2.1. Neighbours of xi with similar label lie close

to xi, while differently labelled samples are separated by a large margin. Weinberger et
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al. proposed an efficient algorithm for solving such an optimization problem by using a

semidefinite program and demonstrated the approach in the context of face recognition,

text categorization, recognizing handwritten digits, and others.

Figure 2.1: Schematic illustration of the LMNN approach: The similarity metric
is optimized such that neighbours sharing the same label lie with a
smaller ε-environment after training. Differently labelled samples are
separated via a margin, which has to be at least the distance from xi

to its similar neighbours. Reprinted from [69].

2.3 Experiments

The experiments in this section are designed to demonstrate that a sparse part-based rep-

resentation could support the subsequent classifier. Therefore, we focussed on a restricted

problem domain — face recognition. Although, any other recognition task would have

been appropriate, the encoding of faces allows an intuitive interpretation of intermediate

results, e.g., basis faces, which could be easily visualized. The task involved the recognition

of a particular face from an unseen pose. During training we derived different represen-

tations using unconstrained and sparse NMF with structured initialization (NNDSVD)

and evaluated two different classifiers to verify our hypothesis. We selected a widely used

dataset, which is described in the following.

2.3.1 ORL Database of Faces

We used the ORL database [57], which contains 400 images from 40 different subjects.

These subjects are either students from Cambridge or Olivetti employees (in both cases

male and female) and their age ranges from 18 to 81 with the majority between 20 and 35.



2.3. Experiments 16

The database was collected from 1992 to 1994 and no restrictions were made regarding the

facial expression. The recording conditions allowed only little side movement and limited

tilt, hence only frontal faces are represented in the collection. Most of the subjects were

photographed at different times with varying lightning conditions except the homogeneous

dark background. Additional intra-class variation was caused by subjects with amblyopia.

Some of the images shows them with and the rest of the subset without wearing their

glasses. The images are encoded with 256 grey levels per pixel and each image has a

92×112 pixel resolution. Figure 2.2 shows an overview of all subjects in the ORL dataset.

The dataset can be retrieved from the URL2.

Figure 2.2: The ORL database of faces: It contains 400 images from 40 different
subjects. The recording conditions were limited, thus only frontal
faces are represented in the collection.

2http://www.cl.cam.ac.uk/Research/DTG/attarchive:pub/data/att_faces.zip

http://www.cl.cam.ac.uk/Research/DTG/attarchive:pub/data/att_faces.zip
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2.3.2 Sparse NMF using Structured Initialization

In the following we compared two methods to obtain a part-based representation. The

multiplicative NMF algorithm [35] (eq. (2.2)) represents the baseline approach. We claim

that Hoyer’s sparse NMF extension [26] provides better representations with respect to

the accuracy of the subsequent classification process. To provide a equitable comparison,

we applied the NNDSVD approach to obtain a structured initialization of W and H, for

both of them.

Table 2.1 depicts the natural sparseness of the basis vectors wi, using the measurement

defined in eq. (2.3). We reported the average and standard deviation over all basis wi :

i = 1, . . . ,number of modes. Obviously, when projecting the images to a low dimensional

space, a small number of basis vectors have to encode the variance in the input data and

the basis is seldom sparse. Matrix W becomes less compact, when the number of modes

increase, but table 2.1 shows a slow change and the level of sparseness remains low.

modes 10 20 30 40 50 60 70 80

sp(wi) 0.33± .05 0.36± .05 0.40± .04 0.43± .05 0.44± .05 0.45± .05 0.47± .06 0.48± .05

Table 2.1: Average sparseness of the basis vectors wi achieved using NMF with structured
initialization of W and H. An increased number of modes in W results in more sparse
basis vectors. However, the effect is limited, since 0 ≤ sp(wi) ≤ 1.

Figure 2.3 illustrates 40 basis images using the NMF with structured initialization after

200 iterations. It shows facial parts like forehead, chin and eyes, but unlike expected these

parts are not separated in one particular basis vector. This is evident with the observation

summarized in table 2.1 — the sparseness of W is low.

We claimed that a structured initialization of W and H supports the consecutive sparse

NMF towards a more part-based representation of the input data. In the following we

compared the derived representations as well as the characteristics regarding convergence

using random initialization and NNDSVD. The results will elucidate the advantages of a

structured initialization, when used in combination with Hoyers’s NMF method.

Figure 2.4 shows a comparison between basis images obtained from the sparse NMF

approach. We fixed the number of modes to 40 and constrained the sparseness of the basis

vectors wi to a value of 0.8. The maximum number of iterations was set to 200. In case of

a random initialization, the following sparse NMF algorithm derived the scattered basis

vectors illustrated in fig. 2.4(a). The matrix factorization tends to optimize individual

pixel locations rather than coherent regions. Figure 2.4(b) shows the basis images, when
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Figure 2.3: Basis images derived from the ORL database using NMF and struc-
tured initialization. The obtained representation is global, since mul-
tiple parts, like forehead, chin, eyes, etc., are present in each basis
image.

(a) Basis images obtained using sparse
NMF with random initialization of W and
H.

(b) Part-based representation derived from
the sparse NMF approach using structured
initialization (NNDSVD).

Figure 2.4: Comparison between basis images derived from the sparse NMF ap-
proach using 40 modes and 200 iterations. The sparseness constrain
was set to 0.8. The structured initialization beneficially supports the
NMF algorithm to obtain a better part-based representation.
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using the initial matrices W,H obtained by a method proposed by Boutsidis and Gal-

lopoulos [9] (NNDSVD). These results suggest, that a structured initialization supports

the consecutive sparse NMF algorithm towards a much better part-based representation.

Figure 2.5 illustrates our last remark regarding initialization. The NNDSVD method

provides starting conditions, that allows the subsequent NMF to significantly reduce

the approximation error after few iterations. Each plot depicts the approximation error

eq. (2.2) versus the number of iterations. Although, this property was already observed in

[9], we investigated the issue using various levels of sparseness. Note that fig. 2.5(b) uses

a different scaling on the Y-axis for better visualization. The line plot denoted as without

(magenta) was generated using standard NMF.

Finally, we want to emphasize that a lower approximation error does not automatically

guarantee better recognition results. Consider the objective functions on top of fig. 2.5(a)

and fig. 2.5(b) (black line plot). Both of them were generated by limiting the sparseness of

the basis vectors wi to 0.8. In the next section we will illustrate that such a representation

allows for better performance results, regardless of the considerable larger reconstruction

error.
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(a) Progress of the objective function using un-
constrained and sparse NMF with random ini-
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(b) Progress of the objective function using
unconstrained and sparse NMF with struc-
tured initialization (NNDSVD).

Figure 2.5: Different development of the approximation error (denoted as ‘objec-
tive function’) when comparing (left) random initialization vs. (right)
structured initialization. Note the different scaling for the axis of the
ordinate. Structured initialization leads to a faster reduction regard-
less of the sparseness level.
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2.3.3 Recognition Results

We compared the recognition accuracy of a simple NN classifier using the Euclidean dis-

tance metric and the LMNN classifier described in section 2.2. Since the ORL dataset

comprises ten different facial poses per subject, we performed a 10-fold cross validation.

For each run, one pose per subject was left out for testing and all remaining images were

used as training samples. During training we applied the NNDSVD method described in

section 2.2 to obtain the initialization of W and H. Afterwards, we performed the NMF

as well as the sparse NMF approach on the trainings data. Due to the deterministic nature

of the initialization process, multiple runs of the matrix factorization could be avoided.

We performed multiple runs using different number of basis vectors wi, to investigate

the influence of the feature dimension. Furthermore, we evaluated different constraints

on W using the sparse NMF method, to verify our hypothesis. Once a representation is

found, we projected the test images using the same iteration rules already explained in

section 2.2, while keeping the matrix of basis vectors W constant. The task of the final

classifier was the correct identification of the subject from an unseen pose image.

Figure 2.6(a) depicts the recognition performance for a NN classifier. In case of an

unconstrained NMF representation (blue curve) no significant differences in the classifica-

tion performance could be recognized, if the number of basis vectors exceeds 20. However,

when using sparse features and a sufficient number of modes, the accuracy could be further

improved. For example, using 50 base dimensions and setting SW = 0.8 increased the ac-

curacy by ≈ 1.25%. This emirically demonstrates that a sparse representation beneficially

supports the following classification process.

However, fig. 2.6(a) also depicts the correlation between sparseness and feature di-

mensionality. Too few basis vectors and a strong constraint regarding sparseness led to a

representation, which is not distinctive enough. This effect is illustrated for SW = 0.9 and

modes < 60 as well as for SW = 0.8 and modes < 30.

We observed a similar behaviour using the LMNN classifier. During training k = 3

nearest neighbours were used to learn the metric, as suggested in [69]. Figure 2.6(b)

summarizes the achieved recognition performance using the same evaluation schema as in

fig. 2.6(a). Again, a classifier using the sparse representation is able to perform better, if

the features space is large enough. Figure 2.6(b) also indicates that the optimal dimension

of the feature space lies between 30 and 60, when using a sparseness level of 0.7 or 0.8. For

feature dimensions ≥ 70 no significant improvement could be observed, compared to the

unconstrained representation. We hypothesize that increasing the number of modes might
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(a) Recognition performance of a nearest
neighbour classifier using unconstrained and
sparse NMF representations.
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(b) The accuracy of the LMNN classifier (k =
3) could be improved using sparse features
(SW = 0.7− 0.8).

Figure 2.6: A sparse representation is able to support the subsequent classifier.
A NN classifier utilizing the Euclidean distance metric (left) and the
LMNN classifier proposed by [69] (right) performed better, when us-
ing features obtained by NMF with sparseness constraints. The base-
line in both plots (blue curve) constitutes an unconstrained NMF.

decompose meaningful parts and the obtained encoding is therefore more ambiguous for

the consecutive classifier.

2.4 Conclusions

In this chapter, we demonstrated that a sparse part-based representation increases the

performance of the subsequent classifier. First, we showed that the features obtained

by using Hoyer’s NMF with sparseness constraints [26] are more compact in contrast

to the multiplicative NMF algorithm proposed by Lee and Seung [35]. Second, when

using a structured initialization method (NNDSVD [9]) instead of the widely used random

initialization, the subsequent sparse NMF derives a better part-based encoding of the input

data.

