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Abstract

The low-temperature properties of the two-dimensional attractive Hubbard
model strongly depend on the fermion density. This fact has fundamental
consequences for experiments on ultra-cold atoms in optical lattices, where
the magneto-optical trap, which is required experimentally, introduces
an inhomogeneous confining potential, which in turn leads to an inho-
mogeneous particle density ρi. In the homogeneous (untrapped) case,
away from half-filling, i.e.. at ρ 6= 1, there is a Kosterlitz-Thouless tran-
sition at a critical temperature Tc > 0 to a superfluid phase exhibiting
quasi-long-range pair order (qlro). However, at half-filling pair order is
degenerate with charge-density-wave order for symmetry reasons; there-
fore, the qlro is suppressed and the system orders only at T = 0, where it
enters a phase exhibiting long-range order simultaneously in the pairing
and charge-density-wave channels.

In this work, the two-dimensional attractive Hubbard model in a har-
monic confining potential is studied using determinant quantum Monte
Carlo. At low temperatures, we find large pair correlations; a comparison
with the so-called local-density approximation shows that the latter makes
drastically wrong predictions for the pairing and charge-density-wave
correlation functions around half-filling. This means that a larger portion
of the system than expected will be superfluid, but also that the physics of
the half-filled attractive model is represented anywhere in the trap. Fur-
thermore, in a finite-size extrapolation adapted to the confined case, we
show evidence that a Kosterlitz-Thouless transition to a superfluid qlro

phase also occurs in the inhomogeneous case. The transition temperature
is roughly estimated to be Tc ∼ 0.15 t.





Zusammenfassung

Die Niedertemperatureigenschaften des zweidimensionalen attraktiven
Hubbard-Modells hängen wesentlich von der Teilchendichte ab. Dies hat
grundlegende Auswirkungen auf Experimente an ultrakalten Atomen in
optischen Gittern, denn dort wird durch die experimentell notwendige
magneto-optische Falle ein ortsabhängiges Potential eingeführt, weswe-
gen die Teilchendichte ρi ebenso ortsabhängig wird. Im homogenen Fall
gibt es abseits von Halbfüllung, also bei ρ 6= 1, bei einer Sprungtempe-
ratur Tc > 0 einen Kosterlitz-Thouless-Übergang zu einer suprafluiden
Phase mit quasi-langreichweitiger Paar-Ordnung (qlro). Bei Halbfüllung
ist die Paarbildung jedoch aus Symmetriegründen entartet mit einer La-
dungsdichtewelle, wodurch die qlro unterdrückt wird und erst bei T = 0

Ordnung auftritt, nämlich langreichweitige Ordnung der Paar- wie der
Ladungsdichtewellen-Korrelationen.

In dieser Arbeit wird das zweidimensionale attraktive Hubbard-Modell
mit harmonischem Fallenpotential mittels Determinanten-Quanten-Monte-
Carlo untersucht. Bei tiefen Temperaturen treten starke Paar-Korrelationen
auf; im Vergleich mit der sogenannten Lokalen-Dichte-Näherung zeigt
sich, dass diese im Bereich um Halbfüllung drastisch falsche Voraussagen
für die Paar- und Ladungsdichtewelle-Korrelationen macht. Das bedeu-
tet, dass ein größerer Teil des Systems suprafluid wird als angenommen,
aber auch dass die Physik des halbgefüllten Modells in der Falle nicht
repräsentiert ist. Weiters werden mittels eines geeigneten Vergleichs ver-
schiedener Systemgrößen (finite-size extrapolation) Hinweise gezeigt, dass
auch im inhomogenen Fall ein Kosterlitz-Thouless Übergang zu einer
suprafluiden qlro-Phase vorliegt. Die Sprungtemperatur wird grob auf
Tc ∼ 0.15 t geschätzt.
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1 Introduction

The motivation for this work stems from optical lattices. An optical lattice
is a “crystal of light” formed by the intensity pattern of two or more
interfering laser beams. When the lasers are tuned to the right frequency,
the optical lattice is able to trap atoms in its nodes or antinodes, as the
case may be. The oscillating field induces a dipole moment in the atom
which interacts with the field, resulting in an attraction of the atom to
either the nodes or the antinodes of the standing wave. In this way, the
intensity pattern is analogous to a crystal lattice and the trapped atoms
are analogous to the electrons in the crystal.

In recent years, experiments on ultra-cold atoms trapped in optical
lattices have attracted much attention from both the experimental and
the theoretical side. Experimentally, they represent the confluence of two
previously distinct fields of atomic physics, quantum gases and optical
lattices, which was sparked by an influential paper published in 1998 by
Jaksch et al., suggesting that a superfluid to Mott insulator transition of
bosons could be observed in such a system [9, 29]. The authors argued
that the system could be tuned in such a way that the atoms would
be described by the Bose-Hubbard model. This idea was subsequently
realized by Greiner et al. [21].

More recently, experimentalists have been able to trap fermionic atoms
in optical lattices [32]. At this point contact is made with the forefront of
another, more distantly related, discipline: condensed-matter theory. This
is because the system becomes a quantum simulator of the Fermi-Hubbard
model, a model that represents a long-standing problem of that field. The
optical lattice can be viewed as a “special-purpose quantum computer”∗

for simulating the Hubbard model [36].
The Hubbard model is of continued interest as a fundamental, simple

model which can nonetheless capture the essence of many phenomena,
∗Quantum computing in a more general sense is another field where applications for
quantum gases in optical lattices are expected.

13



14 1 Introduction

and which has been solved exactly only in one dimension. More recently,
the model is regarded as a candidate for describing high-temperature
superconductivity.

The appeal of the quantum-simulator idea is that these systems are
known to follow the Hubbard model to a good approximation; have
highly tunable parameters including the hopping amplitude, the strength
and sign (repulsive or attractive) of the interaction, the lattice geometry,
disorder and impurities in the lattice, and even the dimensionality; and
act on much larger time and length scales than real crystals, making novel
kinds of observations possible.

The hope in this line of research is to experimentally determine the
low-temperature phase diagram of the Hubbard model, which has so far
been impossible by theoretical means. Perhaps the most important open
question is whether the repulsive Fermi-Hubbard model supports super-
conductivity and may be able to describe high-temperature superconduc-
tors. However, this question is very challenging to address in optical-lattice
experiments, primarily because of the extremely low temperatures that
are needed. Temperatures achieved in experiments are in the nano-Kelvin
range, but the energy scales of the model – the hopping amplitude t and
the interaction energy U – are so small that even lower temperatures will
be required to reach the parameter regime of interest.

There is an interesting parallel between optical-lattice experiments and
quantum Monte Carlo simulations, which are the prime theoretical tool for
investigating Hubbard models. In both cases, bosons are easier to study
than fermions, and attractive interactions easier than repulsive interactions.
Experimentally, this is because of the different temperature-scales involved,
theoretically, it is a result of the fermion sign problem.

Thus, until the challenges of the repulsive case are overcome, it is in-
teresting to study fermion superconductivity in the “attractive” Hubbard
model, in which fermions on the same lattice site are taken to attract each
other. More precisely, in the attractive case one studies superfluidity as an
analog of superconductivity. Superfluidity in the attractive case is more
confidently expected to exist than superconductivity in the repulsive case.

Theoretical studies alongside the experiments are essential for the
quantum-simulator program for the following reasons. First, it is chal-
lenging to set up the experiments and make measurements, and guidance
from theoretical results is valuable. Second, it is not as straightforwardly



15

clear that the system follows the Hubbard model as we have made it seem.
There are subtleties that have to be kept in check, and agreement with the
model has to be verified.

Third, there is a more fundamental difference between atoms in an
optical lattice and the traditional Hubbard model. The atoms have to be
prevented from exiting the lattice, which is experimentally achieved by
a magneto-optical trap; one speaks of a confined system. The trap leads
to a form of inhomogeneity in the model which was never considered
in condensed-matter physics. The immediate physical effect is that the
fermion density varies across the system.

In the theory of confined systems, one defines a local-density approxi-
mation, whereby one attempts to deduce the properties of the trapped
system from the homogeneous case. This is of great interest both tech-
nically, because it simplifies the calculations, and conceptually, because
ultimately one wants to draw conclusions about the homogeneous model
from observations of the confined one.

In this work, we will assume the validity of the Hubbard model as a
given, and study superfluidity in the confined attractive Fermi-Hubbard
model on a two-dimensional square lattice, using determinant quantum
Monte Carlo for the numerical calculations. The effects of the trap com-
pared to the conventional homogeneous model and the validity of the
local-density approximation will be our main focus.
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2 The Hubbard Model

The Hubbard model [19, 27, 37] is one of the simplest models of electrons
in a crystal, or more generally, of interacting particles on a lattice. In its
standard single-band form, it includes the kinetic energy in the form of
nearest-neighbor hopping t as in the tight-binding model; and a local
density-density interaction U between particles occupying the same site.
It is the interplay between these non-commuting terms that gives rise to
interesting physics in the model.

The Hubbard model may be obtained from the ab initio Hamiltonian
describing a crystal by a series of approximations. It exhibits a variety of
phenomena that occur in solid-state systems, for instance Mott insulating
behavior and the antiferromagnetic (af) ordering that accompanies it.
Another notable case is high-temperature superconductivity, specifically
the cuprate superconductors. It is believed that the CuO2 layers that
form in these materials are central to the superconductivity [52]; since
the inter-layer coupling is weak, the layers are regarded as quasi-two-
dimensional sheets. The square-lattice Hubbard model is conjectured to
describe superconductivity in these sheets, with each site representing a
copper atom [1].

While the focus of this work is on a different realization of Hubbard-type
models, namely ultra-cold atoms loaded in optical lattices (see Chapter 3),
in this chapter the Hubbard model is motivated and discussed from a
condensed-matter perspective. Two particle-hole transformations are defined
which relate different sets of parameters of the model, and which will
serve as guidelines to the discussion of the attractive Hubbard model
(ahm) throughout the present thesis. Using these transformations, some of
the phases occuring in the model are briefly discussed. Finally, relations
needed for a finite-size scaling analysis of the superfluid phase are given.

17



18 2 The Hubbard Model

2.1 Hamiltonian

Starting from an ab initio description of nuclei and electrons in a crystal,
assuming the nuclei with their core electrons fixed at the equilibrium
positions (the Born-Oppenheimer approximation), taking the Wannier
functions as single-particle basis, and keeping only a single band, one may
derive a Hamiltonian of the form

Ĥ = −
∑
ijσ

tij c
+
σicσj +

∑
(i,σ) 6=(j,ρ)

Uij n̂σin̂ρj

with hopping amplitudes tij and interactions Uij. Here and in the follow-
ing, the indices i and j sum over all lattice sites while σ and ρ sum over spin
states. The symbol 〈ij〉 will be used to denote a pair of nearest-neighbor
sites. Using standard second quantized notation, c+σi is the creation opera-
tor for a site i and spin σ, cσi the destruction operator and n̂σi := c+σicσi
the number operator, while n̂i := n̂↑i + n̂↓i counts the total number of
particles on site i.

