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Abstract

In this thesis we study optimal boundary control problems in energy spaces, their con-
struction of robust preconditioners and applications to arterial blood flow.

More precisely we first consider the unconstrained optimal Dirichlet and Neumann bound-
ary control problems for the Poisson equation as a model problem. In both cases it turns
out that the control can be eliminated and thus a variational formulation in saddle point
structure is obtained. The existence and uniqueness of a solution is investigated and for the
finite element discretization optimal error estimates are shown. In the particular case of
the Laplace equation as a constraint we are able to prove that the primal states of Dirichlet
and Neumann boundary control problem coincide.

Further, the construction of corresponding robust preconditioners for optimal boundary
control problems is investigated. We observe that the optimal boundary control problems
are related to biharmonic equation of first kind. For the preconditioner we consider either
a preconditioner motivated from boundary element methods, resulting in an optimal con-
dition number, or a multilevel preconditioner of BPX type, where the condition number
depends on a logarithmic factor of the mesh size. For both, the related spectral equiva-
lent estimates are proven. Several numerical examples illustrate the obtained theoretical
results.

Moreover, we study the application of the optimal Dirichlet boundary control problem to
arterial blood flow. In particular, we are interested in the optimal inflow profile into an
arterial system, motivated for instance by an artificial heart pump. Also, we investigate
on hemodynamic indicators, for showing potential risk factors for aneurysms. Here a
comparison of two commonly used approaches is considered, where it is shown by several
numerical simulations that these can lead to significant differences in the solution. This
model problem motivates also the optimization of hemodynamic indicators. Finally, several
numerical examples are presented.



 



Zusammenfassung

In der vorliegenden Dissertation werden optimale Steuerungsprobleme mit Randkontrolle
in Energieräumen behandelt, sowie die Konstruktion von zugehörigen robusten Vorkondi-
tionierern. Eine Anwendung ist die numerische Simulation von Blutströmungen, auf die in
weiterer Folge eingegangen wird.

Wir betrachten zunächst das optimale Steuerungsproblem für die Poisson Gleichung mit Di-
richlet und Neumann Randkontrolle. In beiden Fällen stellt sich heraus, dass die Kontrolle
eliminiert und die Variationsformulierung somit in klassischer Sattelpunkt Struktur darge-
stellt werden kann. Es wird die Existenz und Eindeutigkeit einer Lösung untersucht und
für eine Finite Elemente Diskretisierung optimale Fehlerabschätzungen bewiesen. Wird
die Nebenbedingung des optimalen Steuerungsproblems durch die Laplace Gleichung for-
muliert, so stellt sich heraus, dass die primalen Zustände von Dirichlet und Neumann
Steuerungsproblem übereinstimmen.

Des Weiteren wird ein robuster Vorkonditionierer für das optimale Steuerungsproblem mit
Randkontrolle konstruiert. Hier stellt sich heraus, dass das optimale Steuerungsproblem
in Beziehung zur biharmonischen Gleichung erster Art steht. Der Vorkonditioner wird
entweder durch einen diskreten Operator aus der Randelementmethode realisiert, welcher
eine optimale Konditionszahl aufweist, oder durch einen Multilevel Vorkonditionierer vom
BPX–Typ mit logarithmischer Abhängigkeit der Konditionszahl von der Maschenweite.
Zahlreiche numerische Beispiele illustrieren die erhaltenen theoretischen Resultate.

Der Anwendungsteil dieser Arbeit diskutiert den Einsatz des optimalen Steuerungspro-
blems mit Dirichlet Randkontrolle in der Simulation von Blutströmungen in Arterien. Im
Speziellen sind wir an der Konstruktion von optimalen Einströmrändern interessiert, wel-
che zum Beispiel beim Einsatz von künstlichen Herzpumpen relevant sind. Des Weite-
ren werden hämodynamische Indikatoren untersucht, welche potenzielle Risikobereiche für
Aneurysmen darstellen. Hier werden zwei verschieden Formulierungen der Indikatoren un-
tersucht, welche zu signifikanten Unterschieden in der Simulation führen können. Zahlreiche
numerische Beispiele werden präsentiert.
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Introduction

Mathematical models, computational methods and their analysis are an essential part in the
simulation of problems arising in physics, biology, chemistry, etc. One of the possible ways
to describe such problems is their formulation in the framework of continuum mechanics.
Here, most of the models are formulated by partial differential equations, or by a system
of coupled partial differential equations. Beside many real-world problems, let us mention
for instance arterial blood flow, on which we focus as an application in this work, see,
e.g., [23, 28, 78]. Nowadays, cardiovascular diseases, such as the rupture of aneurysm and
strokes, are widely spread. It is well known that the size or shape of an aneurysm is in
general not an indicator for a potential risk factor. It is rather the shear stress acting on
the arterial wall, who can lead to a predictive diagnosis. Due to these reasons, the so-called
hemodynamic indicators have been derived, which shall give an indication for a potential
rupture of an aneurysm. Further, it is well known that the vortex formation of the blood
can cause blood clots, so-called thrombi, which can consequently block the artery and may
lead to a stroke. It is now interesting to ask how such vortex formations can be reduced or
minimized. This motivates to consider optimal control problems for arterial blood flow. In
particular we are interested in the inflow control, for instance by an artificial heart pump,
into a bypass, with respect to vortex minimization.

In order to simulate arterial blood flow and optimize certain quantities a realistic model,
which describes the flow, is needed. Even though blood is a mixture of different biological
substances it is mostly described as a single constituent fluid. A model which is known
to be a good approximation, especially for the case of large arteries, is the system of the
Navier–Stokes equations. In general, the analytical solution of this system is not known,
which motivates numerical approximation schemes such as the finite element method. We
shall present a stabilized finite element method of lowest order for solving the Navier–Stokes
equations.

For the simulation of these model problems it is important that the computations can
be done in a reasonable time. By this we mean that efficient solution techniques for the
corresponding algebraic systems are needed. This motivates iterative solution strategies
with preconditioning. The crucial point is the construction of a robust preconditioner,
where the corresponding inverse can be efficiently realized. For this purpose multilevel
and multigrid methods, see, e.g., [10, 34], have been developed. But the robustness of the
preconditioner with respect to the discretization is for numerous problems not sufficient,
other parameters, such as the viscosity constant or the cost coefficient of the optimal
control problem have to be additionally taken into account. This is one of the main
advantages of multilevel preconditioners of BPX type, since it is additive, and thus these
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2 Introduction

parameters can be rather easily handled. We refer for a general overview on preconditioners
to [10,11,22,34,73].

The notation of this thesis is strongly based on the book [73]. In the case that additional
information is needed, we refer the reader to this book. Further, we assume the basic
concepts and results for the numerical analysis of partial differential equations, for an
overview we refer to [11,12,30,64,73]. As we will see, especially for the numerical analysis
of preconditioners, the consideration of certain Sobolev spaces is needed. Therefore we
refer for a general overview on Sobolev spaces, to [1,30,33] and in particular for fractional
Sobolev spaces on the boundary to [38,53,73].