In the context of HAR, such a part-based representation might be beneficial. The

proposed combination of structured initialization and sparse NMF decomposes the entire

feature vector, representing the human body, into multiple compact parts (e.g., limbs,

head). Figure 2.4(b) illustrates this effect in the scope of faces, where black regions denote

non-zero elements in the basis vector. One particular part is represented by multiple
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attributes in w, contrary to fig. 2.4(a), where only few attributes encode this region in the

underlying image.

Finally, we confirmed our initial hypothesis by comparing the recognition accuracy

using differently sparse representations. In particular, we evaluated two different NN clas-

sifiers (NN vs. LMNN [69]). For both classifiers we observed the following behaviour. If

the level of sparseness SW of the basis vectors in W is significantly greater than those

obtained by unconstrained NMF, then a better recognition accuracy could be achieved.

Nevertheless, the results also exhibited the limitations of sparse features. If the dimen-

sionality of the feature space was low, and the sparseness constraint too strong, then we

observed a significant reduction of the classification performance. We hypothesize that

the obtained representation was not sufficiently rich to encode the variations of the orig-

inal data. Since the number of basis vectors wi was low and they had to be sparse, this

consequently led to a reduced number of parts in the final encoding. For example imagine

an extreme condition having only three modes, e.g., the nose, the eyes, and the chin. It

seems unlikely that a classifier successfully discriminates a larger number of individual

faces.



I hear and I forget. I see and I remember.

I do and I understand.

Confucius

Chapter 3

Multiple Instance Learning for

Human Action Recognition
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We have already motivated MIL in the scope of action recognition (see section 1.1). By

the use of this concept, the effort for preparing suitable trainings data could be reduced.

The labelling of individual samples is relaxed to labelling of bags (sets comprising multiple

samples). Furthermore, when using object detection processes, extensive filtering of false

positives or selection of adequate detection results can be omitted.

MIL has drawn much attention in the computer vision community, and different fields

of applications have been identified. Viola et al. [64] for instance proposed a multiple

instance boosting algorithm (MILBoost) and evaluated it in an object detection task.

Within their application, they treated images as bags and a sub-region depicting a persons

head (the object) as positive instance. Sub-windows, which did not overlap with the

object, were considered negative. Viola et al. demonstrated superior performance results

compared to a AdaBoost framework [63].

Babenko et al. [6] applied MIL in the context of visual tracking. The adaptive ap-

pearance model of the tracker is updated using the concepts of bags and instances. The

ambiguity in the data originates from the updated tracker position. In particular, positive

23
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samples are extracted within an ε-environment of the current tracking location. Negative

ones are cropped out from distant regions in the actual frame. The proposed method

outperformed other online tracker methods and achieved real-time performance.

Roth et al. [54] introduced a robust multiple camera learning approach based on MIL.

They focused on co-training of several classifiers and utilized the homography informa-

tion to exchange detection results from distinct camera views. Their efficient and robust

concept collaborates only during training and performance results where presented for the

task of person detection. They showed the generality of the method on different standard

datasets with varying complexity and achieved superior results compared to state-of-the-

art detector approaches.

Differently to the before mentioned approaches, uncertainty in the context of action

recognition consists of two distinct parts. First, the location of the action in one single

frame is unknown, i.e., where in the image is the person performing the action. Second,

the temporal position of the action in the sequence is unknown. One can only assume

that the action is present. The ambiguity is passed on to the MIL algorithm, which now

has to figure out an appropriate decision boundary. The promising results of the previous

approaches in computer vision motivated us to apply MIL also in the context of HAR.

In the following we introduce the mathematical formulation of MIL in section 3.1

and discuss the differences to standard supervised learning. One major objective of this

thesis is to compare different MIL approaches against each other. Therefore, we discuss

five selected methods in section 3.2 and present experimental results in section 3.4. A

detailed comparison of diverse approaches in the context of HAR concludes each individual

benchmark.

3.1 Multiple Instance Learning

The term Multiple Instance Learning (MIL) was originally introduced by Dietterich et

al. in the context of drug discovery [14]. Several years before Dietterich, in the early

1990 Keeler et al. [29] originated the spirit of Multiple Instance Learning. Starting with

the ‘axis-parallel rectangle’ algorithm in [14], the MIL paradigm has emerged as learning

algorithm. One significant contribution in this field was introduced by Maron et al. [41].

Their Diverse Density (DD) algorithm was claimed as a general framework for solving the

MIL problem. Andrews et al. [3] modified the standard Support Vector Machine (SVM)

approach for the MIL paradigm and formalized a statistical learning framework that is

able to handle ambiguous examples.
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The next section emphasizes the differences between MIL and supervised learning and

introduces the mathematical formulation of this alternative learning concept.

3.1.1 Supervised vs. Multiple Instance Learning

As mentioned at the beginning of this chapter MIL can be seen as one alternative to

the supervised learning concept, particularly, when dealing with ambiguous labels. The

main difference lies in the way how labels are handled during training. To clarify this, we

will review the supervised learning scenario and discuss its advantages and drawbacks in

comparison with MIL.

Supervised Learning: In supervised learning each example is an instance augmented

with a class label. Given a set of examples and their corresponding labels, the task of

the algorithm is to learn a function that predicts the label for unknown examples. The

output of the algorithm is a classifier or model of the data. Assuming binary class labels

the supervised learning scenario can be formally described as follows:

X = {x1, . . . , xn} xi ∈ Rd example

Y = {y1, . . . , yn} yi ∈ {0, 1} label

h(X ) : X 7→ Y classifier

(3.1)

Figure 3.1(a) depicts a simple 2D toy example where all positive instances (blue diamond)

are separated from the negative samples (green circle) through the dashed line illustrating

the decision boundary of the classifier h(X ). It is indispensable that all samples xi ∈ Rd

have a corresponding label yi ∈ {0, 1} assigned during training. Therefore, thoroughly

labelled training data is the prerequisite for supervised learning.

Multiple Instance Learning: The following simple MIL problem adapted from [14]

explains the key concept of Multiple Instance Learning and is illustrated in Fig. 3.2. Sup-

pose there are several faculty members, and each of them owns a key chain that comprises

a few keys. Some members are able to enter a restricted area (these members possess

a ‘positive’ key chain) and some are not (virtually ‘negative’ labelled key chain). The

exercise is to predict whether the investigated key chain gains access to the secret room.

The solution is to find the key that all ‘positive’ key chains have in common. Being able

to correctly identify the key that gives access to the restricted area, any other key chain

can be classified correctly – either it contains the required key, or not.
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positive samples

negative samples

(a) Supervised Learning

positive bags

negative bags

(b) Multiple Instance Learning

Figure 3.1: Different learning paradigms shown for a two dimensional two-class
toy problem. The dashed line illustrates the decision boundary of
the classifier for (a) supervised learning and (b) multiple instance
learning; each ellipse depicting a bag.

Figure 3.2: Bunch of keys illustration as Multiple Instance Learning (MIL) ex-
ample (adopted from [14], reprinted from [4])

3.1.2 Formalization of the MIL concept

MIL introduced the concept of bags and the a dataset X is organized in bags. Each

bag Bi consists of an arbitrary number of samples xij ∈ Rd. These samples are also

called instances. Since the MIL problem was originally defined for binary cases, suppose

a two-class problem with labels yi ∈ {0, 1}. This leads to

X = {B1,B2, . . . ,Bn} ; Bi = {xi1, . . . , xim} ; xij ∈ Rd bags

Y = {y1, . . . , yn} ; yi ∈ {0, 1} label
(3.2)
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The label of bag Bi is derived via the standard MIL assumption (see eq. (3.3)). Negative

bags consist only of negatively labelled instances, while bag Bk is labelled positive if it

contains at least one positive instance xkj : ykj = 1. These constraints can be formalized

as
Bk is pos. iff ∃ xkj with ykj = 1, xkj ∈ Bk

Bk is neg. iff ∀
j
xkj with ykj = 0, xkj ∈ Bk

(3.3)

and are known as standard MIL assumption. However, there exist more generalized

instance-based assumptions for MIL, e.g., presence-based (related to the key chain ex-

ample (see fig. 3.2) which would imply doors with several locks), threshold-based (where a

bag Bk is labelled ‘positive’ if at least c instances have a positive label), or a count-based

MIL assumption. Weidmann et al. formed a concept hierarchy of these assumptions in

[68]. Different to the supervised learning scheme in eq. (3.1) the input of the learning

algorithm is a set of labelled bags. The labels of individual instances are not known dur-

ing training. It is even more ambiguous, due to the fact that within positive bags no

information about negative, or even unlabelled instances is present. Equation (3.2) and

eq. (3.3) summarize the problem statement formally. The task of every MIL algorithm is

to train either an instance classifier h(xij) or a bag classifier H(Bi) and formally denoted

as

h(xij) : X 7→ Y instance classifier (3.4)

H(Bi) : Xm 7→ Y bag classifier . (3.5)

However it depends on the algorithm which kind of classifier is learned, but the majority

of them formulate the instance classifier in eq. (3.4). Anyway, it is straightforward to

construct a bag classifier from an instance classifier via H(Bi) = max
j

h(xij).

Table 3.1 summarizes the notation used in this work regarding MIL and supervised

learning. We adopted the formalization basically from [4] and follow it, except when

otherwise specified, during the algorithmic description of different approaches.

3.2 MIL Algorithm Reviewed

In this section we briefly review the different MIL approaches used in our comparative

study. We begin with the formal description of each algorithm, continue with their char-

acteristic properties and finish each section with a discussion about their advantages and

drawbacks. In particular, we consider the question why this specific approach is worth
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xi ∈ Rd ith instance (supervised)
Bi : {xi1, xi2, . . . , xim} ith bag with m instances xij (MIL)

yj ∈ {0, 1} label of ith instance (supervised) or ith bag (MIL)
yij true label of jth instance in ith bag
n number of instances (supervised) or bags (MIL)
m number of instances per bag
d dimensionality of the feature space

h(X ) supervised classifier
h(x) instance classifier (MIL)
H(B) bag classifier (MIL)

Table 3.1: A summary of notation used to describe the basic concept of multiple
instance learning and the algorithms used in this work.

being selected in this work.