The standard Hubbard Hamiltonian follows if we assume that the over-
lap between basis functions at different sites is sufficiently small (for
electrons in a crystal, this means that they are well localized and screened)
to consider only local interactions Uii and nearest-neighbor hoppings
t〈ij〉, and furthermore assume homogeneous interactions Uii = U and
hoppings t〈ij〉 = t. Often, the hopping is used as unit of energy by setting,
symbolically, “t = 1”. Adding a chemical potential µ and a magnetic field∗ h,
the most general form of homogeneous Hubbard model used in this work
may be written as

Ĥ(t,U,µ,h) := −t
∑
〈ij〉σ

c+σicσj +U
∑
i

(n̂↑i − 1/2)(n̂↓i − 1/2)

− µ
∑
i

(n̂↑i + n̂↓i) − h
∑
i

(n̂↑i − n̂↓i). (2.1)

This is the particle-hole symmetric form of the Hamiltonian, which behaves
∗To fully treat the effect of a magnetic field on charged, spinful particles in non-relativistic
quantum mechanics, two changes to the Hamiltonian are needed. First, the Lorentz force
is included by substituting p̂ 7→ (p̂ − Â) for the momentum, where Â is the operator
representing the electromagnetic vector potential. In a lattice model, this leads to a
Peierls phase [46] in the hoppings tij, but this effect is neglected here.
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in a particularly simple manner under the particle-hole transformations
discussed in Sec. 2.3. This form is tailored to spin-1/2 fermions. To describe
bosons (Bose-Hubbard model, bhm), one uses the form

1
2
U
∑
i

n̂i(n̂i − 1)

for the interaction, where the factor (n̂− 1)/2 ensures that pairs of particles
are counted (we have assumed spin-0 bosons here). Note that for spin-1/2
particles n̂(n̂− 1)/2 = n̂↑n̂↓, which is easily shown using the identities
n̂ = n̂↑ + n̂↓ and n̂2σ = n̂σ; thus if we re-interpret the operators in the
“boson form” of the interaction as spin-1/2 operators, we have

U
∑
i

n̂↑in̂↓i

for the interaction, a form that is often used for fermions.
In any case, the sign of the interaction U may be positive, leading to a

repulsion between the particles (repulsive Hubbard model, rhm); or negative,
leading to an attraction (attractive Hubbard model, ahm). In this work, we
will focus on the ahm but discuss certain properties thereof with the help
of a relation to the rhm derived in Sec. 2.3. The chemical potential and
magnetic field together will be useful in deriving this relationship; the
chemical potential is also used to set the particle number in the grand
canonical ensemble, which we will be using.

While the formalism will accommodate any lattice geometry in any
dimensionality (as encoded by 〈ij〉), we will stick to a two-dimensional
square lattice in this work (this lattice will be referred to as “2d” for short).
This case is important for the study of high-temperature superconductivity,
as the CuO2-layers in the cuprate superconductors, which are thought to be
responsible for superconductivity in these materials [52], are often modeled
by this lattice; it is also often realized in optical-lattice experiments.

Second, the aligning effect on the spin of the particle is accounted for by a Zeeman
term B · ŝ which for the case of a field in z-direction is equivalent to the term h(n̂↑ − n̂↓)
included in (2.1). It is in this restricted sense that we will use the term “magnetic field”.
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2.2 Observables

In the following, we will assume a bipartite lattice, and use the symbol
(−1)i to mean −1 if i belongs to one sublattice and +1 for the other
sublattice.

The observables which will be the focus of this work are the charge
correlation function

ccharge(i, j) := 〈n̂in̂j〉− 〈n̂i〉〈n̂j〉, (2.2a)

and the s-wave pairing correlation function

cpair(i, j) := 〈∆+
i ∆j +∆

+
j ∆i〉 (2.2b)

where ∆+
i := c+↑ic

+
↓i creates a pair of fermions on site i.

We also define the associated structure factors, which are used to distin-
guish the phases of the 2d ahm discussed in Sec. 2.4,

Scdw
:=
∑
ij

(−1)i+j ccharge(i, j). (2.3a)

Ps :=
∑
ij

cpair(i, j), (2.3b)

2.3 Particle-Hole Transformations

Combining the creation and destruction operators into vectors c and c+,
we can write a standard change of basis as c 7→ V c and c+ 7→ c+V+,
with a unitary matrix V. To study the Hubbard model, another type of
transformation is useful: particle-hole transformations, which map creation
operators to destruction operators and vice versa.

Through the action on the fermion operators, these transformations
act on all quantum mechanical operators, as written in second quantized
notation. The behavior of the Hamiltonian is particularly relevant, but all
other observables must change, too. Each transformation ph is self-inverse,
ph ◦ph = Id and commutes with the Hermitian conjugate, ph(Â+) =

(ph Â)+. All the relations in this section follow easily by substitution and
using the canonical anticommutation relations of the fermion operators,
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{cσi, c
+
ρj} = δijδσρ and {cσi, cρj} = {c+σi, c

+
ρj} = 0where δ is the Kronecker

symbol.

2.3.1 Symmetric Particle-Hole Transformation

The creation operator for each site and spin is exchanged with the corre-
sponding destruction operator. An additional factor (−1)i is needed to
keep the hopping term invariant.

ph↑↓ : cσi ↔ (−1)i c+σi (2.4a)

The number and pair-creation evidently operators transform as

n̂σi ↔ 1− n̂σi ,
∆+
i ↔ 1−∆i ,

(2.4b)

which leaves the hopping and the interaction unchanged but changes
the sign of the chemical potential and magnetic field, because of the
transformation of the n̂σi

Ĥ(t,U,µ,h)↔ Ĥ(t,U, −µ, −h). (2.4c)

For the observables, one finds

ccharge(i, j)↔ ccharge(i, j),

cpair(i, j)↔ cpair(i, j) + 2δij(1− n̂i).
(2.4d)

Thus we see, for example, that the particle density obeys the relation
ρ(t,U,µ,h) = 〈n̂i〉(t,U,µ,h) = 〈2− n̂i〉(t,U,−µ,−h) = 2− ρ(t,U, −µ, −h) for
any set of parameters.

At µ = h = 0, the Hamiltonian is invariant under ph↑↓, and all observ-
ables are equal in the particle picture and the hole picture; the model is said
to be particle-hole symmetric in this case. From the behavior of the density
under ph↑↓, we see that µ = 0 corresponds to half-filling, ρ(µ = 0) = 1.

Another consequence is that for fixed t, U, and h, the phase diagram
is symmetric about µ = 0. For the cdw and s-wave phases corresponding
to the quantities (2.3), this is easily seen from (2.4d), since under ph↑↓, the
structure factor Scdw is completely unchanged and Ps is unchanged except
for local contributions.
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2.3.2 Asymmetric Particle-Hole Transformation

If we swap the creation and destruction operators of only one spin species
[16],

ph↓ : c↓i ↔ (−1)i c+↓i

c↑i unchanged,
(2.5a)

density operators are transformed to spin operators and vice-versa

n̂i ↔ 2 ŝzi + 1,

∆+
i ↔ (−1)i ŝ+

i ;
(2.5b)

and the interaction is seen to change sign, yielding a relation between the
attractive and the repulsive Hubbard model

Ĥ(t,U,µ,h)↔ Ĥ(t, −U,µ,h). (2.5c)

Using well-known properties of the spin-1/2 operators, the relations for
the observables may be derived,

ccharge(i, j)↔ 4
[
〈 ŝzi ŝzj〉− 〈 ŝzi〉〈 ŝzj〉

]
,

cpair(i, j)↔ 2
[
(−1)i+j 〈 ŝxi ŝxj + ŝyi ŝyj〉+ δij〈 ŝzi〉

]
.

(2.5d)

Both correlation functions defined in (2.2) are thus mapped to spin correla-
tion functions.

2.4 Phases of the 2D AHM

In this section, we will discuss some of the phases that occur in the 2d

Hubbard model. While our focus is the attractive model at h = 0, we will
make heavy use of the relation to the repulsive case at µ = 0 given by
(2.5).

2.4.1 At µ = 0↔ h = 0

We begin our discussion with the rhm at h = µ = 0, which maps to the
ahm with µ = h = 0. At zero magnetic field, the Hubbard model has
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the SU(2) symmetry of spin rotations, even though that symmetry is not
manifest in (2.1).∗ Therefore, all spin components are equivalent

〈 ŝxi ŝxj〉 = 〈 ŝyi ŝyj〉 = 〈 ŝzi ŝzj〉 (h = 0). (2.6)

A finite-temperature phase transition in these circumstances is forbidden
in 2d by the Mermin-Wagner theorem [41], but long-range af spin ordering
occurs at zero temperature [56].

As we have seen in (2.5d), spin correlation in the z-direction in the rhm

maps to cdw correlation in the ahm, and xy-spin order maps to s-wave
pairing, thus (2.6) translates to

ccharge ∼ cpair (µ = 0), (2.7)

up to constants and local contributions. It follows that the half-filled ahm

exhibits combined cdw and pair order at T = 0, but is unordered at T > 0.
To conclude, at µ = 0↔ h = 0 the 2d Hubbard model in is unordered

at finite temperature, but at T = 0, it possesses true long-range order, where
the appropriate correlation functions decay to constants at large distances,

c(r)→ const > 0 for r→∞. (2.8)

Here, c stands for a generic correlation function such as c(|~ri −~rj|) :=
〈ŝi ŝj〉 and is not to be confused with a fermion destruction operator.
In the repulsive case, it is the spin degrees of freedom that order, and
the three spin directions are degenerate. In the attractive case, cdw and
pair order occur simultaneously [51]. Spin and cdw ordering is depicted
schematically in Fig. 2.1.

2.4.2 At µ 6= 0↔ h 6= 0

Going to nonzero magnetic field h 6= 0 but staying at half-filling µ = 0 (in
the repulsive picture), the spin symmetry is broken, and the z-component
singled out, which makes possible a Kosterlitz-Thouless (kt) transition

∗The SU(2) symmetry can be made manifest by writing Ĥ in terms of spinors ψ+ =(
c+
↑ c

+
↓
)

and the z-Pauli matrix σz =
(
1 0
0 −1

)
. It then reads Ĥ = −t

∑
〈ij〉ψ

+
i ψj +

U
∑
i(ψ

+
i ψi)

2 − µ
∑
iψ

+
i ψi − h

∑
iψ

+σzψ, up to a shift in chemical potential [18].
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Figure 2.1: Schematic illustration of phases in the
2d Hubbard model. Top: antiferromagnetic spin
order as it occurs in the rhm with µ = h = 0 at
T = 0. Bottom: charge-density wave order as it
occurs simultaneously with s-wave pairing order
in the ahm with µ = h = 0 at T = 0.

↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

↑↓ ↑↓ ↑↓ ↑↓

[34] to a phase with quasi-long-range order (qlro) in the xy-spin degrees
of freedom at a finite critical temperature Tc.

In the rhm, the low-temperature phase again exhibits antiferromagnetic
correlations, but only with regard to the xy-components of the spin; in the
ahm, it is the pairing that is preserved, while the cdw disappears.

In either case, it is no longer true long-range order that occurs, but qlro

meaning that the correlations decay to zero as a power of the distance,
c(r) ∼ r−(d−2+η) in d dimensions or, in two dimensions,

c(r) ∼ r−η for r→∞ (T < Tc). (2.9a)

Above the transition temperature, a finite correlation length ξ enters,

c(r) ∼ r−η e−r/ξ for r→∞ (T > Tc). (2.9b)

The critical exponent η is known at zero temperature, η(T = 0) = 0 [7]
and at the transition temperature η(Tc) = 1/4 [33]. It is seen that in the
ground state, the qlro becomes true long-range order in 2d.

2.5 Finite-Size Scaling for the KT Transition

In a finite-size scaling analysis (fss) [44], systems of different sizes at differ-
ent temperatures (or values of another coupling) are compared according
to scaling laws for suitable observables with the goal of determining pa-
rameters of the system at the thermodynamic limit, such as the critical
temperature or critical exponents. By exploiting the scaling forms, errors
due to the fact that numerical values are only available for finite system
sizes can be compensated, and it is often possible to make conclusions
about the thermodynamic limit when only moderate system sizes are
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Figure 2.2: S-wave structure factor Ps
as a function of inverse temperature
β for the homogeneous ahm at vari-
ous system sizes. The flattening of the
curves at low temperature is indicative
of a divergent correlation length and
the onset of order. Reproduced from
Ref. 45.

accessible. A key point in fss is the divergence of correlation lengths at
phase transitions.

Paiva et al. [45] provide an fss for the superfluid transition of the homo-
geneous ahm. Some of the results are reproduced here to provide examples
for the discussion of fss in general, and context for the presentation of
results from the confined system in Sec. 5.4.

Integrating a correlation function c which exhibits qlro (2.9) over a
two-dimensional system of linear size L yields the scaling behavior of the
associated structure factor,

P ∼ L2−η f(L/ξ) =: L2−η f(w), (2.10a)

for large L, with a scaling function f and w := L/ξ . The correlation length
scales as [42]

ξ ∼ exp A√
T − Tc

(2.10b)

with the critical temperature Tc and a parameter A. Note that the correla-
tion length ξ diverges for all T 6 Tc, that is to say the system is critical in
all of the kt phase.

On any finite system, the actual correlation length ξ(T ,L) is limited by
the system size. Thus, as T → T+

c , the structure factor cannot grow to its
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Figure 2.3: Scaled s-wave structure fac-
tor L−7/4Ps as a function of inverse
temperature β for the homogeneous
ahm at various system sizes. The con-
vergence of the curves at low tempera-
tures again indicates the divergence of
the correlation length. The inset shows
an enlargement of the region where
the curves begin to coincide. Repro-
duced from Ref. 45.

thermodynamical value, but saturates when ξ(T ,L) ceases to increase. This
behavior can be visualized by plotting P(β,L) for various system sizes as
a function of β = 1/T : At small β, where the system is disordered and ξ
is small, the curves for all L will coincide. As β begins to grow, the finite
system size is noticed and the curves begin to separate. Finally, as the
transition is approached, the P saturate to the maximum values dictated
by their respective L. An example of this kind of plot is shown in Fig. 2.2.

The same behavior may be visualized in a different way by bringing
L2−η to the other side of (2.10a), and plotting Lη−2 P(β,L) as a function
of β. In this case, the curves start out separated at low β but converge
for large system sizes as the transition is approached. Fig. 2.3 shows an
example.

If the scaling form of the correlation length (2.10b) is also taken into
account, one arrives at a scaling plot as Fig. 2.4, where f(w) = Lη−2 P(β,w)

is plotted (for T > Tc) as a function of w and one expects the curves for
all system sizes to coincide. It is by looking for collapse on this plot that
parameters are usually determined.

Lastly, in the critical region, because of the divergent correlation length,
the unknown scaling function degrades to a proportionality constant,

P ∼ f(0)L2−η (T 6 Tc). (2.11a)
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Figure 2.4: The scaling plot for the ho-
mogeneous ahm. The parameters Tc
and A are varied to achieve a collapse
of the curves for different system sizes
L onto the scaling function f. The hor-
izontal axis corresponds to w = L/ξ.
Congruence of the curves implies that
the scaling relations (2.10) hold and
constitutes evidence for the kt transi-
tion. Reproduced from Ref. 45

Taking the logarithm, we see that

logP ∼
(
2− η(T)

)
logL (T 6 Tc). (2.11b)

At low temperature, the graphs of logP(T ,L) as a function of logL become
straight lines with the slope determined by η. In (2.11b), we have reinstated
the explicit temperature dependence of η to emphasize that different slopes
are expected for different temperatures.
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3 Realizations of the Hubbard Model
in Confined Systems

In recent years, experiments on ultra-cold atoms in optical lattices [17,
21, 28, 29, 36] have provided a novel realization of the Hubbard model.
In contrast with solid-state systems, where the Hubbard Hamiltonian
represents a highly abstracted model of the physical system, which one
hopes may nonetheless capture the essence of the phenomena of interest,
optical lattices are deliberately engineered to provide a realization of the
Hubbard model or other lattice models. The hope is to gain insight into
the model beyond what theoretical studies have been able to provide.

However, in the experiments it is necessary to confine the atoms to
the region of the optical lattice. This confinement gives rise to an impor-
tant modification of the Hamiltonian, in the form of an inhomogeneous
potential unprecedented in condensed-matter systems.

In this chapter, after introducing the optical lattice Hamiltonian, the
“local-density approximation” (lda) for confined systems will be defined
and the correct way to take the thermodynamic limit of confined systems
will be presented. Finally, drawing heavily from the lda, we will discuss
some of the new physics of confined systems.

3.1 Optical Lattices

An optical lattice is essentially a standing light wave produced by intensive
counterpropagating laser beams. Electrically neutral atoms interact with
the electromagnetic field via the ac Stark effect. If the laser frequency ω
is far detuned from an atomic transition, whose frequency we denote Ω,
the standing light wave with position-dependent intensity I(~r) acts on the
atoms as a periodic potential [36]

V(~r) ∝ I(~r)/∆ ∝ (sin~k ·~r )2/∆

29
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Figure 3.1: Schematic of an opti-
cal lattice with hopping matrix el-
ement t, interaction U and trap-
ping potential vr2. The horizontal
direction represents position r, the
vertical direction represents energy.
The energy offset “l U” represents
an interaction between two atoms;
only the lowest single-particle state
in the potential well is involved. vr2

t U

where ~k is the wave vector of the laser beam and ∆ := ω−Ω is the laser
detuning. The sign of ∆ determines which features of the standing wave
attract the atoms: for a “red-detuned” beam, ∆ < 0, the antinodes become
potential minima; in the “blue-detuned” case, ∆ > 0, the nodes are the
minima.

If the potential is strong and the atoms have small kinetic energies, they
become confined to the potential minima. In this way, a lattice model may
be emulated, with the nodes or antinodes as analogues of the lattice sites
and the atoms as particles. To emulate a single-band model, it is in fact
required that the atoms occupy only the lowest-energy state in each of the
potential wells.

Movement between the sites is possible by quantum tunneling; the tun-
neling amplitude t is given by an overlap integral over Wannier states at
different sites, and depends quite sensitively on the depth of the lattice po-
tential, i.e. on the intensity of the lasers. Since the tunneling rate decreases
exponentially with the width of the barrier, it is typically assumed that only
tunneling between nearest neighbors takes place, as in the tight-binding
approximation in lattice models.

The interaction between atoms that share a “site” leads to an energy
U associated with each pair of atoms on the site, which is proportional
to the s-wave scattering length as [29]. The scattering length may be
positive or negative and can be tuned in magnitude and sign via Feshbach
resonances [12]. Because U also depends on the shape of the Wannier
functions, it is affected by the depth of the lattice potential as well, but the
dependence is much weaker than the hopping’s.

Different types of atoms may be “loaded” into optical lattices; impor-
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tantly, both “bosons” (e.g. 87Rb) and “fermions” (e.g. 40K, 6Li) are avail-
able∗. In the case of fermions, usually two different species (realized as
different hyperfine states) are used to emulate the two spin states of
electrons.

The number of particles in an optical lattice is fixed (disregarding losses,
which have to be controlled in actual experiments). For calculations in the
grand canonical ensemble, the chemical potential has to be adjusted so
that the densities match. Magnetization may be emulated by introducing
a population imbalance between atom species and is set by the magnetic
field in the grand canonical description.

Systems of reduced dimensionality can be constructed by making the
lattice potential so steep along one or two directions that an array of
essentially decoupled one-dimensional tubes or two-dimensional sheets
remains.

Thus, a realization of the attractive or repulsive, Fermi- or Bose-Hubbard
model in one, two or three dimensions with highly tunable parameters
can be constructed. In contrast to condensed-matter systems, the optical
lattice is known to follow the model under relatively mild approximations.
Time and length scales are much larger than in a solid, making e.g. the
measurement of the particle density on a single site possible [4]. Lattice
defects and phonons are absent. In these respects, optical lattices are a
“purer” testing ground for the model than any other physical system.

However, an important modification to the Hubbard Hamiltonian (2.1)
arises because of the confining potential which is needed in these experi-
ments to confine the atoms to a region in space. Experimentally, this “trap”
is typically realized as a magneto-optical trap. In the theoretical descrip-
tion, the trap may be modeled by a site-dependent chemical potential
µi which is normally parabolic in the distance ri (in units of the lattice
spacing) from the trap center,

µi = µ0 − vr2i = µ0 − (ri/`)
2 t. (3.1)

The trap introduces a length scale ` =
√
t/v; the hopping t has been used

as unit of energy. We note that the homogeneous case corresponds to the

∗Of course, any atom is ultimately a compound of fermionic constituents, but for large
enough separations, they interact as elementary fermions (odd number of constituents)
or bosons (even number of constituents).
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limit v→ 0 or `→∞. The full optical lattice Hamiltonian reads

Ĥ := −t
∑
〈ij〉σ

c+σicσj +U
∑
i

(n̂↑i − 1/2)(n̂↓i − 1/2)

−
∑
i

(µ0 − vr2i )(n̂↑i + n̂↓i). (3.2)

Here, we have not allowed for a magnetic field. In this work, we consider
attractive (U < 0) fermions on a two-dimensional square lattice. Contrary
to the model, the experiments have a fixed number of particles rather than
a chemical potential, and evolve at constant entropy, since the system is
essentially isolated [13, 30]. However, for large systems, the differences are
expected to be negligible.