Structure and summary of the main results

In the following we discuss the structure of this work and summarize the main results of the
individual chapters. In principle this work investigates optimal boundary control problems
in energy spaces, where the related Dirichlet and Neumann boundary control problem
are considered. In the case of the Poisson equation as constraint a unified analysis and
numerical analysis is presented and the relation of both problems are discussed. Further
the construction of robust preconditioners is studied. Here it turns out that the problem
is related to the biharmonic equation of first kind. Thus we study the preconditioning of
the biharmonic equation and apply the obtained ideas afterwards to the optimal control
problem. We shall present corresponding spectral equivalence estimates and numerical
examples. In the third part of the thesis, applications to arterial blood flow are discussed.
Here we apply the Dirichlet boundary control approach in the energy space to a blood flow
related model problem. Further, the simulation of hemodynamic indicators is discussed.
For both, we present several numerical examples.

In the following we shall summarize the content of this work and give an overview on the
main results.

Chapter 1: Modeling and discretization

In the first chapter we recall the constitutive equations of fluid dynamics and introduce
two models for the description of arterial blood flow. These differ in the form of the extra
stress tensor and have either a constant or generalized viscosity of Carreau type. Further,
we discuss the non-dimensionalization of the equations and the meaning of correspond-
ing boundary and initial conditions. Finally we present the (generalized) Navier–Stokes
equations as a model problem. Moreover we present an overview on the existence and
uniqueness results for the solution of the Navier–Stokes equations.

In the second part of the chapter we consider a finite element discretization of the (gen-
eralized) Navier–Stokes equations. In particular we investigate a stabilized finite element
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method, which is free of any stabilization parameter. The advantages of such an approach
shall be discussed.

Chapter 2: Hemodynamics for arterial blood flow

In the second chapter we consider the simulation of arterial blood flow in hemodynamics.
In particular we consider hemodynamic indicators, such as the wall shear stress and the
oscillatory shear index. It turns out that the calculation of these indicators is not always
done by the same formula. This means, from the boundary stress vector, from which the
indicators are calculated, an important term is often neglected. We present by several
numerical simulations, that this can lead to a significant difference in the hemodynamic
indicators.

Chapter 3: Optimal boundary control problems in energy spaces

This chapter, on optimal boundary control problems in energy spaces, is divided into
two parts. First, we consider optimal Dirichlet boundary control problems, where the
constraint is given by the Poisson equation as a model problem and the control is considered
in the energy space. We derive the first order necessary optimality conditions. It turns
out that the control can be eliminated and thus a variational formulation in classical
saddle point structure is obtained. Consequently, we can apply standard results for these
systems and prove the existence and uniqueness of a solution. It turns out that the optimal
control problem is related to the biharmonic equation of first kind. Finally, a lowest
order discretization is introduced and corresponding error estimates are given. These are
illustrated by several numerical examples.

In the second part of this chapter we apply the idea of the control in the energy space to
the related Neumann boundary control problem. We start with the Yukawa equation as
a constraint, which is easier to treat since the boundary value problem is always uniquely
solvable. Following the ideas of the first part we derive the corresponding first order
necessary optimality conditions. As second case, we consider as a constraint the Poisson
equation, which is more involved, since we have to introduce a certain scaling condition.
It turns out that this is nevertheless a special case of the Yukawa equation. Further,
the existence and uniqueness of the solution of the corresponding optimality system is
investigated, as well as a mixed finite element discretization. Here, we observe that the
Schur complement equation with respect to the control is for the Neumann boundary
control of the same structure as in the Dirichlet boundary control case. Further, we prove
that the primal states of Dirichlet and Neumann boundary control problems coincide in
the case of the Laplace equation as a constraint.
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Chapter 4: An optimal control problem for arterial blood flow

As it was motivated in the outline, the minimization of vortices in the aneurysm is an
important task. Within this chapter we consider the optimal control of the inflow veloc-
ity (inflow profile) into a bypass of an arterial system. Such problems can be solved by
considering a Dirichlet boundary control problem, where the constraint is in our case the
Navier–Stokes system with a constant viscosity for the description of the blood. In partic-
ular, we apply the energy control approach for this model problem. We present numerical
examples and show that this approach leads to numerical solutions of physical relevance.

Chapter 5: The biharmonic equation

In this chapter, we start with the derivation of a mixed finite element formulation for the
biharmonic equation of first kind. It is well known that this formulation is advantageous,
since we are able to consider less regular solution spaces and thus can use a standard
finite element discretization. The existence and uniqueness of a solution is investigated
and corresponding error estimates are discussed. At the end several numerical examples
are presented.

Chapter 6: Preconditioning strategies for the biharmonic equation

We consider the construction of a robust preconditioner for the mixed finite element dis-
cretization of the biharmonic equation of first kind, introduced in Chapter 5. The pre-
conditioner for the Schur complement equation with respect to the boundary is treated
first. Therefore certain fractional Sobolev spaces on the boundary have to be introduced.

In particular, we define Sobolev spaces H̃1/2
pw (Γ) on open parts of the boundary. We prove

for the Schur complement equation corresponding spectral equivalence estimates within

the fractional Sobolev space H̃1/2
pw (Γ) and present two possible discrete operators for the

realization of this norm. The first, a local single layer boundary integral operator, moti-
vated from boundary element methods, and the second one a multilevel representation of
BPX type. Several numerical examples illustrate the obtained theoretical results. Further,
two preconditioners for the global system are proposed. Again, numerical results show the
effectiveness of these preconditioners.

Chapter 7: Preconditioning strategies for optimal boundary control problems

In this chapter we apply the ideas of the preconditioners as discussed in Chapter 6 to the
optimal boundary control problems, analyzed in Chapter 3. We prove the spectral equiv-
alence of the Schur complement system with respect to the control on the boundary. The
preconditioner is then either realized by a boundary element approach, via a combination
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of the local single layer boundary integral operator and the hypersingular boundary inte-
gral operator, or by a multilevel representation of BPX type. Several numerical examples
illustrate the obtained theoretical results.

At the end, we present some concluding remarks and several interesting open problems as
a possible future work.





1 MODELING AND DISCRETIZATION

In this chapter we introduce the systems of partial differential equations and the corre-
sponding finite element discretization which are studied in this thesis. By this we mean
the constitutive equations of fluid dynamics, describing for example blood flow. First, we
give a short introduction and review of hemodynamic models for arterial blood flow. These
models are given by the form of the so-called Cauchy stress tensor which, in this work, has
always an explicit form. More precisely, we consider models where the extra stress part of
the Cauchy stress tensor is either linear or non-linear (of polynomial growth) with respect
to the deformation. In the case that the function of proportionality (viscosity) is constant,
the resulting equations are the Navier–Stokes equations. In the second case they are the
generalized Navier–Stokes equations. Moreover we present an overview on the existence
and uniqueness results for the solution of the Navier–Stokes equations. As a last part of
this chapter we study a stabilized finite element method for the numerical solution of these
equations. The advantages of such an approach shall be discussed.