3.2.1 Kinematic-MIL

Ali and Shah [2] proposed a new kind of kinematic features set and showed improved

performance by using MIL in an human action recognition task. The contribution of their

work is twofold. First they developed a new set of features that are derived from the

optical flow of a sequence of images. They call them kinematic features motivated by the

assumption that different aspects of dynamic motion patterns within the optical flow field

can be represented more discriminative compared to the standard flow. As our work does

not focus on representation, we refer the reader to their work (see [2] sec. 3) for a detailed

description.

The second and more important contribution of Ali and Shah related to our work

is their computation of kinematic modes and the application of multiple instance-based

learning in the context of human action recognition. Emanating from kinematic features

they extracted kinematic modes from every single video. This is achieved performing Prin-

cipal Component Analysis (PCA) on the spatio-temporal volumes of each feature channel

separately. They claimed that such a representation is sufficiently rich to encode the es-

sential patterns of the human action, because each video presents only one action. They

claimed that such an representation is sufficiently rich to encode the essential patterns of

the human action, because each video presents only one action.

According to the notation in table 3.1 let

Bi = {xf
1

i1 , . . . , x
f1

in , x
f2

i1 , . . . , x
f2

in , . . . , x
fk

i1 , . . . , x
fk

in }
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denote the ith bag, xf
k

ij represents the jth kinematic mode in Bi (also known as instance

see the general formulation in section 3.1.2), and the superscript fk indicates the type of

kinematic mode with k = (1, . . . , 11). Following the spirit of the diverse density framework

originated by [14] and [12] the authors propose a kinematic-mode based embedding in a

high dimensional space FC , where C denotes the set of all kinematic modes xf
k

ij from

all trainings bags regardless of their label. Note that all modes in C are re-enumerated

without consideration of their bag-origin as xf
1

1 , . . . , xf
11

e . The conditional probability of

an attribute in C belonging to one bag is then given by

P (xf
k

e |Bi) ∝ d(xf
k

e , Bi) = max
j
exp
(
−
||xf

j

ij − x
fk

e ||2

σ2

)
,∀f j = fk. (3.6)

Within this single instance space FC each bag is represented by exactly one point m(Bi)

and is formally written as

m(Bi) =
[
d(xf

1

1 ,Bi), d(xf
1

2 ,Bi), . . . , d(xf
11

e ,Bi)
]T
. (3.7)

A simple nearest neighbour classifier in the single instance space FC is learned to predict

labels for the test bags.

Discussion: One interesting novelty of this approach is the use of PCA to encode spatio-

temporal patterns within each single video. We suspect that this additional step in encod-

ing individual action creates a kind of mid-level representation that allows more robust

classification. One the other hand, it is questionable, if such a representation is sufficient

for more complex actions, since, the number of modes for each feature type is constant for

all actions [2]. It seems obvious that a simple ‘single hand wave’ action can be encoded

more compactly as an asymmetrical ‘serve’ at tennis. Another possible disadvantage is

that the embedding depends on the number of bags used during training. Remember

that each bag m(Bi) is embedded in FC . The dimensionality of FC is |C| that is ‘num-

ber of modes per feature’ × 11 × ‘number of bags’. If a large number of training-bags

is used for such an classifier, the embedding step is slow and requires excessive memory

in both training- and testing-phase. Finally, we selected this approach, because it is the

only one that originally evaluated its potential on benchmark datasets for human action

recognition.
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3.2.2 miGraph

Motivated by the assumption that instances in a bag are not independently and identically

distributed Zhou et al. [77] proposed two alternative MIL approaches. Both take advan-

tage of the observation that many real objects are a structured composition of several

parts. Their framework is able to determine the inherent configuration between instances

representing such objects. This property supports the classification process, thus making

it more reliable and accurate.

Figure 3.3 depicts this idea of bags with instances not independently and identically

distributed. Each diamond is one instance in the bag. Note that during training no

knowledge concerning the true labels of instances is available. Thus, we illustrated all

samples omitting the label information. A solid line represents a stronger relation among

instances compared to the dashed line. Similar principles have been proposed in the scope

of object recognition and are known as constellation models, i.e. [67]. In order to avoid

an explicit model of parts, the relations in Zhou et al. [77] are learned during training.

Assume the left bag and the bag in the middle of fig. 3.3 being more similar than the

bag on the right side. The number of instances in the bags Bi are equal and the position

of the instances xij , representing the location in R2, are similar in all three bags. It is

obvious to see that ignoring the inherent configuration of the instances in each bag makes

the classification task difficult.

Zhou et al. evaluated both approaches on text and image categorization as well as

multi-instance regression. Their experiments support the hypothesis that relations among

instances in a bag conveys important information. Furthermore, they demonstrated that

the second method called miGraph performed better and is less computational complex

in contrast to the other method called MIGraph, especially when the size of the bags is

large. Thus, in our work we focus on miGraph and give a more formal description of the

algorithm in the following paragraph.

For miGraph an affinity matrix W i is derived for every bag Bi. This is done by

comparing the pairwise distances between all instances xin and xim in the bag with a

predefined threshold δ. The element wnm is set to 1 if this distance is smaller than δ, and

0 otherwise. The authors used Gaussian distances in their algorithm and set δi to the

average distance in the bag Bi:

winm =

{
1 iff exp( ||xin−xim||2

2σ2 ) ≤ δi

0 otherwise.
(3.8)
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Figure 3.3: Illustrating that relations among instances within bags can help clas-
sifying them. The left bag and the bag in the middle are more similar
than the bag to the right. Note that a solid line between instances
indicate a stronger relation compared to the dashed line (reproduced
from [77]).

Given the affinity matrix for two bags Bi and Bj in miGraph a kernel kg(Bi,Bj) is defined

to express the similarity between the bags. This kernel is formulated for Bi which contains

ni instances and Bj that consists of nj instances. To clarify, wiau is the element in W i at

the ath row and uth column. Using this notation the kernel is defined as

kg(Bi,Bj) =
∑ni

a=1

∑nj

b=1WiaWjb∑ni
a=1Wia

∑nj

b=1Wjb

k(xia, xjb), (3.9)

where Wia = 1/
∑ni

u=1w
i
au, Wjb = 1/

∑nj

v=1w
j
bv, and k(xia, xjb) = exp( ||xia−xjb||2

2σ2 ) is de-

fined similar to the distance metric in eq. (3.8). In order to solve the classification problem,

this kernel is fed into support vector machines.

Discussion: We strongly suspect that every human action has its own inherent struc-

ture, especially more complex ones, where i.e. multiple limbs are included. The results

proposed by Zhou et al. [77] provide a strong indication that utilizing the relations among

instances supports the final classification process. When applying such an approach to

human action recognition, we assume that these correlations can be represented in W i

and as a consequence making the classification less ambiguous. One disadvantage of the

method is its computational complexity, i.e., obtaining the kernel kg requires O(ni nj).

3.2.3 MILES

Another MIL approach that is based on the diverse density framework [40] is called Mul-

tiple Instance Learning via Embedded Instance Selection (MILES) and was proposed by

Chen et al. [12]. The embedding is based on the instances in every bag, but in contrast

to Maron’s work [39] they do not assume the existence of one single target concept. The

MIL assumption used in MILES is more ‘general’ [19] because bag labels are derived by
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the relationship of instances to a set of target points. This is contrary to the count-based

assumption used in the Citation k-NN approach (see section 3.2.5), where R references

and C citations determine the final bag label. Section 3.1.1 summarizes the discussion on

various MIL assumptions.

In the following we briefly review the basic concepts of MILES. Similar to the diverse

density framework, bags Bi are embedded into a single instance feature space FC by

estimating the probability that one instance is a target concept xk,

Pr(xk|Bi) ∝ s(xk, Bi) = max
j
exp
(
− ‖xij − x

k‖2

σ2

)
, (3.10)

regardless of the bags’s class label, where xij are instances in bag Bi, σ is a predefined

scaling factor. The term s(xk, Bi) describes the similarity between a single target concept

xk and the bag Bi. Chen et al. defined C = {xk : k = 1, . . . , n} to be the concept class

and denoted xk as one target concept out of C. In other words, C is simply a set of

re-indexed instances from all positive and negative bags that are used during training.

This means that no artificial target point is calculated, as the centroid of each individual

bag, but MILES assumes that the target concepts can be approximated by all instances

presented during training. Note that the size of C defines the dimensionality of FC , which

can be high for real world problems with many bags and/or many instances per bags.

This motivated the authors to simultaneously perform feature selection and classification

by the use of one-norm SVMs.

The concept of one-norm SVMs is to reformulate the standard quadratic optimization

problem to a linear one [76, 78, 79]. Such a linear program can be solved efficiently,

even in high dimensional feature spaces. One alternative formulation [78] utilizes the

‘Manhattan length’ (also known as ‘City block distance’) of the weight vector w to define

the penalty term as ‖w‖1 =
∑

k |wk|. The additional benefit of the one-norm SVM is

that most of the features are set to zero. Chen et al. used this property to simultaneously

determine a sparse representation and construct a fast classifier for bags. For completeness

we summarize the formulation of the resulting instance classifier in eq. (3.11) and refer the

interested reader to [12] for a comprehensive discussion on MILES. Assume I = {k : |w∗k| >
0} as the index set for non-zero entries in the optimal solution y = sign(w∗Tm + b) with

m ∈ R|C| representing a bag in features space FC (see eq. (3.7)). The instance classifier is
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given as

h(Bi) = sign

 ∑
j∗∈U

g(xij∗) + b

 , with (3.11)

g(xij∗) =
∑
k∈Ij∗

w∗k s(x
k, xij∗)
mk

.

The index set U defines a minimal set of instances responsible for the classification of bag

Bi. Since one-norm SVMs favours sparse representations only a few features s(xk, xij∗)

have to be evaluated. This makes the labelling of unseen instances efficient from a com-

putational perspective.

Discussion: Chen et al. demonstrated good performance and high robustness to label

noise in the scope of region based image classification as well as object class recognition

experiments [12]. The major advantage of MILES compared to the other methods selected

in this paper is that once trained, classification of test bags can be performed very fast.