3.2 Local-Density Approximation

To study the effects of the trapping potential, instead of including it directly
in a calculation, one may try to deduce the properties of the confined
system from the corresponding homogeneous system. Each site i, with
a local chemical potential µi, is identified with a homogeneous system
Ĥhom := Ĥ(t,U,µ = µi). In the context of confined systems, this idea is
known as the local-density approximation (lda)∗.

At t = 0, where the system degenerates into a series of unconnected
sites, the lda becomes exact. Elsewhere, it is expected to hold whenever the
density varies slowly as a function of position and the correlation length
is not too large. Note that the first condition is not in general equivalent to
a slowly varying chemical potential; the boundaries of a Mott-insulating
region provide a counter-example (cf. Sec. 3.4).

The lda has been widely used to study trapped systems, and for local
observables, good agreement has generally been found where the above
conditions are satisfied. Truly non-local quantities, such as correlations
over large distances, cannot be calculated in the lda since it does not

∗Despite the name, this lda is distinct from what is called the local-density approximation
in density-functional theory.

In the present case, the name local-density approximation is actually an anticipation of
the success of the lda with regards to the particle density, since the primary definition
used the chemical potential instead.
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couple regions of different filling. For correlations over small distances,
such as nearest-neighbor sites, the lda can however give good results.

Part of the appeal of the lda comes from the technical simplifications
that follow. In dqmc, for example, the computational effort scales as the
cube of the number of sites. Under the lda, one has to carry out simulations
of many homogeneous systems to compose one trapped system, but can
typically use a much smaller system size∗ than with a true trap, such that
the lda calculation is less costly overall. This is what makes simulating
very large fermionic systems possible, especially three-dimensional ones.
For bosons, efficient algorithms exist that scale essentially linearly with the
space-time volume, making direct simulations of large three-dimensional
systems possible.

However, if one sees the ultimate goal of optical-lattice experiments in
gaining information on homogeneous systems, e.g. determining the phase di-
agram of the homogeneous Hubbard model, the lda appears in a different
light: its validity becomes a prerequisite for success.

3.3 Thermodynamic Limit

In the presence of a confining potential, the usual thermodynamic limit†

becomes ill-defined. It is not immediately clear whether an interesting
thermodynamic limit including phase transitions can be recovered in the
trap. Historically, these questions were first discussed‡ in the context of
experiments on Bose-Einstein condensation (bec) in harmonic traps, with
no optical lattices involved at the time. It was found that a meaningful
thermodynamic limit and phase transitions are possible. Indeed, in some
cases a transition may appear in the trap that is absent in the homogeneous
case; Mullin [43] discusses the example of noninteracting bosons in 2d,
where a second-order phase transition to a bec is forbidden by the Mermin-
Wagner theorem [41] in the homogeneous case, but becomes possible in
the trap because the density at the center diverges in the thermodynamic

∗For example, the lda results in this work were calculated on 8×8-systems, while 30×30
was the largest size of trapped systems simulated.
†Symbolically, N→∞, where N may stand for the number of particles, number of sites,
or similar.
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limit.
For a homogeneous system, one takes the thermodynamic limit at con-

stant density, ρ = N/V = const (number of particles N, system volume V).
In effect, we imagine the system contained in a box and making that box
bigger and bigger, while increasing the number of particles to keep the
density constant. Using the grand canonical ensemble, one may simply
keep the model parameters including the chemical potential constant and
take V→∞ to implement the limit.

For a trapped system, if the parameters including v = t/`2 specifying the
strength of the trap were kept constant, the system would not really scale
at all; one would simply increase the empty area around an unchanged
region of nonzero density, with the density averaged over the whole system
approaching zero. In other words, the size of the system is really set by the
trapping potential, which forces the density to zero outside some region;
if we choose to imagine the system contained in a box, all that matters is
that the box be big enough for that region.

In that sense, the linear size L of that box becomes irrelevant, and must
be replaced with the trap length scale defined in (3.1); thus we arrive at
the characteristic density in d dimensions ρ̃ := N/`d = N (v/t)d/2 or, for
d = 2,

ρ̃ = N/`2 = N v/t, (3.3)

which must be kept constant in taking the thermodynamic limit∗:

N→∞ (ρ̃ = const). (3.4)

It has been demonstrated numerically [47–49] that, using this prescription,
different system sizes become comparable, and phase diagrams for trapped
systems may be constructed.

For an additional point of view on the characteristic density, consider
the following simple calculation, carried out for two dimensions. Using
the lda, and assuming a small lattice spacing or a continuous system, the
number of particles in a trapped system may be calculated as an integral

‡See Ref. 43 and references therein.
∗This prescription is implied in Ref. 43 but the characteristic density is not explicitly

defined; rather, the requirement (3.4) is referred to as “constant average density”.
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over contributions determined by the local chemical potential

N =

∫R
0

dr rρ(r) = 1
2v

∫µ0
µ|

dµρ(µ)

= `2 F(µ|,µ0)

where ρ(µ) := 〈n̂〉µ is the density of the homogeneous system with chem-
ical potential µ. In keeping with the argument above, we have used R,
the radius beyond which the density becomes negligible, and the corre-
sponding local chemical potential µ| = µ(R); as well as (3.1) in solving
for r(µ) and v = t/`2. Since F(µ|,µ0) is determined by the model (µ0 is a
parameter and µ| is a property of the model), it is clear that N/`2 must be
constant.

From a practical point of view, if one wishes to simulate systems at vari-
ous sizes for comparison or finite-size scaling, one may use the following
procedure:

1. choose (linear) lattice sizes Ln to be simulated, usually as dictated
by computing power

2. choose µ0 to achieve a density at the trap center as required, ideally
guided by results from the homogeneous model via the lda

3. determine a local chemical potential µ| at the edge of the simulated
box such that the density will be negligible there, again guided by
the lda

4. compute a trap strength vn for each Ln such that µ(Rn) = µ0 −

vnR
2
n = µ| where Rn is the minimum distance from the trap center

to the edge of the box, usually Rn = (Ln − 1)/2.

This ensures that the characteristic density stays constant across the Ln. In
fact, step 4 implies that the box size L (more precisely, L− 1) scales as the
trap size `, therefore the standard density will be constant as well as the
characteristic density.

3.3.1 Trap-Size Scaling

In an fss analysis for a confined system one must also take the trap into
account, and use the length scale ` induced by the trap where the linear
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system size L would be used in the homogeneous case. However, ` enters
with a nontrivial new critical exponent, the trap exponent θ, which depends
on the universality class of the model and the specific type of trap. The
resulting modified fss-scheme has been called trap-size scaling (tss), see
[10].

For the case of a classical kt-transition, Crecchi and Vicari [14] derive
the trap exponent in the low-temperature limit and at the kt temperature
Tc, finding θ = 1 in both cases, and conjecture that this value holds for all
of the qlro regime,

θ = 1 (T 6 Tc). (3.5)

This would mean that the trap size ` enters as-is in the tss; if one follows
the recipe outlined above and keeps L ∝ `, the same formulas may be used
as in the standard fss for a kt-transition [14, 44] as described in Sec. 2.5.

A further complication resulting from the trap concerns the critical
exponent η, which determines the long-range behavior of the correlation
function (2.9). In the homogeneous case, it is known that η is a function of
temperature, increasing from η = 0 at T = 0 to η = 1/4 at Tc. As a universal
property of the kt universality class, η can depend on the temperature
only through the reduced temperature T ′ := (T − Tc)/Tc.

From an lda point of view, one must consider T ′ and therefore η = η(T ′)
a local quantity, because Tc depends on the filling and therefore on position
in the trap. In this sense, the long-range behavior of the correlation function,
c(r) ∼ r−η exp(−r/ξ) in the homogeneous case (2.9), must be expected
to change in the confined case. For the tss scheme, the question arises
whether an effective exponent η ′ exists such that the homogeneous-case
scaling form of the structure factor, (2.10a) can be recovered as

P ∼ `2−η
′
f(`/ξ). (3.6)

3.4 Coexistence of Phases

As we have seen in section Sec. 2.4, the phase of the Hubbard model de-
pends on the chemical potential, and the local chemical potential depends
on the position in the trap; therefore, the lda predicts different phases to
coexist at different locations in the trap. This effect was already pointed
out by Jaksch et al. in the original proposal for an optical lattice filled



3.4 Coexistence of Phases 37

Figure 3.2: Schematic zero-temperature phase diagram
of the homogeneous repulsive Bose-Hubbard model
showing three Mott lobes, reproduced from Ref. 20.
Here, the hopping is called J and the interaction V . In
the lda, traversing the trap from the center outward
is tantamount to descending vertically in the diagram.
Since the density has to decay to zero at the edges of
a trapped system, the latter can never be in a pure mi

state.
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Figure 3.3: Coexistence of phases
in the trapped 2d repulsive Bose-
Hubbard model at T = 1 t, reproduced
from Ref. 40; x is the distance from the
trap center, ρ the particle density and
ρs the superfluid density. Superfluid
(sf) regions are marked by a nonzero
superfluid density, Mott insulator (mi)
regions by a constant density. Note
the region of normal (n) phase at the
edge of the trap, which always exists
at nonzero temperature.

with ultra-cold atoms [29], and has been confirmed in both numerical (see
examples below) and experimental [21] studies. In a trapped system, the
phases occur in a characteristic shell structure, with a disc of a high-density
phase around the center followed by annuli of progressively lower density.

3.4.1 Repulsive Bosons

We begin with a discussion of the repulsive Bose-Hubbard model, where
the phase coexistence is especially clear-cut, because lower temperatures
(with respect to the energy scales of the model) can be reached, both
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numerically and experimentally, and the phase diagram of the uniform
model is well known.

The phase diagram of the bosonic rhm is customarily drawn in the
(t/U,µ/U)-plane; in the lda, then, the trapped system traverses the ho-
mogeneous-case phase diagram at fixed t and spatially varying µ. At
zero temperature, two kinds phases exist in the homogeneous system. At
large hopping, the system is superfluid (sf). At small hopping, it enters a
Mott-insulating phase (mi) which is characterized by an integer number
of particles per site (commensurate filling). The critical tc/U of the sf-mi

transition is determined by µ; between mi-regions (often, “Mott lobes”)
with different filling, tc/U is suppressed to zero. See Fisher et al. [20]
for a discussion of the zero-temperature phase diagram, their schematic
diagram is reproduced in Fig. 3.2. At nonzero temperature, a “normal”
phase (n) intervenes between the mi and sf phases.

In a trapped system at nonzero temperature, sf and mi regions will
alternate separated by n regions although only the n phase always appears.
Mahmud et al. [40] show finite-temperature phase diagrams and discuss
the combinations occuring in the trap, one example is reproduced in
Fig. 3.3. mi regions are signaled by constant integer filling over a range of
chemical potential and thus appear as flat steps (“Mott plateaux”) in the
density profile. This corresponds to the Mott gap or incompressibility (i.e.
dρ/dµ = 0) in the homogeneous model, but note that the confined system
is never globally incompressible or gapped, because the mi phase never
occurs alone [5].

