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PREFACE OF THE MONOGRAPHIC SERIES

Composing a scientific work in terms of a dissertation constitutes a supremely personal concern of a
cognition-oriented extension of knowledge. After having finalised and published such a work it is the
aim to conduct a liberal, scientific discourse with an interested and objective scientific community.
This circumstance together with the associated possibility to discuss this scientific work have to be
accentuated especially in times were the amount of applied research is increasing. In this spirit: The
personal liberty in research starts at that point where the externally demanded applicability
ends.

With the monographic series Timber Engineering & Technology (TET) of the Institute of Timber
Engineering and Wood Technology the publishers aim on providing the community with fundamental
works of the area of expertise. With regards to content this is judged as a contribution for an
outstanding and open-minded scientific discourse among experts. Citing B. von Chartes (freely
translated): “...we are like dwarfs on the shoulders of giants, so that we can see more than they,
and things at a greater distance, not by virtue of any sharpness of sight on our part, or any
physical distinction, but because we are carried high and raised up by their giant size.”.
Following this, today’s state-of-the-art together with the own scientific work counts as basis of the
next generations, thereby providing those fundamentals what from innovations can be derived in
succession.

Graz, February 2013, Univ.-Prof. Dipl.-Ing. Dr.techn. Gerhard Schickhofer
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Abstract

Stochastic System Actions and Effects in Engineered Timber Products and
Structures

Within the last decades and supported by progress made in adhesive technology high
performing and versatile applicable engineered timber products have been developed.
After classification and subsequent bonding of the raw material these products show high
resistance in strength and stiffness and allow column-free overspan of large areas. The
connection of these system products to structures is made by nodes which itself mostly
consist of connectors arranged in groups. Thus the composition of elements to systems
can be observed at least on three hierarchies: (1) within the hierarchical structure of wood
and timber, (2) within engineered timber products and groups of connectors, and (3)
within the bearing structure, consisting of primary, secondary and tertiary structural
elements. Despite common aspects between these hierarchies in respect to arrangement
and common action of elements a general consideration is currently not available.
Engineered timber products or the group action of connectors are in particular described
by empirical models which are mostly established by fitting test data. Thereby and due to
partly pronounced variations in material characteristics of timber significant influences on
the group action of elements within systems can be observed.

In this thesis stochastic system actions and related effects of serial, parallel or serial-
parallel arranged elements are analysed and the most influencing parameters are captured.
Based on a comprehensive survey of literature on the three most important stochastic
material models for linear-elastic brittle (WEIBULL, 1939; DANIELS, 1945; a.0.) and
ideally linear-elastic-plastic material behaviour it is the aim to derive general laws for the
description of serial and parallel system behaviour with the help of stochastic simulations.
Based on these investigations and completed by additionally elaborated material specific
facts of wood and timber on several hierarchies these general laws together with proposed
models are exemplarily applied to and explained on engineered timber products. Thereby
the aim is to show the relevance of stochastic methods as part of material and structure
modelling, and additionally to provide the engineer with simplified models for the
estimation of system behaviour.






Zusammenfassung (in German)

Stochastische Betrachtung von Systemprodukten und —strukturen aus Holz

In den letzten Jahrzehnten kam es, unterstiitzt durch die Fortschritte in der
Klebetechnologie, zur Entwicklung leistungsfahiger und vielseitig einsetzbarer
Bauprodukte aus Holz. Diese ermoglichen, nach gezielter Klassifizierung des
Grundmaterials und anschlieBender Fiigung, das Abtragen hoher Lasten und das
stiitzenfreie Uberspannen weiter Flichen. Die Fiigung dieser Systemprodukte zu
Tragstrukturen erfolgt {iber Verbindungsknoten aus meist zu Gruppen angeordneten
Stiften. Das Fiigen von Elementen zu Systemen kann somit auf zumindest drei Ebenen
beobachtet werden: (1) innerhalb der hierarchischen Materialstruktur Holz, (2) in
Systemprodukten aus Holz bzw. in der Gruppenwirkung von Verbindungsmitteln, und (3)
in der Tragstruktur, bestehend aus priméren, sekundidren und tertiiren Tragelementen.
Trotz Gemeinsamkeiten zwischen den Systemebenen hinsichtlich der Anordnung und des
gemeinsamen Wirkens der Elemente ist gegenwairtig eine iibergeordnete Betrachtung
nicht gegeben. Insbesondere bei Systemprodukten aus Holz oder der Gruppenwirkung
von Verbindungsmitteln wird in der Beschreibung auf empirische, meist an
Versuchsdaten gefittete Modelle, zuriickgegriffen. Hierbei kommt es, bedingt durch die
zum Teil ausgeprigten Streuungen in den Materialkennwerten von Holz, zu erheblichen
Beeinflussungen auf die beobachtbare Gruppenwirkung der Elemente in Systemen.

Inhalt dieser Arbeit ist es die Anteile stochastischer Systemwirkungen seriell, parallel
oder seriell-parallel gefligter Elemente allgemein zu studieren und wesentliche
EinflussgroBen zu erfassen. Aufbauend auf einer umfangreichen Literaturrecherche
betreffend die drei wesentlichen stochastischen Materialmodelle fiir linear-elastisch
sprodes (WEIBULL, 1939; DANIELS, 1945; u.a.) und ideal linear-elastisch-plastisches
Werkstoffverhalten gilt es mit Hilfe von stochastischen Simulationen allgemeine
GesetzmaBigkeiten aus seriellem sowie parallelem Systemverhalten abzuleiten. Darauf
aufbauend und ergénzt durch erarbeitete spezifische Fakten zum Material Holz entlang
seiner Hierarchiekette werden diese allgemein anwendbaren GesetzmiBigkeiten und
davon abgeleitete Modelle an ausgewihlten Beispielen fiir Systemprodukte aus Holz
angewendet und dargelegt. Hierbei ist es insbesondere das Ziel, einerseits die Relevanz
der Stochastik in der Material- und Strukturmodellierung aufzuzeigen, und andererseits



dem Ingenieur vereinfachte Modelle zur Abschitzung des Systemverhaltens zur
Verfligung zu stellen.
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Preface

Timber is a natural, sustainable raw material. It is optimised for load bearing, nutrients
and water transport and storage in the living tree. It is also outstanding for a remarkable
variety of applications as building material in engineered light-weight structures with
exhaustive strength vs. density ratios. It has shown its outstanding abilities since
thousands of years and has thereby remarkably influenced the evolution of mankind
including also the industrial revolution and nowadays art in construction and living.
Timber constitutes a high efficient, porous raw material. It is used for various applications
utilising single tissues or just chemical constituents for e.g. medicine and food industry
up to cellulose fibres for high efficient composites and many more. Nevertheless, the
main application worldwide in regard to deployed volume, beside about 50% share for
energy, lies in the building industry sector, especially for load bearing purposes. In that
field timber remarkable constitutes a material enabling slender, sophisticated and
architectural appealing structures and art. Current developments in production techniques
widen the product range further from primary linear elements to two dimensional
structural components like cross laminated timber (CLT).

Nevertheless, in competition with building and construction materials like concrete and
steel timber and timber products have to be on the edge of current and future
requirements defined by the daily business and use. Generally spoken, building products
have to be:
= economically affordable and compatible in respect to
@ price per unit volume / mass;
@ costs during the erection;
o costs during life time and disposal / recycling;
= available in respect to time, quantity and quality;
* multifunctional in structural application and over the whole life time;

= reliable, safe and uniform and / or predictable in quality concerning its
characteristics and behaviour in interaction with its environment.

11



Preface

Timber and timber products exhibit good and even best performance in nearly all
categories listed above if the material is applied considering its natural characteristics. In
the last decades and concerning the last three mentioned requirements the performance of
timber was in particular pushed by the development of adhesive systems. These enable
bonding of timber elements side-by-side, face-by-face or also lengthwise (cross-bonding)
to linear, two- and three-dimensional system products which act as one unit and can be
produced in practically every desired dimension. These developments together with
advancements in quality assurance of timber in respect to grading or classification of the
raw material enabled a revolution in the development of high efficient timber products for
load bearing purposes characterised e.g. by

» classified base material of a defined and standardised quality according
international standards (e.g. EN 14081, EN 338);

* internationally standardised material and product characteristics (e.g. EN 338,
EN 1194, PREN 14080 and several technical approvals);

»  defined, regulated and limited product and material characteristics in respect to
dimension, moisture content, surface and appearance.

This revolution lead to product developments like finger jointed construction timber
(FICT), duo- and trio-beams, glued laminated timber (GLT), cross laminated timber
(CLT), laminated veneer lumber (LVL) and oriented strand boards (OSB). All these
products are characterisable as systems composed of elements and components like
beams, boards, veneers or strands which are forced to interact within the product due to a
rigid or quasi-rigid connection performed by bonding. Even the material itself act as a
system composed of elements as representatives of lower hierarchical levels of the
material structure. Through this interaction homogenisation effects are activated which
reduce the variability of characteristic properties, e.g. physical properties like strength,
stiffness and density. This enables firstly a higher reliability in compliance of product
characteristics, and secondly an enhancement of performance especially of the bearing
capacity. The last one follows from increasing design relevant properties on lower
quantile levels (e.g. 5 %-quantiles). The development and advances in the field of
engineered connection techniques (e.g. dowel-type fasteners for shearing, self-tapping
full-threaded screws for withdrawl) enable efficient and high performing erection and
establishment of timber constructions leading further to system interaction on the level of
load bearing structures.

12



Preface

Beside all these essential impacts and developments consistent characterisation of raw,
graded and classified material is lacking. There exists no consistent modelling of timber
products for example with starting point at the performance of the base material.
Nevertheless, this is required if the obvious interactions of positive and negative system
effects are recognised as worthful for consideration.

The main focus of this work is on one specific topic of all possible applications of timber.
It concentrates on the load bearing behaviour of timber and timber products and tries to
span the scientific work from bar-shaped linear members like trusses and beams, to two
dimensional slab- and plate-like elements up to connection systems. It concentrates on the
term “system”, characterised by the arrangement of elements and their interactions
observable as system behaviour or “system action”, divided into “serial” and “parallel”
actions and serial and parallel “system effects” as logical consequences, the output of the
system action. Nevertheless, the more general work concerning parallel and serial system
actions and effects is also applicable to other materials as well as familiar applications
described in this manuscript. It has to be clarified that this manuscript focuses on the
stochastic description of system behaviour. Nevertheless, the material behaviour and
mechanics in respect to stresses and strains plays a major role and influence consequences
of system action. As will be outlined in more detail afterwards perfect brittle failure
characteristics in combination with perfect linear elastic material behaviour can be
defined as the simplest case of material description. It can be modelled sufficiently by
consideration of stochastic system effects under mechanical constraints. However, the
system action itself will be always an interaction of mechanics and stochastics. In the
opposite, perfect plastic material behaviour leads to a reduction of stochastic system
effects on expectable values leading to a balancing of all effected and interacting
elements in the system.

More generally, the interaction of elements can be treated (i) as a function of system size,
(i1) in respect to the element arrangement in the system in respect to its stresses and
strains, (iii) and in dependency of the material behaviour in the elastic / plastic region.

The present work supports the interested reader partially with simplified equations
enabling considerations of treated system effects in standardised design procedures
having in mind the theoretical background and descriptive boundary conditions of
stochastics. The aim is to support the engineer with decisive and important information
concerning system actions and effects and to provide to a certain degree the possibility to
take into account the stochastics nature of materials.

13



Preface

A brief overview of the content: The thesis is subdivided in chapters which mirror the
above mentioned aspects in a broader sense. The first chapter concentrates on the
relevance of dispersion / statistical spread in general and discusses why it is impossible to
neglect one of the main parameters for the description of materials, material behaviour
and natural phenomena in general. In addition some statements and general definitions
are given. Chapter two gives a brief overview and introduction to statistics and
probability theory and delivers tools concentrating on definitions of some selected
probability distributions, statistical theories and general statistical models. The reader
familiar with this topic may skip this chapter. Nevertheless and in the opinion of the
author the importance of the presented theory dedicates this chapter to the general part of
the work and not to the annex. The third chapter focuses on serial and parallel system
actions and related effects. After a general overview both aspects — serial and parallel —
are discussed in detail concentrating on stochastic effects. The results are applicable also
for other materials as wood and even for serial and parallel systems in general. Chapter
four gives some comments on scaling and hierarchical levels of wood and timber and its
tissues at first time concentrating on the focused material timber. Some general thoughts
on scaling and analogies between hierarchical levels are discussed. Chapter five
exemplarily demonstrates the application of so far compiled work and gives information
on modelling of various effects in timber and timber products with respect to its main
characteristics strength, stiffness and density. Starting with an introductory section, a
review of literature concerning spatial correlation as well as serial and parallel effects,
this chapter provides the basis for the stochastic consideration of system effects in
structural timber and system products. Chaper five may be seen as the most important
chapter of the work presenting applications and equations relevant to practical aspects
and standardisation. The manuscript finishes with a closing chapter six reflecting and
displaying some general outcomes and conclusions of the work.
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Chapter 1

Introduction

The variability, dispersion or statistical spread of natural phenomena and in
particular of natural materials defines a critical feature and the driving force
of this work. This chapter concentrates on the general topic of varying
properties and delivers some essential background in demonstrating the
necessity of stochastics as an important part, in but least important as the
mechanics for the description of materials and their structural behaviour. The
chapter starts with a general introduction on motivation and relevance of this
work for timber engineering and for primary as well as secondary timber
industry. The general applicability of some outcomes is discussed also for
other materials and system considerations. A subsequent section concentrates
in more detail on the dispersion, the statistical spread or variability and how
these uncertainties can be classified and eventually influenced as well. The
last section is dedicated to a short and general discussion on systems and to
impacts on their modelling.

1.1 General Introduction and Overview of the Work

Wood and timber are fascinating natural materials designed by nature and designed as
load bearing material, optimised on nano, micro and macro structural level. The material
provides maximum resistance and multifunctionality in respect to mechanical
characteristics, e.g. strength, stiffness, nutrients and water transport and storage with a
minimum of mass. These features are consequences of an optimisation process provided
by nature focusing on minimisation of used material (= resource prevention). Thereby
parts and tissues like the shape of a tree, branches and cells are optimised in form and
function. Some examples are the conical shape of the trunk, the inclusion of branches in
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the structure of the trunk and the internal system able to react on externally applied
stresses, by being generally pre-stressed (internal stresses) on the outside (MATTHECK
AND BRELOER, 1994), and the generation of special tissues or cell types like reaction
wood. These are only a few fascinating and inspiring characteristics relevant for and
studied in the fields of wood technology, biomechanics and bionics. Due to its cellular,
fragile material structure wood is often compared with bone. Nevertheless, whereas bone
is able to react on externally applied stresses by restructuring and stiffening high stressed
areas by more or less constant total volume (despite of growth of a human or animal)
wood cells are once differentiated manifested in their structure and characteristics during
the whole life until degradation, aside from the conversion from sap- to heartwood. In
contrast to bone trees have the ability to react on external stresses in every next cell
generation till the end of life.

Growth and optimisation of the structure in the living tree is rather individually in respect
to species, genetics, attitude, nutrients, social position within the forest, and other
influencing parameters. This leads to a huge variety of individuals with a high statistical
spread in their characteristics even if considering trees of the same species and from the
same growth region, or even in particular timber elements taken from the same tree.
Hence it is not surprising that wood and timber which is gained by harvesting and
breakdown of the trees to logs and further to boards, scantlings, and beams show a
distinctive statistical spread in their characteristics. This spread may be even increased
due to conversion of the tree-internal optimised material structure with respect to the
natural structure by arbitrarily choosen cutting patterns which are optimised primary
according further applications and optical appearance, e.g. knots, knot clusters and decay.
Only the breakdown process of logs to structural timber leads for example to about 20%
reduction (loss) in bending and compression strength.

Thus it is no surprise that structural timber (e.g. boards, scantlings, beams) exhibit large
variability in their characteristics, especially in strengths. Last is due to the fact that
physical characteristics required for the design of timber structures are strength, stiffness
and density. Hereby the latter two characteristics are more or less of interest as averaged
properties of timber in reference dimensions and thereby not significantly affected by
localised changes. In contrast, strength itself is an absolutely locally defined
characteristic. The weakest cross section or weakest layer in a specimen dominates and
determines decisively the whole strength potential. Nevertheless, there are also more than
one application examples where also local characteristics of density and stiffness are
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required, e.g. if considering the influence of locally placed fasteners in respect to their
bearing capacity mainly influenced by local density, or stiffness in conjunction with
stability e.g. in the half length of a hingh-supported column under compression.

In general, design and erection of constructions require reliable and thereby homogenised
products characterised by well predictable properties exhibiting low statistical spread
enabling e.g. wide applicability, dood-natured failure behaviour, durability and
affordability. In respect to timber some of these characteristics are fulfilled already
naturally. Beside the natural ability to be used as structural, load bearing element, timber
products are predominantely associated with “natural appearance”, “heat insulation” and
other non-structural aspects. Maybe, as already stated by J. E. GORDON, “timber is too
simple to be used”, meaning that the basic and oldest building material of mankind offers
too less challenge to operate more intensively with timber in modern engineered
structures. Other engineeres may be frightened of the statistical spread, the variety of
characteristics and special features of timber and prefere nowadays common materials
like steel, concrete and reinforced concrete, used to work with in daily business. For
example timber shows in contrast to concrete material high performance in tension and
compression in grain direction being additionally sustainable and durable if used
adequately. Enforced by current discussions like the global CO, problematic, timber
experiencies some kind of renaissance, being more and more recognised as chance, as
solution for some of our big environmental and economical challenges. Nevertheless, to
increase further the attractiveness of timber to be used for engineering purposes it is
necessary to decrease the statistical spread observable in characteristics, e.g. by the
development of homogenised products. In timber homogenisation can be done on several
ways, €.g.

* homogenisation of swelling and shrinkage (e.g. by activating cross laminating
effects);

» homogenisation of quality, moisture, etc. by classification (grading) and quality
assurance;

* homogenisation of physical (mechanical) characteristics like strength, stiffness
and density by activation and utilisation of system actions and related effects.