By evaluating only very few features |w∗k| > 0 from instances in the test bag, this method

is effective and computational efficient. Another reason to include this approach in our

study is its ability to predict both bag and instance labels. This could be a decisive benefit

in some applications. A more diversified viewpoint of this approach was given by Foulds

and Frank [20] who classified MILES as a general wrapper algorithm to emphasize that

the original one-norm SVM could easily exchanged by other learning techniques like C4.5

[52], random forests [11] or standard SVMs. Finally, it is notable that MILES inspired

later MIL approaches e.g. [2] (see section 3.2.1).

3.2.4 MI-SVM

Andrews et al. [3] proposed two approaches to modify Support Vector Machines (SVM)

for MIL problems. Compared to other methods like MI-kernel based algorithms (see

section 3.2.2) they hypothesize that a more conceptual modification of SVMs is necessary

to deal with MIL settings. The authors evaluated their approach on different problem

statements like automatic image annotation or text categorization. Based on that we

favour MI-SVM, which is suitable for problems where only bag labels are concerned. It is

therefore sufficient for a human action recognition task, since we assume that videos are

represented as bags and the goal is do determine whether a specific action is present or

not.
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The key idea of MI-SVM is an alternative maximum bag margin formulation shown in

eq. (3.12). Here, for positive bags Bi : H(Bi) = 1 a selector variable s(Bi) ∈ Bi denotes

a single instance xij as the ‘witness’ in Bi. This single instance determines the margin

of the bag. Identifying this instance becomes critical, since the resulting mixed integer

programming problem cannot be solved efficiently. Andrews et al. formulated a heuristic

strategy to determine these selector variables s(Bi) for positive bags:

min
s

min
w,b,ξ

1
2
‖w‖2 + C

∑
i

ξi (3.12)

s.t. ∀ Bi : H(Bi) = −1 and −〈w, xij〉 − b ≥ 1− ξi, ∀xij ∈ Bi,

∀ Bi : H(Bi) = +1 and 〈w, xi s(Bi)〉+ b ≥ 1− ξi,

with ξi ≥ 0.

The algorithm is initialized by the centroid of the bag. During each iteration the ap-

proach tries to find the optimal discriminant function and recalculates the selector vari-

able s(Bi) = arg maxj∈Bi
〈w, xij〉+ b for every positive bag. This procedure stops, if the

selector variables remain unchanged.

Discussion: The iterative nature of this algorithm is one possible drawback, especially,

when addressing time critical problems. The heuristic strategy is another one, since it

is likely to get stuck in a local minima. Our decision for MI-SVM over mi-SVM is well-

founded in the arguments from Andrews et al.. They prefer MI-SVM when classifying

new bags is beneficial compared to a more accurate instance classifier. Such circumstances

apply in the scope of human action recognition, when we want to evaluate whether an

action is present in a particular part of a video or not. The correct classification of

individual frames is no primary goal in this context.

3.2.5 Citation k-NN

Wang and Zucker [66] proposed a modified version of the popular k-nearest neighbour

(k-NN) approach in the scope of multiple instance learning. Their method is based on

a framework used in the field of library search and information science. They adapted

the notation of reference and citation to define the relevance between bags. In addition

to derive the label of bag Bi from its neighbouring bags, bags that identify Bi as their

neighbour are considered as well. The authors showed competitive but more robust results

compared to [40] or [14] on standard benchmark datasets.
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Clearly any nearest neighbour algorithm heavily depends to the definition of a distance

metric. In [66] a modified Hausdorff distance is utilized to measure adjacencies between

bags. Although, the Hausdorff distance provides such a metric function between subsets,

in the case of MIL two sets of instances, it is known to be sensitive to single outlying

points. Wang and Zucker formulated a variation of the standard metric and called it the

minimal Hausdorff distance (see eq. (3.13)), that is empirically proven to be more robust

with respect to noise:

H(Bi,Bj) = h1(Bi,Bj) = h1(Bj ,Bi) with (3.13)

h1(Bi,Bj) = min
a∈Bi

min
b∈Bj

||xia − xjb||.

Figure 3.4 illustrates the concept of reference and citation in the Citation k-NN ap-

proach using a simple 2D example. Suppose there are five bags (B2, . . . ,B6) augmented

with either a positive or a negative label that derives from the instances xij in the bags.

Consistent with the previous notation (see fig. 3.1), a green circle denotes a negative in-

stance, while a blue diamond denotes a positive one. Consider the task of predicting the

label of an unseen bag B1 that contains several instances (illustrated as white triangles

to indicate that their true label is not known). Without loss of generality, we investigate

the Rth - nearest references and the Cth - nearest citers of B1 with R = 2, C = 2. Bag

B2 and B3 are the two nearest neighbours of B1 and therefore called references. The

outward-pointing arrows depict those relations in the figure. In the concept of citers the

viewpoint changes from B1 to bags that call B1 as their nearest neighbours. Thus, in 3.4

the citers of B1 are B2, B3, and B4. This relation is depicted as inward-pointing arrow.

The final decision on the bag label is based on the total number of positive bags p and

negative bags n in both sets references and citations. If p > n the bag B1 is classified pos-

itive, otherwise negative. In our example the R-nearest references of bag B1 are {B2,B3},
and the C-nearest citers are {B2,B3,B5}. As a consequence, bag B1 is labelled negative

because p = 2 and n = 3.

Furthermore, fig. 3.4 points out the difference to standard k-NN majority voting. Con-

sider the k nearest neighbours of bag B1 assuming k = 3. The three red solid arrows

illustrate this situation. Following the considerations of k-NN voting the majority of the

neighbouring bags are positive, contrary to our previous observation. Note regarding the

underlying distribution of instances the bag B1 is more likely to be negative.
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Figure 3.4: Citation k-NN approach compared to standard k-NN method. The
example was inspired by Wang and Zucker [66].

Discussion: Wang and Zucker proposed their algorithm as highly competitive and al-

ternative learning concept in the domain of multiple instance learning. One disadvantage

might be the fact that in contrast to other algorithms like MILES (see section 3.2.3) or

miGraph (see section 3.2.2) Citation k-NN is not able to predict the labels of individual

instances. Although the method is known to be inefficient, we included this method in our

comparative study because of its simplicity and the relation to the well known standard

k-NN algorithm.

3.3 Comparative Study

One objective of this work is a comprehensive analysis whether the MIL concept is suitable

for the action recognition task. For that reason we evaluated the previously presented

MIL methods on two standard benchmark datasets. Each individual algorithm deals with

exactly the same feature set. Furthermore, we focus on a consistent evaluation schema

that guarantees comparable results. These are shown in section 3.4 and an extensive

comparison with previously published results is given at the end.

HAR can be performed on different levels of abstraction [46] and clear restrictions

are necessary to narrow the field of possible solutions. In our work we assume full-body

movements and do not examine problems concerning partial occlusions. Furthermore, we

concentrate on single body movements and do not deal with interactions between multiple

human beings [56] or single humans and objects.
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Note, within this chapter we focused on the evaluation of different MIL classifiers in

the context of HAR. This is clearly in contrast to Wang et al. [65], who investigated

various local spatio-temporal features in the scope of action recognition.

3.3.1 Histogram based feature representation

The combination of appearance and motion cues in the context of human action recogni-

tion has been suggested in several publications. Motivated by recent findings in cognitive

science Jhuang et al. [27] and Schindler and van Gool [58] proposed independently that

shape and motion cues, similar to the ventral and dorsal pathway in the visual cortex,

complement each other and thus provide a richer representation to allow for robust classi-

fication of action. Authors like Laptev et al. [33] extracted sparse space-time features [32]

in a multi-scale pyramid approach and characterized the appearance and motion within

these space time volumes by the computation of histograms of oriented gradient (HOG)

and histograms of optical flow (HOF). Their results support the hypothesis of combining

both feature types and similar suggestions have been made by other authors [28, 43, 47].

A recent evaluation of local spatio-temporal features for action recognition by Wang et al.

[65] deduced that the combination of gradient-based and optical-flow-based descriptors is

the best choice for such a task.

Hence, in our work we follow the idea of Mauthner et al. and use their method to

represent the appearance and motion cues. We refer the reader to [43] for a more detailed

description of their work. However, for completeness we review the relevant parts regarding

feature extraction and emphasise towards our extensions afterwards.

HOG descriptors [13] have been proven to be effective in the context of person detec-

tion. In contrast to previous approaches [62], which utilized only appearance information,

Mauthner et al. combined them with motion information derived from dense optical flow.

Due to GPU-based flow estimation [75] both cues could be extracted in real time.

Appearance Features: For every frame It ∈ Rm×n at time t the gradient components

gx(x, y) and gy(x, y) are computed for every pixel location (x, y) by simple filter operations.

Both the magnitude m(x, y) and the signed orientation ΘS(x, y) are computed by

m(x, y) =
√
gx(x, y)2 + gy(x, y)2 (3.14)

ΘS(x, y) = tan−1 gy(x, y)
gx(x, y)

. (3.15)
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To ensure invariance according to the order of intensity changes, the sign of the orientation

ΘS is adapted as follows:

ΘU (x, y) =

{
ΘS(x, y) + π ΘS(x, y) < 0

ΘS(x, y) otherwise.
(3.16)

To obtain the final HOG descriptor, each patch is structured into 10× 10 non-overlapping

cells. Each cell is represented by a histogram of 9 orientation bins and their counts are

weighted by the magnitude at each pixel location. A grid of 2 × 2 cells is combined into

overlapping blocks, normalized by using the L2-norm, and finally all blocks are concate-

nated into one vector.

Motion Features: The same principle is used to encode motion information, which

provide an additional cue for the action recognition method. To estimate the dense flow

for frame It two consecutive frames at time t and t − 1 are required. Mauthner et al.

used the public available GPU-based implementation 1 of the method proposed by [75].

The derived disparities Dt ∈ Rm×n in x and y direction are denoted as dx(x, y) and

dy(x, y), respectively. They are used to compute the magnitude and orientation similar

to the appearance features (see eq. (3.14) and eq. (3.15)). To be sensitive to the direction

of the motion the signed orientation ΘS is quantized into 8 bins. The same cell/block

configuration as described above provides the final HOG descriptor for the motion cue.

For the rest of the work we used the terminology of HOG and HOF features to mention

HOG representations of appearances and motion based on flow estimates, respectively.

Sparse Representation: Up to this point we applied the same procedure for feature

extraction like Mauthner et al. [43]. Although they also used NMF to obtain a compact

representation, we considered on a more sparse and part-based encoding of these features.