3.4.2 Repulsive Fermions

The situation is similar for fermions, except that low temperatures are more
difficult to reach, and the phase diagram is not fully known, especially with
regards to superfluidity.∗ Nevertheless, the mi phase has been reached and
Mott plateaux are also seen. Here, the mi phase only exists at half-filling
(ρ = 1); the completely filled (ρ = 2) state, which would appear as a similar
plateau in the trap, is more properly called a band insulator as it does not
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Figure 3.4: Coexistence of phases
in the trapped 2d repulsive Fermi-
Hubbard model, reproduced from
Ref. 11. The density is shown for var-
ious values of the interaction at T =
1/2 t as a function of |r − r0|, the dis-
tance from the trap center. At strong
interactions, a Mott plateau is clearly
seen to develop.

depend on the interaction.

3.4.3 Attractive Fermions

The reason why the mi phase and Mott plateau appear similarly for
fermions and bosons is that it is a simple consequence of the repulsive
interaction. If one imagines a homogeneous system with one particle on
each site, there is an energy cost of order U to add a single additional
particle to the system.

In the attractive case then, since that energy cost would be negative, it
should come as no surprise that Mott plateaux do not occur. This may
also be seen by means of the asymmetric particle-hole transformation (2.5):
The Mott plateau at half-filling in the rhm is characterized by a vanishing
compressibility κ := dρ/dµ. But the compressibility κ(µ) in the ahm is
mapped to the magnetic susceptibility χ(h) := dm/dh in the rhm, which is
known to be nonzero at h = 0. Therefore, the attractive case has no Mott
plateau at half-filling.

For sufficiently low but nonzero temperatures, the lda still predicts
a coexistence of phases, namely, from the center outwards, sf, n, sf, n.

∗In fact, understanding the phase diagram of of the fermionic rhm has been referred to
as “the ‘ultimate goal’ of the theory of strongly correlated systems” [25]. Whether one
wants to go that far or not, the question of d-wave superconductivity in the 2d rhm is
certainly an important motivation for the continued interest in that model in general
and the optical lattice experiments in particular.
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Figure 3.5: Phase diagram of the
homogeneous 2d attractive Fermi-
Hubbard model with U = −4 t,
adapted from Ref. 45. The kt transi-
tion temperature is shown as a func-
tion of the filling; the data are from
quantum Monte Carlo simulations
using two different methods to ex-
tract Tc. The line is only a guide to the
eye. The phase diagram is symmet-
ric about ρ = 1, with only one half
shown. Note that Tc is suppressed to
zero in a narrow region around half-
filling.
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Figure 3.6: Coexistence of phases
in the trapped 2d attractive Fermi-
Hubbard model with U = −6 t
at T = 1/9 t. At low temperature,
regions with a density which is
not too close to an integer are ex-
pected to be superfluid (sf) under
the lda, cf. Fig. 3.5. For illustra-
tion, the expected sf regions are
shown (shaded), using critical tem-
peratures Tc from Fig. 3.5. Even
though the interaction is stronger
here, the regions are expected to be
qualitatively correct since the de-
pendence of Tc upon U is expected
to weak. See Sec. 5.2 for a discus-
sion of the validity of the lda in
this case.
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However, this mixture is not visible from the density alone. See Figs. 3.5
and 3.6, and Sec. 5.2 for a detailed discussion.
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Given a fermionic Hamiltonian Ĥ, we wish to evaluate thermodynamic
expectation values

〈Â〉 =
1

Z
tr
{
Â e−βĤ

}
=
∑
|ψ〉

〈ψ|e−βĤ|ψ〉 (4.1)

with a hermitian operator Â, a complete basis |ψ〉, the inverse temperature
β := 1/T (using “kB = 1”), and the partition function

Z = tr
{

e−βĤ
}

. (4.2)

In second quantized notation, Ĥ is expressed as a function of the fermion
creation and annihilation operators: Ĥ = H(c+, c). A particularly simple
case is that of a quadratic Hamiltonian, where H is a quadratic form,

Ĥ =

M∑
i,j=1

c+i hijcj = c+h c, (4.3)

with a hermitian matrix h. In this case, Ĥ is encoded by the M×M-matrix
h, where M is the number of single-particle states, whereas the matrix
representing Ĥ in Fock space is of the size 2M × 2M. Note that being
quadratic is a basis-independent property of an operator; a change of basis
can merely change the elements of h.

As a simple example of how calculations are simplified when the Hamil-
tonian is quadratic, consider the partition function (4.2). If (4.3) holds, we
have

Z = tr2M
(
e−βĤ

) (4.3)
= detM

(
IM + eh), (4.4)

which is easily seen in the eigenbasis of h.
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More physically put, a Hamiltonian of the form (4.3) has only hopping
terms with coefficients hi 6=j and potential terms with coefficients hii. Thus,
it describes a system of non-interacting particles.

In Determinant Quantum Monte Carlo (dqmc), one maps an interacting sys-
tem, where H(c+, c) contains quartic terms, to a series of non-interacting
systems of the form (4.3); then, traces such as (4.1) relative to these systems
may be carried out explicitly.

In the following sections, we will sketch the dqmc scheme for the Hub-
bard model (2.1) as developed by Blankenbecler, Sugar, and Scalapino [8]
with local interactions U, nearest-neighbor hopping t and a spatially vary-
ing potential µi. Spatially varying interactions Ui or arbitrary hoppings
tij represent a trivial generalization, but will not be used here.

What is attempted here is a presentation of the ideas in dqmc, not a
complete description of a practical dqmc program. For more detailed
reviews, see for example [39, 55].

4.1 Hubbard-Stratonovich Transformation

The mapping from an interacting Hamiltonian, such as the Hubbard model
Ĥ (2.1), to non-interacting Hamiltonians of the form (4.3) is accomplished
by the Hubbard-Stratonovich transformation (hst). One introduces auxiliary
variables (“hs fields”), which have subsequently to be integrated out in
order to restore the original, physical, quantities. Different mappings of this
sort are possible. The auxiliary variables may be interpreted as massless
bosonic fields that couple to the fermions, which now are non-interacting.

In the original hst, these fields take on a continuous range of values
[26, 53]. In the version described here (discrete hst), which has proven
more practical for simulations [22, 55], the fields may only take the values
±1. As described here, the procedure is specifically geared towards an
on-site density-density interaction as it appears in the Hubbard model
(2.1), but other cases are possible, for example extended interactions [39,
App. I].

The aim is to recast the exponential of the interaction term (n̂↑ −
1/2)(n̂↓ − 1/2) = (c+↑ c↑ − 1/2)(c+↓ c↓ − 1/2), which is quartic in fermion
operators, in a quadratic form. First, we write it in terms of a complete
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square, as one of

(n̂↑ − 1/2)(n̂↓ − 1/2) = 1
2

[
(n̂↑ + n̂↓ − 1)2 − 1/2

]
(4.5a)

or

(n̂↑ − 1/2)(n̂↓ − 1/2) = −1
2

[
(n̂↑ − n̂↓)

2 − 1/2
]
. (4.5b)

In each case, the operator X̂ under the square has the properties

X̂2ν = X̂2, (4.6a)

X̂2ν+1 = X̂ (4.6b)

for all positive integers ν, which is easily verified using the identity n̂2σ =

n̂σ. Using this, we conclude

eγX̂
2

= 1+

∞∑
ν=1

γν

ν!
X̂2

= 1+ X̂2(eγ − 1);

eλX̂ = 1+

∞∑
ν=1

{
λ2ν−1

(2ν− 1)!
X̂+

λ2ν

(2ν)!
X̂2
}

= 1+ sinh(λ) X̂+ (cosh λ− 1) X̂2,

therefore,

1
2

(
eλX̂ + e−λX̂

)
= 1+ X̂2(cosh λ− 1),

which allows us to write

eγX̂
2 (4.6)

= 1
2

∑
s=±1

esλX̂ (4.7a)

provided

cosh λ = expγ. (4.7b)

This is already the basic hst in the form it will be used in this work.
Note that for positive γ the parameter λ is real, while for negative γ it is
imaginary; for a negative γ, we may alternatively use the real λ ′ := iλ and
write cos λ ′ = expγ < 1.
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4.2 Suzuki-Trotter Decomposition

The identities (4.7) and (4.5) show how an operator e−βU(n̂↑−1/2)(n̂↓−1/2)

can be recast in the desired form, but we are not yet in a position to apply
this idea because, in addition to the interaction part Û that we wish to
rewrite, Ĥ = K̂+ Û (or any non-trivial Hamiltonian) also contains a kinetic
part K̂, which fails to commute with Û. Here, K̂ is intended to contain all
terms of the Hamiltonian that are already quadratic, i.e. also a chemical
potential or magnetic field in addition to the hopping, so that Û is left
with only the on-site interaction.

Therefore, we employ the Suzuki-Trotter decomposition [54] to separate
the two parts:

e−βĤ =
[
e−β/M(K̂+Û)

]M
=

M∏
τ=1

e−∆τ(K̂+Û)

'
M∏
τ=1

e−∆τK̂ e−∆τÛ

=

M∏
τ=1

{
e−∆τK̂

N∏
i=1

e−∆τU(n̂↑i−1/2)(n̂↓i−1/2)

}
(4.8)

where ∆τ = β/M, the second product runs over all lattice sites and we
have neglected terms of order ∆τ2tU in the second line.

4.3 Application to the Hubbard Model

The hst for one piece of the Suzuki-Trotter decomposition (4.8), using (4.5)
and (4.7), reads either

exp
{
−∆τU(n̂↑i − 1/2)(n̂↓i − 1/2)

}
=

e∆τU/4 1
2

∑
s=±1

exp
{
λs
[
n̂↑i + n̂↓i − 1

]}
(4.9a)

with
cosh λ := e−∆τU/2; (4.9b)
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or

exp
{
−∆τU(n̂↑i − 1/2)(n̂↓i − 1/2)

}
=

e−∆τU/4 1
2

∑
s=±1

exp
{
λs
[
n̂↑i − n̂↓i

]}
(4.10a)

this time with
cosh λ := e+∆τU/2. (4.10b)

As noted before, λ for a given variant of the transformation will be real
or imaginary depending on sign of U; and for a given U 6= 0, exactly one
variant will give a real λ. In principle, the choice between the two variants
(or any other form of hst) is completely arbitrary, but for numerical sim-
ulations, one usually chooses a real λ, and therefore (4.9) for U < 0 and
(4.10) for U > 0, in order to avoid the additional effort of working with
complex variables. It is in this sense that the conditional equation for λ is
sometimes written cosh λ = e∆τ|U|/2.

For future reference, we note another difference between the two trans-
formations: In the first, the field s couples to the charge of the fermions,
whereas in the second, it couples to the spin. Thus the variant (4.9) has
been termed “SU(2)-symmetric” [2], since the SU(2) spin symmetry of
the original model is preserved for every configuration of the hs fields
individually, whereas in the case of (4.10), which arbitrarily singles out the
z-component of the spin, spin symmetry is only restored upon summation
over all field configurations.