Even though blood is a mixture of biological substances, namely blood cells suspended in
a blood plasma medium consisting of water, macromolecules, ions, etc., we consider it, on
the macroscopic scale, as a single constituent incompressible, homogeneous and isotropic
fluid. Thus, we shall describe its flow in the framework of continuum mechanics.

Let us consider a bounded Lipschitz domain Ω ⊂ R3, which represents for instance the
artery of interest, and a time interval (0, t) with t > 0. We describe the flow of the blood
in terms of the velocity field u(t,x) and the pressure p(t,x), which we denote from now on
in short by u and p. Since we assume the fluid to be homogeneous and incompressible the
density ρ is constant in space and time, respectively. We may also consider a bulk force f
which is acting on the fluid, for instance the gravitation.

The flow of the fluid is then described by the balance of momentum

∂t(ρu)−div T +div(ρu⊗u) = ρ f in Ω× (0, t), (1.1)

and the conservation of mass

div(ρu) = 0 in Ω× (0, t), (1.2)

where (u⊗ v)i j = uiv j, i, j = 1, . . . ,3, denotes the tensor product. In the particular case as
considered above, the fluid model is given by the Cauchy stress tensor

T =−pI +S, (1.3)

7



8 1 Modeling and discretization

where pI is the mean normal stress, with p denoting the hydrodynamical pressure, and S
is the extra stress tensor which needs to be specified by a suitable constitutive equation
reflecting the rheological nature of the considered fluid.

For the needs of computational simplicity, blood is very commonly considered as a Newto-
nian fluid, that means, its rheological behavior is described by a single parameter, called
viscosity, being a constant of proportionality between the shear stress and the shear rate
during a simple shear. Such an approximation can be validated for blood flow in vessels
with large diameters. This, on the other hand, should not be presumed in the case of blood
flow in a vessel with aneurysm where its typical non-Newtonian phenomena occur. In the
following we describe these different models.

1.1 Hemodynamic models

In a physiological environment, the non-Newtonian character of blood manifests mainly in
its ability to thin the shear and the stress relaxation. The shear-thinning behavior and its
connection to the red blood cell deformation and rouleau aggregation was originally recog-
nized already in the 1970’s in [14,15]. Shortly after, in [79] the property of red blood cells is
described to store energy via the rouleau network deformation and consequently measured
the viscoelastic nature of blood. Such a behavior, related to the rouleau network deforma-
tion, must be thus shear-rate dependent as it is the formation of such a structure, see [80].
Until now, only few viscoelastic models (describing among others the mentioned stress
relaxation) have been proposed: a linear Maxwell model proposed in [79], a generalized
Oldroyd-B model with a non-linear apparent viscosity of shear-thinning proposed in [84],
and a thermodynamically consistent model in [2] describing blood as a mixture of shear-
thinning viscoelastic and Newtonian fluids, created in the framework of maximization of
the rate of dissipation corresponding to the material natural (stress-free) configuration.

For our aim, we consider first a standard Newtonian model, where the extra stress tensor
is given by

S = 2µD, (1.4)

and D denotes the symmetric part of the velocity gradient, that means

D =
1
2

(
∇u+(∇u)>

)
,

and µ > 0 denotes the constant dynamic viscosity. As a second model, we shall consider a
generalized Newtonian model describing the shear-thinning property of blood, namely

S = 2µ(|D|2)D, (1.5)
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where the generalized viscosity µ is shear rate dependent, having the form of a power-law-
like Carreau model, see, e.g., [28],

µ(|D|2) = η∞ +(η0−η∞)(1+κ|D|2)r.

Here η0, η∞, κ and r are material parameters. While κ > 0 and r∈ (−1
2 ,0) are parameters of

shear-thinning, η0 and η∞ are asymptotic apparent viscosities of blood for the shear rates,
in a simple shear flow. From this, it is clear that η0, η∞ are (in theory) independent of the
particular shear-thinning model, while κ and r need to be specified from the specific model
that they fit the experimental data. Note that it is very common that the shear-thinning
of blood is described by a more general Carreau–Yasuda model, see, e.g., [28], having in
comparison with the Carreau model an additional material parameter. Nevertheless, in
the case of blood, both models give the same quantitative and qualitative fits. Thus we
use the simpler one, i.e. (1.5). In this work, we use the values of material parameters,
determined by experiments, as given in [28, Chapter II], namely η0 = 65.7× 10−3 Pas,
η∞ = 4.45×10−3 Pas, κ = 212.2 s2, and r =−0.325. In the case of the Newtonian model
we use µ = η∞. It is important to mention that these values differ through the literature,
since the blood viscosity is in general depending on many factors like hematocrit, pH, age,
gender, etc.

As one can see, we completely neglect possible pathological influences on the blood rheology
which can occur in the case of blood flow in an aneurysm sack, like degeneration of the blood
cells, thrombus formation etc., see, e.g., [78]. Nevertheless, such biochemical questions
should be discussed in future, and in order of a better description of the blood flow nature
in the aneurysm, more advanced hemodynamic models with biochemical part should be
considered. A consideration of more rigorous models of blood, as well as the interaction of
the blood and the vessel wall (fluid structure interaction), can be seen as a future work.

1.2 Non-dimensionalization and boundary conditions

As it was mentioned before, the velocity u and the pressure p are governed by the (non-)
stationary incompressible (generalized) Navier–Stokes equations (1.1) and (1.2) with the
different viscosity models as given in (1.4) and (1.5). For the consecutive numerical com-
putations, it will be useful to recast the governing equations in terms of dimensionless
variables, i.e.

x→ x
L∗

, u→ u
U ∗ , p→ p

P∗
, µ → µ

M∗ , (1.6)

where L∗ and U∗ are the characteristic length and velocity, respectively, M∗ is the charac-
teristic dynamic viscosity and P∗ is the scaling pressure. All the values, which are denoted
by ∗ are suitably chosen for a particular computational setting in order to describe the
character of the specific flow problem. For consistency, we choose

P∗ = ρ(U∗)2, M∗ = η∞, (1.7)
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where ρ denotes the constant density of the fluid. Then the time is naturally non-
dimensionalized with respect to L∗/U∗ and the same holds true for the extra stress tensor
S with respect to M∗U∗/L∗.

Next, we shall discuss the different type of boundary conditions. Let us denote by Γ = ∂Ω

the boundary of the given domain Ω. In the case of an artery the boundary is decomposed
into three mutually different parts, i.e.

Γ = Γw∪Γin∪Γout,

where Γw denotes the wall, Γin the inflow and Γout the outflow boundary, all of positive
measure. On these individual parts of the boundary Γ we prescribe the following boundary
conditions of mixed type

u = 0 on Γw, u = g on Γin, T n = 0 on Γout.

By that, we impose the wall to be non-penetrable on which the fluid perfectly adheres
(no-slip), on the outflow we prescribe a physical zero stress, sometimes called “do nothing”
boundary condition. On the inflow boundary we prescribe either a physiological inflow
condition or a constant (artificial) inflow, where g is suitable chosen. This will be discussed
in more detail in Chapter 2. From a mathematical point of view, the arterial wall Γw and
the inflow boundary Γin can be considered as a Dirichlet boundary. The outflow boundary
Γout can be seen as Neumann boundary. In the case of a non-stationary fluid flow we have
to additionally impose a suitable initial condition, i.e.

u(0,x) = u0(x) in Ω,

this will be more specified in Chapter 2.