This was achieved by using the NMF approach with sparseness constraints proposed by

Hoyer [26] and a preceding structured initialization introduced by Boutsidis and Gallopou-

los [9]. We refer the reader to section 2.2 for a formal description of these methods.

Briefly, during training all n-dimensional features vectors constituted an n×m matrix

V, where m denotes the number of features in the trainings set. The NMF algorithm with
1http://gpu4vision.icg.tugraz.at

http://gpu4vision.icg.tugraz.at
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sparseness constraints derived an approximate factorization of the form

V ≈WH

s.t. 0 ≤W,H

sparseness (wi) = Sw.

Once such a factorization is found, we projected the test features using the multiplicative

update rule eq. (2.2), while keeping the matrix of basis vectors W constant. This proce-

dure was accomplished for HOG and HOF features individually. The resulting coefficients

hHOGi and hHOFi for each image i are finally concatenated into one vector.

Hoyer’s extension allows the user to specify the desired sparseness of W and H. How-

ever, we limited only W to a level of SW = 0.7. This choice was motivated by the findings

in section 2.3. There we successfully demonstrated that such a representation is (a) more

compact and (b) beneficial for the later classification stage, if the desired level exceeds the

natural sparseness obtained by the NMF algorithm of Lee and Seung [35] (0.5± 0.03 and

0.5± 0.05 for HOG and HOF features, respectively). We limited the number of iterations

to 150 for all experiments in this chapter, since we observed no significant improvement

of the approximation error ‖ V −WH ‖2.

Note, for the rest of the work we used the term HOG/HOF features or short features

as synonym for the representation obtained after the NMF projection step.

3.3.2 Datasets for Human Action Recognition

To achieve comparability among different algorithmic approaches it is crucial to have two

issues in mind. First, using the same data is an essential prerequisite to compare the

own performance with results published by other authors. The second important issue,

sometimes neglected by authors, is the evaluation method. We focus our discussion on

that in section 3.3.3. To fairly benchmark different methods one has to pay attention to

use exactly the same input data and the same procedure for all of the algorithm under

investigation.

Let us discuss the first issue – common data. In our work we used two standard

datasets for human action recognition. Both of them are well known in this research field

and many authors published their results on at least one of them. This helped us to

directly rank different algorithms based on the measured performance and gave us the

opportunity to compare a broader spectrum of approaches without reimplementing them.
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Weizmann dataset: This standard benchmark for human action recognition, known

as Weizmann human action dataset, was introduced by Gorelick et al. [22]. It contains 90

low resolution videos (180 × 144 pixel) with a rate of 50 deinterlaced frames per second.

Ten different actions, namely running, walking, skip (jumping forward on on leg), jumping

jack (denoted as jack), jump (jumping forward on two legs), pjump (jumping in place),

gallop side ways (denoted as side), waving with one hand, waving with two hands, and

bend, were performed by nine different subjects in front of a static background. Some of

the actions are periodic like waving or jumping jack, while others are performed only once

like e.g. walking, running or galloping side ways. Another property of the recorded data is

that directed actions like walking etc. are not consistently performed from one side to the

other, so several subjects walked from left to right while others walked into the opposite

direction. Figure 3.5 shows illustrative examples for each of the actions performed by

different subjects.

Figure 3.5: Illustrative examples from the Weizmann action dataset. Ten natural
actions are performed by nine different subjects in front of a static
background. Some videos contain multiple action cycles, while other
sequences showing actions like ‘run’, ‘side’, or ‘jump’ from either left
to right or in the opposite direction.

Unfortunately, there exist two ‘versions’ of this dataset, one containing ten actions

as described above, and one subset that omits the action skip. In the literature both

versions are referred as Weizmann dataset [38, 48], and as a consequence one has to pay

attention when comparing reported performance results. For the entire dataset comprising

ten different actions we refer to the work by Gorelick et al. [22] and for the subset to Blank

et al. [8] as stated on the authors page2.
2see http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.htm

http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.htm
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KTH action dataset The second large collection of public available video sequences

containing human actions is the KTH dataset and was introduced by Schuldt et al. [59].

The entire dataset is divided into four different recording settings (s1 . . . s4). The first three

settings are recorded outdoor with the following variations, constant size of the human

during action performance (s1), scale changes via camera zoom or subjects movement

(s2), and appearance variations caused by different clothes (s3). The last subset (s4) was

recorded indoor in front of a homogeneous background with lighting variations. Each of

the subsets consist of six types of human actions, namely boxing, hand clapping, hand

waving, jogging, running, and walking performed by 25 individual subjects. The videos

are down-sampled to a spatial resolution of 160 × 120 pixels and are recorded with an

almost static camera with 25 fps. In contrast to the Weizmann dataset, where actions like

walking and running are performed only once in every video, here all actions are performed

multiple times in one of the 600 videos. Schuldt et al. provided additional information to

segment those videos into 2391 sequences containing only one action cycle. While some

authors [2, 33, 58] utilize these segmentation during training and testing, others do not rely

on such an information [48, 55]. The KTH dataset as well as the additional segmentation

information can be downloaded from the authors web page3.

The wide acceptance of these two datasets in the research community as well as the

public accessibility led us to the decision to use them in our study. Both datasets have

their challenges, a larger number of different actions in the case of the Weizmann videos,

as well as a large intra-class variations through different scenarios and many subjects for

the KTH data.

The authors of this work are aware of other public available benchmark videos in the

context of human action recognition, namely the SDHA high-level human interaction chal-

lenge [56], the INRIA XMAS dataset [70], the UCF sports actions [53], or the Hollywood

human action dataset [33] to mention the most prominent. Other related communities,

e.g., in the context of semantic analysis or event detection like TREC Video Retrieval

Evaluation (TRECVID) [61] provide annotated video data as well. However, the large

number of already published results influenced our decision towards Weizmann and KTH.

Both of them allowed us to directly compare previous approaches with those presented

in this work and results on that issue are discussed in section 3.4.3 and section 3.4.6

respectively.

Common data is an important issue to rank different approaches against each other.
3see http://www.nada.kth.se/cvap/actions

http://www.nada.kth.se/cvap/actions
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Figure 3.6: Example images from sequences in the KTH dataset. Each of the
four rows (s1 . . . s4) shows one of the six different actions performed
in different scenarios. The first three rows are outdoor settings with
varying difficulties, fixed scale (s1), with scale changes (s2), subjects
wearing different clothes (s3), and the fourth row illustrates an indoor
scenario (s4) with homogeneous background.

Another critical topic is a consistent and transparent evaluation procedure. We continue

our discussion on this topic in the following section.

3.3.3 Evaluation Method

This section gives an overview of the evaluation schema and the parameters we used in

the following experiments.

Every evaluation in this section was performed using a leave-one-out-actor setting. For

each action one classifier was learned using all videos except those corresponding to the

actor left out for testing. In a MIL learning schema samples are organized in bags, i.e.,

a unordered set of samples. In the context of HAR, such a bag comprises image regions

(encoded using HOG and HOF features) from all frames of an specific action sequence.

The label of the bag is derived from the action performed in that video. We used multiple

detection windows around a perfect annotated sample for each frame, to generate negative

instances 4. We describe the training and test procedure in the following.
4The process of feature extraction was implemented by our colleague Thomas Mauthner, who provided

the raw HOF and HOG descriptors.
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Training stage: All training instances regardless of the bag membership were used

to derive a structured initialization for the subsequent matrix factorization. This was

achieved by applying the NNDSVD algorithm. The obtained matrices W and H as well

as all trainings data were fed into the subsequent sparse NMF approach, and the derived

feature representations constitute the input of each learning algorithm. Following the

leave-one-out-actor cross validation, all instances are organized in positive or negative

labelled bags. Since, all MIL approaches used in our study assume a binary classification

problem, we trained one classifier per action. The derived classifier is then tested on

unseen action sequences.

Test stage: First, we projected the raw HOG and HOF descriptors of all test videos

into the previously obtained feature space. This was achieved using the multiplicative

update rule eq. (2.2), while keeping the matrix of basis vectors W (derived during

training) constant. Second, these features were again organized in bags, and these bags

were used to test each individual classifier. Finally, the results of all action classifiers

where combined using a winner take all strategy to obtain the final decision regarding

the action label.

In comparison to other authors [2, 27, 62] it is important to note that we did

not perform any kind of preprocessing like background subtraction, down-sampling or

manual selection of action cycles.

Decisions concerning the dimensionality of the feature space are crucial. As already

mentioned in section 3.3.1, we used the same feature extraction methods as Mauthner

et al. [43]. They suggested 80-100 basis vectors for the task of action recognition on

the Weizmann dataset and reported no significant improvement regarding classification

performance using a higher dimensional feature representation. Since, our feature encoding

only differ in the method of matrix factorization (unconstrained versus sparse NMF),

we generalized their findings to our recognition task. However, to roughly examine the

influence of the feature dimension, we evaluated a few experiment on that issue. In order

to limit the computational effort, we compared the classification accuracy of a single MIL

approach (MILES) on the Weizmann dataset. Using 80, 160 and 250 modes for HOG

and HOF representations, we achieved 98,8%, 97,78% and 97,22% repectively. Since, our

objective concernes a comparative study of different MIL classifiers, it is important that

all algorithms share exactly the same input data. Therefore, we fixed the number of basis

vectors r = 80 for both, HOG and HOF features, in all subsequent experiments.
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We complete this section with a summary of the parameter settings used for each MIL

algorithm in our comparative study.

• For the method denoted as Kinematic-MIL, we used four principal dimensions for

HOG and HOF features individually. This was suggested by Ali and Shah [2] and the

resulting dimension of FC is then ‘4× 2× number of bags’, since we treated appear-

ance and motion descriptors as different kind of features. During kernel embedding

(see eq. (3.6)) we fixed σ to 0.7, similar to Ali and Shah.

• We used the following parameters suggested by Zhou et al. [77] for the miGraph

algorithm. Within eq. (3.8) the threshold δi was set to the average distance between

instances in bag Bi and the value of σ was set to 1.0. The SVMs used Gaussian

RBF kernels with C = 100 and γ = 5.