In the negative-U case, Assaad [2] has shown that using the SU(2)-
symmetric decomposition (4.9) can greatly improve the fluctuations of the
estimators for spin correlations in the xy-plane, at the expense of using
complex numbers in the calculations.

This difference between the two hst variants will also be relevant for
the discussion of the numerical sign problem of dqmc in Sec. 4.4.3.
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4.4 DQMC Scheme for the Hubbard Model

Combining the Suzuki-Trotter decomposition with the hst, we have

e−βĤ (4.8)
'
∏
τ

e−∆τK̂
∏
i

e∆τU/4
∑
s(i,τ)

eλs(i,τ)
[
n̂↑i+n̂↓i−1

]
(4.9)
=
[

e∆τU/4

2

]NL∑
{s}

∏
τ

e−∆τK̂
∏
i

eλs(i,τ)
[
n̂↑i+n̂↓i−1

]
=:
[

e∆τU/4

2

]NL∑
{s}

∏
τ

e−∆τK̂ e−∆τÛτ

(4.11)

where
∑

{s} runs over all configurations of the fields s(i, τ) and Ûτ, which
represents the interaction after the hst, depends on the time slice via the
hs fields. We chose the SU(2)-symmetric hst (4.9) because it is the usual
one for the attractive Hubbard model and was used in the numerical part
of this work.

Instead of the original interacting problem, we are thus left with a sum
over non-interacting problems; it is this sum that will be carried out by
Monte Carlo.

By the linearity of the trace, the sum over configurations {s} is inherited
by the partition function, Z =

∑
{s} Z ({s}). Furthermore, because the two

spin species are completely independent within each term of the sum,
the partition function may be factorized as Z ({s}) = Z↑ ({s})Z↓ ({s}) =

tr(e−∆τĤ↑) tr(e−∆τĤ↓) where e−∆τĤσ stands for all the factors acting on
spin σ which appear in the term with fields {s}.∗

To further rewrite the partition function, we need a generalization of
(4.4) appropriate for a Suzuki-Trotter product of bilinear operators. Indeed,
it can be shown [39] that

tr
{

e−∆τ Ĥ1 · · · e−∆τ ĤM

}
= det

{
I + e−∆τ h1 · · · e−∆τ hM

}
(4.12)

∗More formally, each contribution to the partition function may be written as tr(Ô↑Ô↓)
where Ôσ only acts on the σ-subspace of the Fock space. Writing every Fock state
as a tensor product of states from the spin subspaces, |ψ〉 = |ψ↑〉 ⊗ |ψ↓〉, we have
Z({s}) =

∑
ψ↑,ψ↓

〈ψ↑|Ô↑|ψ↑〉 〈ψ↓|Ô↓|ψ↓〉 = tr↑ Ô↑ tr↓ Ô↓.
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if Ĥn =: c+hnc, which yields the expression

Z =
∑
{s}

det M↑ det M↓ (4.13a)

for the partition function, where

Mσ := I + Bσ1 · · ·BσM (4.13b)

and

Bστ := e−∆τ k e−∆τ uστ (4.13c)

with k and uστ , the matrices representing the bilinear operators K̂σ and∑
i λs(i, τ)n̂σi, respectively. We do not write a spin index on k because it

is identical for both spins.∗ Note that M, B and u implicitly depend on {s}.
For a Monte Carlo simulation, (4.13) means that the weight of a configu-

ration {s} is given by

Z({s}) := det M↑ det M↓. (4.14)

Because the trace which is encoded in (4.13) sums over all occupation
numbers n(i, τ), dqmc automatically works in the grand canonical ensem-
ble. The particle density is set by the chemical potential µ.

4.4.1 Green’s Functions and Measurements

In the formalism of dqmc leading up to (4.11), any thermodynamic expec-
tation value takes a similar form as the partition function,

〈Â〉 = 1
Z

tr
(
Â e−βĤ

)
' 1
Z

∑
{s}

tr
(
Â
∏
τ

e−∆τK̂e−∆τÛτ
)

=: 1
Z

∑
{s}

A({s}) = 1
Z

∑
{s}

Z({s})〈A〉{s}.

where 〈·〉{s} = 1/Z({s}) tr(·) denotes a thermodynamic expectation value
with respect to the effective Hamiltonian of the configuration {s}.

∗So is u for the SU(2)-symmetric hst.
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For each configuration of fields, since one effectively solves a quadratic
Hamiltonian, Wick’s theorem applies, and all observables may be written
in terms of the single-particle Green’s functions [39, 55]

Gσij({s}) := 〈cσi c
+
σj〉{s}. (4.15)

Symbolically, 〈A〉{s} = A
(
Gσij({s})

)
with the precise form of A determined

by the form of Â in terms of creation and annihilation operators. This does
not imply that Wick’s theorem holds for the complete model; the property
is lost in the sum over the hs fields.

If we have access to the Green’s functions for every configuration, it is
thus easy to derive observables from a stream of field configurations given
by a Monte Carlo simulation.

As an example, for the s-wave correlation function (2.2b) we have

cpair(i, j; {s}) = 〈∆+
i ∆j +∆

+
j ∆i〉{s}

= 〈c+↑ic
+
↓ic↓jc↑j + c

+
↑jc

+
↓jc↓ic↓j〉{s}

= 〈c+↑ic↑j〉{s}〈c
+
↓ic↓j〉{s} + 〈c+↑jc↑i〉{s}〈c

+
↓jc↓i〉{s}

= (δij −G
↑
ji)(δij −G

↓
ji) + (δji −G

↑
ij)(δji −G

↓
ij)

(4.16)

because contractions of operators with opposite spins vanish, 〈c+↑ c↓ 〉{s} =

0, since the spin species are decoupled; this is also why we were able to
write the Green’s functions separately for each spin species. In the last
line of the equation, the dependence on {s} is suppressed for brevity, and
the Kronecker symbols δij are necessary to restore the operator order
demanded by the definition (4.15).

Computation of theGσij({s}) from {s} is facilitated by a formula analogous
to (4.12), which may be derived by introducing a field J coupling to cσic

+
σj

in the action, and taking a derivative at J = 0, see [39, Sec. 3.4]. Writing
the spin-σ Green’s functions as a matrix Gσ and dropping the explicit
dependence on the fields for simplicity, the result reads

Gσ = M−1
σ =

[
I + BσM · · ·Bσ2Bσ1

]−1. (4.17)

In a numerical calculation, care must be taken in the matrix multiplications
and inversion when using this formula. At low temperatures and strong
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interactions, the elements of the B matrices can span many orders of
magnitude and the product becomes more and more ill-conditioned. To
ensure correct results, numerical stabilization techniques, e.g. involving
svd decomposition of the matrices, must be used [3].

Although formally all imaginary times are equivalent, in the course of a
simulation we will also have occasion to use the Green’s function at some
imaginary time τ; this is given by [39]

Gσ(τ, τ) =
[
I + Bστ−1B

σ
τ−2 · · ·Bσ1 BσM · · ·Bστ

]−1.

Note that the Green’s function matrix at any imaginary time may be
used to compute the weight Z({s}) (which depends on the hs fields at
all imaginary times). By Sylvester’s determinant theorem, det(I + AB) =

det(I + BA) , and thus

det
(
Gσ(τ, τ)

)−1
= det

[
I + (Bστ−1 · · ·Bσ1 ) (BσM · · ·Bστ )

]
= det

[
I + (BσM · · ·Bστ ) (Bστ−1 · · ·Bσ1 )

]
= det Mσ.

Finally, though we have limited ourselves to static observables here,
it is possible to calculate unequal-time Green’s functions Gσ(τ, τ ′) and
dynamical observables.

4.4.2 Local Updates

Recomputing the matrices Mσ, their determinants and their inverses from
scratch for each {s} would be prohibitively expensive for simulations of
large systems. If one limits oneself to local updates of the form s(i, τ)←
−s(i, τ) (“flipping” a single hs field at a time, which also helps to keep
the probability to accept proposed moves large enough), it is possible to
derive simple formulas for updating the Green’s functions and calculating
the ratio of determinants which enters the acceptance probability for the
flip. For the SU(2)-symmetric hst, it can be shown [39, Sec. 3.5, with a
straightforward modification to account for the different hst used] that

det M ′σ
det Mσ

(4.9)
= eλ[s ′(i,τ)−s(i,τ)] (1+Gσii(τ)

)
.
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Note that only the current field configuration and Green’s functions enter;
the matrices Mσ themselves have become dispensable, and the Green’s
functions Gσ are now the central objects of the simulation.

4.4.3 Sign Problem

In the weight (4.14), each determinant can be positive or negative (when
λ is real), or have an arbitrary complex phase (when λ is imaginary).
Therefore, one must expect a sign or phase associated with the weight
Z({s}); in other words, dqmc suffers from the numerical sign problem
[6, 38]. Whether a sign problem actually exists depends on the type of
interaction, attractive or negative, encoded by sgn(U), as well as the type
of hst. We will examine each of the four cases, U > 0 or U < 0 and (4.9)
or (4.10), separately.

U < 0, λ real
The fields couple to n̂↑+ n̂↓ (4.9). All quantities are real and equal for both
spins, in particular det M↑ = det M↓ and hence Z({s}) = (det Mσ)2 > 0,
there is no sign problem.

U < 0, λ imaginary
The fields couple to n̂↑ − n̂↓ (4.10). Since λ is purely imaginary, M↓ = M∗↑,
hence Z({s}) = | det Mσ|2 > 0, there is no sign problem.

U > 0, λ real
The fields couple to n̂↑ − n̂↓ (4.10). Since λ is real and the coupling is
different for the two spin species, sgn(det M↑) is in general independent
from sgn(det M↓), and a sign problem exists.

U > 0, λ imaginary
The fields couple to n̂↑ + n̂↓ (4.9). Again M↑ = M↓ holds, but since the
matrices are complex, this does not restrict the phase of Z({s}), so that a
phase problem exists.

We see that dqmc is protected from the sign problem in the case of the
attractive (U < 0) Hubbard model, whereas it is subject to a sign or phase
problem for the repulsive (U > 0) model. It should be noted that these
statements are specific to the transformations (4.9) and (4.10).
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In the above, we silently assumed that there is no external magnetic
field (h = 0), which would destroy the protection from the sign problem
of the attractive model. A more complete statement is thus, there is no
sign problem for

• the attractive model at h = 0 and any µ, and

• the repulsive model at half-filling (µ = 0) and any h [23].

In the context of the Hubbard model, one is usually more interested in a
doped system (i.e., µ 6= 0) than in a magnetic field; also, in the presence of
a trapping potential, µ = 0 is never globally true.∗ In this sense, the sign
problem affects the repulsive model and not the attractive one.

Note that the two cases above are connected by the asymmetric particle-
hole transformation (Sec. 2.3.2); similarly, it connects the cases with sign
problem with each other. In other words, one cannot use a particle-hole
transformation to circumvent the sign problem.