For the given domain Ω and time interval (0, t) with t > 0, the system of governing equations
(1.1)–(1.2) is then transformed into

∂tu−
2

Re
div
(
µ(|D|2)D

)
+(∇u)u+∇p = f in Ω× (0, t),

div u = 0 in Ω× (0, t),
u = 0 on Γw× (0, t),
u = g on Γin× (0, t),

T n = 0 on Γout× (0, t),

u = u0 in Ω×{0},

(1.8)

where we use the notation for the reduced Reynolds number Re = ρL∗U∗/µ∞. Note, that
sometimes the Navier–Stokes equations are expressed in terms of the kinematic viscosity
ν = µ∞/ρ . Nevertheless, in the case of non-dimensionalization, this issue is irrelevant due
to the Reynolds number being then of the form Re = L∗U∗/ν .
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1.3 Variational formulation and discretization

In this section we study the variational formulation and the discretization of the (general-
ized) Navier–Stokes equations (1.8). We also comment on existence and uniqueness results
of weak solutions of the Navier–Stokes equations. In the following we consider the bulk
force f ∈ H̃−1(Ω)3 = [H1(Ω)3]∗. Note that for the Dirichlet boundary value problem we

may consider the space H−1(Ω)3 = [H1
0 (Ω)3]∗ instead. But for most applications the more

regular assumption f ∈ L2(Ω)3 is justified. For the individual boundary parts Γw, Γin and
Γout of the boundary Γ we assume that

Γin∩Γw 6= /0, Γin∩Γout = /0,

which is not restrictive for our applications in mind. Consequently the given function g on
Γin, describing the inflow, has to satisfy certain properties, i.e. it has to be an element of
the space

H̃1/2(Γin)
3 =

{
v = ṽ|Γin

: ṽ ∈ H1/2(Γ)3, supp ṽ⊂ Γin

}
.

We shall reformulate the boundary conditions in terms of Dirichlet and Neumann boundary
conditions. Thus we introduce ΓD = int(Γin ∪ Γw) and ΓN = Γout. This means on the
Dirichlet boundary ΓD we introduce the Dirichlet datum g̃ ∈ H̃1/2(ΓD)

3 as

g̃ =

{
0 on Γw,

g on Γin.

Let us recall, the system of partial differential equations, i.e. the (generalized) Navier–
Stokes equations (1.8), in terms of Dirichlet and Neumann boundary conditions,

∂tu−
2

Re
div
(
µ(|D|2)D

)
+(∇u)u+∇p = f in Ω× (0, t),

div u = 0 in Ω× (0, t),
u = g̃ on ΓD× (0, t),

T n = 0 on ΓN× (0, t),

u = u0 in Ω×{0}.

(1.9)

1.3.1 Remarks on the existence and uniqueness of solutions

In the following we comment on some known existence and uniqueness results of weak solu-
tions of the Navier–Stokes equations. Although the analysis of the system started already
in the 1930’s, there are still many open problems. Those arise mainly from the nonlin-
ear convective term and from the non-symmetric coupling between velocity and pressure.
Because of these, the structure of the system behaves differently in the two- and three
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dimensional case, i.e. we consider separately Ω⊂ Rn with n = 2,3. While the two dimen-
sional problem is possible to treat with standard techniques, and thus one directly obtains
existence, uniqueness and regularity of the weak solution, the three dimensional case re-
quires more advanced methods and additional assumptions. Let us demonstrate this for
the homogeneous Dirichlet boundary value problem of the Navier-Stokes equations, which
is in the literature mostly studied. We will comment on the generalization to mixed bound-
ary conditions and generalized viscosity at the end of this section. Namely, we consider for
now the problem

∂tu−ν∆u+(∇u)u+∇p = f in Ω× (0, t),

div u = 0 in Ω× (0, t),
u = 0 on Γ× (0, t),

u = u0 in Ω×{0},

(1.10)

where ν = 1/Re denotes the viscosity constant. The following overview is based on [27,76],
where one can also find a detailed description of the methods used to prove the existence,
uniqueness and regularity results. Let us start with the definition of the following spaces,
which are suitable for the incompressible Navier–Stokes equations,

H1
0,div(Ω)n =

{
v ∈ H1

0 (Ω)n : div v = 0
}
,

and

L2
0,div(Ω)n =

{
v ∈ L2(Ω)n : v = ∇q, q ∈ H1(Ω)

}⊥
.

Also, let us define what we mean by the term weak solution. We assume in the following
f ∈ L2(0, t; [H1

0,div(Ω)n]∗) and u0 ∈ L2
0,div(Ω)n. Then

u ∈ L2(0, t;H1
0,div(Ω)n)∩L∞(0, t;L2(Ω)n)

with

∂tu ∈ L1(0, t; [H1
0,div(Ω)n]∗)

is a weak solution of the Navier–Stokes equations (1.10), iff

〈∂tu,v〉Ω +ν〈∇u,∇v〉L2(Ω)+ 〈(∇u)u,v〉L2(Ω) = 〈 f ,v〉Ω,

for all v ∈ H1
0,div(Ω)n and a.a. t ∈ (0, t). If in addition the energy inequality

‖u(t)‖2
L2(Ω)+2ν

t∫
0

|u(τ)|2H1(Ω) dτ ≤ ‖u0‖2
L2(Ω)+2

t∫
0

〈 f (τ),u(τ)〉Ω dτ,

for a.a. t ∈ (0, t), is satisfied, the weak solution is called Leray–Hopf weak solution. Note,
that the definition of the weak solution can vary, especially with the method one uses for
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the consequent proofs. The reason for introducing the Leray-Hopf solution comes from the
necessity to define a suitable solution class where we can obtain uniqueness. Also, this is
a reasonable class from physical point of view, since the kinetic energy of the fluid is then
controlled by the input data of the problem. The existence results of the above system is
then summarized in the following theorem, see [27, Theorem 3.1].

Theorem 1.1. Let Ω ⊂ Rn be a bounded Lipschitz domain, f ∈ L2(0, t; [H1
0,div(Ω)n]∗) and

u0 ∈ L2
0,div(Ω)n, then there holds:

• For n = 2, there exists a unique weak solution, which is also a Leray–Hopf weak
solution, satisfying

lim
t→0+
‖u(t)−u0‖L2(Ω) = 0, u ∈C([0, t];L2

0,div(Ω)n).

• For n = 3, there exists at least one Leray–Hopf weak solution. This solution satisfies
the initial condition in the following sense,

lim
t→0+
‖u(t)−u0‖L2(Ω) = 0.

The uniqueness for the two dimensional model problem, n = 2, is stated in the theo-
rem above. For the three dimensional case, n = 3, the following results is valid, see [27,
p. 30 ff.].

Theorem 1.2. Let the assumptions of Theorem 1.1 be satisfied and n= 3. If the conditions
(Prodi–Serrin conditions),

u ∈ Lr(0, t;Ls(Ω)3),
2
r
+

3
s
≤ 1, s≥ 3,

are satisfied, the Leray–Hopf weak solution is unique.