The first way focuses on cross laminated products which show a reduction of swelling
and shrinkage as consequence of activated cross laminating effects (locking effects)
suffering from the negligible shrinkage rate in axial direction which is rougly about 1/100
and 1/50 of tangential and radial direction, respectively. Furthermore, cross laminating
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additionally balance properties and bearing capacities in longitudinal and transverse
direction. Products which suffer already from these considerations are e.g. plywood,
LVL, OSB and CLT in plane direction.

The second way focuses on a certain homogenisation by quality assurance and
classification (grading) of timber. Nevertheless, due to limited predictability or even
impossible determination of some most important growth characteristics which decisively
determine strength capacity (e.g. local and global grain deviation) decades of intensive
international research shows only limited progress in strength grading. This leads to an
insufficient and unreliable reduction of statistical spread and restricted predictability of
strength classes (extractable from recent results published e.g. by RANTA-MAUNUS AND
DENZLER, 2009; STAPEL ET AL., 2010). Thereby, grading enables only direct
homogenisation in case of direct determinable characteristics. If a characteristic has to be
classified by means of predictions and predictive parameters (e.g. strength estimated by
means of eigenfrequency, density and knot share ratios) the possibilities in achieving
reliable results and in particular for a reliable fulfilment of a certain degree of
homogenisation itself are significantly affected by the degree of predictability. In general
only a minor portion of indirect influence on a target homogenisation is realised. Even if
grading would work perfectly the question is still open how to react on the grading result
within industrial processes. Due to observable spatial correlation within specimens a
repetitive grading result in every subsequent increment (e.g. defined by the knot cluster
distance in softwoods with approximately 400 to 600 mm) has to be expected. Once the
whole specimen is rejected a distinctive downgrading of the material and a high
percentage of loss (reject) in raw material graded for a specific purpose has to be
expected. Trimming every increment leads also to a high share of rejected specimen
segments being additionally uneconomically due to high amount of required finger
jointing. Nevertheless, fast and reliable on-line and on-site determination of density and
stiffness (e.g. based on eigenfrequency measurements) enables the determination of also
important global design characteristics.

The third way of homogenisation allows for direct reduction of statistical spread by
activation of system effects due to common actions of sufficiently connected sub-
elements, elements and components in systems. In contrast to grading (level two)
enforced interaction between elements in parallel systems balances characteristics due to
the fact that neighbouring elements can be assumed to be distributed independently in

20



Introduction

respect to strength and stiffness. This leads to a maximum of homogenisation in physical
properties.

The focus of the present work is on modelling and quantification of these system actions
and effects, of the common action of elements in a system in respect to their individual
but expectable characteristics, their arrangement in the system (serial vs. parallel), the
system size and the type of loading. Thereby, utilisation and activation of system action
(common action) is a direct and reliable method for controlling the degree of
homogenisation also in characteristics which cannot be classified (graded) non-
destructively (e.g. strength of natural materials). Thus system products are also simplier
in production and handling considering the additionally required efforts in classification
procedures. Nevertheless, a certain degree of secured quality and expectable
characteristics of the base material is necessary and support a reliable production of
system products and reliable activation of system effects. The influence of statistical
spread of the base material is sharply reduced by homogenisation which leads to a
balancing of base material characteristics and grading deficiencies. Some system products
which benefit from these actions and effects are already available, in timber e.g. duo, trio,
GLT, CLT, but also in other materials and environmental aspects, e.g computer systems,
clusters and networks.

Analysing the current design, product and test standards partly non consistent regulations
of the base material (EN 338 vs. EN 1194 or PREN 14080), minor and if than often not
explicit consideration of system effects as function of their main parameters, e.g. system
size (technical approval of duo and trio beams e.g. Z-9.1-0623 and Z-9.1-0440 as well as
PREN 14080), not conform regulations, e.g. of size effects in product and design
standards (e.g. EN 384 vs. EN 1194 vs. EN 1995-1-1) are given. Furthermore,
inconsistent determination of characteristic values by means of contradicting statistical
methods or even so called statistical tools with unclear or minor statistical background or
justification (e.g. EN 384 or EN 14080 vs. EN 14358) can be found. These facts, which
for sure are not only valid for European standards and the material timber itself prevent
any coherent modelling and design of products, system products and structures or any
optimisation of already existent or newly invented products and structures. Perhaps it is
simple to analyse and criticize above facts but for sure the ideal condition of an absolutely
coherent system of standards is nearly impossible to reach beside the fact that consens is
the driving force of codification in general.
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The aim of this work is to elaborate additional background of system action and related
effects as a result of homogenisation, the reduction of statistical spread in the main
physical characteristics, e.g. strength, stiffness and density. Hereby, the systems are split
into serial and parallel systems. These are further analysed separately for providing the
basis for later examination and application of so far gained knowledge, especially for
current timber system products and structures as well as for some improvements of
existing products and design of new products by taken into account the necessity of
combining stochastics and mechanics. The first one (stochastics) is for consideration of
variability (statistical spread) and the second one (mechanics) is for consideration of
stresses and strains and their mechanical contribution within an element, component,
system or structure. The analysis of system effects in timber products is perhaps
especially worthwhile due to remarkable amount of statistical spread in characteristics, in
particular strength, delivering a huge potential for homogenisation. For example,
considering the tensile strength of boards with an expectable coefficient of variation
CoV(fio) =30%. Due to the design of strength on the 5%-quantile only 59.1% of the
average strength potential (mean value) is used as basis for design calculations assuming
fio ~ lognormal. If it is possible to reduce this spread to an amount of say CoV(f;o) = 10%,
without affecting the average in total 84.4% of mean potential can be realised on 5%-
quantile design level. This enables an increase in the utilisation ratio (performance) of
Nsys | M1 =42.9%. For quantification of these system effects analysis focuses on three
system levels (Fig. 1.1),

= Levell: material;
= Level II: system products;
= Level III: system bearing structures.
ksys,l,p—s ksys,ll,p—s ksys,lll,p—s

Fig. 1.1: Examples of systems on level I, II and III: structural material (I); system products (I);
system structures (III); p = parallel, s = serial system action

Level I concentrates on a simplified stochastic description of the base material structure,
e.g. a board analysed as a series of discrete increments of zones with and without local
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strength reducing growth characteristics. In the sense of stochastics the examinations
concentrate on spatial correlation and distribution of local material characteristics by
means of a stochastic process.

Level II deals with the influence of serial and / or parallel system action by connecting
elements and / or components in a way that they are forced to common (parallel) or at
least simultaneous (serial) action under external load. These examinations are especially
of interest for the design of system products and for the development of engineered
“bearing models”. Hereby type and degree of connection (punctiform — continuous; loose
— flexible — rigid) play a decisive role.

Level III focus on quantification of system actions and effects in bearing structures
composed of system products and material from level I and II, e.g. roof, floor and wall
structures, bridge decks and frameworks.

This thesis concentrates mainly on level II, in particular on (quasi) rigid connected
systems, deriving some essential basics on level I and showing some aspects for
applications on level III. The variability (statistical spread), relationships and correlations
between characteristics are thereby essential. Together with the interaction of elements in
systems they are the driving forces of the work. Beforehand a clarification of the term
“system” is required. Therefore the next two introductory sections give some comments
on the main aspects, variability and systems.

1.2 The Nature of dispersing Properties

Any material and any characteristic property exhibit a certain amount of variation in its
manifested characteristics. This can be observed already in the variable and dynamic
behaviour of electron’s position on discrete energy levels within atoms up to the (static
and dynamic) behaviour of environment and universe as well.

In particular natural materials like wood, timber and soil properties show partly large
variabilities. Examples of variabilities expressed by the coefficients of variation (CoV)
(see section 2.3.1) are given in Tab. 1.1. In fact variability is the key of evolution, of the
adaptation of life and nature in general to new challenges of the environment by
supporting a huge variety of specifications at any time. During the selection process, as
inherent in life, the best adapted individuums in living nature, in respect to time and
space, survive.
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Tab. 1.1: Some examples of coefficients of variation (CoV)

property CoV [%]
structural steel: yield stress f;, (JCSS:2001) 7%
structural steel: tension strength £, (JCSS:2001) 4%
timber: bending strength f;, (JCSS:2006) 25%
timber: E-modulus E,,, (JCSS:2006) 13%
timber: tensile strength parallel to grain f; o (JCSS:2006) 30%

1.2.1 Typology of Uncertainties and Sources of Dispersion

Uncertainties and thereby sources of dispersion can be classified as being in nature either
aleatoric or epistemic (THOMA, 2004).

Tab. 1.2: Overview and comparison of aleatoric and epistemic uncertainties / sources of spread

aleatoric uncertainties epistemic uncertainties
* natural inherent variability *  model uncertainties
—> can not be influenced = statistical uncertainties

=  measurement uncertainties
=  human uncertainties

- can be influenced and reduced

Aleatoric uncertainties are dedicated to the randomness / the fortuity of events inherent in
each physical phenomenon. It can be expressed as the non-influencable natural
variability. The epistemic part classifies uncertainties which include model uncertainties,
statistical uncertainties, measurement and human errors. It represents that part of
variability which can be reduced to a certain (economically meaningful and technical
possible) amount. This reduction can be done by improving models, progressing
performance of quality assurance and / or repetition of tests and measurements, as well as
intensified training, supervision and the implementation of controlling and regulating
systems. Both, aleatoric and epistemic uncertainties should take part in stochastic models
and both types of uncertainty are influenced by system action. An overview of aleatoric
and epistemic uncertainties is given in Tab. 1.2.
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1.2.2 Specifics on Timber Engineering and Comments on Mechanics vs.
Stochastics

In case of materials for engineering purposes variability in load bearing structures has to
be considered especially in (i) judgement of reliability and (ii) in decision making
processes concerning the safety of elements, components and consequently of the whole
system structure as well. Up to now design procedures given in standards consider the
variability of actions and resistances on different levels. Deterministic design codes base
on allowed / accepted design values of actions and resistances by including safety factors
which were established during decades or even hundreds of years by practical
experiences of trials and errors. In contrast, probabilistic design enables in principle an
individual design by direct consideration of the stochastic nature of actions and
resistances in each specific case. It provides a more specific decision tool than possible by
means of generally applicable approaches. Nevertheless, probabilistic design requires the
knowledge of all specific characteristics relevant for design, in particular the full
stochastic description of actions and resistances. It may be argued that knowledge of a
general trend acceptable on average provides accurate and sufficient information relevant
for decision making processes, e.g. the design of structures. However, there are several
aspects and effects which can only occur due to the occurrence of dispersion, e.g. system
effects as discussed within this work. These system effects show to be in magnitude
dependent on e.g. the quantile level of interest. Furthermore, dispersion of action and
resistance influences the failure probability and hence the reliability of structures
significantly. This fact may be even more decisive if series productions of structures
instead of single structure types are intended.

The relevance of stochastics and mechanics are often controversially discussed.
Mechanics thereby is an important and physically based theory for derivation of stresses
and strains within elements, components, systems and structures as reaction on externally
applied actions. Nevertheless mechanics alone can not explain the differences between
material properties on various hierarchical levels, e.g. from atomistic to engineering scale.
Thereby stochastics, a mathematical theory, plays a dominating role in judgement and
explanation of these differences, which are caused by the nature of scaling in
characteristics, structures and randomness of occurence. The inclusion of stochastics in
mechanical calculations enables higher order modelling under correct consideration of
average relationships and trends as well as the consideration of variability as inherent part
of characteristics. As every property needs to be characterised by at least expectation and
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variance, modelling of materials and structures relies on mechanics and stochastics. This
at least for judgement if a certain representative volume element (RVE) is large enough
such that the variability of a property of interest is reduced to an acceptable residual
amount for specific calculations in continuum mechanics.

In the sense of this manuscript dealing with stochastic system actions and effects, the
structure, arrangement of the elements and its interaction in the system define the focus of
the work with special emphasis on the stochastic description of the system behaviour.
This enables a quantitative registration in daily designing procedures of engineers and in
the business of product design and decision finding processes.

1.3 General Aspects of Systems

The term ,,system* (ancient greek: “systema’) in general characterises a structure, its
composition as a collective of elements that interact with each other but appear and
function externally as one unit (e.g. DUDEN, 2001 and MATTHIES, 2002). In the sense of
ARISTOTLE (384-322 b.C.) “... the assembly is more than the sum of its components ...”
the number of single elements without any connection and interrelationship do not form a
system; elsewise systems are not comparable if only the number, type and arrangement of
its elements are consistent but the interrelationships are not.

The system must be differentiated from its environment by the definition of system
boundaries. This specification, the compilation of the system out of its environment, e.g.
the universe of nature, is not trivial and has to be done in correspondence with the scope
of examination, i.e. the scope of the modelling process. In general, the definition of
system boundaries is a subjective process and depends on the observers’ perspective
leading to generalisations and therefore to exemplary reproductions of natural processes.
The approach to segment complex procedures and systems that may consist of sub-
systems or may be a sub-system of a higher-ranking complex is perhaps limited by
restricted human intelligence. Systems described by humans are simplified models of
natural processes which perhaps enable and support the understanding of these processes
to a certain degree.

However, it is difficult to entirely observe the structure of a system from the outside but it
can be observed and ascertained by the effects, appearance and operation of the system
resulting from the system action (e.g. MATTHIES, 2002). In that respect, the system
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structure, the functionality of a system which is defined by the arrangement of and
relationships between elements and components (in contrast to aggregates or assemblies
which are only arranged without structure) has to be differentiated from the system
action which depends on the activity (in- or extrinsic) in respect to the system structure,
e.g. the external impact on systems by forces leading to stresses in systems and perhaps to
stress transfer between the elements in dependency of the elements which are arranged
side by side or consecutive, defined by the interaction between elements. In that respect
system action depends on the system structure, the in- or extrinsic activity, and on the
interaction of elements and components within the system. The consequence of system
action observed externally is herein defined as system effect.

The artificially assembled system structures of engineered wood and timber products are
specified, i.e. by the industrial production process, the design of products and by the
system structure. Detection, identification and description of interactions and
relationships, the system actions and related system effects, summarise the targets
addressed in the present work. Thus, the focus lies on the external perception of a system
which has been analysed by variation of system structure, the examined characteristic
properties and the arrangement of elements within the system structure. The structuring of
elements and their relationships within the system serves solely the aims of segmentation
and demonstration of complex processes, the examination and the collection of
knowledge about effects on macro-scale (system-level) and micro-scale (level of
elements and their interactions) (see e.g. HUBRIG AND HERRMANN, 2005).

In general, the representation of systems is accomplished by models. The evaluation of
models is always a judgement about being more or less accurate but ever about wrong
models. No model is able to mirror reality completely as it is a simplification of reality
under certain constraints and assumptions. Hence, the explanatory power of a model is
based on the simplification representing the core structure under realistic assumptions.
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Chapter 2

General Remarks concerning Probability
Theory and Statistics

This chapter is a brief summary of essential stochastic definitions and
discusses some background knowledge and basics concerning statistics and
probability theory. A general section on definitions and basics of probability
theory and statistics is following a section which concentrates on statistical
distribution models relevant for timber engineering. In that respect some
comments concerning the definition of representative statistical distribution
models (RSDMs) are included. The chapter ends with a section addressing
regression and hierarchical models and gives an overview of stochastic
processes, essential functions and transformations in stochastics as well.

2.1 Some Definitions and Basics of Stochastics

Within this section some general definitions with respect to probability theory and
statistics are given. Readers who are familiar with these topics may skip this section.

Stochastics or the “art of guessing” is a special field of mathematics and combines the
two areas of probability theory and statistics (see Fig. 2.1). The term “stochastics” origin
from old Greek language and means “random” the “fortune of actions”. The opposite
behaviour would be deterministic (according BURY, 1975 corresponding to the boarder
case of stochastics with variation =0), expressing that each individual outcome of
processes, the action, can be directly calculated and foreseen, whereas the outcome of
stochastic processes (development in time and / or space) can only be defined by
judgements or predictions, so called expectations, with a certain probability of
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occurrence. That means that each individual outcome can be predicted to occur with a
certain probability but can not be foreseen explicitly.

stochastics

— T

probability theory statistics

Fig. 2.1: Stochastics: visualisation of divisions

The theory of statistics combines a doctrine of methods to operate with quantitative data
in information. It contains the collection, analysis and interpretation (inference) as well as
graphical procedures for densification and presentation of data. Statistics and its methods
can be subdivided into (see for illustrative purposes also Fig. 2.2):

= descriptive statistics (describing, empirical statistics for data preparation and data

densification = data mining);

= explorative statistics (hypotheses generating statistics);

= inductive statistics (mathematical, conclusive, inference statistics).

The probability theory decribes the probability of the occurrence of certain events, e.g.
defined as A4, B, ... The union of all possible (elementary) events of a certain experiment
defines the event space Q. Thereby the probability space consists of the event space €,
the collection of subsets 4 and the measure P which is standardised on [0, 1]. The
measure P assigns a probability to all events 4, B, ... (C Q) within the system 4. Thus
probability theory analyses the behaviour and regularity of random variables X which is
defined as projection of 4+ R (further definition see section 2.2 and e.g. STADLOBER,
2011A).

Fig. 2.2 shows an overview of statistical inference by illustrating the relationships
between theoretical models and observations. The definitions of elements in the figure are
given in the next sections.
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population X ~ Fy
— ~
experiments, observations theoretical models
A/ \
samples random variables
(x, Xy, o0y X,) X, X, ... X)
i X; ~F. X
histogram h theoretical probability density
f, . function (PDF, PMF
I (x) inference on or mass function ( )
distribution Jx(x), px(x)
. distribution_ i
empirical cumulative lim -~ f 2x)= fx(x) theoretical cumulative
distribution (empD) lim  F,(x)=F(x) distribution function (CDF)
n—0 X
Fn(x):H(xiSX) - Fylx)=PX <x)= J.fX([)'dt
n —o0
# __ statistical estimation %
statistics k procedures J distribution parameters
X, 8%, ... ) L u, o, ...