Finally, non-interacting fermions (U = 0), are a special case, which
dqmc solves exactly. This is because the Suzuki-Trotter decomposition
(4.8) becomes exact for any M and every {s} gives the same contribution,
since the fermions decouple from the fields.

4.5 DQMC Codes Used in this Work

The main calculations for this work were carried out using the dqmc

package quest [35]. The dqmc framework as well as code to simulate
trapped systems were already provided; for this work, quest merely had
to be modified to support U < 0 and the measurement of cpair (2.2b).

Some additional calculations were carried out using a dqmc program
developed by Dahnken [15], see Sec. 5.3.

The results in this work were obtained from tens of thousands of sweeps
distributed over several independent simulations, after an equilibration
of typically 1000 sweeps each. Autocorrelations were found to be small
for the observables measured. An imaginary-time step of ∆τ = 0.1/t was
used in the calculations for the finite-size extrapolation, and ∆τ = 0.125/t
for all other calculations.
∗In the recently proposed off-diagonal confinement scheme [50], which we briefly describe

in Sec. 5.2, µ = 0 can be true for the whole system.
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In this chapter, we present dqmc results for a trapped system at β = 9/t

with U = −6 t, µ = 0.8 t, and v = 0.0097 t, thus ` ' 10. We compare results
from the lda (obtained on 8×8-lattices) with a true confined system, which
was simulated on a 30×30-lattice. The characteristic density for this system
is ρ̃ = 5.47(2).

Next, we present a finite-size extrapolation from trapped systems of lat-
tice sizes L = 12, 14, . . . , 24 at inverse temperatures between β = 1 . . . 16.
Here, the characteristic density varies with the temperature, between
ρ̃ ' 6.3 at high temperature and ρ̃ ' 5.1 at low temperature.

5.1 Density Profile and the LDA

Fig. 5.1 shows results for the particle density of homogeneous systems at
sizes 6×6 and 8×8 as a function of chemical potential µ, and illustrates
how the lda is constructed by mapping the µ to the radius r in the trap,
using the inverse of (3.1),

r(µ) =

√
µ0 − µ

v
.

No difference is seen between the two sizes, which indicates that finite-size
errors for local quantities are already small for these system sizes.

The lda results from 8×8 are shown again in Fig. 5.2 and compared
to the density profile of the trapped 30×30-system. In this case, the lda

performs perfectly. This data was already shown in Fig. 3.6.
In contrast to the rhm, there is no Mott gap in the homogeneous case

and correspondingly no plateau at half-filling in the trapped system,∗ cf.
Fig. 3.4 and the discussion in Sec. 3.4.3.

∗This is in contrast to results from dynamical mean field theory recently reported by Koga
et al. [31], who find a supersolid region with ρ = 1 and cdw order around half-filling.
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Figure 5.1: Density ρ(µ) of the ho-
mogeneous ahm as a function of
chemical potential. The axis on top
shows how µ is mapped to radius
r in the 30×30-system within the
lda (no results from the trapped
system are shown in this plot).
The large circles with error bars
show results calculated on a 6×6-
lattice, the small dots show the
high-resolution results used for
Figs. 5.2 and 3.6 (the uncertain-
ties are smaller than for the 6×6-
results). The density is symmetric
about µ = 0 as required by particle-
hole symmetry. It is also seen that
finite-size errors for local quantities
are small already at these sizes.
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Figure 5.2: Density profile ρ(r) of
the 30×30-system. One point is
shown for every lattice site of the
confined system (up to lattice sym-
metry) and the lda-results from
Fig. 5.1 are shown as a solid line,
the half-filled point is indicated by
a vertical line. Perfect agreement
is found for the density. The er-
ror bars for the trapped system are
smaller than the symbols.
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Figure 5.3: cdw and s-wave pair-
ing correlations of the 30× 30-
system in the lda (solid line) and
the confined system. While good
agreement is found elsewhere, at
half-filling (marked by a vertical
line) the lda clearly fails (see
text). We show nearest-neighbor
and next-nearest-neighbor correla-
tions, which the lda is able to de-
scribe although they are not truly
local. In the case of next-nearest
neighbors, the sign of ccharge is re-
versed. Error bars are not shown
to avoid clutter; for ccharge they are
typically smaller than the symbols,
for cpair the fluctuations described
in Sec. 5.3 result in larger uncertain-
ties.

5.2 Correlations and Failure of the LDA

Fig. 5.3 shows the correlation functions ccharge and cpair for the 30×30-
lattice. In both cases, the lda predicts a sharp feature (peak or dip) near
half-filling; in both cases that feature is absent in the true confined system.
Thus, we observe a drastic failure of the lda in a case where it is expected
to hold, according to the criterion of smoothly varying density outlined in
Sec. 3.2.
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The lda result may be understood in the context of the homogeneous-
case phase diagram in Fig. 3.5. Away from half-filling, the temperature
is low enough that we may expect superfluidity, and thus enhanced cpair-
correlations; but at half-filling, the system does not order at finite tem-
perature, there can be no superfluidity, and the lda must see a decrease
in cpair around that point. The peak in ccharge does not come unexpected
either, because at half-filling, the two correlations are proportional and
develop long-range order at zero temperature; the elevated ccharge at T > 0
anticipates this transition.

The differing behavior of the trapped system is once again illuminated
by a comparison with the repulsive model via the asymmetric particle-hole
transformation (Sec. 2.3.2). Recall the following mappings under ph↓:

chemical potential↔ magnetic field
s-wave pairing order↔ af-xy spin order,

double occupancy↔ spin-↑,
empty site↔ spin-↓.

In the repulsive picture, there is a large magnetic field at the edge of
the system so that the spins there are frozen to ↓. Further inwards, at a
moderate magnetic field, the spins are tilted out of the xy-plane (towards
↓ near the edge and ↑ near the center), but retain af order in the xy-
components.

In the lda, we may imagine the spins at different radii disconnected.
Thus the spins at half-filling, where the system is above the transition
temperature, will not order. However, in the trapped system, the spins at
half-filling are coupled the other regions, and this coupling forces xy order
to continue through at half-filling.

The failure of the lda in this case has implications for the quantum-
simulator scheme. On the one hand, the observation of the superfluid
phase in the ahm may be easier than expected in the lda, because a larger
portion of the system is in that phase.

On the other hand, observing the physics of the half-filled ahm in optical
lattices is not straightforwardly possible, as that system is not properly
represented anywhere in the trap. This is in contrast to the rhm, where the
Mott plateau ensures that a half-filled region exists in the trap provided
the density at the center is sufficiently large. Indeed, in the thermodynamic
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limit, the half-filled annulus becomes truly two-dimensional in the rhm,
whereas the half-filled region is only a one-dimensional ring in the ahm.

Recently, Ho et al. [25] suggested to emulate the repulsive Hubbard model
with an optical lattice with attractive interactions, by inferring properties
of the rhm via the asymmetric particle-hole transformation. The authors
propose this method both for the half-filled and the doped rhm; the latter
would be realized as a nonzero magnetization in the attractive emulator,
i.e. a population imbalance between the states representing spin-↑ and
spin-↓.

In the half-filled case, insofar as one is interested in the rhm at zero
magnetic field, our findings pose a problem for this plan, because the
zero-field case (i.e. half-filled in terms of the optical lattice) will not be
represented in the trap. It is not clear to what extent this problem will
persist for the doped rhm emulated by an attractive system with nonzero
magnetization.

Off-diagonal confinement (odc), as suggested by Rousseau et al. [50], is a
supposable solution to the problem of absent half-filling. In odc, the trap
would be implemented as a spatially varying hopping ti (experimentally, a
spatial variation of laser intensity superimposed on the periodic variation
that forms the lattice) which tends to zero as the edge of the system is
approached, thus preventing the trapped atoms from leaving the system.
In this case, regardless of the sign of the interaction, the system can be
made uniformly half-filled.∗

5.3 Statistical Fluctuations of cpair

At low temperatures, statistical fluctuations appear in the estimator (4.16)
for the correlation function cpair. Fig. 5.4 shows time series to illustrate
this behavior. The large variance of the signal results in unacceptably large
statistical errors of the structure factor Ps. This represents a significant
obstacle to studying the superfluid phase.

As these fluctuations appear in homogeneous as well as confined sys-
tems, we will return to the homogeneous case for the present discussion.

∗In Ref. 50, it is demonstrated numerically for repulsive bosons in one dimension that
n̂i = 1 for all sites in a certain bracket of chemical potential values. For our model,
particle-hole symmetry implies n̂i = 1 at µ = 0.
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Figure 5.4: Time series of the prob-
lematic observables (top) and well-
behaved observables (bottom) for
comparison. The system is a homo-
geneous 4×4-lattice. Results from
quest are compared to results ob-
tained with Dahnken’s dqmc code
[15], and at the top, observables
in the attractive model are com-
pared to their equivalents in the re-
pulsive case. Parameters: β = 9 t,
|U| = 6 t µ = h = 0. The antifer-
romagnetic spin correlations in the
xy-plane Sxy and in z-direction Sz
are the repulsive-picture analogs of
cpair and ccharge, respectively. The
Monte Carlo time tmc is a counter
of sweeps through the space-time
lattice.
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The problematic behavior appears already on systems as small as 4×4 at
rather high temperatures (T . 1/2 t), but becomes more pronounced as
the temperature is lowered and the system enlarged. A weaker interaction
(U = −4 t) does not reduce the problem significantly.

Extensive tests were carried out to ensure that the outliers are not the
result of numerical instabilities. Different approaches and parameters
for numerical stabilization were tried within quest

∗, and results were
compared to an independent implementation [15]. Different values for
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the imaginary-time step were also compared. Finally, the repulsive model
at µ = h = 0 shows the same behavior as translated by the asymmetric
particle-hole transformation ph↓. The z spin correlations are well-behaved,
as is ccharge in the attractive picture; but the the xy spin correlations show
the same problem as cpair in the attractive picture.

5.3.1 Imaginary Hubbard-Stratonovich Transformation

A plausible remedy for the problem described above is suggested by
Assaad’s findings [2] on the spin correlation functions in the repulsive case.
Using the SU(2)-symmetric Hubbard-Stratonovich transformation (4.9),
and thus an imaginary λ, the xy spin fluctuations could be significantly
improved at the expense of calculating with complex numbers.

Since the repulsive model with (4.9) is connected by the transformation
ph↓ to the attractive model with (4.10) (which also implies an imaginary λ),
it may be expected that a similar improvement is possible for the attractive
model by switching to the alternate hst.

Note that Assaad’s results are for µ = h = 0. Thus, for µ 6= 0 or even
inhomogeneous µ as needed for the trap, no immediate conclusion is
possible. On the other hand, in the ahm no essential difference in the cpair
fluctuations is seen between zero and nonzero µ. It is therefore reasonable
to expect confined systems to benefit from the imaginary transformation
as well.