It remains to answer the question concerning the reconstruction of the pressure p. As it is
shown in [71], this is in general not possible for a right-hand side

f ∈ L2(0, t; [H1
0,div(Ω)n]∗).

Nevertheless, if the domain Ω is of class C2, f ∈ L2(0, t;H−1(Ω)n) and u0 is smooth enough
we obtain

∇p ∈ Lr(0, t;Ls(Ω)n),
2
r
+

n
s
= n+1, 1 < s≤ n

n−1
,

see, e.g., [44]. Moreover, if we scale the pressure by 〈p(t),1〉Ω = 0 for a.a. t ∈ (0, t), the
pressure is unique.
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For the analysis of the Navier–Stokes equations with mixed boundary conditions we refer
the reader to, e.g., [5]. The main difficulty of this problem is the violence of the skew-
symmetricity of the convective term and thus also of the energy inequality. On the other
hand, for the generalized Navier–Stokes equations one needs to handle an extra nonlinearity
in the diffusive term. This influences the choice of the solution spaces and requires more
advanced techniques, which is studied, e.g., in [52]. As last, we would like to mention that
results for the stationary model problem can be found, e.g., in [30,76].

1.3.2 Discretization

Within this section we discuss the discretization of the initial boundary value problem (1.9).
Therefore a time stepping scheme and a stabilized finite element method for the spatial
discretization are applied. Further we discuss the application of the Newton method to
handle the nonlinear term. As a first step we discretize the first equation of (1.9) in time
by using a standard Crank–Nicholson method, see, e.g., [82], where ∆t = t/nt denotes the
time step, for some nt ∈ N. This means that we obtain for all k = 0, . . . ,nt−1

uk+1− ∆t
2

[
2

Re
div
(

µ(|Dk+1|2)Dk+1
)
− (∇uk+1)uk+1

]
+∆t ∇pk+1

=
∆t
2

[
f k+1 + f k

]
+uk− ∆t

2

[
2

Re
div
(

µ(|Dk|2)Dk
)
− (∇uk)uk

]
,

where f k = f (k∆t). Additionally we multiply the above equations with a test function

v ∈ H1
0 (Ω,ΓD)

3, and apply integration by parts. This leads to the following variational
formulation. At each time step k = 0, . . . ,nt − 1 find (uk+1, pk+1) ∈ H1(Ω)3×L2(Ω) with
uk+1 = g̃k+1 on ΓD such that

〈uk+1,v〉L2(Ω)+
∆t
2

a(uk+1,v)−∆t b(v, pk+1) =
∆t
2
〈 f k+1 + f k,v〉Ω

+ 〈uk,v〉L2(Ω)+
∆t
2

a(uk,v),

b(uk+1,q) = 0,

(1.11)

for all (v,q) ∈ H1
0 (Ω,ΓD)

3×L2(Ω), where the corresponding forms are given by

a(u,v) =
2

Re
〈µ(|D(u)|2)D(u),D(v)〉L2(Ω)+ 〈(∇u)u,v〉L2(Ω),

b(v, p) = 〈div v, p〉L2(Ω).

An important property for the existence and uniqueness analysis of the saddle point prob-
lem (1.11) is the inf–sup condition. The following result can be found in [65, Proposi-
tion 5.3.2, p. 157].
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Lemma 1.1. For all q ∈ L2(Ω), the following inf–sup condition is valid

cS‖q‖L2(Ω) ≤ sup
06=v∈H1

0 (Ω,ΓD)n

b(v,q)
‖v‖H1(Ω)

. (1.12)

The variational formulation (1.11) involves still the non-linear terms of the generalized
viscosity and the convective term. In particular we can express the variational formulation
(1.11) by

F(x) = 0,

where x = (uk+1, pk+1). In order to solve this nonlinear equation a full Newton method,
see, e.g., [20], is applied. This means we obtain

Dx`F(x`)(x`− x`+1) = F(x`),

where the left-hand side denotes the Fréchet derivative of F(x`), applied to x`− x`+1 for
all ` ∈ N. The Newton iteration is stopped when a certain relative accuracy ε > 0 for the
difference |x`+1− x`| is obtained. For the initial guess in the Newton method we consider
the solution of the previous time step. If the initial guess is good enough, i.e. close enough
to the solution x, the Newton method convergences quadratic.

For the spatial discretization we consider an admissible, shape-regular and globally quasi-
uniform triangulation Th of the domain Ω into tetrahedra. We introduce the finite element
spaces

Vh = span{ϕ1
i
}nV

i=1 ⊂ H1(Ω)3, Qh = span{ϕ1
i }

nQ
i=1 ⊂ L2(Ω), (1.13)

i.e. of piecewise linear and globally continuous basis functions for both, the velocity and
the pressure. Further we need the finite element space

Vh,0 = span{ϕ1
i
}nV0

i=1 ⊂ H1
0 (Ω,ΓD)

3,

with a homogeneous Dirichlet boundary condition. The finite element paring (Vh,Qh) is
also known as P1–P1 approximation. It is important to mention that this method, as a low
order approximation, has an advantage in computation of large systems. This is due to the
lower number of degrees of freedom in comparison to a Taylor–Hood approximation, where
piecewise quadratic and globally continuous finite elements for the velocity are considered.
Nevertheless, the pairing (Vh,Qh) does not satisfy the discrete inf–sup condition

c̃S‖qh‖L2(Ω) ≤ sup
06=vh∈Vh,0

b(vh,qh)

‖vh‖H1(Ω)

,

for all qh ∈ Qh. Consequently, it results in an unstable method, see, e.g., [12, 30, 39]. In
order to overcome this problem, stabilized finite element methods have been developed, see,
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e.g., [24, 25, 77]. All of them with the advantage that the finite element spaces (1.13) can
be used. The disadvantage of these methods is the fact that often a suitable choice for the
stabilization parameter is needed, which is in general difficult to calculate. This problem
is captured in a more recent work, see [6], by the Bochev–Dohrmann stabilization, where
such a parameter is no longer needed. It introduces an additional pressure penalizing term
having the form

c(qh, ph) := Re〈ph−Qh ph,qh−Qhqh〉L2(Ω), (1.14)

where Qh : L2(Ω)→ Q0
h is the L2(Ω) projection onto the space of piecewise constants.