Fig. 2.2: Statistical inference: relationship between samples, empirical distributions, statistics and
random variables, theoretical distribution models and parameters (adapted; SCHUELLER,
1981)

2.1.1 Definition of Probability

The general definition of probability is given by the axioms of KOLMOGOROV. Let Q be
the event space and 4 the o-Algebra over Q. Then the probability function P: Q - [0, 1]
is defined as

= 0ZPA)<1,VA4ea (axiom of mass);
= PQ)=1;P(})=0 (axiom of normalisation);

» for a sequence 4, of pairwise disjoint events in 4 (i.e. 4; N 4;= Q) it follows
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P(i; A,-] = ;P(Ai) . (axiom of addition).

Thus a probability function P (.) has domain o-Algebra and satisfies the axioms of
KOLOMOGOROV, the axioms of probability (CASELLA AND BERGER, 2002).

There are two important special cases of probability. The first one is the classical
definition according LAPLACE or BERNOULLI (1713). Both defined probability as the ratio
between favourable and possible cases, (2.1). This definition traces back to combinatorial

statistics and gambling theory, assuming equal probabilities for occurrence of all
elementary events,

_Na

pla)=

2.1)

The second definition is a frequentistic one (according to R. VON MISES, 1919) and is
given by the limiting value of the relative frequency of occurrence of a certain event after
(in)finite independent experiments have been performed under constant conditions,

P(4)= lim H(4,N)= lim % (2.2)

N—>o© N—>o©

with H(4, N) as relative frequency, the occurrence of event 4 in N trials (e.g. CASELLA
AND BERGER, 2002; ROHLING, 2007).

Tab. 2.1: Combinatorics: some basic equations

with replacement without replacement

n!
ordered n m

n+r—1) (n+r—1)! ny n!
unordered - _m P (n—r)!

To take into account the total number of possible events the arrangement of an

experiment has to be differentiated into experiments “with” and “without” replacement of
already occured events and in respect to required or not required knowledge of the order
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of outcomes (“ordered” and “unordered”). Thus the number of possible arrangements of
taking » from n possible events is given in Tab. 2.1 (e.g. CASELLA AND BERGER, 2002;
DURETT, 1994).

An additional definition of probability is given by the English priest and statistician
THOMAS BAYES (e.g. cit. in CASELLA AND BERGER, 2002; STADLOBER, 2011A) who
defined probability subjective as a degree of belief. His theorem was developed by means
of conditional and total probability. The conditional probability as probability that event
E given event 4 may occur is defined as

P(ANE)

P(4)

With P(4 N E) = P(4) - P(E | A) = P(E) - P(4 | E), with P(4), P(E) > 0, it follows that

P(E|A)= , with P(4)>0. (2.3)

P(EA)=%, P(4)>0, and P(A|E)=%, P(E)>0. (2.4)

Assuming pairwise disjoint events (£; N Ej = O, Vi+j,withE, UE,U...UE,=Q, with
i,j=1,...,n, A c U; E, the theorem of total probability is given as
n n

P(4)=> P(AnE;)=> P(4| E;) P(E;). (2.5)

i=1 i=1
In the special case of Q =4 U B it follows (STADLOBER, 2011A)

P(4)=P(B)- P(4|B)+ P(B)- P(4[B) . (2.6)

The theorem of BAYES follows from combining both theorems of conditional probability
and of total probability, and is given as

P(Ei|A)= P(A|Ei)‘P(Ei)

> Pla) E;)-P(E;) | @.7)

j=l

with P(E;) as prior probability, P(4 | E;) as likelihood, P(4) as normalising constant and
P(E; | A) as posterior probability (see e.g. CASELLA AND BERGER, 2002; THOMA, 2004;
ROHLING, 2007). Thus BAYES’s formula provides updating on existing (prior) state of
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knowledge of a relevant event or the “... guessing of prior probabilities in case of
missing data” (BURY, 1975).

2.1.2 Addititive Law of Probability for arbitrary Events

In general, the probability of the union of events 4 and B is given by
P(4 U B)=P(4) + P(B) — P(4 N B). In case of 4, B being disjoint the calculation can be
simplified to P(4 U B) = P(4) + P(B) (e.g. DURRETT, 1994).

2.1.3 Multiplicative Law of Probability

The probability of the intersection between 4 and B given by P(4 N B) can be calculated
according to P(4 N B)=P(4) - P(B|A). Due to the equality of (AN B)=(BNA) it
follows that P(4) - P(B|A)=P(B)-P(4 | B). In case of three events 4, B and C the
multiplicative law lead to PA N BN C)= P(A)-P(B|A) -P(C|4NB). In case of n
events the probability can be derived by (e.g. STADLOBER, 2005)

n n—1
P(QAiJZP(Al)'P(Az | 4y)- P45 | 4 mAz)'---'P[An | lgAij’
(2.8)
n—1
with P(m A,-J>O.
i=1

In case of statistically independent events A4, B, ... the probability of their intersection can
be calculated by simple multiplication, P(4 N BN ...)=P(4) - P(B) - ... (e.g. DURRETT,
1994). Furthermore, the information concerning a dependency between the probabilities
of certain events is essential for judgement of the usability of some probability theorems
and calculation procedures. In general, independency is mostly assumed to simplify the
calculation of probabilities. Statistical independence, defined by P(4 N B) = P(4) - P(B),
has to be proved. According CASELLA AND BERGER (2002) mutually independency of a
certain collection of events A, A, ..., A, holds if any subcollection A,-l Y e Aik has

probability

P[rk\ 4; J = ﬁP(Ai_ ) (2.9
Jj=r =l !
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2.2 Definition of a Random Variable and its Distribution

A random variable is defined as a function which assigns every elementary event w

from the event space Q of a random experiment exactly one real number X(w) (e.g.
DURRETT, 1994; CASELLA AND BERGER, 2002). In other words, the projection X of
elements in Q in elements in R (X: Q — R) is named a random variable. The probability
measure Py is named the distribution of X (STADLOBER, 2011A). Possible values x of
X=X(w), w € Q X are named as realisations of X.

Generally, a probability distribution describes the character, the random occurence of
data by means of parameters for location as center of probability mass and spread as well
as the shape of the distribution of the data on a specific range. A differentiation according
the type of data which has to be described is required, e.g. between discrete and
continuous data. Discrete data can only take specific values whereas continuous data can
take any value within a defined domain. Furthermore, the statistical distribution can be
classified as bounded or unbounded distribution expressing the occurrence of a certain
limit on one or both sides of the distribution domain # (+ ) or not (e.g. VAN
HAUWERMEIREN AND VOSE, 2009). To simplify the representation of data’s statistical
distribution various families of numerous statistical distribution models are available.
Thus a sufficient description of a data set requires (i) the knowledge of the underlying
statistical distribution model and (ii) its associated parameters. Additional information
about the statistical uncertainties inherent in estimates of statistical parameters should be
provided.

A statistical cumulative distribution function (CDF) of a random variable X, defined as
Fx(x)=Px(X=x), Vx is defined as right continuous function if following three
conditions are fulfilled (e.g. CASELLA AND BERGER, 2002)

»  limy ., o Fx(x)=0; limy 4., Fx(x)=1;

»  Fx(x) is a nondecreasing function of x;

»  Fx(x) is right-continuous (=2 limy  xo Fx(x) = Fx(x0), ¥ xo).

A probability mass function (PMF) describes the probability of occurrence of discrete
random variables X, defined as px(x) = P(X=x), Y x. A probability density function
(PDF) fx(x), ¥ x describes continuous random variables X defined by
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fy(x)= dF;f ). (2.10)
X

Both, PMF and PDF have to fulfill the conditions
= py(x)20 and fy(x)>0,Vx;

= PMF: Y py(x)=1;PDF: [ fy(x)-dx=1.

X

A random variable X is named a discrete random variable X if it can accept a finite or at
least a countable infinite number of values. Its distribution is completely defined by
pi=PX=10),i=0,1,2, ..., with the step-wise function (e.g. STADLOBER, 2011A)

Lx] oo
Fy(x)=> p; with ) p,=1. 2.11)
i=0 i=0

A random variable X is named a continuous random variable X if there exists a function
fx(x) > 0 with (e.g. STADLOBER, 2011A)

Fy (x)z JfX (t)-dt , with fx(x) as PDF of X. (2.12)

—00

Additionally, according CASELLA AND BERGER (2002)

W(x|#a0'2):é'fz(zz x_”) @.13)

(e}

defines a PDF if and only if Z is a random variable with PDF f;(z) and X=0"Z+ p,
E[Z] = 0 and Var[Z] = 1%, with E[X] = ¢ - E[Z] + u and Var[X] = ¢* - Var[Z].

Bi- or multivariate models involve more than one random variable. The joint PMF
exemplarily for two variables X and Y is given as (see e.g. STADLOBER, 2011A)

pix.y)=P(X =i,y = j)=

= P(Y = j| X =i)- P(X =i)= P(X =i| ¥ = })- P(¥ = ). (214

The joint PDF exemplarily for two variables X and Y is given as
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fX,Y(x’y)sz|X(y | x)'fX(x):fX|Y(x | J/)'fY(J/)-

The joint CDFs for discrete and continuous variables X, Y are given as

FXny Z Zpy,wnhpy P(X =i,Y=j) ...ifX, Yare discrete;

i<[x]j<|ly]

x Yy

FX,y(x,y)z .[ J.fX’y(u,v)~dv~du ... if X, Y are continuous.

—00 —00

The marginal PMFs are given as

=i)=Y P(X =i,y = j)=D P(X =i|Y = j)-P(Y = j);

=Y P(X=iY=j)=) P(v=j|X=i) P(X =i).

In case of (X, Y) being stochastically independent it follows that
P(X=iY=j)=P(X=i)-P(Y=),Yi,j ... if X, Y are discrete;

fx,y(x,y)= f)((x)‘fy(y) ... 1f X, Y are continuous.

The marginal PDFs are given as

IfXny) dy; fY IfXny

—00

The conditional PDF of Y given that X = x is defined by

leX(y|x)=M, with fX(x)>0
fx(x)

2.3 Characteristics of Statistical Distributions

(2.15)

(2.16)

2.17)

(2.18)

(2.19)

(2.20)

The distribution of random variables is sufficiently represented by the distribution model
and its parameters. The parameters or characteristic figures can be classified as (e.g. VAN

HAUWERMEIREN AND VOSE, 2009)
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= Jocation parameters:
They give information about the position of the center of the probability mass or
density function. They have a direct influence on statistics like mean and mode.

* scale parameters:
They contain information about the spread of the probability mass or density
function. If squared, this set of parameters constitutes a part of the variance of the
describing variable.

* shape parameters:
These parameters deliver information about the shape, e.g. the skewness or
kurtosis of the probability mass or density function. This class of parameters
shows a nonlinear influence on the variable and is usually defined as a coefficient
of the variable.

Let X be a random variable with X: (Q, 4) - (R, B), with B as Borel 5-Algebra, and g a
real function g: R — R, with g ' (o0, y] € B, then ¥ = g(X) is also a random variable.

2.3.1 The Expected Value

In general, the expected value of a random variable defines an average value, a measure
of the center (the center of gravity) of the distribution of random variables. The expected
value E[g(X)] of the function Y = g(X) is given by

E[g(X)] = Zg(x)- py(x), if X is discrete;

xXey

» (2.21)
E[g(X)] = Ig(x)- fy(x)-dx , if X is continuous.

There are some special cases for ¥ = g(X) which are discussed briefly. Let g(X) = X*. The
expected value E[X*] is named the ™ moment of the random variable X with CDF
Fx(x) and given as

we = Ejx*] 222)

In case of k=1, g(X) = X it follows the expected value of the random variable X given
as
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m=u=EX]. (2.23)
For example, the expected value E[X] can be calculated by

E[X]: ixl- -pyx(x;), if X is discrete,
': (2.24)
E[X]z J'x-fX(x)-dx , if X'is continuous.

Due to linearity of E[X] the expected value of function g(X)=a - X+ b, with a, b as
constant  (deterministic) values, is given by E[g(X)]=a-E[X]+b. For
gX,Y)=a-X+b-Y the expected value is thus E[g(X, V)]=a-E[X]+b E[Y]. In
particular in case of a multiplication of independent variables X; with
gX)=Xi- Xy ... - X,, i=1, ..., n, the expectation can be easily derived by calculating
the product of all expectations,

E[X; .- X,]= f!E[X,-]. (2.25)
P

Let g(X) = (X — p)*. The expected value E[(X — 1)"] is named the ™ central moment of

the random variable X with CDF Fx(x) and given as

a, = E[(X - yY] . (2.26)

In case of k=2 it follows the variance of the random variable X given as

a, = E[X - u] g VarX]=o?. (2.27)

The variance ¢° of the random variable X constitutes a measure of the degree of
dispersion of the distribution of X around x, the probability of values occurring around the
expected value. The moment of inertia of the corresponding distribution of a unit mass
around its center of gravity can be seen as analogical description as known from
mechanics (e.g. SCHUELLER, 1981).

In case of the continuous random variable X the variance Var[X] can be calculated as
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Var[X]z T [x—,u] ? -fX(x)-dxz_sz -fX(x)-dx—,uz. (2.28)

—00

The variance Var[g(X)] with g(X)=a-X+b, with a,b as constants, is given by
Var[g(X)] = ¢* - Var[X]. According the Theorem of BIENAYME the variance of the sum of
independent random variables X; is given by the sum of the variances of X,

Va{ZX,} = Var[x,], withi=1, ... n. (2.29)
i=1

i=l

An alternative calculation of Var[X] is given by STEINER’s displacement law, defined as
(e.g. STADLOBER, 2011A)

Var[X]= E[Xz]— E*[x] . (2.30)

The square root of variance is named standard deviation o.

The variance of a sum of variables X; with constant factors ¢; and CoVar as covariance are
given by

Var{zn:c[ -Xl-:l = Zn:clz -Var[X,-]+ izn:cl- “Cj -CoVar[Xi,Xj]. 2.31)
i=1 1

i= i=1 j=1
J#L

The variance of a linear function of two random variables X and Y with two constants a, b
is therefore given by

Var[a X +b- Y]= a’ -Var[X]-l—b2 -Var[Y]+ 2-a-b- CoVar[X,Y]. (2.32)
A relative measure of dispersion is given by the coefficient of variation CoV defined as

CoV[X]= (2.33)

g
U

The skewness p; [X] =skew [X] is as measure of symmetry or asymmetry of the
distribution of the random variable X and given as

40



General Remarks concerning Probability Theory and Statistics

nlX]= skew|X]= M -5 (2.34)
[var[x]] e

In case of skew [X]=0 the distribution is symmetric, in case of skew [X] <0 and
skew [X] > 0 the distribution of X is named left- and right-skewed, respectively.

The kurtosis y, [X] = kurt [X] is as measure of the shape in the center and at the tails of
the distribution of the random variable X and herein given as

yalX]= kurt[X]=M=a—j. (2.35)
Var[x]] o

2.3.2 The Mode

The mode of a random variable X, abbreviated mode[.X], is the value which is most
likely to occur (e.g. VAN HAUWERMEIREN AND VOSE, 2009). This means that the mode
of a given variable corresponds to the value at the maximum of the probability mass or
density function of discrete or continuous variables, respectively. In case of
mean[X] = mode[X] the variable shows symmetrical distribution, whereas in case of
mode[X] < mean[X] and mode[X] > mean[X] the variable X is right- and left-skewed,
respectively.

2.3.3 The Moment Generating Function (MGF)

Let X be a random variable with CDF Fx(x), than the moment generating function Mx(%)
of X (MGF) is given as (CASELLA AND BERGER, 2002)

My(t)= E[e"X ] (2.36)

if the expected value exists near 0.

Mx(?) represents the LAPLACE-transform of fx(x). Mx(#) can be calculated by
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M (t)= Iet'x - fy(x)-dx , if X is continuous,
—a0 (2.37)
My(t)=> €™ P(X =x),if Xis discrete.
X

The k™ moment of X can be easily derived by means of Mx() with

k
E[Xk ]sz((O), with MfY(O):d—MX(t) (2.38)

dt"*

=0’

Thus the &A™ moment is equal to the X" derivative of Mx(¢) at ¢ = 0.
2.3.4 The Characteristic Function

The characteristic function ¢x(¢) is given as

oy (t) =F [e”'X ], with i =+/—1 as the imaginary number. (2.39)

It is unique for every CDF and does always exist even if MGF does not. It completely
determines the distribution of random variables.

2.3.5 Characteristics of Conditional Distributions

Let g(Y) be a function of Y given that X = x. The variance of Y given that X = x is given as
(e.g. DURRETT, 1994)

Var[Y|X=x]=E{{Y—E[Y|X=x] }2 |X=x}=15[1/2 |X=x]—E2[Y|X=x], (2.40)

whereby the variance Var[Y] is defined as
Var[Y]= E[Var[Y | X =x] ] + Var[E[Y | X =x] ] (2.41)

The expected value and variance in case of conditional PDF under consideration of g(Y)
as function of Y given that X = x can be derived by
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Elg)| X =x]= [g()- fyix(y]x)-dy, (2.42)
and
Var[Y|X=x]=E[Y2|X=x] ~EXY| X =x]. (2:43)

In case of a conditional PMF the variance Var[.X] can be calculated as
Var[X|= E[Var[X 1Y =y] ]+ Var[E[X 1Y =y] ] : (2.44)
2.3.6 The Covariance

The covariance of two random variables X and Y is given by

CoVar[X,Y]= E[(X = gy )- (Y = pay )= E[X - Y]= pay - pry . (2.45)

2.3.7 The Correlation Coefficient according Pearson

The correlation coefficient pxy(x,y) = pxy according PEARSON is a direct and normalised
measure of the strongness of a linear relationship between X and Y and defined as

Co Var[X, Y] _ CoVar[X,Y]
\/Var[X]-Var[Y] Ox Oy

pxr ()= pyy = , With—1 < pxy < 1. (2.46)

2.4 Representatives of Univariate Statistical Distribution
Models of Continuous Variables

In general a statistical distribution constitutes a model representing the main features and
characteristics, a property or an aggregate of properties of interest. In that respect the
statistical distribution constitutes a simplification, an abstraction in respect to the nature
of the underlying variety and randomness of a certain variable. For characterisation of a
property or natural phenomenon the statistical distribution model has to be chosen with
caution and in respect to the scope of the model. Within this work statistical distribution
models which representatively characterise the distribution of a property or action in
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respect to the scope of the model are called representative statistical distribution
models (RSDMs). The accurate choice of an RSDM demands on the definition of the
scope of the model. Thus it demands on the decision of representing the whole range of a
variable or only a part of it. Aspects like (i) how scaling and changes in actions can be
considered and incorporated in further modelling processes, (ii) the analysis of the
asymptotic behaviour of the distribution model, as well as (iii) the incorporation of
physical constraints and boarder conditions in respect to the underlying physical
phenomena and the nature of the property or action have to be considered to enable
representative and accurate modelling. As mentioned, it is not always necessary to
represent the statistical nature, especially with focus on the location and the distribution
characteristics, over the whole range of possible outcomes. In particular in case of
reliability analysis it can be sufficient to represent the nature of resistance in the lower
quantile range and that of action within the upper quantile range. In contrast, modelling of
system effects or actions generally requires the best and physical compatible knowledge
of a representative statistical distribution model over the whole range due to given
interactions between model variables along the whole distributions.