At h = 0, the transformation (4.9) respects the SU(2) spin invariance
of the model, as emphasized by Assaad; quantities related by a spin
rotation have numerically equal estimators and the magnetization is zero
for every hs field configuration [2], properties which for the alternative
transformation (4.10) are only restored by the sum over all configurations.
However, in the attractive case, while the model is still SU(2)-symmetric,
it is the SU(2)-unsymmetric transformation that is expected to provide

∗First, using svd decompositions to stabilize the product of the B matrices and the
inversion leading to the Green’s Function [3]. There are two parameters, which were
also varied: The number of decompositions per product, and the number of times the
Green’s function is “wrapped” [39] before it is recomputed.

Second, using an NM×NM matrix which contains the B matrices instead of the
string of N×N matrices [24]. This method is slower but considered more stable than
the first.
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improved estimator properties; what unites the two cases is that λ is
imaginary.

At the time of this writing, the imaginary transformation was newly
implemented in quest. Unfortunately, initial results show no improvement
of the situation.

5.4 Phase Transition to a Superfluid Phase

The aim of this section is to investigate the low-temperature phase of the
trapped ahm and the transition that separates it from the high-temperature
phase. In analogy to the homogeneous model (see Sec. 2.4.2), the trapped
model is expected to undergo a kt transition to a qlro phase at low
temperature. An fss/tss analysis as described in Sec. 2.5 (homogeneous
case) and Sec. 3.3.1 (modifications for the confined case) can provide
evidence for the trapped kt scenario if good agreement with the kt scaling
behavior is found. In a study of the inhomogeneous classical xy-model,
Crecchi and Vicari [14] have found evidence for a trapped kt transition
using similar methodology.

While a conclusive fss analysis in the scope of this study is frustrated
by the difficulties outlined in the preceding section, we present a finite-
size extrapolation (fse) based on results for trapped systems with L =

12, 14, . . . , 24 which points to a kt scenario with Tc ∼ 0.15 t. This section
follows the discussion of Sec. 2.5 and presents the plots described there
with the exception of the scaling plot of Fig. 2.4.

For comparison, an fss for the homogeneous ahm is provided in Ref. 45,
and some of the results are reproduced in Sec. 2.5. It should be pointed
out that the results from Ref. 45 are for U = −4 t whereas ours are for
U = −6 t.

Fig. 5.5 shows the analog of Fig. 2.2 for the trapped case. At high
temperatures, all systems sizes are equivalent because the correlation
length is small in comparison to the system size. For lower temperatures,
despite the noise, the curves are clearly seen to level off, showing a first
sign of a transition to superfluidity.

Next, we address the question whether an “effective η ′” as per (3.6)
exists in Fig. 5.6. Indeed, our results are consistent with an exponential
dependence of Ps on L. While an accurate determination of η ′ is impossible
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Figure 5.5: S-wave pairing structure
factor Ps as a function of inverse
temperature β for various system
sizes L. At high temperature, where
the correlation length is small, the
results for all L coincide. As the cor-
relation length grows, the curves
separate. Eventually, they level off
at low temperature to maximum
values determined by L. This be-
havior is indicative of a phase tran-
sition.

β T ′ η ′ f(0) ζ

7.4 −0.10 0.197± 0.02 0.034± 0.002 0.179(1)
8.2 −0.19 0.119± 0.05 0.031± 0.005
8.8 −0.24 0.115± 0.02 0.032± 0.002
9.8 −0.32 0.122± 0.10 0.034± 0.01
12 −0.44 −0.061± 0.14 0.020± 0.01 0.093(1)
13 −0.49 0.043± 0.13 0.028± 0.01
15 −0.55 0.011± 0.06 0.029± 0.01 0.072(1)

Table 5.1: Results from the fits in Fig. 5.6, unrounded. Parameters were determined
using a non-linear least-squares fit [57]. Because of excessive fluctuations in the s-wave
measurement in dqmc, no accurate determination of the parameters is possible, but
our results are compatible with an effective exponent η ′ in the size-dependence of the
structure factor, see (2.10a) and (3.6) which is equal to the exponent in the homogeneous
case. Reduced temperatures T ′ are calculated using Tc = 0.15 t. Note that η ′ < 0 is
an unphysical artifact of the least-squares fit. For comparison, we give results for the
exponent ζ at equivalent reduced temperature from Ref. 14, which is identical to η ′ under
the assumption (3.5).

with the present data, there is some indication of η ′ falling as temperature
is lowered, as is expected for the kt transition.



62 5 Results

Figure 5.6: Doubly logarithmic plot
of the s-wave structure factor Ps
as a function of system size L

for some of the temperatures in
Fig. 5.5. At the top, the data are
shown without further processing;
at the bottom, the same points are
shown with nonlinear fits of the
form Ps(L) = f(0)L2−η

′
according

to (3.6), and with constant offsets
applied to make the curves distin-
guishable. Straight lines indicate
the validity of (3.6) with an “effec-
tive exponent” η ′. Numerical fit re-
sults are reported in Table 5.4.
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This result may be compared to results of Ref. 14 where η ′(T) = η(T)

is found for the classical xy-model, whose phase transition in the ho-
mogeneous case belongs to the same universality class. The results as
reported in Table 5.4 appear compatible, although the large uncertainties
for the ahm make interpretation difficult. The compatibility of the results
evidently depends on the critical temperature Tc, which must be used to
convert to reduced temperatures T ′, but accurate determination of Tc for
the ahm was not possible.
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Figure 5.7: Logarithmic plot of the
scaled s-wave structure factor Ps for
various system sizes L as a func-
tion of inverse temperature β (error
bars suppressed for clarity). Con-
vergence of the curves at low tem-
perature indicates a divergent cor-
relation length and points to a kt

transition. Within statistical errors,
the results are compatible with a
collapse around β ∼ 6 . . . 8, i.e. Tc ∼

0.15 t. We have used η ′ = .25.

Finally, Fig. 5.7 shows the analog of Fig. 2.3 for the confined system
using η ′ = .25. Within statistical errors, the curves are observed to con-
verge at low temperature, again consistent with a kt transition in the
confined system. This figure also provides the best means at our disposal
to determine the transition temperature Tc. The collapse of the curves
occurs around Tc ∼ 0.15 t, which should be taken as a rough estimate. This
value is similar to values found for the homogeneous system across a wide
range of fillings [45].

In summary, within the statistical uncertainties, all signs point toward a
kt transition in the trap at a critical temperature similar to the homoge-
neous case. From Figs. 5.5 and 5.7, we can conclude with some confidence
that the correlation length diverges for large systems when the trapping
potential is made weaker as the system size increases in accordance with
(3.4). Fig. 5.6 and Table 5.4 are consistent with the scaling behavior (3.6),
which would indicate that the transition is indeed of kt-type.
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6 Conclusion

The focus of this work was the attractive Fermi-Hubbard model in a
confining potential, in particular the quasi-long-range-ordered superfluid
phase that occurs at low temperatures away from half-filling (i.e., one
particle per site). Interest in this model is motivated by experiments on
ultra-cold quantum gases in optical lattices, which can be made to emulate
the Hubbard model with repulsive or attractive interactions.

Superconductivity is more easily studied when the interaction between
the particles is attractive, because the fermion sign problem of quantum
Monte Carlo simulations can be circumvented in that case, and because
the temperature scale for superfluidity is higher than that for supercon-
ductivity in the repulsive case, which is only putative in any event.

Two ideas served to guide the discussion of the model, both of which
are at once convenient technical tools and conceptually interesting in their
own right. First, two related particle-hole transformations were introduced,
which provide exact mappings between different parameter regimes of
the Fermi-Hubbard model; in one case, the sign of the chemical potential
is reversed, thus densities above half-filling are mapped to below half-
filling; in the other case, it is the interaction that changes sign, providing a
relation between the attractive and the repulsive Hubbard model. These
transformations are equally valid for the homogeneous case as for the
trapped case, where they can be understood to act locally on each site.

Second, the local-density approximation (lda) connects the confined
model to the homogeneous case by replacing each site in the inhomoge-
neous lattice with results from the homogeneous model. We argued that
the validity of this procedure is crucial for the quantum-simulator program,
which aims to translate observations of confined systems into a deeper
understanding of the corresponding homogeneous systems.

A general prediction of the lda is that different phases of the homo-
geneous model may coexist in one confined system, because the phase
depends on the particle density, which becomes inhomogeneous in the
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trap. For the repulsive Hubbard model, this coexistence is already visi-
ble in the radial density profile where flat regions, i.e. a vanishing local
compressibility, indicate a Mott-insulating phase. In the attractive case, no
such “Mott plateaux” appear. The lda and simulations of true confined
systems agree on this point, a simple argument based on the sign of the
energy associated with a shared site provides an intuitive explanation.
Nevertheless, a coexistence of superfluid and normal regions is expected
at sufficiently low temperatures.

In the literature, the lda has been found to be accurate in most cases,
except where the density in the trap varies abruptly, such as at the edges
of a Mott plateau in the confined repulsive Hubbard model.

In the case of the attractive Hubbard model, our findings indicate a
qualitative failure of the lda around half-filling. This may be understood
using the homogeneous-case phase diagram; at half-filling, the s-wave-
pairing and charge-density-wave correlations are degenerate, which leads
to the transition temperature being suppressed to zero. The lda sees
this in full and predicts sharp features in both correlation functions at
the half-filled point; however, in the true confined system, these features
are washed out by the coupling to regions of different density. The latter
mechanism is illuminated by the asymmetric particle-hole transformation,
which maps the pairing to spin order.

The implications of this result are twofold. On the one hand, observa-
tion of superfluidity in an attractive optical lattice is simplified, because
a larger portion of the system may be expected to be superfluid. On the
other hand, observation of the physics of the half-filled attractive Hubbard
model in optical lattices is impeded, because that physics is not prop-
erly represented anywhere in the trap. Whereas in the repulsive case,
thanks to the Mott gap, a half-filled region exists which becomes truly
two-dimensional in the thermodynamic limit; in the attractive case, there
is only a one-dimensional ring of half-filling. We argued the proposed tech-
nique of off-diagonal confinement, if realized experimentally, would remedy
this situation.

To shed light on the low-temperature phase of the confined attractive
Hubbard model, a scaling analysis was made. A Kosterlitz-Thouless tran-
sition is expected in analogy to the homogeneous case. We reviewed the
scaling procedure for this transition type and the differences that arise as
a result of the trap, and presented results from a series of system sizes in
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accordance with the resulting “trap-size scaling” procedure.
However, a complete finite-size scaling was hampered by excessive

fluctuations in the estimator for the pairing correlations, resulting in large
statistical errors. To the extent that a finite-size extrapolation was possible
with the data available, we find results compatible with the expected
Kosterlitz-Thouless transition to a quasi-long-range-ordered superfluid
state with a transition temperature around Tc ∼ 0.15 t, similar to the values
found for the homogeneous system over a wide range of particle density.
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