• Three parameters need to be specified for MILES. The value of µ was set to 1/8 for

the Weizmann and to 1/24 for KTH benchmark, to equally penalize errors in the

binary classification problem. The parameters λ and σ were determined in a cross-

validation step on the training set. We found that λ = 0.5 and σ = 2.5 performed

best for the Weizmann database. Since we used the same kind of features for both

benchmark datasets, we kept these parameters for all subsequent experiments.

• The results for MI-SVM are based on SVMs with linear kernels. The choice was

motivated by experimental results on image data in the original work of Andrews et

al. [3].

• The last MIL approach (Citation-NN) in our study needs two parameters to be

specified. We followed the standard parameters suggested by Wang and Zucker [66]

and fixed the number of citations to C = R+ 2, with R = 2 (number of references).

3.4 Experimental Results

In this section we present results from our experiments, explain the performance evaluation

and discuss about the consequences regarding potential applications. Since we stress the

terminology of HOG and HOF, we want to remind the reader that HOG and HOF features

denotes a histogram of X representation, with gradients to encode appearances in the case

of HOG and motion features based on flow estimates for HOF, respectively. Moreover,

we used the term HOG/HOF features or short features as synonym for the representation

obtained after the NMF projection step.
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3.4.1 Static and dynamic features for Action Recognition

The first experiment was designed to investigate the influence of static and dynamic fea-

tures with respect to the accuracy of the classifier. Wang et al. [65] claimed that a

combination of gradient and optical flow based descriptors work best in the context of

HAR. Similar results have been suggested by other authors [27, 33, 58]. Mauthner et al.

[43] already showed that their proposed combination of HOG and HOF features improves

the overall recognition accuracy. Since we used their method for extracting features in

the first stage, but in contrast investigated towards a sparse representations in the later

stage. This evaluation was intended to demonstrate whether the claimed conclusions hold

for our specific setting.

The Weizmann dataset [22] was selected to demonstrate the effect of pre-processing the

data. As described in section 3.3.2, the video sequences for dynamic actions (e.g., walking,

running, jumping) are not consistently performed in both directions. We conjecture that

this specific property leads to additional difficulties for the final classifier. In order to

compensate for that, all videos are mirrored across the vertical axis, to obtain both versions

of the action sequence.

Table 3.2 depicts the performance results using the Weizmann dataset for three differ-

ent representation, static only (HOG), dynamic only (HOF) and a combination of both.

MILES was used for MIL and the accuracy was evaluated in a leave-one-out-actor set-

ting. Other classifiers could have been used to demonstrate the effect, however we used

one of the methods introduced in section 3.2, since we compared their recognition rate in

section 3.4.2. The second and third column of table 3.2 denotes the feature type, while

the fourth column specifies whether the mirrored versions of the action sequences have

been used in addition to the original data. The fifth column indicates the number of false

classifications and in brackets the total number of videos (denoted as bags in the context

of MIL). Finally, the average accuracy is given in the rightmost column.

The rows a – c of table 3.2 show the performance when the pre-processing described

above was enabled, while rows d – f show results for the dataset without any modification

of the original data. In both groups the combination of static and dynamic features works

best and we achieved an accuracy of 98,8% and 95,5%, respectively. This supports the

findings of other authors [33, 58, 65] and demonstrates that a sparse representation in

combination with MIL is able to achieve highly competitive recognition results.

When comparing equal feature combinations from both groups it can be shown that

the pre-processing step beneficially affects the accuracy of the classifier by ∼ 3%. In-
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HOG HOF flipped wrong (total) bags accuracy
a X X X 2 (180) 98,8%
b X X 14 (180) 92,2%
c X X 10 (180) 94,4%
d X X 4 (90) 95,5%
e X 10 (90) 88,8%
f X 18 (90) 80,0%

Table 3.2: Combining static (HOG) and dynamic (HOF) features improves the
overall performance. Here MILES was used as an MIL approach on
the Weizmann dataset. An extra performance gain of approx. 3%
can be achieved by additionally using the mirrored versions of the
action sequences.

terestingly, no general statement can be made in favour of one particular feature type.

While rows e and f depict that HOGs perform better compared to HOFs, reciprocal con-

clusions have to be made when comparing rows b and c in table 3.2. Furthermore, when

comparing the experiments where motion features alone represent the action sequences

(rows c and f), a performance gain of ∼ 14% can be achieved when the mirrored sequences

complement the original data. This finding is not surprising, since dynamic features like

HOF have to be sensitive to the direction of the motion. Therefore, an action like walking

from left to right is differently represented compared to walking in the opposite direction.

The resulting HOFs are varying and the classifier is not able to generalize accross these

differences. Figure 3.7 illustrates this difficulty by comparing the confusion matrices. In

both experiments we only used motion features (HOF) and the MILES approach as a MIL

classifier.

In the next section we compare the performance results of each individual MIL ap-

proach introduced in section 3.2.

3.4.2 Performance on the Weizmann Dataset

Within this section we present the result of our comparative study and address the fol-

lowing question: Is MIL an appropriate learning schema for an action recognition task?

Therefore we evaluated five different frameworks for MIL and compared the results against

a linear SVM classifier.

Table 3.3(a) summarizes the classification performance from all MIL approaches used

in our study. We investigated each individual method using a leave-one-subject-out evalu-

ation schema. From the previous experiment we conclude that the combination of appear-
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(a) When using the original action sequences
we get a recognition rate of 80%. The major
confusion occurs between directed actions.

(b) An increased accuracy of ∼ 94% can be
achieved when the mirrored versions of each
action sequence are used in addition to the
original data.

Figure 3.7: Confusion matrix of the MILES classifier expressed as a percentage.
For both experiments only motion features (HOF) have been used
(see table 3.2 row c and f). Wrong classifications occur more likely
for directed actions e.g. ‘skip’, ‘run’, or ‘jump’ due to the sensitivity of
the HOF features. This effect could be minimized, when the mirrored
versions of the sequences complement the original dataset.

ance and motion features work best for the Weizmann dataset. Therefore we calculated

both HOG and HOF representations and derived the sparse encoding of these by applying

the NMF algorithm described in chapter 2. Details for each individual MIL method can

be found in section 3.2. Furthermore, the proposed standard parameter set was used for

each algorithm.

As a reference method a linear one-versus-all SVM was used as baseline classifier.

This algorithm is denoted by the acronym SVM baseline in table 3.3(a) as well as in the

following experiments. We used the public available LIBSVM 5 implementation for this

experiment. The same algorithm was used by Mauthner et al. [43] but in contrast to

them, we do not focus on instance action recognition and therefore report results obtained

by evaluating the entire action sequence. Thus, the majority votes decide on the predicted

action label for every test video.
5http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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(a) Recognition performance.

algorithm accuracy
Citation-NN 93,3%
MI-SVM 86,6%
MILES 98,8%
miGraph 97,8%
Kinematic-MIL 97,8%
SVM baseline 96,7%

(b) Timing comparison.

algorithm training test total
Citation-kNN 664,2 sec.
MI-SVM 451,8 sec.
MILES 24,1 sec. 35,1 msec.
miGraph 27,8 sec. 3,4 sec.
Kinematic-MIL 7,9 sec. 1,1 sec.
SVM baseline 53,3 sec. 1.3 sec.

Table 3.3: Experimental results for the Weizmann action dataset [22].

From table 3.3(a) we can see that three out of five methods achieved a better classifi-

cation result compared to the baseline supervised learning approach. With the exception

of MI-SVM, we were able to report state of the art recognition accuracy for this dataset.

See section 3.4.3 for a more detailed comparison with other approaches. Little confusion

occurred between running and the action denoted as ‘skip’ (jumping forward on one leg),

independent from the used classifier. In the case of MILES, two video sequences showing

the ‘skip’ action are classified as running action. These two misclassified videos led to a

final accuracy of 98.8%. The observation corresponds to results reported by other authors

[2, 48, 55, 62].

However, the outcome of this experiment is significant because it demonstrates an

important feature that motivated our work. Thus, we conclude that MIL provides an

alternative learning schema in the context of human action recognition.

Some applications require methods that respond within a specified period of time.

Table 3.3(b) summarizes the duration of the training and testing stage. We report the av-

erage over all nine runs of the cross validation process. Within each single run ten different

classifiers were learned on 160 trainings sequences and evaluated on 20 test videos in a one-

vs-all configuration. All experiments were performed on a 3 GHz Intel c© CoreTM 2 Duo

processor with 3 GB RAM. Although all of them have been implemented in a Matlab c©
framework, the results are not purely quantitative. Some methods use optimized code

while others might suffer from an inefficient implementation. Note that the library used

for Citation-NN and MI-SVM did not support a separate logging of trainings and testing.

Due to this difficulty, we reported the total time spent in both stages.

The results in table 3.3(b) clearly show that MILES provides the most efficient method

for classifying new action sequences. This finding confirms one of the major advantage of
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this approach (see section 3.2.3). The combination of 98.8% classification accuracy and

the fast response time (∼ 35ms) suggests MILES as a promising approach for practical

applications.

Weizmann - nine action subset: As already mentioned in section 3.3.2, some authors

[8, 38, 58] reported evaluation results on an earlier version of this benchmark. The subset

omits the jumping-forward-on-one-leg action denoted as ‘skip’, and comprises therefore

nine different actions from nine individual subjects. We evaluated all five MIL approaches

as well as the baseline SVM classifier using this dataset and table 3.4 summarizes the

results. Without the ‘skip’ action, no further confusion occurred between directed actions

and some algorithms were able to recognize all sequences without failure.

Citation-NN MI-SVM MILES miGraph Kinematic-MIL SVM baseline
accuracy 96,3% 98,1% 100% 100% 98,8% 100%

Table 3.4: Classification performance on an earlier version of the Weizmann action dataset
[8]. This subset omits the action ‘skip’ and typically better recognition rates are achieved.

3.4.3 Comparison to previous papers

We summarize various performance results from other authors within this section to com-

plete the discussion on the Weizmann dataset. The ranking in table 3.5 reviews the more

prominent approaches since 2005, without intending to be exhaustive. As mentioned in

section 3.3.2 some authors did not explicitly mention which version of the dataset they

used for their evaluation. Moreover, there are a few comparisons that mixed up results

from both datasets. Table 3.5 shows the accuracies achieved for the ten action benchmark

[22] in column four. Results for an earlier version [8] containing nine actions are given in

column five. Both results are given where available. The approaches are sorted according

to their date of publication and the first row depicts the best performing MIL approach

out of our comparative study.