The necessity for modelling of stochastic nature by statistical distribution models
consequences from the in general insufficient available knowledge about the behaviour of
the total population. Only finite test series and data as random outcomes are available.
Representing the whole empirical distribution is practically impossible and theoretically
questionable because only each specific random sample used for inference may be
represented accurately. Considering the nature of phenomena, representatives and
inference based on data should be sufficient and accurate in respect to the scope of the
model. Hereby the quantity of key figures or distribution parameters should be also
choosen carefully. They should be physically justifiable and empirically as well as
practically manageable. In particular, information about statistical uncertainties of the
parameters enables performance of parameter studies analysing their influence on the
outcomes. Thus best possible reduction of uncertainties is due to cumulative errors for
sure more important in case of stochastic processes or modelling of large systems than in
case of representation of single outcomes.

According SCHUELLER (1981) continuous statistical distribution models follow from the
examination of boarder constraints of the relationship between the random variable which
describes the physical phenomenon and its singular mechanisms, whereby their singular
contribution on total dispersion of the variable cannot be determined definitely. By
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knowledge of how singular mechanisms or constituted, statements regarding the
distribution of variables are possible. Thus three main cases are given:

= additive acting singular mechanisms;
= multiplicative acting singular mechanisms;

= behaviour of their extreme values (minima, maxima).

The first two cases are often associated and represented by normal and lognormal
distribution models, respectively, and will be discussed within the next sections 2.4.1 and
2.4.2. The third case is in particular the topic of extreme value theory (see section 2.6.2).
Concerning strengths of brittle materials this case is often associated with the WEIBULL
distribution model (WD) as presented in sections 2.4.3 and 3.2.1.

In general, stochastic modelling concentrates on eliminating outliers. This is perhaps
sufficient for modelling the average behaviour of a variable. Nevertheless, the outliers
can in particular support the analysis and the predictive quality of models because they
often contribute an added value for the explanation of the underlying phenomena, even
more than the mass of averages can do. Therefore rejecting outliers from data should be
done with caution and never without a careful and comprehensive proof beforehand.

2.4.1 The Normal (Gauss) Distribution Model (ND)

The normal distribution (ND) constitutes the most famous and widest applied statistical
distribution model. It follows directly from the Central Limit Theorem (see section 2.6.1)
and from the arithmetic series. It specifies the distribution model for characterisation of
sums of independent but not necessarily identical distributed variables. In that sense ND
is especially applicable for modelling of arithmetic, additive processes (e.g. LIMPERT,
2001; SCHUELLER, 1981).

A variable X with X~ND (X | ) and @ = (4, 6°) as parameter vector is known as being
normally distributed, if it has the density function

2
fX(x)=;-exp[—l-(x_’uj ],XE[R. (2.47)

o

Through standardisation of ND variables by
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z7=""r (2.48)

it leads to the standard normal distribution (SND) of Z, with Z~SND (Z]| #) and
6= (0, 1%), with PDF

2
f2(210)=¢(z)= \/21—” 'eXp{—%}, (2.49)

and CDF

Fy(210)= Pz < =)= 0()= [$lu)-duc, with &()=1-(-2). (2.50)

On the basis of (2.47), (2.48), (2.49) and (2.50) the PDF and CDF of normally distributed
variables can also be written as

1rlx10)=Lg00); FX<x|e>=P[sz]=¢[uj=¢<z>. @s1)

o

The parameters of ND correspond to expected value E[.] = 1 and the variance Var[.] = o7,

with E[.] and Var[.] as the expectation and variance operator, respectively. Thus ND
constitutes a statistical distribution model whereby the distribution parameters coincide
with the first and second central moments E[.] and Var[.].

The distribution parameters can be estimated from empirical data sets by calculating the

empirical arithmetic mean X and standard deviation S or variance S” as

1 'i()?_Xi)z and S =57, (2.52)

n=1 5

— 1 & 2
X:_' XZ’S =
n iz

i

or by means of likelihood estimators as well as on the basis of empirical determined
quantiles O, €.g. the median with

Oo.50 = med[X]. (2.53)

In case of parameters estimated by means of maximum likelihood the variance-

covariance matrix [Vj] of the parameters X and S, with
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_ 1 &
X = —Z (2.54)
n i=1
is given as (BURY, 1975)
2
9 9
[Vy]Z " JERE (2.55)
0 —
2-n

with [Vj] as the inverse of the information matrix [/;] given by

il=ls] . 056

The information matrix corresponds to the expectation of the 2" partial derivative of the
log-likelihood function In(L) and is given as

IAE {— E{a&;l.—n(ggﬂ . 2.57)

The log-likelihood function In(L) is defined as

In(Z]0)= h{f[ fi, (x| e)] _ éln[ i, (%10, (2.58)

i=1

with fx(x| @) from (2.51). The maximum likelihood estimates 0 are obtained as solution
of

ln[L(é)] = max ln[L(Q)] . (2.59)

7

Thus the variance of X is given by Var[X]=¢"/n and that of S_ is given by
Var[Si] =06/ (2 - n).

The mode of ND variables or the value representing the argument of the maximum of the
density, is given by
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arg[ [y (x| 0) o = arel £y (1] 0)] = ag[ﬁ} =u. (2.60)

The inflexion points of the distribution are well known at x4+ . Herein defined
probabilities within a span of k-times the standard deviation are given e.g. by

k=1: puxl-0 > Plu—o<X<u+c)=0(1)-d(-1)=2-@(1)-1=68.3 %;
k=20 p+2-0 > Plu-20<X<pu+2-0)=0(2)-d(-2)=2-®(2)-1=95.5 %;
k=3: ux3-0 > Plu-3-0<X<u+3-0)=03)-0(-3)=2-0(3)-1=99.7 %.

The ND is invariant in convolution. Thus sums of independent ND variates are also
normally distributed, see

n n n i

ZXI. ~ ND(Zﬂi,ZJf], for Xl-~ND(yl-,Gl-2). (2.61)
i=1 i=1 =l
According CRAMER this relationship holds also for the inverse situation. In case of

normally distributed sums the summands are also normally distributed.

The skewness skew[X] of ND variables equals 0 (= symmetrical distribution model)
whereas the kurtosis kurt[.X] equals 3.0 (BURY, 1975).

The ratio of two independent SND-variables X and Y, with U= X/ Y follows a Cauchy
distribution (CASELLA AND BERGER, 2002) with

1 . i
filu)= W , with —o < & < 00 and non-existing moments. (2.62)
-\u

Beside univariate ND also bi- and multivariate ND models are available. In the general
case of two dependent (correlated) ND-variables the bivariate ND-model is defined as

X 2 G-
[ 1}ND Vl} 1 prove )l (2.63)
X Hy || p-Oy-0, )

with p = pxy as (PEARSON) correlation coefficient and CoVar[X,, X;] =p - 01 0o,. In case
of independent variables (p = 0) the bivariate ND simplifies to
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X et 0
~ND , , :
[Xj [Ltj { 0 J§D (269

with joint PDF

2 2
1 1 x| — Xy —
le,Xz(xlaXZ):‘—’eXp -5 ( : 'ul] +( 2 ﬂzj , (2.65)

O 0

for ¥ x1, x, € R.

Independent SND variables Z, Z, can be easily transformed to

AR P A R =y

and hence to

X oY+ 62 -0 O
IR R (] I 2
Xz 02‘Y2+/12 My P 010, (o))
In case of n-dimensional normally distributed variables the multivariate normal PDF is
given by

1 ] )
Sty Fisesx, )= W'exp[—g-(x—ﬂ)r > l(x—ﬂ)} (2.68)

with |2] as determinant of the covariance matrix 2= CoVar, with elements CoVar[.X;, Xj].

2.4.2 The Logarithmic Normal Distribution Model (LND)

The basis of the logarithmic normal distribution (lognormal, LND) traces back to works
of GIBRAT (1930, 1931) who derived the distribution function by means of theoretically
qualitative assumptions which are well known under the name of “law of proportionate
effect”. In short, the law states that the product of proportional identical changes, which
are assumed to be normally distributed, tends with increasing changes to LND,
independent of the starting point. KOLMOGOROFF derived the LND model in 1941 on
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basis of the description of the distribution of particle sizes, whereby the particles are
independently subdivided which leads to two independent sized parts each. LIMPERT ET
AL. (2001) described in general, that additive and multiplicative actions and effects on
continuous variables tend to be normally and lognormally distributed, respectively.
Additionally, SCHUELLER (1981) stressed the appropriateness of LND to describe the
stochastic nature of multiplicative processes. He reports about frequent use for
representation of the microscopic behaviour of fatigue mechanisms in raw materials.
Especially in the fields of physics, natural, social and engineering sciences the relevance
of LND is seen similar to the ND model (JOHNSON ET AL., 1994). The advantage of the
approximation of empirical data by a two-parametric LND (2pLND) is beside the
theoretical background of “the theory of proportionate effects” in particular given by the
constraint of only positive values which can be observed in many physical aspects and
properties like strengths and stiffness. In case of low dispersion within the values of about
CoV[Y]=(15+20)% the difference in shape between ND and LND may appear
negligible especially if expectations are far away from zero thresholds. Nevertheless, the
extreme values in the upper distribution area, e.g. the 95%-quantiles, are clearly different
(e.g. AHRENS, 1954).

In general, a variable Y is defined as being lognormally distributed (Y ~ LND) if its
logarithm X = In(Y) is normally distributed (X ~ ND). The density of 2pLND is given by

2
fr(v)= ;'GXP —%(ln(y)—_ﬂxJ : (2.69)

Ox

The distribution parameters can be estimated from empirical data by the method of
moments on the basis of the empirical arithmetic mean and the empirical variance (e.g.
ZUPAN AND TURK, 2004; THOMOPOULOS AND JOHNSON, 2004; SCHUELLER, 1981), see

2 2
py =l =2 | &% = 1n("—§+1] ~tnlcor(r) +1] . (2.70)
,u% +G)2/ Hy

as well as by means of the maximum likelihood method. In case of parameter estimations

based on log-likelihood the variance-covariance matrix of the estimates 4y and &6y is

given as (BURY, 1975)
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0

il L @.71)
0 Ok
2-n

Thus the variances of [, and & are given respectively by Var[ i1y ]=o0x’/n and

Var[ 6y ]=0x>/ (2 n).

The expectation E[Y] and variance Var[Y] are given as

2
E[Y]=py = eXp[ﬂX + 07)(] = \/ exp(z Ay ¥ 0')2() , (2.72)

Var[Y]= oy = exp(Z iy +O% ) [exp(af( )— 1]: E*[r]- [exp(o-f( )_ 1] . (2.73)
By means of the transformation

= Il (2.74)
Ox

THOMA (2004) states that the CDF of lognormals can be expressed by means of the

normal distribution operator, with Fy(y) =P [Y < y] = ®(w). Further characteristic values

of LND, e.g. median med[Y], coefficient of variation CoV[Y], skewness skew[Y] and

kurtosis kurt[ Y] can be derived as (see AITCHISON AND BROWN, 1981)

med[Y]=Y =exp(uy), (2.75)
CoV[r]= Z—i = Vexp(ff?() -1, (2.76)
skew[Y]= CoV3[Y]+3-Cov]y], 2.77)
kurt|Y )= CoV¥[Y]+6-Cove[r]+15-Cov?[y]+16-Cov?[r]. (2.78)

Hereby skew[Y] and kurt[Y] are both positive and increase with increasing variance
Var[Y]. Concerning the location parameters it can be proved that
mod[Y] <med[Y] < E[Y], whereby according to CROW AND SHIMIZU (1988) the mode
mod][ Y] can be derived by
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mod[Y] = exp(,uX - 0')2(). (2.79)

The quantiles of LND variables can be derived by means of parameter z, corresponding
to the p"-quantile of a SND variable, see

ypzexp(yXJrzp-aX). (2.80)

In case of p=15% the required 5%-quantile is given by zs = ®(0.05) = —1.645, with
@' (p) as the inverse standard normal distribution operator. Consequently in the limiting
case with ox — 0 quantiles », and other statistics tend to — exp (ux)=med[Y]
corresponding to the expected value E[Y], with ox = 0.

If the 5 %-quantile yps and CoV[Y] are known the distribution parameter uy can be
derived as

Ly = Vo5 -exp{— @‘1(0.05)-\/ln(C0V[Y] 2 +1) ]\/COV[Y] S (2.81)

The product of independent (ind.) distributed LND variables can be seen in analogy to the
sum of independent ND variables (SHARPE, 2004; CROW AND SHIMIZU, 1988). The
distribution of the product of independent 2pLND variables follows also a lognormal
distribution, with

n n n
[1%~2 pLND(z U X,l.,zaf(,i] : (2.82)
i=1

i=l1 i=1

In case of iid LND variables (2.82) simplifies to

n
HY,.~2pLND(n-yX,n-a§(). (2.83)

i=l1

A more general case of products of iid 2pLND variables is given in CROW AND SHIMIZU
(1988). For Y;, with i=1,...,n and the constant values b; and ¢ >0 (e.g. ¢ =exp(a);
a > 0) it follows

i=1 i=l1 i=1

n n n
c- HXib" ~ ZpLND[a +>°b; -,uND,,-,Zbi2 -UJZ\,DJJ . (2.84)
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Consequently, also 1/ Y and Y, / Y, are lognormally distributed, with
1 Y
2

In case of iid ¥; with i =1, ..., n the geometric mean of Y; is also lognormally distributed,
with (AITCHINSON AND BROWN, 1981)

n 1/1’1 2
(HY;J ~ LND[yX,G—X] . (2.86)
i=1 n

In case of dependent (correlated) bivariate 2pLND variables Y, and Y, with LND (u, 2)
the expectation vector u and variance-covariance matrix X are given by (LAW AND
KELTON, 2000)

2
T Ox,1 Ox1°0x2 Px1xp2
u= [,UX,la,UX,z] ;2= 2 ) (2.87)
Ox1°0x,2 " Px1:x,2 Ox,2
with covariance
2 2
Ox11t0x,
CoVary, 1, ]= eXP(UX,1 "Oxp~ 1)' CXP{/JXJ tHx,t #J , (2.88)
and correlation coefficient
eXP(PX,l;X,z "Ox ‘O'X,z)—l
(2.89)

" JFok - ookt

The covariance of corresponding bivariate ND-variables is given by (LAW AND KELTON,
2000)

(2.90)

CoVar[Xl,Xz]: h{1+C0Var—[Y1’YZ]}

‘/UY,I : ﬂy,z‘

The distribution of the product of two 2pLND variables is given by
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Y1~ ZPLND(ﬂX,1 +HX,250')2(,1 +2:0x "0y, '/3+O'§(,2) ) (2.91)
whereas the distribution of the quotient follows
niy, -~ ZPLND(ﬂX,l - ,UX,2>U)2(,1 —2:0x1"0x P+ 0)2(,2) : (2.92)

In that sense the central limit theorem can also be applied for products of independent
positive variables Y;, with both existing central moments E[In(Y;)]=ux and
Var[In(Y;)] = ox’, given as

n asympt.

1y -~ 2pLND(n-,uX,n-0)2(),Withi=1,..,n, (2.93)
i=1

which implies that the geometric mean follows asymptotically a LND according (2.86).
2.4.3 The Weibull Distribution Model (WD)

In 1939 WEIBULL derived the statistical distributions called two- and three-parameter
WEIBULL distributions (2pWD, 3pWD). These models are based on physically driven
assumptions in combination with stochastics and especially rank statistics, including the
extreme value theory of minima. In short, he modelled (brittle) materials as aggregates of
a large number of elements with iid strengths. Thereby the strength of the aggregate
reduces with increasing size due to the assumption that a failure of the weakest element
initiates a sudden failure of the whole aggregate. This led to the well known “weakest
link theory” according WEIBULL (WLT) although he was not the first who published the
principle idea behind WLT. Further details on this theory are given in section 3.2.1. In
contrast to ND and LND the WD provides a statistical distribution model in analytical
closed form but requires additional efforts in determining the WD parameters. The WD is
the only statistical distribution model which stays in principle the same in limiting cases,
e.g. in investigations concerning the minima and maxima of iid variables.

The PDF of the three parameter WEIBULL distribution (3pWD) is given by

p-1 B
(] ot
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with location parameter x, within 0 <x, <x <o and scale and shape parameters a, > 0.
The CDF follows from integration and is given by

FX(x):l—exp{—(x_xo jﬂ}. (2.95)

(2

In case of xy =0, equ. (2.94) and (2.95) simplify to the 2pWD, with PDF and CDF given
as

fy(x)= g . (gjﬁl : exp|:— (ijﬂ] , Fy(x)=1- exp{— [g)ﬂ} . (2.96)

The expectation E[X] and variance Var[X] can be calculated as

3pWD: E[X]=x, +a-1“[1+%}
2.97)
2pWD: E[X]=a- F(l +%]
and
3pWD and 2pWD: Var| X |= o -{F(l +%) —1“2(1 +%H , (2.98)

with location parameter xo > x > 0, scale and shape parameters a, > 0, respectively, and
I'(.) expressing the complete gamma function defined by

rlz]= J.tz_l -exp(—¢)-dr . (2.99)
0

The variance-covariance matrix of parameter estimates ¢ and ﬁ based on maximum
likelihood method is given by (BURY, 1975)

2

1 1.10866-%— 025702«
|- L. e

)L

f , (2.100)

0.25702-a  0.60793- >
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with Var[@]=1.10866 0>/ (n-f*) and Var[#]=0.60793-4>/n. As given in
equ. (2.100) the estimates of o and f are not independent. The coefficient of variation
CoV[.X] can be derived as

Jal \/F[H;J—Fz(H;j

2pWD: CoV[X]=

E[X] . F(1+1] ’
B
(2.101)
\/1“[1+2j—1”2(1+1]
3pWD: ColV[X]= i r
xo+F[1+1J
a B

Thus in case of 2pWD the coefficient of variation CoV[.X] only depends on the WEIBULL
module or shape parameter f and not on the scale parameter a. The WEIBULL module is
also well known for the characterisation of failure rates according the bath-tube-curve,
with <1 representing early (infant) failures, =1 representing random failures and
B> 1 wear-out failures (WILKER, 2004).