Beside the fact that no stabilization parameter is needed, this method has the advantage
that it only acts on the pressure level and it can be easily realized in the case of linear
finite elements, as considered here. By this we mean that the projection on the piecewise
constants can be simply computed via the representation

Qhqh|T =
1
|T |
〈qh|T ,1〉L2(T ),

for all T ∈ Th and qh ∈ Qh. In the following we shall always use the Bochev–Dohrmann
stabilization (1.14), due to the advantages mentioned above. Let us denote by Ih a standard
interpolation operator on Vh|ΓD

. The discrete variational formulation, including the Newton
method and the stabilization, is then given as follows: Find at each time step k= 0, . . . ,nt−1
and Newton step ` ∈N0 the pair (ũk+1

h,`+1, p̃k+1
h,`+1) ∈ Vh×Qh with ũk+1

h,`+1 = Ihg̃k+1 on ΓD such
that

〈ũk+1
h,`+1,vh〉L2(Ω)+

∆t
Re
〈µ ′(|D(ũk+1

h,` )|2)4[D(ũk+1
h,` ) : D(ũk+1

h,`+1)]D(ũk+1
h,` ),D(vh)〉L2(Ω)

+
∆t
Re
〈µ(|D(ũk+1

h,` )|2)D(ũk+1
h,`+1),D(vh)〉L2(Ω)

+
∆t
2
〈(∇ũk+1

h,`+1)ũ
k+1
h,` +(∇ũk+1

h,` )ũk+1
h,`+1,vh〉L2(Ω)−∆t b(vh, p̃k+1

h,`+1)

=
∆t
Re
〈µ ′(|D(ũk+1

h,` )|2)4[D(ũk+1
h,` ) : D(ũk+1

h,` )]D(ũk+1
h,` ),D(vh)〉L2(Ω)

+
∆t
2
〈(∇ũk+1

h,` )ũk+1
h,` ,vh〉L2(Ω)+

∆t
2
〈 f k+1 + f k,vh〉Ω + 〈ũk

h,vh〉L2(Ω)

+
∆t
Re
〈µ(|D(ũk

h)|2)D(ũk
h),D(vh)〉L2(Ω)+

∆t
2
〈(∇ũk

h)ũ
k
h,vh〉L2(Ω),

b(ũk+1
h,`+1,qh) + c(qh, p̃k+1

h,`+1) = 0,

for all (vh,qh)∈Vh,0×Qh. Note that (ũk+1
h,`+1, p̃k+1

h,`+1) denotes here the finite element solution

of the perturbed problem which is due to the interpolation of the Dirichlet datum g̃k+1.

Further ũk
h denotes the solution of the previous time step which is obtained at the last

Newton iteration.
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For error estimates of the Bochev–Dohrmann stabilization only results for the Stokes equa-
tions with homogeneous Dirichlet boundary conditions are known. This means that a con-
stant viscosity is assumed and the nonlinear convective term is neglected. In this particular
case the following result is valid, see [6].

Theorem 1.3. Let us consider the finite element spaces Vh and Qh, defined in (1.13). For
the Stokes equations with the Bochev–Dohrmann stabilization (1.14) the following error
estimate is valid,

‖u−uh‖L2(Ω)+h‖p− ph‖L2(Ω) ≤ chs (|u|Hs(Ω)+ |p|Hs(Ω)

)
,

where (u, p) ∈ H1
0 (Ω)3∩Hs(Ω)3×Hs(Ω) is the exact solution for some s ∈ [1,2].

It is important to mention that in the stabilization term c(qh, ph) the pressure ph is pro-
jected onto the piecewise constants. As a consequence we can not expect full second order
of convergence in L2(Ω), in general. In particular we obtain a reduced order of convergence
with a factor of minus one.

1.4 Concluding remarks

In this chapter we have discussed different hemodynamic models for arterial blood flow,
which are prescribed via the Cauchy stress tensor (1.3). The corresponding extra stress
tensor involves either a constant viscosity (1.4), or a non-constant viscosity of a power-law-
like Carreau model (1.5). We have described corresponding boundary conditions, which
model the inflow, outflow and the no-slip condition on the arterial wall, and presented the
(generalized) Navier–Stokes equations as a model problem. We have presented an overview
on the existence and uniqueness results for the solution of the Navier–Stokes equations with
a constant viscosity. Moreover we have introduced a discretization of the equations, using
a Crank–Nicholson scheme in time and a stabilized finite element method in space. The
advantages of such an approach have been discussed.

In the upcoming chapter we discuss hemodynamic indicators which are calculated form the
system above and present several numerical simulations.
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In this chapter we simulate the blood flow in arteries with aneurysms and identify impor-
tant factors of the pathological flow with respect to the geometry. These factors, as we will
see later, will be the wall shear stresses on the arterial wall and the complex vortices within
the aneurysm. It is known, that especially a vortex in an aneurysm can lead to a blood
clot (trombus) formation, which can consequently lead to its rupture. This motivates the
consideration and simulation of hemodynamic indicators which are an important measure
for the initiation, evolution and rupture of arteries, in particular aneurysms. In the past,
the following two indicators became commonly used, namely the wall shear stress (WSS)
and the oscillatory shear index (OSI). It turns out that the computation of these indicators
is not always done by the same formula. By this we mean, that sometimes in the boundary
stress vector, from which the indicators are calculated, a specific term is neglected. This
can result in main differences in WSS and OSI, mainly at the critical points of the artery
where aneurysms or arterial plaque appear. We present the differences of these indicators
by several numerical simulations, for the different blood models, as described in Chap-
ter 1. The influence of the correct choice, from a rheological point of view, appears to be
significant, see also [40].

2.1 Hemodynamic indicators

The initiation, evolution and rupture of aneurysm result, as most degenerative cardiovas-
cular diseases, from a combination of hemodynamics, vessel wall mechanics, and physical
and biochemical processes within and between them. In the past decades, the hypothesis of
strong correlation between the blood flow induced mechanical stresses and the arterial wall
functionality, degenerative chemical processes within and around it has been several times
verified [18, 43, 46, 51, 67, 70, 83]. More precisely, the endothelial cells of the vessel wall are
mechanosensitive to the local shear stresses [50, 83], transferring the abnormal wall shear
stress into specific biochemical signals which modulate the cellular structure of the wall.
This results in the wall thinning and in an increase of the lipid and adhesion molecules
permeability through the wall, see e.g. [18], which is connected to aneurysm plaque or
thrombus formation. On the other hand, the physiological level of the shear stress at the
wall is protective. As specified for example in [50], the range, its non-dimensionalized
physical quantities shall be specified later, of wall shear stress is about 15−70 dynecm−2.
From above it is clear that identification of local wall shear stress (WSS) plays an impor-
tant role in the study of aneurysm evolution in silico, and thus, it shall be a key factor in
the characterization of aneurysms.

19
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Across the literature one can find different approaches to the WSS computation. By a
rheological definition, WSS is the shear traction caused by the blood flow acting on the
endothelial cell surface. In terms of the Cauchy stress tensor T , defined in (1.3), this
means

WSS := |(T n) · tblood|, (2.1)

where n is the outer normal unit vector of the tangential plane to the vessel wall and
tblood is the tangential unit vector living in such a plane, having the same direction as the
velocity vector of blood. Note that tblood is orthogonal on n. For a two-dimensional case
of unidirectional flow, this characterization is intuitive due to the unique identification
of tblood. Similarly, such a characterization of wall shear stress is meaningful also for
simple shear flow in the three-dimensional case. In order for a better understanding of
the problematics in the choice of tblood we derive WSS for simple shear flow, described
in Cartesian coordinates in the x1-axis. Then, the velocity vector and the corresponding
normal and tangential unit vectors are

u = (u1(x2),0,0)>, n = (0,1,0)>, tblood = (1,0,0)>.