As can be seen most of the authors evaluated their algorithms using a leave-one-

subject-out cross validation schema, except Jhuang et al. [27] and Junejo [28]. The latter

used a different version of the nine action dataset, where they omitted the action ‘wave2’

(waving with two hands) instead of the ‘skip’ action.

The conclusion from table 3.5 is that the recognition performance on this benchmark

is already saturated and perfect accuracy has been reported by [22, 36, 42]. The sparse
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author year evaluation
accuracy

10 action [22] 9 action [8]
MILES (MIL) [12] 2011 loo-cv 98,8% 100 %
Mauthner et al. [42] 2010 loo-cv 100 % 100 %
Ali & Shah (MIL) [2] 2010 loo-cv 95,8% –
Yao et al. [72] 2010 loo-cv 95,6% –
Bregonzio et al. [10] 2009 loo-cv 96,7% –
Mauthner et al. [43] 2009 loo-cv 88,9% –
Yeffet & Wolf [74] 2009 loo-cv – 100 %
Lin et al. [36] 2009 loo-cv 100 % –
Roth et al. [55] 2009 loo-cv 94,2% 97,0%
Thurau & Hlaváč [62] 2008 loo-cv 94,4% –
Liu et al. [38] 2008 loo-cv – 90,4%
Schindler & van Gool [58] 2008 loo-cv – 99,6%
Junejo et al. [28] 2008 n-fold cv – 95,3%
Niebles et al. [48] 2009 loo-cv 90,0% –
Niebles & Fei Fei [47] 2007 loo-cv – 72,8%
Jhuang et al. [27] 2007 split – 98,8
Gorelick et al. [22] 2007 loo-cv 100 % –
Blank et al. [8] 2005 loo-cv 90,0% –

Table 3.5: Action recognition precision on the Weizmann benchmark. The results of other
authors are copied from their paper (see references). The approaches are sorted by their
date of publication and the best MIL method (MILES) is shown on top. We differentiate
between two versions of the dataset, the nine action subset and the ten action benchmark.
Performances for both variants are given in the fourth or/and fifth column. The evaluation
method is shown in column three.

feature representation proposed in chapter 2 in combination with a MIL approach achieved

competitive recognition precision for three out of five MIL schemas. We demonstrated that

these methods denoted as MILES, miGraph and Kinematic-MIL achieved 98, 8%, 97, 8%

and 97, 8% on the ten action benchmark. The comparison with other results in table 3.5

indicate MIL as a promising alternative in the context of human action recognition.

3.4.4 Performance on the KTH Dataset

In section 3.4.2 we demonstrated that MIL approaches are able to achieve competitive

performance results on the Weizmann benchmark. In this section we report results for the

KTH dataset described in section 3.3.2 and again compare five MIL methods against a

linear SVM classifier as a baseline recognition framework. We evaluated each subset sep-

arately using a leave-one-subject-out strategy as described in section 3.3.3 and calculated
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the overall precision by averaging across all subsets.

Table 3.6 shows the results for each KTH subset (s1,. . . ,s4) individually and summa-

rizes the average accuracy in column six. The algorithms in this table are sorted according

to their overall performance, with the best one on top. The bottom line comprises the

data for a linear SVM classifier and is denoted as SVM baseline. For this algorithm every

frame has to be classified and the predicted action label for one video is computed by a

majority voting. All other methods handle each video as bag of instances and inherently

derive the recognized action label.

As can be seen in table 3.6 the MIL approach denoted as miGraph achieved 93, 3%

accuracy and performed slightly better compared to the baseline. The method proposed

by Chen et al. [12] (MILES) is the second best MIL classifier but lost ∼ 1% compared to

the baseline SVM. This result is contrary to the experiments on the Weizmann benchmark,

where MILES outperformed all other methods in the evaluation.

When comparing both datasets it seems obvious that the KTH is the more challenging

one, with each individual subset (s1,. . . ,s4) having its own difficulties (see section 3.3.2 for

a detailed description). From our results in table 3.6 and those reported by other authors

[27, 37, 58] we conclude as follows.

algorithm
accuracy on subset

avg. accuracy
s1 s2 s3 s4

miGraph 96,3% 87,3% 92,3% 97,3% 93,3%
MILES 94,0% 85,3% 93,3% 94,7% 91,8%
Kinematic-MIL 92,3% 84,7% 86,3% 87,0% 87,6%
MI-SVM 89,7% 79,7% 84,7% 86,0% 85,0%
Citation-NN 84,3% 69,3% 83,3% 87,3% 81,2%
SVM baseline 97,0% 86,0% 93,0% 94,6% 92,7%

Table 3.6: Performance comparison on the KTH benchmark. Each subset was evaluated
individually using a leave-one-subject-out schema and the overall accuracy was calculated
by averaging across all portions. The MIL algorithms are sorted according to the average
recognition rate and the bottom line comprises results for a linear SVM classifier.

We derive a ranking of the individual recoding settings (s1,. . . ,s4) based on the results

in table 3.6. The outdoor subset with constant human scale (s1) as well as the indoor

setting with varying illumination conditions (s4) share a similar level of complexity. Sub-

set s3 (outdoor scenario with different clothes) is more challenging due to appearance

changes and the most difficult subset is s2 (outdoor with scale changes). While miGraph

and Citation-NN achieved their best result for subset s4, Kinematic-MIL, MI-SVM and
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the baseline SVM approach performed best for subset s1. Since all algorithm share the

features representation, this variation originates from the different classifiers. However, it

demonstrates that our representation is able to handle illumination changes very well. A

fact we expected from the appearance features (HOGs).

The common observation across all classifiers within our study is that the used repre-

sentation is not able to model changes in the scale of the human body. This was obviously

predictable, since the simple but efficient principle of histogram based features was never

designed to handle such variations. Note that the performance differences between the

best subset and s2 is larger than 10%.

Figure 3.8 depicts the confusion matrix for the best MIL approach on the KTH bench-

mark. The algorithm proposed by Zhou et al. [77] outperformed the other MIL methods

for all subsets, except for s3 where MILES was best. The confusion matrix illustrates the

main difficulties for this dataset. The vast majority of errors occur within two groups of

actions, hand-based (boxing, clapping and waving) and leg-based (jogging, running and

walking). One can imagine that these actions share common poses and motions with

differences in order and speed. Consequently, the resulting features are similar and the

classifiers are not able to differentiate between them. A detailed view on fig. 3.8 shows

that most mistakes happen between clapping and waving according to hand-based actions,

while jogging and running are more likely to be misclassified inside the second group of

actions. These results are evident with those reported by other authors like [21, 36, 74].

Our analysis of different MIL approaches on the KTH dataset and the comparison with

a standard linear SVM classifier raises the following question: Are the investigated MIL

methods robust against noisy features and therefore applicable in a typical human action

recognition scenario? We consider this issue in the following section.

3.4.5 Robustness to Noisy Patches

Investigating the robustness of methods is essential for practical applications. However,

it is crucial to define what kind of corruption the experiment investigates. Therefore, it

is important to emphasize that we do not focus on images that are degraded by, e.g.,

compression algorithms, quantization errors or pixel noise caused during capturing or

transmission of the video stream. Instead, we assume that the feature extraction process

is capable to deal with this sort of degradations.

Contradictory, we address another, from our point of view, more ordinary source of

noise: an imperfect person detector. To simulate the localization errors of the person
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Figure 3.8: Overall confusion matrix for the miGraph [77] approach on the KTH
dataset. The majority of errors occur between jogging and running
as well as hand clapping and waving, while most other actions are
easily distinguished.

detector, we replaced ∼ 22% of the perfect aligned instances with their noisy counterparts.

This means for each individual recording setting (s1,. . . ,s4) a subset of ∼ 20% randomly

choosen frames was selected and processed as follows. The perfect aligned bounding box

(BB) of the person detector was shifted away from its initial position and the feature

extraction process was repeated on the resulting region of interest. The generated noisy

feature substitutes the original one in the corresponding action sequence.

Figure 3.9 illustrates three different levels of noisy feature generation. The localization

error was simulated by shifting the original BB, shown on the left side and denoted as

no noise in the figure as well as in table 3.7. Column two depicts the first noise level

(quarter noise), where the BB is 25% away from its original position. Half noise denotes

50% overlap with the original BB and the right side of fig. 3.9 shows example background

positions to generate an off noise feature.

The resulting datasets were used during training and testing, while following the leave-

one-out-actor evaluation schema described in section 3.3.3. Table 3.7 summarizes the

overall accuracies for every MIL algorithm by averaging across all subsets (s1,. . . ,s4). The

bottom line shows the performance of the baseline SVM approach. When comparing the

best MIL approach (first row) with the linear SVM baseline (bottom row) it can be seen

that both methods perform almost equally with a tolerance of ∼ 1% for the first two noise
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Figure 3.9: Schematic illustration of simulated detector errors on the KTH
dataset. From left to right: original bounding box (BB) superim-
posed on an example frame, the BB shifted 25% away from its po-
sition, ‘half noise’ denotes a 50% shift, background patches are used
to generate ‘off noise’ features.

levels and within ∼ 2% for the background noise level shown in the rightmost column of

table 3.7.

One conclusion that might be drawn from this is, that there is no clear indication that

MIL is superior to a supervised learning method. This experiment regarding robustness

and the results from the previous section have shown that only one of five MIL methods

achieve equal or better accuracies compared the the baseline SVM approach.

The best performing algorithm proposed by Zhou et al. [77] and denoted as miGraph

utilizes the relations between images of one action sequence, assuming that the structure in

subsequent frames are not independently and identical distributed. This method demon-

strates the significance of the inherent structure within human actions and has shown its

advantages on more complex datasets.