Quantiles of 2pWD variables can be derived from (2.95) as

1/

x, =a-{ln(1 ! H - med[X]= x5, = a-[In(2)] l/ﬁ. (2.102)
-pP
The mode is given by
1/
mod[X|=a- [%j , for p> 1. (2.103)

As shown in (2.101) CoV[X] of 2pWD only depends on the WEIBULL module S, and vice
versa. A short study of CoV[.X] as function of £ in the range of CoV[X] = (1, 100)% leads
to a well approximating equation (see Fig. 2.3, left) given as

CoV

est

—0.93
[X]~p ", for127.5>4>1.0. (2.104)
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Fig. 2.3: WEIBULL shape parameter f vs. coefficient of variation CoV[X], comparison of
approximations: (left) CoV[X], CoV[X]ex Vs. f; (right) S, fest vs. CoV[X]; grey region
mark common ranges of CoV[X] and  in material science

The estimation of f given a known or estimated CoV[X] is perhaps a bit tricky leading to
unrealistic approximations especially at CoV[X] < 10%. Roughly spoken f can be
estimated by calculating the inverse formulation of equ. (2.104) given by

-1.078
type I: ,, =~ CoV[X] , for 10% < CoV[X] < 100% (2.105)

with a maximum squared error &* = (fu — f)* of ¢ =3.83% and 10% < CoV[X] < 100%
(see Fig. 2.3, right). An improved estimation of £ is given by the function

—3.2447

0.1104 -1.3317
type I1: S, = F(COV[X] ) -CoV[X]

(2.106)

>

for 1% < CoV[X] < 100%, with a maximum squared error & = (fe — ) of &*=0.51%
with ¢ in the range of ¢ = (—7.12%, +6.14%), for 1% < CoV[X] £ 100% corresponding to
1.0 < <127.5. In case of failure definition d = (B — f) / f the failure range is given by
0 =(—0.38%, +2.92%) (see Fig. 2.3, right).

Based on the above estimation of 5 the second distribution parameter a can be estimated
by means of S and estimation of med[.X] in case of a given sample. Thus the error in feg
is even reduced in calculating a.y. The procedure for predicting o has the advantage that
rank statistics are more robust against outliers than empirical mean and variance.
Nevertheless CoV[X] has to be estimated first and therefore also arithmetic mean and
empirical variance are required. As mentioned in previous sections the knowledge on
expectable ranges of CoV[X] provides further analysis in respect to parameter studies
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supporting judgement of accuracy in prediction. For comparison, HITCHON AND PHILLIPS
(1978) proposed that the relationship can be approximated by f~1.20/CoV[X]
(type III) (see Fig. 2.3, right).

2.5 Order Statistics

Let (X1, ..., X,) be a sample vector with identical and independent distributed (iid) X; and
CDF Fx(x). Than the order statistics are the statistics of ordered events with defined order
of occurence, denoted by X;, with X;)<Xo <...<X4u, with max [X;]=Xu and
min [X] = X). Thus the range R is given by R =X, —X). The order statistics of
realisations of random variable X; are given as xi = x(y, ..., Xm).

Assuming an iid random variable X; with density fx(x) and CDF Fx(x) than the probability
density function fi(x) as well as the cumulative distribution function Fi(x) of X at the
position k are given as (e.g. ROHLING, 2007)

(2.107)
n j -
A=) el
j=k\J
The PDF and CDF of extreme values, the minima and maxima, are given as
minima: £ (x)= n-[l—F(x)] " f(x) and F(x)=1- [1 —F(x)] ! ,
(2.108)

n

maxima: f, (x) =n-F(x) " f(x) and F,(x)= F(x)

Note: The types of statistical distributions and equations for calculation of some key
distribution characteristics of extremes in the limiting case with n — oo are discussed in
more detail in section 2.6.2.

The p™ quantile x, of a random variable represents a value which divides the probability
mass in two parts where P(X<x,) =p (e.g. STADLOBER, 2008). In case of continuous
random variables it follows
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FX(xp)zP(XSxp)zp = ffX(x)-dx—ncp =F)}1(p). (2.109)

The theoretical quantile x,, can be estimated by empirical quantiles O, which are functions
of order statistics Xy,. There are numerous possibilities how to estimate the theoretical
quantiles x, by O,. Three common possibilities, as given in STADLOBER (2011B) are
presented briefly.

Type I: O, based on the inverse of the empirical distribution function

In type I x, is estimated by O, by means of the inverse of the empirical distribution
function (empD). Thereby O, is a discrete estimator and given as

1
O, =—1X(.,)+X(n. ,if (n - p) is an integer,
»=5 [ (np) T2 p+1)] 2.110)

O =X(|n-p 1) , if (n - p) is not an integer.

Type II: Estimator O, as implemented in statistical software packages e.g. SPSS, MiniTab

In type II the continuous estimator Q, is given as

9, =X() k=1,

sza-X(k_1)+(l—a)-X(k) ,2<k<n, (2.111)
szX(n) k=n+1,

with

k=|_(n+1)/pJ+1,a=k—(n+1)-p. (2.112)

Type I1II: Estimator O, as implemented by default as type 7 in R (2009)

In type III the continuous estimator O, with good smooting is given as

0y =(1=8) X((u1)p ) + & X((n-1)p12)- (2.113)

with
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g=(n-1)-p-[(n-1)-p]. (2.114)

The median x50 = med(X) as parameter of location halves the probability of events and is
defined by

med(X) = X[(n41)/2] ,if n is odd,

. (2.115)
med(X)z[X(n/2)+X(n/2+1)] /2 ,if n is even.

2.6 Some Theorems, Theories and Statistical Models

Following sections present additional stochastic background and discuss the Central
Limit Theorem, major aspects of extreme value theory, regression and correlation
analysis, hierarchical models, stochastic processes and time series as well as some
functions and transformations helpful for further applications.

2.6.1 The Central Limit Theorem

The Central Limit Theorem states that in case of an iid sequence of random variables
X1, X, ..., with E[X;] = 4, Var[X;] = 6" > 0 and the definition of the sample mean given by

_ 1 &

X, ==X, (2.116)
noa

the CDF Z, given as

Z, =\/Z-[Mj, .117)
O

converges in the limiting case

X 2
lim, ,, G,(x)= j \/;_”-exp(—y?}-dyzcb(x), (2.118)

—00

to the standard normal distribution (SND). The normality follows herein from the sum of
in respect to finite variance, small and independent disturbances. In general equ. (2.118)
is a very usefull approximation also for finite but sufficient large number of summands.
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Even if the number of variables is small, in the range of about 10 to 20, and even if the
distribution of the variables is far away from normality (e.g. uniformly distributed) the
distribution of the sum converges relatively fast to the normal distribution. The judgement
whether or not the approximation is sufficiently accurate has to be done individually and
in dependency of the type of the parent distribution(s) (CASELLA AND BERGER, 2002).

2.6.2 The Extreme Value Statistics and its Distribution Models

The extreme value theory (EVT) concentrates on the stochastic description and modelling
of the behaviour of extreme values (e.g. maxima, minima) with focus on iid variables and
processes. The extreme value distributions describe limiting distribution functions with
system size n — . As generally known (see (2.107)), if X;, Xp, ..., X, are iid random
variables with CDF Fx(x) the distribution of extremes for minima constitutes as

n

Xy < Xo)< oo S Xy > Fy minl)= Fy, (¥)=1-[1-Fy ()] ",

y (2.119)
or inversely Fy (x) =1- [1 — FX min (x)] ! ,
and for maxima as
X2 o 2 Xy 2 Xy > Fy max (%) = Fy., (0)=[Fy(x)] ",
(2.120)

or inversely Fy(x)= [FX’maX (x)] v .

Tab. 2.2: Limiting distributions vs. parent distributions (KOTZ AND NADARAJAH, 2000)

type of parent distribution limiting distribution for extremes
maxima minima
X; ~ exponential (x | 0) type I type 111
Xi ~ gamma (x | 0) type I type 111
X; ~ uniform (x | 0) type 111 type 111
X; ~ pareto (x | 0) type 11 type 111
X; ~ cauchy (x | 0) type 11 type 11
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According GRIFITH’s theory differences between the calculated strength of materials by
means of classical strength theory and the observed strength can be traced back to
strength reducing flaws in the material body.

PEIRCE (1926) was probably the first who connected the specimen strength with extreme
value theory. Based on these previous works WEIBULL (1939) defined his well known
stochastic strength theory on the basis of weakest link theory for brittle materials. A
comprehensive and recommended summary of the developments regarding extreme value
theory is given in KOTZ AND NADARAJAH (2000).

FISHER AND TIPETT (1928) showed that there are exactly three types of limiting extreme
value distributions (KOTZ AND NADARAJAH, 2000). For maxima they are given by
equ. (2.121) to (2.123), with 8= (i, 0, &) as parameter vector with ¢, >0, u €R as
location parameter, ¢ as scaling parameter and ¢ as shape parameter. The corresponding
distributions for minima are derived by substitution of x by (—x).

Typel is often treated as reference extreme value distribution (EVD). Variables
distributed according type II or type III can be easily transformed to type L. If X ~ type 11
with Fx(x |0, o, &), substituting X by In(X) leads to type I with Fx(x |0, In(s), 1 /). If
X~typelll with Fx(x|O0,0,¢&), substituting X by In(X) leads to typel with
Fx(x |0, -In(o), 1 /¢).

Tab. 2.2 gives the limiting distributions in dependency of the parent distribution of X.

Type I (Gumbel-type):

PlX <x]=Fy(x|0)= exp[— exp(— %ﬂ ,

(2.121)
with x € (— o0, + )
—> exponential decrease of upper distribution tail (e.g. SCHUELLER, 1981);
Type II (Fréchet-type):
0 x<u
A0 (] o

withxe[u—0/¢& +0),5>0
-> polynomial decrease of upper distribution tail (e.g. SCHUELLER, 1981);
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Type III (reversed Weibull-type):

PlX <2]=Fy(x] 6)= e""[‘(‘x;ﬂﬂ oA,

(2.123)

withx € (—oo,u—0/¢],E<0
-> for modelling of material's life time stressed in fatigue (e.g. SCHUELLER, 1981).

All three types can be traced back to the generalised extreme value distribution (GEVD)
with same domains of X with CDF

-1/¢ —oo<x£,u—%,
X—u
exp{— (1 +&- —ﬂ
o 9 <x<ow >0
H E > > (2.124)

exp[— exp(— Mﬂ —o<x<ow, £=0
o

E<0

P[X <x]=Fy(x|6)=

and PDF

1 e -1/¢ e -1/&-1
—-exp[—[uf-—ﬂﬂ -[1+.§- ﬂ) E#0
o o o

fy(x|0)= . (2.125)
L.exp{_ exp(_ uﬂ.exp(_uJ £20
(o2 (o2 (o2

The three types of EVD can be derived from GEVD with £=0 - type I, >0 > type II
and &< 0 > type III, whereby ¢ is predominantly influenced by the functional form of the

tail as already indicated in equ.(2.121) to (2.123). Hence =0 corresponds to an
exponential decreasing function, £> 0 to a polynomial decreasing functional behaviour,
in general expectable in case of long-tailed parent distributions, and ¢ <0 characterises
distributions with short tails given in case of a finite upper limit. In the evaluation of &
some problems may occur if £<(—1/2) and £>1/2 due to not existing likelihoods or
not existent second and higher moments. Nevertheless, environmental data and data sets
gained from natural processes show that parameter ¢ is in general within the range of
[F1/2<¢&<1/2](KOTZ AND NADARAJAH, 2000).
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The central moments and some more figures of GEVD, case £ # 0, can be derived by

E[X]:y—%+%xl,if§¢o,§<1, (2.126)
0_2
Var[X]:?-(Kz —K‘lz), ifE£0,6<1/2, (2.127)
o £ .
mod[X]=,u+E-(l+§) —1[,ifE#0, (2.128)
3
s/’cew[)(]z’(3_3"(1"(2-'-2"(1 ,1IfE#0, (2.129)

3/2
2
(Kz -K )

K4—4-K‘1-K3+6-K‘2'K‘12—3-K1
2
2
(Kz‘Kl)

withke =T (1 —k- &), fork=1,2, ...

furt] X | =

4
,IFE#0, (2.130)

By means of order statistics the probability distribution function of the " order statistic
X of iid random variables with —o <x < o0 is given by

The &A™ moment is given by

E[X(r)k]:(r—l) i .(n—”) !.E)(_l)j( J ].gk(r”)’ (2.132)
with g, (c)= Txk -exp[- x—c-exp(-x)]- dx .

—00

Here it has to be remarked that ordered realisations are due to ranking not independent
even if the realisations itself represent independent outcomes (BURY, 1975).

Some more Comments on Type I EVD

The EVD type I is perhaps the most common and preferably studied type of the EVD
models and is also known as double-exponential or GUMBEL model. As given in Tab. 2.2
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type I EVD is also the limiting distribution of variables with ND or 2pLND as parent
distribution, for minima and maxima. The right-skewed PDF is given by

fx (x | 0) = ey exp[— ant A exp(— ﬂﬂ , for maxima,
o o

o
(2.133)
1 - - .
fX(x | 0) = exp{x £_ exp[x 'uﬂ , for minima.
o o o
If standardised by
yoXZH (2.134)
o
the PDFs simplify to
Iy (y | 0) = exp[— V- exp(— y)] , for maxima,
(2.135)
fr(v16)=exply —exp(y)], for minima,
with @ = (4, 6)" as parameter vector. The CDFs are given as
Fy (x | 6?) = exp{— exp[— ﬂﬂ , for maxima,
o
(2.136)

Fy (x | 6?) =1- exp{— exp(ﬂﬂ , for minima.
o

By taking twice the logarithm of equ. (2.136) it follows

—In[-In(Fy (x] 0))]= =% (maxima); In[-In(1 - Fy (x| 0))]=—£ (minima).  (2.137)
O O

If the left side of equations in (2.137) (y-axis) is plotted against the right side of (2.137)
(x-axis) a linear function with gradient (1 / o) and intersection with the x-axis at x = u is
given. This graph represents a probability paper which enables a quick qualitative
judgement of a set of realisations of a specific variable whether or not being represented
by type I. It is recommended to compute the empirical distribution empD by values
empD;=(i—0.5)/n,withi=1, ..., n.
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The first two central moments of EVD type I are given by

E[X]=p+0-y (maxima); E[X]=u—ocy (minima), (2.138)

with y = 0.5772156... as the EULER-MASCHERONI constant, and

Var[ X |= % -7 -0% ~1.64493- ¢ (for maxima and minima). (2.139)

The skewness skew[X] = 1.1396 is independent of the distribution parameters u and o
(SCHUELLER, 1981). The location parameter u conforms to mode[X]. The inflexion points
are at

1
X:yia-ln[z-(l’mt\/gﬂz,ui0.96-0'. (2.140)
The quantiles x,,, with Fx(x,) = p can be calculated simply as

X,=p-0" ln[— ln(p)] (for maxima); x, =y +o- ln{ln(%ﬂ (for minima). (2.141)

On the basis of the empirical mean X and standard deviation S the distribution parameters
can be estimated by the method of moments given in LOWERY AND NASH (1970) as well
as LANDWEHR ET AL. (1979) by

J6

fi=X—y-6 (formaxima); z= X +y-6 (for minima) and 6 =—-S . (2.142)
7

According to TIAGO DE OLIVEIRA (1963) the variance of these estimated parameters can
be evaluated with skew[X] = v (X) = v/1.29857 = 1.1396 and kurt[X] = 5, (X) = 5.4 by

q 62 |7t r 1.1678- 6>
Vi = — 4. i ) N ~——— " 7 )
arlf1] | (8, -1) 77 JB P (2.143)
2 2
Varlo]=Z— (g, 1)~ -2 (2.144)
-n n

By means of maximum likelihood estimation technique (MLE) the distribution
parameters can be derived by
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n
2 X exp(— ){lj
A A l L Xl A ey i=1 (o2
H=—-0-In —-Zexp - and o=X- , (2.145)
S ol
D exp| — -
i=1 o
solving first the estimate for ¢ iteratively and than the equation for estimating u.
Following BURY (1975) the variance-covariance matrix of MLE is given by
2
6-0° |(1—yP+7— 1- 2 [1.10866 0.25702
=22 =7+ e 7= , (2.146)
n [0.25702 0.60793

-y 1

with Var[ 21]=1.10866 - ¢* / n and Var[ & ] = 0.60793 - ¢* / n. Furthermore, BURY (1975)

comments that samples of size n taken from an extreme value phenomenon following
type I EVD show that the largest observation X, also follows type I EVD but with
shifted location parameter u(Xn)) = ox - In(n) + ux and standard deviation o(X)) = ox.

2.6.3 Regression and Correlation Analysis

General regression analysis provides the description of a random variable (the dependent
variable) by means of a functional relationship to expectation and variance of a (set) of
values of the explaining random variable(s) (e.g. SCHUELLER, 1981). Regression and
correlation analysis enable a systematic examination of relationships but not necessary
insight into the physics behind the phenomena. Thus extrapolations have to be done with
caution (e.g. SCHUELLER, 1981). BURY (1975) states that statistical dependencies are
essentially symmetrical but due to physical considerations some asymmetry may occur
due to the fact that statistical dependency does not automatically indicate a causal
connection between two or more random variables.