Correspondingly we have

(T n) · tblood =−pn · tblood+2µ(·)(Dn) · tblood

= µ(·)

 0 ∂x2u1(x2) 0
∂x2u1(x2) 0 0

0 0 0

0
1
0

 ·
1

0
0

= µ(·)∂x2u1(x2),

and

2µ(·)Dn = µ(·)

∂x2u1(x2)
0
0

 .

As a consequence we observe that

|(T n) · tblood|= |2µ(·)Dn|.

Obviously, for simple shear flow for which the flow is purely laminar, the wall shear stress
vector τw, for which we have WSS = |τw|, and the (scalar) wall shear stress are then given
as

τw,1 = 2µ(·)Dn, WSS1 = |2µ(·)Dn|. (2.2)

Such a derivation then tempt, that these formulae are also valid in a general three-
dimensional setting, see, e.g., [45, 46, 50] and many others. However, for complicated
geometries, like arteries with aneurysms, the flow at the arterial wall can not be approxi-
mated by simple shear, since a non-negligible part of Dn will not act in the shear direction.
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n

[(T n) ·n]n

T n

τw

Figure 2.1: Stress decomposition at the infinitesimal plane into its normal and tangential
part. In the case that n coincides with the outer normal of the vessel wall, we
call the tangential part τw the wall shear stress vector.

Formula (2.1) is then for those problems not usable, since tblood is given by two a priori not
known tangential vectors, and thus, together with the zero Dirichlet boundary condition
for the velocity one can not directly derive it in this way.

Instead, one can use a full decomposition approach. This means, from the unique decom-
position

T n = [(T n) ·n]n+[(T n) · tblood]tblood,

we conclude

|(T n) · tblood|= |T n− [(T n) ·n]n|.

Consequently, the shear stress vector is then derived from the wall traction T n by sub-
tracting the normal stress vector as depicted in Figure 2.1. This motivates the following
definition of the wall shear stress vector

τw,2 = T n− [(T n) ·n]n
=−pn+Sn+[(pn ·n)]n− [(Sn) ·n]n
= Sn− [(Sn) ·n]n,

and specifically for the (generalized) Newtonian case we obtain

τw,2 = Sn− [(Sn) ·n]n
= 2µ(·)(Dn− [(Dn) ·n]n).

(2.3)

As a consequence we have for the wall shear stress (2.1) the following representation

WSS2 = |τw,2|. (2.4)

Here one should notice that the normal stress is not identified with the mean normal stress
−pn but it is superposed together with [(Sn) ·n]n. This normal part of the extra stress is
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very often neglected, reasoned by the flow conditions close to the simple shear. Later we
shall see that this term is nevertheless not of small order mainly at the critical points of
the domain where an aneurysm or arterial plaque appear and thus it can not be neglected
for the simulation of hemodynamic indicators.

Whatever definition of WSS we use, it is still a local physical quantity expressed at a
given time. Thus, it is preferable to consider this indicator over a certain time period,
either the time of observation or the period of the cardiac cycle. For this, we introduce
a time-averaged wall shear stress (AWSS) as proposed in [46], characterizing the areas of
low shear stresses at the vessel wall during the time interval (0, t)

AWSS :=
1
t

t∫
0

|τw(t)| dt,

where τw is the wall shear stress vector. Thus, as we are interested in the differences arising
from the choice of the form of τw, we define

AWSS1 :=
1
t

t∫
0

∣∣τw,1(t)∣∣ dt, AWSS2 :=
1
t

t∫
0

∣∣τw,2(t)∣∣ dt. (2.5)

However, in the case of a pulsative flow, some pathological flow patterns at or near the wall
can develop, such as stagnation points or wall shear stresses with an oscillating character,
for which a quantity such as AWSS can be high as well. This is due to the fact that AWSS
is computed from the magnitude of the shear force and thus it is free from the information
about the oscillatory character. Hence we introduce, see [46], an additional hemodynamic
indicator, the oscillatory shear index (OSI)

OSI :=
1
2

1−

∣∣∣∫ t
0 τw(t)dt

∣∣∣∫ t
0 |τw(t)| dt

 , (2.6)

to provide a characterization of the deviation of the WSS vector from its averaged direction,

in other words a measure of WSS oscillations where AWSS is not predictive. Here,
∫ t

0 a(t)dt
stands for a vector with components computed as integrals of corresponding components
of the vector a. In the case that the denominator in (2.6) is zero, we set OSI = 0, since
in that case the nominator adopts zero value as well. The values of OSI are in the range
[0,0.5], where OSI = 0 corresponds to a unidirectional flow (protective) and OSI = 0.5 to
a purely oscillating flow (pathological). Again, in the same fashion as (2.5), we define

OSI1 :=
1
2

1−

∣∣∣∫ t
0 τw,1(t)dt

∣∣∣∫ t
0

∣∣τw,1(t)∣∣ dt

 , OSI2 :=
1
2

1−

∣∣∣∫ t
0 τw,2(t)dt

∣∣∣∫ t
0

∣∣τw,2(t)∣∣ dt

 . (2.7)
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From what has been described above, both indicators need to be investigated simulta-
neously, with a focus on the regions where either AWSS and OSI are small, or, OSI is
high regardless of the AWSS value. Since we are interested in relative differences between
AWSS1 and AWSS2, OSI1 and OSI2, we will present the numerical results also in non-
dimensionalized form. The corresponding values in the physical units can be obtained by
a simple calculation due to (1.6)–(1.7) and (2.8).

2.2 Geometry and data

2.2.1: GEOM 1 2.2.2: GEOM 2 2.2.3: GEOM 3 2.2.4: GEOM 4

Figure 2.2: Studied geometries. Black arrows denote the inflow boundary.

We consider four different geometries of cerebral arteries with aneurysm, three realistic,
reconstructed from CTA imaging, and one artificial (symmetric), see Figure 2.2. Geome-
try GEOM 1 was obtained as open source mesh from the CISTIB lab at the Universitat
Pompeu Fabra of Barcelona, GEOM 2 was provided from [29], and GEOM 3 from [66].
We always denote the domain of interest by Ω and its boundary by Γ which is decomposed
into three parts, namely the boundary of the wall and the parts of inflow and outflow, i.e.
Γ = Γw∪Γin∪Γout, all of positive measure, as described in Chapter 1.

Under normal conditions, the diameter of a cerebral artery is approximately 5mm, and, as
it will be specified below, the velocity inflow is in the range 10−50cms−1. This, together
with the viscosity η∞ = 4.45× 10−3 Pas, gives us the characteristic units of the problem
under consideration,

L∗ = 1cm, U∗ = 10cms−1,
M∗

%
= 4.2×10−2 cm2s−1, (2.8)

which scales the time by t∗ = 0.1s and the stress by S∗ = 0.445dynescm−2. The corre-
sponding Reynolds number is then Re ≈ 240. The mesh geometries are scaled into the
characteristic units as well, that means the diameter of all computational arteries is ap-
proximately 0.5 of non-dimensional units.