The second best MIL approach called MILES [12] is based on a diverse density frame-

work [14]. The method proposed by Chen et al. is very fast in the test phase since it uses

only very few features to embed every video into a single instance space. However, this

algorithm
avg. accuracy

no noise quarter noise half noise off noise
miGraph 93,3% 92,3% 92,1% 80,6%
MILES 91,8% 89,9% 88,4% 81,6%
Kinematic-MIL 87,6% 84,5% 82,4% 76,3%
MI-SVM 85,0% 79,3% 76,7% 75,0%
Citation-NN 81,2% 78,4% 73,1% 74,3%
SVM baseline 92,7% 90,9% 91,2% 82,4%

Table 3.7: Performance comparison with different levels of detector noise for the KTH
action dataset. On average 22% of all frames are replaced by their degraded counterparts.
The average accuracy across all four subsets is reported for each individual classifier.
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might be one reason why this algorithm is not able to outperform the baseline SVM.

Across all experiments Kinematic-MIL, a method proposed by Ali and Shah [2], is the

third top multiple instance learning schema. We want to emphasize that our framework

with sparse representations of both HOG and HOF features is superior to the original

work from Ali and Shah. Contrary to their kinematic features, we achieved an increased

performance of +2% for the Weizmann dataset and attained competitive recognition re-

sults for the KTH benchmark. Note, contrary to their framework, we do not rely on

any preprocessing, scaling or additional segmentation information regarding single action

cycles.

As already mentioned in section 3.4.4 the final decision in the case of the linear SVM

classifier is derived by a majority voting across all images in a test sequence. Thus, all

frames have to be evaluated individually. We suspect that the final voting schema is

beneficial since a single-frame based evaluation leads to a accuracy of ∼ 83% for the KTH

dataset without noise.

We showed a detailed analysis of five MIL approaches on the KTH dataset and in-

vestigated their robustness against noise. The comparison against a linear SVM classifier

suggests that the best performing MIL approaches achieve at least equal recognition re-

sults. Moreover, the empirical evaluation in table 3.7 depicts that the average accuracy of

all methods (except for Citation-NN) decreased by ≥ 10% when we simulate ≈ 22% false

detections.

3.4.6 Comparison to previous papers

Without claiming to be exhaustive, we summarized the most prominent performance re-

sults on the KTH dataset in table 3.8. The first row in this table presents the accuracy

achieved by the best performing MIL algorithm out of our comparison experiment. The

results from other authors are sorted according to their date of publication.

In general, one has to be careful when comparing performances between different

approaches. Especially for this dataset we noticed diverse variations in the evaluation

method. Schindler & van Gool [58] for example used a 5-fold cross validation and reported

the average accuracy over 5 runs, while Yeffet & Wolf [74] and Kovashka & Graumann

[31] used the protocol of Schüldt [59], who made this dataset public available. Column

three in table 3.8 addresses this issue and one can see that the evaluation method is evenly

distributed between leave-one-subject-out (‘loo-cv’) and n-fold cross validation (denoted

as ‘split’).
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Another difficulty concerning performance comparison arises from the following fact.

The KTH has been treated either as four distinct subsets (s1,. . . ,s4) as we did, or as one

large dataset with strong intra-subject variations. Column five summarizes the first case,

where each subset has been evaluated separately and the average precision was reported

and the rightmost column shows results from authors, who handled the KTH as one large

dataset. We emphasised the best approaches in both columns.

In can be seen in table 3.8 that the best performing methods are either based on a

prototypical representation or they used a hierarchy of feature combinations. Mauthner

et al. [42] for example proposed an efficient prototype-based encoding using four distinct

feature cues together with a temporal weighting between these channels. Lin et al. [36] in

contrast established a frame-to-prototype correspondence of the action and used dynamic

time warping (DTW) to automatically identify optimal matching segments between the

author year evaluation
precision

average all in one
miGraph (MIL) [77] 2011 loo-cv 93,3% –
Yao et al. [72] 2010 loo-cv – 92,0%
Kovashka & Grauman [31] 2010 split – 94,5%
Ali & Shah (MIL) [2] 2010 split – 87,7%
Mauthner et al. [42] 2010 loo-cv 97,4% –
Yao & Zhu [73] 2009 split 88,0% 87,8%
Lin et al. [36] 2009 loo-cv 95,8% 93,4%
Yeffet & Wolf [74] 2009 split – 90,1%
Bregonzio et al. [10] 2009 loo-cv – 93,2%
Gilbert et al. [21] 2009 loo-cv 96,7% –
Gilbert et al. [21] 2009 split 94,5% –
Schindler & van Gool [58] 2008 split 90.7% 92,7%
Niebles et al. [48] 2008 loo-cv – 83,3%
Mikolajczyk & Uemura [45] 2008 loo-cv 93,2% –
Jhuang et al. [27] 2007 split 91,7% –
Nowozin et al. [49] 2007 split – 87,0%
Dollár et al. [15] 2005 loo-cv – 81,2%
Schüldt et al. [59] 2004 split – 71,7%

Table 3.8: Recognition performance on the KTH benchmark. The results of other authors
are copied from their paper (see references). The best MIL method from our comparative
study is listed first, while all other authors are sorted according to their publication date.
Column three indicates the evaluation method, column four depicts the average accuracies
over all four subsets of the KTH and the rightmost column summarizes the accuracy for
an all-in-one evaluation.
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training and a test sequence. Gilbert et al. [21] as well as Kovashka & Grauman [31]

learned a hierarchy of spatio-temporal feature configurations. The reoccurring pattern

in [21] are distinct compared to other actions and support the later classification stage.

In [31] local neighbourhood combination of space-time interest points and their most

discriminative descriptors w.r.t. an action category are combined to a vocabular hierarchy.



Given a choice between two theories,

take the one which is funnier.

Blore’s Razor

Chapter 4

Conclusion

4.1 Summary

We investigated a sparse, part-based representation obtained by a constrained NMF ap-

proach. The choice of NMF is based on the assumption, that complex actions could be

composed of multiple limb movements. We encoded appearance and motion cues from

the entire human body to derive a suitable representation of actions. The additive nature

of NMF relaxes the holistic characteristic of the feature extraction and we demonstrated

that such an representation beneficially supports the consecutive classification process.

In chapter 2 we analysed the constrained NMF approach proposed by Hoyer [26] and

demonstrated the importance of a structured initialization for this factorization. The

correlation of sparseness and feature dimensionality is discussed and we evaluated the

obtained representation in the context of face recognition. The results of our experiments

support our basic assumption, that a sparse, part-based representation is able to increase

the performance of the subsequent classifier.

We used the ORL database of faces to evaluate two different classifiers. In addition

to a simple NN classifier and we applied the LMNN approach proposed by Weinberger

et al. [69]. In both cases, we achieved an increased accuracy of ∼ 1.25%, if the sparse-

ness constraint was choosen appropriately. This means that the representation has to be

suffiently rich to be discriminative. First, the dimensionality of the feature space has to

be large enough and second, the sparsity of the encoding must exceed the natural sparse-

ness obtained by an unconstrained NMF. In our experiment we empirically demonstrated

this, using e.g. 50 modes and a level sparseness level of SW = 0.8 and SW = 0.7 for NN

classifier and the LMNN approach, respectively.

58
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The main topic of our work is a comparative study of different MIL approaches in

the context of HAR. We investigated whether the MIL concept is suitable for an action

recognition task and performed a thoroughly and consistent study using two state-of-the-

art datasets. We emphasized the importance of clear structured experimental setup in

order to achieve comparable results and evaluated five different MIL approaches.

Our representation of human actions is based on the appearance and motion features

proposed by Mauthner et al. [43]. We extended their encoding by introducing sparseness

constraints and evaluated the combinations of both cues. Moreover, we investigated the

effect of video pre-processing on the Weizmann dataset. The video sequences for directed

actions (e.g., walking, running or jumping) are not consistently performed in both direc-

tions. To compensate for that, all videos are mirrored across the vertical axis. When

comparing the recognition accuracy obtained using motion features only, we observed an

additional performance gain of ∼ 14%, using the described pre-processing step.

We systematically evaluated five MIL approaches on the Weizmann dataset. Three

out of five methods, MILES (98, 8%), miGraph (97, 8%), and Kinematic-MIL (97, 8%)

achieved competitive or better results compared the our baseline – a linear SVM classifier

(96, 7%).

Additionally, we performed the same analysis on four different subsets of the KTH

dataset. We evaluated each subset separately and reported the overall precision. In this

case, the MIL method denoted as miGraph (93, 3%) performed slightly better compared

the baseline SVM classifier (92, 7%). Since robust methods are essential for practical

applications, we simulated an imperfect person detector, to generate misaligned samples.

Up to a moderate noise level, the best performing MIL approach (miGraph) achieved equal

or better performance results compared to the baseline (see table 3.7).

We summarized the accuracies of the most prominent approaches by other authors

for both benchmark datasets and emphasized the differences in the evaluation process. It

turned out that the best performing methods utilized either a prototypical representation

or a hierarchy of feature combinations. However, when comparing the complexity of the

superior approaches, it surprised us, that the proposed sparse part-based feature repre-

sentation in combination with the MIL principle achieved competitive accuracies in both

cases.
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4.2 Summary of our Contribution

The main contributions of the thesis are:

Sparse Features We investigated a sparse NMF approach and illustrated the importance

of a structured initialization towards a part-based representation. We demonstrated

that such a representation is able to improve the consecutive classification process.

Comparative Study We considered the concept of MIL in the context of action recog-

nition and performed a thoroughly analysis of five different MIL approaches using

two state-of-the-art action datasets.
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[40] Maron, O. and Lozano-Pérez, T. (1998). A Framework for Multiple-Instance Learn-

ing. In Advances in Neural Information Processing Systems, volume 28, pages 570–579.

[41] Maron, O. and Ratan, A. (1998). Multiple-Instance Learning for Natural Scene Clas-

sification. In Proc. Intern. Conf. on Machine Learning, pages 341–349.



BIBLIOGRAPHY 65

[42] Mauthner, T., Roth, P., and Bischof, H. (2010). Temporal Feature Weighting for

Prototype-Based Action Recognition. In Proc. Asian Conf. on Computer Vision.

[43] Mauthner, T., Roth, P. M., and Bischof, H. (2009). Instant Action Recognition. In

Proc. Scandinavian Conf. on Image Analysis.

[44] Mikolajczyk, K. and Schmid, C. (2004). Comparison of Affine-Invariant Local Detec-

tors and Descriptors. In Proc. European Signal Processing Conf.

[45] Mikolajczyk, K. and Uemura, H. (2008). Action Recognition with Motion-Appearance

Vocabulary Forest. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition.
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