The Simple Linear Regression Model and its Boarder Conditions

In general, the “classic linear models” given by the analysis of variance (ANOVA) and
the simple linear regression model are based on an underlying linear model with ND
errors (CASELLA AND BERGER, 2002).
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According STADLOBER AND SCHAUER (2007) the simple linear regression model gives a
first order relationship between two variables. The formulation is given by

Y=a-x+f+e>Y,=a-x;+f+¢;,withi=1, ..., n, (2.147)
with Y as the dependent variable in relation to a fixed variable X = x and parameters a and

f. The stochastics, the randomness of a specific Y; given x; is considered by the random
error &;. It is assumed that

iid ind.
& ~ ND (O, GZ), hence Y, ~ ND (,uy, 0'2), with gy =a-x;+ f, (2.148)
hence
E[Yl |X=xi]=a+ﬂ-x,- and Var[gi |X=xl-]=0'2 =Var[Y,- |X=xl~], (2.149)

with constant variance o” (homoscedasticity). Minimisation of the sum of squared errors
given as

( . —a—f-x;)*, with estimator & =e, = y; — J, =yl~—(0?+[3-x,~), (2.150)

M:

Il
—

with e; as the observable residuum, is done by means of least square method (LSM). The
parameters and its estimators are given by

> (5 —%)-(v,- )

ﬁ=w—>5 — : (2.151)
Var(X) z(x —x)
i=1
and
a=E[Y|-B-E[X]=py-f-uy >a=Y-p-x. (2.152)

The degree of dependence of Y on X can be expressed by the PEARSON correlation
coefficient px v(x, ) = px .y defined by
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CoVar[X,Y] _ CoVar[X,Y]:ﬁ.O'_X with =1 < pyy < 1. (2.153)

Py.y(x.y)=
o War[x]-varX] Ox Oy Oy

The components of total squared sum SST of the observed values can be identified as

n

M=

Y-YF = X06:-7 + Xi-5) (2.154)
1 i=1 i=1 ’ .
SST SSR SSE

n

1

with SSR as sum of squared deviations from regression estimates y; and y and SSE as the
sum of squared deviations between data y; and the regression estimates for y; defined as
residuum ¢; = y; —y;. Thus the coefficient of determination, in case of a simple linear
regression model defined by Bxy = pzx,y, expresses the fraction of variance of data which

can be explained by the regression model and is defined by

_ SSE _ SSR
SST SST

Byy= (2.155)

By means of the transformation #=x;— X the regression model becomes
Y=p1+p, t+e i =E[Y] and p,=f, with independent regression parameters /§1 and
B, (CoVar[ B, 3,]=0) and distributions

2
Bi=E[Y]=uy - ~ND£7,S—HYJ, (2.156)

and

ol 5.5 ) a2
Br=p— By ~ND| py,— |=ND| fr,—- |,
S Sx
(2.157)

n

with s% =itl~2 =Z(xl~ —)?)2 = sg(.

i=l1 i=l1
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2.6.4 Hierarchical Models

Hierarchical models enable a sequential examination of complex processes by splitting
the process into hierarchically simplier models (CASELLA AND BERGER, 2002). The
simplest hierarchical model is given by a second order hierarchy, for example by splitting
into X|Y~DM (X|Y) and Y~DM (Y) for computing the DM of X knowing that
E[X|y] » f(y). The consequently computed “mixture distributions” are a sign of an
underlying hierarchical structure.

For example, HOHENBICHLER AND RACKWITZ (1981) analysed a uniform correlation
independent of the distance (time, space) between two or more events known as
equicorrelation. In general, equicorrelation follows if all elements in a system depend on
a common parameter Z whereby Z itself is defined as a random variable modelled by
means of a hierarchical model, i.e. in case of a second order hierarchical model given by

X, =Z-Y, (2.158)

with Ry =Rn(X), ..., XN) expressed by Ry=Rn(Z-Y,...,Z-YxN), with Y; iid and
(Z- 1, ..., Z- Yy) being independent distributed.

With (X1, ..., Xy) and (Z, Y1, ..., Yx) as i.e. equicorrelated lognormal random vectors and
E[X;] = 4, Var[X]] = ¢ (2 X; iid LND-variables) and p[.X;, Xj] = p it follows that (JONES
AND MILLER, 1966)

E[Yi]:,u/111+ , Var[Yi]zaz-(I—p)/1+}/2,

E[z]=\1+y, varlz]=7-(1+7),

(2.159)
ol ol 2] =o.
with yzp-az/yz.
The CDF of Y; becomes
In(y.)—
1~ ) o 22222,
(2.160)

with n7=2- ln(y)—%-ln(,u2 + 02) and 7° = 1n(,u2 +02)—ln(y2 +p-02).
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2.6.5 Stochastic Processes

A stochastic process constitutes the dynamic part of probability theory (e.g. SCHUELLER,
1981). In other words, a stochastic process is a model for random processes, random e.g.
in time or space, especially relevant if dependency on time or space is given (e.g.
WINKLER, 2000). According GRUN (2009) stochastic processes act as counterpart to
empirical time series and constitute the basis for modelling of these. For comparison, a
similar relationship between empirical data sets and random variables in classical
statistics is given. Whereas in classical statistics the analysis of iid random variables is the
core topic, stochastic processes focus on the description of discrete or continuous
observations of random processes and therefore on modelling of dependent structures
(STEINEBACH, 2006). The sequence of outcomes and occurrence of random variables is in
general decisive in stochastic processes. According ROHLING (2007) stochastic processes
do not concentrate on singulary iid variables with emphasis on the arithmetic mean, but
concentrate on a range of variables with the aim to model time or space dependent
dynamical aspects with focus on dependencies between variables with distances in time
or space, expressed by their (spatial) correlation structure.

A stochastic process X(¢) = {X(w), t € T} is defined as a family of random variables
mapping X: Q x - R which constitutes a real function x; for each fixed w € Q and
describes the random process of a sequence of random variables along ¢, e.g. time (e.g.
HASSLER, 2002), space or objectively abstract (e.g. VOB ET AL., 2004). 7 and E constitute
the parameter domain and the event space, respectively. Especially the relationship of
neighbouring random variables becomes important. In case of fixed elementary events
w = wy realisations of the stochastic process X(7), also known as trajectories or pattern
functions, can be observed. The sum of all possible trajectories defines the population of
a stochastic process (e.g. VOB ET AL., 2004). In case of fixed ¢ = ¢y the random variables
X(ty) shows realisations

X, (@) X, (0) ... X, (0,) (2.161)

The expected value function of X(¢) is given by m; = E[X{] = E[X{(w)] = u(?), t € 7 and
called trend or trend function (e.g. STADLOBER, 2005; ROHLING, 2007). It expresses the
mean function, the average development of the stochastic process X(#) over time or space.
For characterisation of the relationship between random variables of a trend-free
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stochastic process the auto covariance function of X(¢) is defined by (e.g. STADLOBER,
2005)

K vy (t,5)= CoVar|X,, X, ]|= E[(X, - m,)- (X, —m,)|= E[X,, X, |-m, -m,, (2.162)

with s, ¢ € 7. This is a symmetrical function in s and ¢ with Kxx(s, £) = Kxx(?, ). In case of
Kxx(¢, ?) it is equal to the variance of the stochastic process given by

Ky (t,1)= CoVar[Xt,Xt]z Var[Xt]z Gz(l), ter. (2.163)

The auto correlation function (ACF) of X(¢) is given by

CoVar[Xt,X ]

pxx(t.s)=E[X, X] : (2.164)
\/Var Var[Xs]

The characteristics of ACF are as following:

= average power of the process

prcln) < pc 0= [X,] =0 +
= real, even function

Pxx (_ m) = pXX(m) ;
= convergence for non-periodic processes

N

ZX ‘Xn+m .

pXX( )_I\I’ILHOO 2 N+1

In case of a sufficient large value of |¢—s| it can be expected that X and X; are only

weakly correlated, with

lim K(s t) lim p(s t)= 0. (2.165)

‘t s‘—)oo ‘t s‘—)oo

In case of Z(w) = [X(w), Y(w)] being a two-dimensional random variable of a stochastic
process the cross covariance function as well as the cross correlation function (CCF)
are given by
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K yy(t,s)=CoVar[X,,Y,], s, t € 7, Kyy(t,5)= K yy(s,1), (2.166)

and

Pyy(t,s)= CoVar(X,.Y,] . (2.167)
\/ Var[X,] -VarlY,]

For an m-dimensional random variable

X,(w)= [X,] (@) . X, (a))] (2.168)

of a stochastic process following notations are given:

mean function (vector): w(t) = [y (O)yenr 1, (0)] (2.169)

variance function (matrix):  o(f)= E[(X, —u)- (X, - 4, )'] , (2.170)

covariance function (matrix):  K(z,1,)= E[(Xt’l —pt1)- (X0 = 145 )] . @.171)

Stationarity of Stochastic Processes

In case of strong stationarity the CDF shows invariance against time shifts, denoted by
Xt)={X,teT}VYVneN:V1,t,..,t,eT

Fi(n ) (0, )10 %) = () (e, )] (Fomees %) 2.172)

Consequently, E[X;] = m,=u =m and Var[X;] = ¢°. Both are constant and independent of
t. Also the covariance function depends only on the difference 7=¢-s, with
K(s, f) = E[X,, X]] — m”* = K(0, 7) = K(7) = CoVar[X,, X..s] = K(~7), K(0) = CoVar[X;, X;] =
= Var[X,], p(7) = p(s, 1) = K(r) / K(0), limp,.. K(7) = 0, and the smoothing- or trend-fitting
function aligns parallel to time axis (e.g. STADLOBER, 2005; ROHLING, 2007).

Weak _stationarity is defined by E[X]=m=u=m, VYVt Var[X]=o"=constant
(homoscedasticity) and K(z) = K(s, s +7), Vs € 7, s + 7 € 7 (STADLOBER, 2005). In case
of weak stationary stochastic processes pxx(Z, s) satisfies
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px(t:5)= plz) o) (2.173)

A stochastic process ¢ is defined as “white noise” (pure random process) if expectation
E[e] =0 and variance Var[g]= 052, for Vter, with CoVar [e, &2]=0, V4 # .
Consequently, all random variables are independent with a common and constant
expectation u = 0 (or standardised for 4 =0) and with constant variance. Sometimes the
stronger condition & ~ iid (0, 6°) is assumed. The cummulative process of “white noise” is
known as “random walk”.

Ergodic Stochastic Processes

Ergodicity is an additional requirement on stationarity. It enables the derivation of a
sufficient statistic based on only one trajectory instead of a band (number) of trajectories
as it would be necessary in case of general or stationary stochastic processes. The
assumption is that all ensemble average values E[X;] of X(¢) are identical and sufficient
represented by each realised trajectory x(¢) expressed by

n % . A
E[X(¢)] =_L~§" fx(§)-d¢ = lim ﬁ_ij,- (t)-dt , ¥ n, (2.174)

with E[X(#)] as mean value (expectation) of the band corresponding to the average time
value (ROHLING, 2007). Therefore and in case of weak stationary and ergodic processes
Kxx(t, s) is given by

T
KXX(r)=T1i§30 ﬁ [X, X, -dt. (2.175)
-T

The power of this stochastic process is given by pxx(0) = pxx(0) + pyv(0) + 2 - pxy(0). In
case of time discrete, stationary and ergodic stochastic processes it follows

Py (m)=K vy (m)= lim S X, Xy - (2.176)

A discrete stochastic process can for example be described by means of a Poisson process
or of Markov chains, whereas continuous stochastic processes follow e.g. a Gauss process
(e.g. SCHUELLER, 1981). The first two mentioned processes are further briefly discussed.
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The Poisson Process

The Poisson process is one well known special case of stochastic processes and
developed by theoretical analysis of queueing and arrival processes (ROHLING, 2007;
STADLOBER, 2005). Thereby random variable Z, describes the time lag (difference or
distance) between arrivals n and (n— 1) which is assumed to be iid. The number of
arrivals up to time point ¢ =, with time interval [0, ¢;], denoted by N(¢) =n, is called
counting process. The arrival process is assumed to be ergodic with (mean) arrival rate
A=na/ty, with na = N(ty). The probability of k arrivals within time interval [0, #] is
assumed to be Poisson distributed,

(ﬂ‘fo )k .
PIN(tg) = k]= "2 expl(= 2-1y). N(to) ~ Poi i+ 1) 2.177)

with E[N(#)] = Var[N(%)] = 4 - t,. The distribution of the time-lag Z, between two arrivals
is assumed to be iid and expontially distributed with CDF and PDF

Fy (t)=P(Z, <t)=1—exp(-A-t), with t >0, Z, ~ Exp (1),

(2.178)
S2,(0)=2-exp(=4-1),

with E[Z] =1/ A and Var[Z] =1/ /*.
Markov Chains

The Markov characteristic is defined by the lack of memory, the Markov-property. Thus
future values depend only on the current value but they are independent of past values,
see (e.g. ROHLING, 2007)

P(Xt+1 =jI X, =i, X =l g0 X :iO):P(XHl =JjlX; :it): Y (lo, -y i) (2.179)

The main characteristics:
* the conditional probability p;(t ¢+ 1)=pijt.t+1)=PXu =j|Xi=10) is
defined as single-step transition probability from i to j;

» Markov chains are homogenous if single-step transition probabilities are
independent from the time of observation ¢, p; (¢, £+ 1) = pjj, corresponding to
Markov chains with stationary transition probabilities.
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WINKLER (2000) report that processes with events which only depend on their last state
are very common in physical processes. The description of such a process starts with an
arbitrary choosen initial state, gained from a pre-defined initial distribution, and develops
according the defined transition probabilities. These describe the probability of
occurrence of event j at time ¢ in case that the event i at time (¢ — 1) has occured. These
one-step dependencies of stochastic processes can also be modelled by 1% order
autoregressive models, abbreviated by AR(1).

2.6.6 Time Series

HARTUNG ET AL. (2002), SCHERRER (2009) and GRUN (2009) define time series as
temporary (finite) sequences of quantitative, in respect to time ranked outcomes
(measured values) of a specific event. These are performed (1) to gain knowledge about
the event within a system, (2) to examine changes (trends), (3) to extract key figures, and
(4) used for forecasting of probabilities of future events. Hereby the observation of a time
series, the data acquisition, is in general made in equidistant time steps. These time steps
shall be choosen short enough to enable the observation of all relevant phenomena in
respect to the scope of the model (= representative time step or time increment). The
components Y(#) of a time series can in general be split into three main components:

= flat time series component G(f), as cyclical, wave-shaped component (trend

component > estimation by means of least squares method (LSM) in case of
robust (linear) trends; (weighted) moving average (MA) otherwise (= illustration
of intermediate-term developments);

= seasonal component S(¢) as periodical, wave-shaped component (= estimation by

filtering, smoothing, assuming an additive time series model with constant
seasonal trend; = de-trendend) = e.g. moving averages (MA);

= random, irregular component R(¢) as sequence of short-time irregular changes

with random fluctuation ¢ around = 0.

Consequently, additive (classical) time series models are given as

Y(t)=G(e)+ S(2)+ R(z). (2.180)
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According GRUN (2009) also multiplicative segmentation of time series as defined in
(2.181) is possible. By logarithmisation they are transformed into additive time series as
given by (2.180), see

Y(t)=G(¢)- S(t)- R(¢) > In[Y(¢)] = In[G(¢)] + In[S ()] + In[R(¢)]. (2.181)

The characteristics like autocovariance, autocorrelation and partial autocorrelation are
important statistics of time series yy, ..., y,. They describe interrelationships between
observations in determined distances between discrete time steps. Therefore lag(k)
defines the relationship between y, and yw, for =k, ...,(n—k). The empirical
autocovariance at lag(k) is given by

c(k) =

ST _
n_k-Z(yt—y)‘(ka—y)=c(—k),f0rk:0, l..,n—1, (2.182)
t=1

whereby the standardisation with 1/ (rn—k) is sometimes replaced by 1/n. Thus the
empirical autocovariance at lag(k) is equal with c(k) = ¢(0), the variance of empirical time
series. The empirical auto covariance serves as predictor of the autocovariance K(k) of
the population.

The empirical autocorrelation (k) as predictor of p(k) can be computed by standardising
the empirical autocovariance by the empirical variance at lag(k), see

ni(yt =5)- s =)
C(k) t=1
l"(k): C(O) = "y _)2

= r(= k), with #(k=0) = r(0) = 1. (2.183)

2.6.7 Functions and Transformations of Variables and their Distributions

In general, if X is a random variable with CDF given as Fx(x) than any function of X, e.g.
g(X) is also a random variable, e.g. Y = g(X) (CASELLA AND BERGER, 2002). Let y be a
domain defined by y = {x: fx(x) > 0} and y be a domain defined by y = {y: y = g(X), for
some x € y} then if X defines a continuous random variable the CDF of Y = g(X) given as
Fy(y) is given by
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g'(»)
F()=  [fe@)de= [fe)de=Felg? ()] L ifee) inereases,
kers™0) - (2.184)
Fy(y)= J.fX (x)-dx=1-Fy [g_l (y)] , if g(x) decreases.
g ()

In case of a discrete random variable X the same holds by changing the integral by the
sum operator. The PDF in case of a partly monotone function g(x) is given by

fr()= ng[gi_l(y)]‘ j—ygfl(y)

0 , else

» YEY

(2.185)

with gi(x), ..., g(x), i=1, ..., k, defined on 4,, ..., A, as monotone regions of g(x) and
subspaces of the sample space (CASELLA AND BERGER, 2002; ROHLING, 2007). In case of
a monotone function g(x) over the whole domain of X the PDF simplifies to

d

()= fy[n())- d—yh(y) : (2.186)

with ¥ = g(x) and h(y) = g () =X > dx / dy = dh(y) / dy.

For example, if two random variables X and Y with joint PDF fx v(x, y) are transformed
according u = gi(x, y) and v = g(x, y) the joint PDF of U and V' is given by (CASELLA
AND BERGER, 2002)

Ty wv)= fyylm(,v).hwv)]-J], (2.187)
with |J| as the absolute value of the Jacobian determinand which is defined by

Ox Ox
e

&y Y ou ov ou ov’

%% o (2.188)
with & _ Om(u,v) ox _omu,v) ay _am(uv) oy _ 6h2(u,v)‘

Ou ou v v ou ou o ov
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Comments on Sums of Variables

The PDF of a sum of mutually independent random variables can be derived by means of
calculating the product of existing MGFs (see section 2.3.3) given as (CASELLA AND
BERGER, 2002)

M=) =T ) My (@ 1) My (0, 0), with 2= (@ X, +8), (2.189)
i=l1

with X; as random variables and a;, b; as constants.

Another possibility of deriving the PDF of a sum of independent random variables is
given by calculating the convolution of the PDFs. Assuming two independent random
variables X and Y with PDF or PMF fx(x) or px(x) and fy(y) or py(y) than the PDF of
Z =X+ Yis given by (DURRETT, 1994)

fZ(z)z ZP(X = x)- P(Y = Z—x)z pX(x)*py(y), if Z is discrete;

" (2.190)
(@)= [ fx () fy(z=x)-dx = £ (x)* fy (), if Zis continuous.

Fourier transformation (FT) transforms the PDFs of variables X and Y into their spectrum
FT [fx(x)] and FT [fy(y)]. The spectrum of the PDF of Z is thus given by the product of
the spectrums of the PDFs of X and Y, see

£20)= 1) 1) S FTLE G = FTL () FTLA ) @.191)

In probability theory the same calculation procedure can be performed by means of the
characteristic function ¢x(f) (ROHLING, 2007; section 2.3.4).

In case of Z=X; + X; + ... the PDF of Z is given by

72(2)= fe (0% £y, (x>*...»¢z<r>=1§¢x,. (1), 2.192)

and in case of X; ~ iid by
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¢ lt]= [¢X,. (t)] " (2.193)

The backwards transformation is given by

fz(z)=L- [8,(t)-expl=i-t-z)-dt , with ¢(0) = 1. (2.194)

Comments on Products of Variables

In case of dependent random variables X and Y with existing moments for calculating EJ.]
and Var][.] the expected value and the variance of the ratio Z= X/ Y can be approximated
by (CASELLA AND BERGER, 2002)

Ez]~ 2 Var[z]{ Ay jz .(Var[X]Jr varlv] ,. CoVar[X,Y]]' (2.195)

Hy Hy ,U)z( ﬂ)% Hx - Hy
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Chapter 3

Serial and parallel System Actions and related
Effects with Focus on Strength

This chapter presents some general notes concerning serial and parallel
system actions and effects. After a brief introduction a comprehensive
literature review about the state-of-the-art of current stochastic material
(strength) models is given. In particular Weibull’s weakest link theory, theory
of plasticity and Daniels’s fibre bundle theory are introduced followed by a
section presenting latest developments gained by combining these theories to
more realistic and broader applicable material and structure models.
Thereafter serial and parallel stochastic effects are discussed in more detail,
both theoretically and under support of comprehensive stochastic simulations
relevant for finite system sizes. This chapter provides theoretical and general
applicable background information concerning systems and gives the basis
for further examinations relevant to timber system products and structures
investigated in chapters 4 and 5. The focus is rather on a general description
of material behaviour in systems composed of elements or components which
form itself a system of elements.

3.1 General Overview and some Definitions

As already discussed in section 1.3 systems are defined by the arrangement and
interaction of system elements and components whereby the system itself can even
constitute a sub-system of higher-ranking systems. There are two main features which
characterise and determine a system: firstly the quantity of interacting elements, herein
expressed by N and M in case of parallel and serial arranged elements, respectively, and
secondly the type of interaction between the elements in respect to their arrangement
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relative to system exposure. The system action or reaction as a consequence of exposure
in contrast to action and effects observable in single elements are called “system effects”.
In agreement with the specific notation of system size by N, M and N - M for parallel,
serial and a combination of serial and parallel acting elements, respectively, these are also
differentiated into parallel, serial and parallel-serial system effects. Whereas relative to
loading direction serial arranged elements automatically incorporate serial system action,
in systems composed of parallel arranged elements serial and parallel actions can be
observed. The observable effects are in dependency of several facts which are discussed
in more detail within the next sections.

In the following some general statements on probability theory theorems are introduced,
basic features of serial and parallel system actions are compared and the state-of-the-art
of stochastic strength theories dealing with serial and parallel system action under
randomness of element characteristics are discussed, namely the “perfect brittle material
model” according to WEIBULL (1939), the “perfect plastic material model” as well as the
“fibre bundle model” according to DANIELS (1945). After that recent developments in
stochastic modelling of system behaviour under more general assumptions are presented.
A general graphical visualisation of serial and parallel acting systems is shown in Fig. 3.1
left (a) and right (b), respectively.

Fea{ o | o o, -=»F F4-->F
0,=f {f, Ep &, ... withi = 1, .., (N, M)

() (b)

Fig. 3.1: Schematic illustration of systems: (a) serial acting system, (b) parallel acting system; F
as external applied load, 6; as parameter vector of random element characteristics (e.g.
strength f;, E-modulus E; and strain g) withi =1, ..., N, M, with N and M as parallel and
serial system size, respectively

Let E; be the failure event of the i element. Then the failure event of a serial system is
given by (e.g. THOMA, 2004)

E,

serial — El UEZ U"'En = UEi > (3.1
and in case of an ideal parallel system by
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Epm”el =ENE,N.E,=NE,. (3.2)

Consequently, a series of parallel systems reads

serial _ parallel

and a parallel arrangement of serial systems leads to

E

parallel _serial = nv Ez’j : (3.4)
In that respect the failure of one (the first) element in a serial system initiates immediately
the failure of the whole system whereas in ideal parallel systems a collaps is given only if
all elements fail. Let R, be the event that the i™ element K; is intact and R, the event that
the whole system is intact with probabilities p; = P(R;) and p, = P(R;). If independent
failure of the elements occurs with probability ¢; =1 — p; then the following statements
concerning the reliability of systems can be made (e.g. STADLOBER, 2005; SCHUELLER,
1981): The probability of survival or reliability of a serial system of M elements is given
by

M R; indep. r
P(Rs,serial):P{qRiJ:P(RlmR2m'“mRn) - Hpi’ (3.5)
= i=1
with
n
P| N R; | <minP(R,). (3.6)
i=1 i

Thus the reliability of a serial system is always smaller than the reliability of the weakest
element in the system.

The probability of survival or reliability of a parallel system of N elements is given by

N R; indep. N
P(Rs,parallel):P(l:Ri]ZP(RIURZU"'URn) - I_H(l_pi)a (3-7)
- i=l1

with
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n
P[u Rl.j>maxP(Ri). (3.8)
i=1 i
Here the reliability of an ideal parallel system is always larger than the reliability of the
strongest element in the system.

Consequently, the failure probabilities P(R;) of perfect serial and parallel systems
assuming independency between the elements are given by

M
P(Rf,serial): 1- H(l - qi) and P(Rf,parallel): (qz) . (3-9)
i=1 i=1
iid _ 1id —
X, =2pLND, Z,, = MIN (X, | M) X, ~2pLND, Z, = MAX (X; | V)
30% ‘ ‘ 30% \ \
— — - CoV[X,=10% , — — - CoV[X,-10%
25% CoVI[X,|=30%] | 25% CoV[X,|=30%] |
A — = CoV[X,]=50% — = CoV[X,]=50%
= 20% Iy = 20%
S [ — M=l s d — M-l
15% Hit M=2 Mo 15% i N=2 —
E 11 — M=5 = N — NS
A~ 10% Iy M=10 A 10% /”\\\ N=10
f‘\ Il\\\ //|\\\\
5% AR 5% RIAM
0% —# — - 0% : 4 RSSESN
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Fig.3.2: Changes in PDF and CDF of ideal serial (left) and ideal parallel (right) acting iid
elements assuming X; ~2pLND; variation of CoV[X]; E[X;]=30, with X; as
characteristic at M, N=1
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In the special case of iid elements the reliabilities P(R;) and failure probabilities P(Ry)

tend in the limiting case with M, N - oo to the corresponding statistical models of
extreme value theory (see section 2.6.2).

Reliabilities and failure probabilities of perfect serial and parallel systems provide bounds
for calculation and judgement of probabilities of more complex systems which can only
be estimated by simulations and / or under certain constraints. Nevertheless, these trivial
bounds are very inefficient for most practical calculations enabling strict restricted
evidence in reliability calculations. Improved bounds are for example discussed and given
in GOLLWITZER (1986) with references on RACKWITZ (1978), DITLEVSEN (1979A,B),
HOHENBICHLER (1980), GOLLWITZER AND RACKWITZ (1983) and others. It has to be
noted that the requirement of iid variables fails already if for example reliabilities are
calculated based on stochastic modelled action and resistance variables (GOLLWITZER,

1986). Some examples of changes in PDF and CDF of ideal serial and parallel systems of
iid elements with X ~ 2pLND are given in Fig. 3.2.

14.0 \
’T‘ 12.0
oy parallel: N =150
= -
Z 100
g.
Q:..' parallel: N=10
2 80 '
=
3
& parallel: N=5
&~ 60
T
serial: M =5
el' 4.0 /
Il Puyn=1 =30
2 »
< 20
1.0 d
’ serial: M =50
0.0
0.0 0.1 0.2 0.4 0.6 0.8 1.0

equicorrelation PXixXj [--]

Fig. 3.3: Safety index f in dependency of system type, system size and magnitude of
equicorrelation between interacting system elements based on reliability calculations by
means of second order reliability method (SORM); adopted from GOLLWITZER (1986)
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The comparison between the distribution of element characteristics and that of systems
not only changes in location and shape. There is also a decrease in statistical spread and a
distinctive influence on the reliability of these systems given. Therefore Fig. 3.3 provides
a comparison of reliabilities by comparing safety index f of given systems depending on
the system action, system size and the magnitude of equicorrelation between interacting
elements (see GOLLWITZER, 1986). As already discussed in GOLLWITZER (1986) it can be
observed that serial system action shows only minor influence in case of a certain
dependency, roughly only above p =~ 0.70 and larger system size. In contrast, parallel
acting systems show distinctive dependency on system size and correlation. Thus
comprehensive knowledge of RSDM and correlation structure of elements is in particular
decisive for accurate modelling of parallel system action.

In the following a general comparison of some principle differences and limiting
conditions of serial and parallel system action are discussed:

Actions of Elements within the System

In serial systems each element has to carry the complete applied load. In contrast, parallel
arranged elements in an ideal case of equal (uniform) load sharing on average only carry
an equal share of load given by 1/ .

Whereas in serial acting systems the elements act more or less individually as being
arranged intentionally in a row in respect to the loading direction, elements in parallel
systems act intentionally as elements side by side and parallel in respect to the loading
direction. Thus parallel acting systems suffer from balancing effects or homogenisation in
characteristics of all involved elements by common activation of “averaging” effects due
to balancing of differences between the characteristics, at least between the neighbouring
elements. Consequently, the possibility and the amount of homogenisation is a function
of statistical spread which is inherent in every characteristic.

The strength of serial acting systems is in general given by the weakest element according
the “weakest link theory” often mentioned in conjunction to WEIBULL (1939). As the
system size M increases the expected strength of the system decreases, in the limiting
case limy - o E[feysm] — 0 or tends to a certain limit value defined by the strength
distribution of the element (e.g. a treshhold value). Additionally to the shift of statistical
strength distribution to minimum values also the variance Var[fim] decreases, in the
limiting case lim v, » Var[fesm] — 0. Parallel system action, as discussed in more detail
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afterwards, can be modelled by considering a bundle of elements. These elements are
with or without interlinkages and constraint to work as one unit. The first major work on
this topic can be traced back to the “fibre bundle theory” established by DANIELS (1945).
Due to the common action of elements and homogenisation the expected system strength
E[fssn] tends with N — oo to a certain boundary value >0. The variance tends to
limy ., » Var[fysn] — 0.

Arrangement Dimensions

Serial and parallel systems also differ in respect to the possibilities how the elements can
be arranged relative to the loading direction. Whereas serial arrangement only involves
one dimension (1D), parallel arrangement can be done even two-dimensionally (1D, 2D).

Engineering Aspects

Statically determined structures in general and statically indetermined tower-like
structures composed of brittle or ductile behaving elements can be described as serial
systems. In case of serial systems of strongly correlated elements the upper boundary
distribution is defined by the maximum of element’s failure probability. In contrast
statically indetermined, redundant structures can be modelled as parallel systems. In case
of statically indetermined systems composed of ductile behaving elements the limiting
case (system collaps) is perhaps already reached after subsequent failure of a few
elements at the same time (avalanche) (e.g. SCHUELLER, 1981). If robustness is
considered it is generally adviseable to create redundant statically indetermined structures
whenever load redistribution is in principle possible as in case of plastic material
behaviour. In case of brittle material the erection of statically determined structures is
adviced to confine the extension of damage in case of partial (element) failure.

Fig. 3.4 shows conceptionally possible arrangements of elements denoted as
representative volume elements (RVEs) characterised by orthotropic material behaviour
and characteristics with differentiation in longitudinal (long), radial (rad) and tangential
(tan) direction. It discusses system actions on strengths (f) due to parallel (p) and / or
serial (s) arrangement of elements relative to load direction and in respect to the main
material directions (longitudinal / transversal) denoted by 0 / 90. Whereas three
illustrations of possible 1D arrangements on the left show some possibilities for
individual theoretical studies on system behaviour, the example on the right includes
parallel and serial arrangements and actions in all structural directions. This makes clear
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that within a real material structure a certain share of serial and parallel acting elements is
always present.

RVE $,90,tan
& long. '
R
E - S, ,(),long- ’ ‘fil,o,long
$,90,tan
f;+p,90,rad f;+p,90,tan
$,90,rad

fp,O,long- -f;),o,long f:v+p,0,10ng - ‘fsﬂ),o,long

3 ¢ 8

$,90,rad
o fs+p,90,tan fs+p,90,rad

f;,o,long- - - - ‘ fg,O,long

Fig. 3.4: Schematic illustration of various types of systems in respect to element arrangement and
system action in parallel (p), serial (s) or serial-parallel (s+p), considering an orthotropic
material with differing properties in radial (rad), tangential (tan) and longitudinal (long)
direction

3.2 Material Modelling: Inclusion of Stochastics vs.
Classical Mechanical Models

EPSTEIN (1948) states that stochastic models take GRIFFITH’s theory as a starting point.
According to this theory the differences between theoretical (calculated) and practically
observable material strength comes from the fact that real materials include flaws which
weaken the material structure whereby the worst flaws determine the strength. Thus
extreme value theory (EVT) plays a major role in development of material strength
models considering the limiting case of infinite system dimensions. The first researchers
who recognised the connection between strength of materials and EVT were PEIRCE
(1926) and WEIBULL (1939). Whereas the interest of fracture and serial systems
concentrates on the weakest link failure in parallel systems (e.g. DANIELS’s theory) the
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focus lies on the problem of load redistribution after partial failures occurred. It is noted
that in some cases of EVT it may be easier to reformulate the problem by means of the
distribution of maxima instead of concentration on minima. The limitation to iid elements
in EVT has to be mentioned too. Furthermore, the quantity of size effects not only
depends on the volume under stress, the stress distribution and the coefficient of variation
but also on the type of the underlying statistical distribution model.

As generally well known but often neglected, characteristics of natural but also technical
materials require at least two parameters for a sufficient description, one for expressing
the expectation and one for expressing the spread inherent in each characteristic. In that
respect derivation of a model for an individual characteristic requires an appropriate
representative statistical distribution model (RSDM) and associated distribution
parameters. The RSDM and its parameters can be derived on basis of representative test
data with or without the support of simulation results. The next step can be a model which
expresses the description of a characteristic in dependency of explanatory variables, e.g. a
regression model. These descriptive models have already been discussed in more detail in
chapter 2.

Nevertheless, the biggest challenges in material modelling are given by (i) modelling the
strength of materials on various hierarchical levels due to scaling effects, (ii) by
modelling the strength capacities of materials of geometries and dimensions deviating
from standardised test configurations, (iii) structures under arbitrary stress, or (iv)
strength of systems exhibiting system effects. The last one requires a model dependent on
size, arrangement, interconnection and relationship of elements in the system relative to
loads applied externally. For an appropriate strength model the material behaviour along
the whole stress-strain-relationship as well as the fracture behaviour becomes important
and decisive. Three main theories in respect to system action can be differentiated:

= Strength Model for Perfect Brittle Material;

= Strength Model for Perfect Plastic Material;
= Strength Model for Fibre Bundles.

As mentioned above materials can be characterised on various hierarchical levels. For
modelling the expected material behaviour on a certain hierarchical level the required
accuracy has to be defined beforehand to provide the user with a handsome, sufficient
accurate, reliable and tangible model for “daily business”. The focus of the present work
is to support the engineer with some simplified definitions for some specific applications
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as later discussed in chapter 5. Nevertheless, to enable a sufficient description of material
behaviour on a certain hierarchical level the model has to start at one level before. In
addition it requires at least the knowledge of the material behaviour of one further
hierarchical level.

Most literature denotes the three following material strength models as “classical”
models. However, for avoiding any confusion with classical mechanics this term is not
used in the following description and only the general name of each theory is mentioned.

3.2.1 Stochastic Strength Model for Perfect Brittle Materials: Weibull’s
Weakest Link Theory

In case of perfect brittle material a uniform stressed volume (system) fails with
achievement of the strength of the weakest sub-volume element. This failure behaviour
corresponds to perfect serial systems. The system can be modelled as a chain of M serial
acting elements under uniform tensile stress. After the “weakest link theory” of WEIBULL
(1939A4,B) this chain fails immediately after overloading of the weakest link, the weakest
element. WEIBULL derived his theory empirically (WEIBULL, 1951) on the basis of
several important assumptions which are discussed briefly within this section.

F
A=N-A, At = Weep * Aoy
N V: M ° N I/rcf Vrc[ = Arcl‘ : /1':‘1‘ VS
> X=F,../4 2 Xiet = Fomax  Ares EA
>
] B
= 3 x !
= < = 2
- X
W In(V/V,,)
F

Fig. 3.5: [Illustration of main assumptions and basics of “weakest link theory” according
WEIBULL (1939)

WEIBULL assumed that all system elements are iid, uniformly stressed, small but finite
and with volume dJ" as ewll as of isotropic material with risk of rupture given by
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dB=-In(1-Sy)-dV =n(c)-dV , (3.10)

with n(o) as specific material function and S, as probability of failure of a reference
volume element (RVE). In case of a statistically isotropic material n(¢) is independent of
the position of finite volume element dJ and of the direction of action of stress o. In a
statistically anisotropic material n(o) constitutes a function of the position of dJ” and the
direction of the stress 0. The material function n(o) derived on the basis of GRIFFITH’s
theory and SMEKAL’s terminology assumes perfect brittle material behaviour and the
occurrence of n small but finite sized flaws (e.g. checks, cracks, flaws in the atomic
structure of the material, etc.) within a volume V. These flaws are characterised as
potential failure inducing characteristics in a volume } under stress o. The isotropic and
orthotropic cases require that flaws are small but finite in relation to a representative
volume element (RVE). Consequently, the discrete occurrence of flaws can be smeared
and considered as being continuously distributed. The probability of failure is assumed as
being proportional to the stressed volume or system size with B ~ V. If n flaws in a RVE
are concentrated on dV stress o also concentrates on d} with probability of failure

dS=n-dv. G.11)

In case of p-elements (p-RVEs) with volume dV and probability of failure dS the
probability of failure of the system according the probability theory of perfect serial
systems is given by (see also equ. (2.119) and (3.9))

S=1-(1-n-av)". (3.12)

Considering the whole volume ¥ under stress ¢ with V'=p - dV and dV'=V/ p than (3.12)
becomes

p(nV)(nv)

Szl—(l—n-KJ . (3.13)
p

In the limiting case with p — o and dV' — 0 so that volume V= constant the boundary
value of failure probability is given by
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pn¥)/(nv)
14

S=1- lim |[l-n-— —l—exp(-n-V). (3.14)
p/(n~V)aoo p

Thereby n(o) is equal to the quantity of flaws in a RVE (V= 1) provoking failure at
stresses smaller or equal to op. Thus a monotonically increasing function n(o) is required.

The risk of rupture B of an arbitrary stressed element with volume V follows from
integration over the whole domain

B=[n(c)-av. (3.15)

By means of a general distribution function WEIBULL gives the probability of failure of a
volume element with

S =1-exp(- B):l—exp[—jn(a)-dV] ,with B=—In(1-S). (3.16)
Equ. (3.16) is called the “fundamental law of an isotropic brittle material” (WEIBULL,
1939A). The ultimate stress or strength at point of failure can be calculated considering

the limit value of the quantity of experimental trials given by

ab=T exp[—_[ n(a)'dV]-da. (3.17)
0

For identity between (3.16) and (3.17) the specific material function n(o) takes the form

n(o)= B —(ij . (3.18)

B W - O
The specific material function n(o) in (3.18) can be reformulated to

n(o)=k-o™, with oy = k™" > n(a)z[—j , (3.19)

and the probability of failure to
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S=1-exp —V-(E] , (3.20)
Oy

with §=10.63 =63 % in case of V=1 and o= 0,. Thus, inserting (3.18) in (3.17) the
strength is given by

O'sz exp —I (iJ -dV |-do. (3.21)
0 %0

In case of an arbitrary stress situation with ¢ — f(x, y, z) the stress function becomes
o=o0, f(x,y, z) which corresponds to a proportional stress increase in all three
directions. The risk of rupture B (WEIBULL, 1939A) becomes

B=[ n [ flx,y,z )] v, (3.22)
and with n(c) =k - 0"

B=| k-lo- flx.p.2)"-av, (3.23)
which corresponds to a linear scaling of the system.

Exemplarily, in case of an equal stressed volume, e.g. uniaxial tension stress, the risk of
rupture B becomes

B=[ k-lo-f(xy.2)] " -aV > B=] k-c"-dV =k-V " :V-(ij , (3.24)
%o
with standard deviation a given by the square root of variance a’
a® =Varloy | = J. o-0y) ’.dS j exp| -V - { J .d(o-z)—gg , (3.25)
0 %o

with ¢ as one-dimensional tensile stress. Consequently, the expectation and standard
deviation of strength increase with decreasing volume but the relative measure of
dispersion given by the coefficient of variation (CoV) stays constant and independent of
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the stressed volume and of parameter gy. Thus CoV is solely defined by power m as shape
parameter of 2pWD. Furthermore, (3.16) constitutes a special case of the “statistical
theory of strength”. Considering this and the limiting case of m — oo it follows that
S(0) = S(oo) and o, — 0. At the same time also the statistical spread expressed by o’
tends to zero. Consequently, equivalence between the “statistical theory of strength” and
the “classical strength theory” (o}, = 0y) is only given in the limiting case of theoretically
deterministic strengths. In reality there is always a certain amount of variability inherent
in all natural phenomena and characteristics. Thus, real materials and structures are
represented insufficiently by means of the “classical theory of strength” which assumes
deterministic characteristics and neglects volume effects (WEIBULL, 1939A).

Further considerations of WEIBULL include the definition of lower and upper boundary
strengths of materials. Due to physics WEIBULL argues for the lower boundary value that
01> 0. In (most) cases it can also be assumed that gy > 0, e.g. due to proof loading or pre-
stressing of materials during exploitation and production (= 3pWD). In that case the
strength is given by the three parameter model

Sb1 =o,+h- OJ? exp[—j k-o™" -dV]-dG ,witho, >0, h= (3.26)

b 1-S,
WEIBULL discusses also an upper boundary value o,. This is argued in reference to
SMEKAL and the naturally inherent maximum strength of materials. This upper limit is
defined by perfect materials free of flaws with a dimension equal to a RVE,
representative for each relevant scale or at least defined by the maximum strength
potential of a perfect molecular structure. Once a boundary value is introduced the
relative dispersion CoV shows to be dependent on shape and scale parameter.

WEIBULL (1951) reports that the empirical derived statistical distribution model enables
well representation of a wide range of different data sets of diverse materials and
applications. In some cases well representation of data over the whole data range is given.
In other cases a section-wise representation by section-wise fitting of WD parameters is
advised. Concerning the latter statement the question is formulated if the WEIBULL model
represents the data insufficiently or if natural and material inherent phenomena in the
investigated data necessiate a section-wise data analysis.

To conclude, the failure probability is proportional to the stressed volume. The material
itself is treated as continuum following the theory of elasticity. Furthermore, an isotropic
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material composed of nearly infinite finite sized elements with iid strengths is assumed.
These assumptions allow for smearing the material characteristics by smearing the
discrete occurrence of flaws as required for treatment as continuum (WEIBULL, 1939A,B).

One main characteristic of WD is that its formulation is in principle the same in the
limiting cases of minima and maxima as shown in extreme value theory (see section
2.6.2). Coming back to the notations for WD given in section 2.4.3 with o =x, scale
parameter oy = a, shape parameter m = and location parameter g, =X, the statistical
distribution model of minima (assuming a perfect serial system of iid strength values
Xi~WD, i=1, ..., M with M as system size) is in general given by a 3pWD with CDF
(THOMA, 2004)

B B
FX(x)zl—exp{—K-(x_xoj }zl—exp{—M-[x_xoj },xzxo, (3.27)

2 a a

with M = V/ Vy in case of known Vj = V.r. The first two central moments are given by

N (rY"
E[X]=x0+a-r£1+zj-(—} , (3.28)

o

Var[X]=a? - {F(l + %J - F{l + %ﬂ : (VKO]_M . (3.29)

In case of an inhomogeneous stress distribution the CDF of a 2pWD (xo =0, X=2) is
given by

Fre)1-om - L

0 \r

oY

w(x,y,z)f -dv (—J , o> 0. (3.30)
a

In cases were the reference volume ¥} is not defined equ. (3.30) is reformulated to

FZ(O')zl—exp[—.[ (Mjﬁ-dV},a>0, (3.31)

v a

with fullness parameter 4 (e.g. [ISAKSSON, 1999) given by
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p
May.z)=2=] (%] -dv . (3.32)
V

This parameter expresses the amount of stressed volume relative to the total volume
element in respect to the mechanical and statistical stress distribution. This is in general
done with reference to a uniform stressed volume, e.g. an element loaded in tension
parallel to grain. A comparison of two elements with different volumes but identical
stress distribution can be formulated by the well known relationship (e.g. SUTHERLAND
ET AL., 1999)

1/p
2:(£J . (3.33)

0] Vs

In case of differing stress distributions (3.33) can be reformulated to

1/8
QZ(MJ , (3.34)
01 AV,

In case of an anisotropic material the theory can be adapted to the “modified weakest link
theory” by segmenting the size effect in sub-dimensions, e.g. length (/), width (w) and
depth (d), given as

1/k 1k, 1k,
2:(/11‘10 2:(21%] 2:(_’11""1} (335)
O A 01 A -wy 01 A - dy

which represents length, width and depth effects with associated powers 1/ 4, 1/ k,, and
1/ ky, respectively.

Based on above formulations some calculations are presented analysing the fullness
parameters of some exemplified loading situations. If not mentioned explicitely, linear
elements of isotropic material with rectangular cross section are assumed.

Case I: Element loaded in uniaxial Tension parallel to Grain

In case of elements which are loaded uniaxially in tension parallel to grain the stress
distribution in all three directions x,y,z (in direction of length, width and depth,
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respectively, with point-of-origin in neutral axis) is constant and equal to o, with
Omax = fro0. Thus the fullness parameter A = Aiension 11 (3.32) is given by

A= j[ xy’j.dV=
(3.36)

B I w d s B
:[Ej . I J. J‘ lﬁdzdydx=[gj ZWd:(gj 'V:ﬂ‘tension 1 -
a a a B

x=0y=02z=0

This type of loading is often taken as reference stress distribution and as basis for
comparing the influence of deviating stress distributions, e.g. bending and torsion.

Case II: Element under pure Bending Moment

In case of pure bending the stress distribution in direction of x and y is constant and equal
to o, whereas the bending stress distribution in z direction behaves linearly with
0(2) =0/2) | Opmax(z=d/2)=2-2z/d between z=(0,d/2) and a(z) =2 - z/ d between
z=(0,—d/2). The fullness parameter 4 = Ayending 1S given by

A= j( xy’j-de

14

s d/2 .z B p l-w-d
ETE( TONRE LR

x=0y=0 z=0

(o oy _
= ; 'H_ bending

The ratio bending vs. tension is given by Avending / Atension 1 =1/ (8 + 1). In case of f=5.8
corresponding to a CoV[X] = 20% the ratio 1S (Abending / Atension 11 | = 5.8) = 0.147 and in
case of f#=3.2 corresponding to a CoV[X] = 30% the same ratio gives 0.238. Thus the
fullness parameter in case of pure bending only represents roughly 15% and 24% of

elements loaded uniaxially in tension. This corresponds to expected maximum stress
ratios according equ. (3.34) of 139.2% and 156.6% which implies that 39% and 57%
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higher maximum stress in case of elements under pure bending moment than under pure
tension can be expected if the same statistical distribution parameters a and f are used.

In case of timber under pure bending the integration over the whole stress field in z-
direction is discussable due to the fact that timber in bending-compression zone shows a
linear-elastic-plastic behaviour which contradicts the assumed brittle failure behaviour as
it is for example given in the bending-tension zone.

Case I1I: Element under Three-Point Bending

In case of an element stressed in three-point bending the stress distribution in direction of
y is constant and equal to o, whereas the bending stress distribution in z direction is linear
with 06(z2) =0,2)/ Omax(z=d/2)=2-z/d between z=(0,d/2) and o(z)=-2-z/d
between z=(0,—-d/2). In x-direction the integration has to be split into
0(x) = 0y(X) / Oxmax(x=1/2)=2-x/1 between x=(0,//2) and o(x)=2 -(-x)/1]
between x = (// 2, [). Consequently, the fullness parameter A = 45,5 is given as

a
112w dJ2 Vij

o 4.z-x

({11 (55 o
x=0y z=0

+ j t[vz-df (%jﬂ-dz-dy-dx}z(zJﬁ (ﬂzl) = App -

x=1/2y=0 z=0 a

The ratio of three-point-bending vs. tension is given by Asyp / Awnsion 1 =1/ (6 + 1), that
of three-point bending vs. pure bending moment by Asps / Apending = 1/ (8 + 1). In case of
B = 5.8 corresponding to a CoV[X] = 20% the ratio is (As3ps / Atension 11 | # = 5.8) = 0.022 and
in case of = 3.2 corresponding to a CoV[X] = 30% the same ratio gives 0.057. Thus the
fullness parameter in case of three-point-bending represents only about 2% to 6% of
elements loaded uniaxially in tension. A comparison of ratios between three-point
bending and pure bending shows (A3pB / Abending | f = 5.8) = 0.147 and
(A3pB / Avending | B =3.2) = 0.238. These values correspond to expected maximum stress
ratios according equ. (3.34) of 193.7% and 245.2% which implies that 94% and 145%
higher maximum stress in case of elements under three-point-bending than under pure
tension can be expected, whereas maximum stress ratios according equ. (3.34) of 139.2%
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and 156.6% imply that 39% and 57% higher maximum stress in case of elements under
three-point bending than under pure bending moment are reachable if the same statistical
distribution parameters a and f are used. The equality between the ratios of pure bending
vs. tension and three-point bending vs. pure bending appears logical considering equal
stress distribution and constant vs. linear stress distribution in longitudinal vs. cross
section and cross section vs. longitudinal direction, respectively.

Case IV: Element under Four-Point Bending

In case of an element stressed in four-point bending the stress distribution in direction of
v is constant and equal to o, whereas the bending stress distribution in z direction is linear
with 0(z) =0/2) / Opmax(z=d /2)=2-z/d between z=(0,d/2) and o(z)=-2-z/d
between z=(0,-d/2). In x-direction the integration has to be split into
o(x)=0y(x) / Oxmax(x=1/3)=3-x/1 between x=(0,//3), oa(x)=1 between
x=(/3,2-1/3) and o(x)=3-(/—x)/] between x=(2-//3,[). Herein the fullness
parameter 4 = A4pp 1S given as

A= I( Zht jﬂ‘dvz

B |13 w  di2 o\
a x=0y=0 z=0 d-l
2/31 w d/2

+ [ J2] ( ZJ ~dz - dy - dx +

x=l/3y=0 z=0

T df( (- x)j ,dz.dy.dx}:[zf.g.%:w.

x=2/31y=0  z=0 a

(3.39)

Consequently, the ratios of four-point bending vs. tension and vs. pure bending moment
are  Aapp/ dension i =B +A)/[3-(B+1)Y]  and  Zups/ Avending = 3 +B) /[3 - (B+ 1],
respectively. In case of f=5.8 corresponding to a CoV[X]=20% the ratio is
(AapB / Atension 11 | B =15.8) = 0.063 and in case of f = 3.2 corresponding to a CoV[X] = 30%
the same ratio gives 0.117. Thus the fullness parameter in case of four-point bending
represents only roughly 6% to 12% of elements loaded uniaxially in tension. Comparison
of  ratios between four-point-bending and pure bending shows
(AapB / Abending | #=5.8)=0.431 and  (Aapp / Avending | f=3.2) =0.492. These values
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correspond to maximum expected stress ratios according equ. (3.34) of 160.9% and
195.4% which implies that 61% and 95% higher maximum stress in case of elements
under four-point bending than under pure tension can be expected, whereas maximum
stress ratios according equ. (3.34) of 115.6% and 124.8% imply that 16% and 25% higher
maximum stress in case of elements under four-point bending than under pure bending
moment are reachable if the same statistical distribution parameters a and f are used.

Case V: Element under constant Load in Bending

In case of an element under constant load stressed in bending the stress distribution in
direction of y is constant and equal to o, whereas the bending stress distribution in z
direction behaves linearly with 0(2)=04/2)/ Oumax(z=d/2)=2-z/d between
z=(0,d/2) and o(z)=-2-z/d between z=(0,-d/2). In x-direction the stress
distribution is given by o(x) = x(x) / Gxmax(x =1/2)=4 - x - (I —x) / I between x = (0, I).
Herein the fullness parameter A = Aconst.10ad 1S given by

,1:£ [Mjﬂ.w:

o
o w42 (8 z-x-(1- x)jﬂ
= — 2- ———| ‘dz-dy-dx=
( a ) x'[o yIO z'[o (3.40)
(0') vz r(i+p)
= ; ’ ’ =ﬂ‘const.load'

2 (l+ﬂ)-F@+ﬂj

In case of f=5.8 -corresponding to a CoV[X]=20% the ratio is
(Aconstioad / Atension 1 | #=15.8)=0.051 and in case of f=3.2 corresponding to a
CoV[X] =30% the same ratio gives 0.106. Thus the fullness parameter in case of
elements under constant load in bending represents only roughly 5% to 11% of elements
loaded uniaxially in tension. Comparison of ratios between constant load in bending and
pure bending shows (Aconstioad / Abending | f=5.8) = 0.346 and (Aconstioad / Avending | f=3.2) =

=(.445. These values correspond to maximum stress ratios according equ. (3.34) of
167.1% and 201.6% which implies that 67% and 102% higher maximum expected stress
in case of elements under constant load in bending than under pure tension can be
expected, whereas maximum stress ratios according equ. (3.34) of 120.1% and 128.7%
which implies 20% and 29% higher maximum stress in case of elements under constant
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load in bending than under pure bending moment are reachable if the same statistical
distribution parameters « and f are used.

Fig. 3.6 shows the relative expected strength E[X] / E[X | case 1, 1, 1v] dependent on CoV[.X]
and the stress distribution within the cross section as well as along the element due to
changing loading cases (see Fig. 3.6, right). Hereby the reference stress situation is varied
and given as case I, II and IV. The graph outlines clearly the significant influence of
stress distribution and CoV[X], emphasising the statements above.
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Fig. 3.6: Influence of stress distribution and type of loading on the expected strength capacity
according WEIBULL’s WLT: relative expected strengths under variation of the reference
case (I, I, IV)

3.2.2 Strength Model for Perfect Plastic Materials

Elastic material behaviour can be easily described by means of HOOK’s law, but for
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