24 2 Hemodynamics for arterial blood flow

Boundary conditions
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Figure 2.3: Archetypal waveform of the peak velocity (in units) in the internal carotid
artery over one cardiac cycle, created by fitting to experimental data, from [78].

As it was mentioned in Chapter 1 we impose, the wall Γw to be non-penetrable on which
the fluid perfectly adheres (no-slip), and on the outflow Γout we prescribe physical zero
stress boundary condition. Moreover, on the inflow boundary Γin we prescribe either a
physiological inflow condition or a constant (artificial) inflow. For both cases, the inflow is
governed by a given velocity function

g(t,x) = gt(t)φ(t)gx(x).

Here gx(x) represents a parabolic profile of the inflow, with 0≤ |gx(x)| ≤ 1, scaled by gt(t),
representing its periodic change over one cardiac cycle. In general, the vessel cross-section
may not posses a circular profile. In that case, the prescribed parabolic function needs to
be properly scaled or has to have a suitable decay at the boundary of such a cross-section.
Additionally, φ(t) stands for initial damping.

In arteries, the velocity profile of the blood flow is generated by the heart beat, nevertheless,
the magnitude and the shape of pulses change at different parts of the arterial system,
mainly due to the branching, wall deformation, and the complex curvature of the cardio-
vascular system. We use a profile experimentally determined for an internal carotid artery
(artery of our interest) by [78], see Figure 2.3, with a period of the cardiac cycle of 0.917 s.
Such a multi-harmonic function can be decomposed into Fourier series, where in this par-
ticular case, 7 summands of the series are approximating the waveform accurately enough,
i.e.

gt1(t) =
a0

2
+

7

∑
k=1

{
ak cos(kωt)+bk sin(kωt)

}
, (2.9)

where ω = 2π/t f denotes the frequency of oscillation and ak, bk are the Fourier coefficients
given by a fitting of gt to experimental data, which are taken from [78]. As a second profile
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of the inflow velocity we consider a constant profile, computed as an average of the above
described wave, namely

gt2(t) =
1
t f

t f∫
0

gt1(t)dt ≈ 3.33. (2.10)

For computational reasons we damp the wave gt at the initial period by

φ(t) =

{
1
2

(
1+ cos(π( t

t f
−1))

)
for t < t f ,

1 else,
(2.11)

to obtain a smooth evolution of the flow from the initial rest state u(0,x) = 0, x ∈Ω.
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Figure 2.4: Two different inflow profiles of the function gt(t) with a scaling φ(t) from the
rest state, over the computational time interval (0,5t f ); Full line: gt1(t)φ(t) -
physiological profile, as in Figure 2.4, dashed line: gt2(t)φ(t) - averaged (over
one period) profile.

Both inflow time profiles are depicted in Figure 2.4.

For the Crank–Nicholson scheme in time we use as a time step ∆t = t f /50 in the simulation
time interval (0,5t f ). For the spatial discretization we apply a stabilized finite element
method as described in Chapter 1. The number of degrees of freedom and the number of
spatial elements are presented for each geometry in Table 2.1. For the Newton method we
consider a relative accuracy of 1e−8. The resulting linear system of equations is solved by
the direct solver Pardiso, see [7].

2.3 Numerical results

As a first computational result we present the streamlines (at the same time) of the velocity
in the aneurysm for all considered geometries in Figure 2.5. We observe the typical vortex
formation in the aneurysms.



26 2 Hemodynamics for arterial blood flow

GEOM 1 GEOM 2 GEOM 3 GEOM 4
space elements 568 050 1 388 238 1 376 085 1 002 972
DoFs 352 905 900 693 903 104 648 567

Table 2.1: Numbers of spatial elements and degrees of freedom (DoFs) for all considered
geometries.

Figure 2.5: Typical vortex formation in the aneurysm for all considered geometries. Com-
putational setting: generalized viscosity, periodic inflow.

Moreover, as it was outlined in the introduction, we focus on the determination of the
difference between the hemodynamic indicators (both AWSS and OSI) with respect to the
used formulae of the wall shear stress vector τw, see (2.2) and (2.3). This means, we aim
to demonstrate absolute differences

diffAWSS := |AWSS1−AWSS2|, and diffOSI := |OSI1−OSI2|, (2.12)

for all four geometries, where AWSS1, AWSS2, OSI1 and OSI2 are defined in (2.5) and (2.7).
The computational results for the periodic inflow (2.9) and for the shear rate dependent
viscosity model (1.5) are presented in Figure 2.6, with zooms on the aneurysms. The
results clearly show that the differences are strongly dependent on the complexity of the
geometry. This correlates with the fact that near the “smooth” parts of the boundary the
characteristic of the flow is close to the simple shear. Hence, both wall shear stress vectors
τw,1 and τw,2 are identical, and thus OSI and AWSS are the same for both approaches.
These areas are represented in Figure 2.6 without color. The parts of the walls where the
simple shear approximation fails are either those with higher curvature (like at bifurcations,
sharp curves, necks of aneurysms), or those which are near the flow vortices (like the heads
of aneurysms). Even though those parts of the boundary are minor, they are exactly the
critical regions where aneurysms evolve, and thus, to obtain more precise results, the whole
decomposition of wall traction should be assumed.

To compare the magnitude of the differences with the actual magnitudes of computed
AWSS and OSI, we include Figure 2.7 of geometry GEOM 3. For this particular computa-
tional setting, the maximal differences are approximately of 20% in AWSS and 40% in OSI
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2.6.1: diffAWSS 2.6.2: diffAWSS 2.6.3: diffAWSS 2.6.4: diffAWSS

2.6.5: diffOSI 2.6.6: diffOSI 2.6.7: diffOSI 2.6.8: diffOSI

Figure 2.6: Absolute differences between AWSS and OSI computations for all four geome-
tries. On parts of the boundary without color are the indicators identical,
i.e. AWSS1 = AWSS2 and OSI1 = OSI2. Computational setting: generalized
viscosity, periodic inflow.

with respect to the result obtained by the full decomposition. Nevertheless, the parts of the
wall where the AWSS and OSI differ mostly are not identical. AWSS1 differs from AWSS2
mainly at the sharp curve of the main vessel, while the OSI differences are mainly located
at the head of aneurysm and bifurcations. The areas where diffAWSS are highest reflect
regions where the vector τw changes mainly in magnitude, while for the diffOSI they are de-
termined by the τw having different directions but possibly of similar magnitude during the
flow period. This then causes that regions of highest AWSS/OSI differences are not always
identical. For better illustration of this fact, we include line cut profiles in Figure 2.8. For
both cases, AWSS1 and AWSS2, respectively OSI1 and OSI2, exhibit similar characteristics
but the values at critical regions differ. The cut 1 is represented in Figure 2.8.1, and as
it goes from front to the back, the cut parametrization in Figures 2.8.2–2.8.3 goes from 0
to 1. For this cut, we observe nearly no differences in AWSS but profound differences in
OSI. In the case of cut 2 (Figure 2.8.4), the remarkable differences in AWSS are positioned
at the inner curve of the main vessel, i.e. the left part of the representation of cut 2. For
clearer comparison reasons, the plotted values are neither smoothened nor interpolated.
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2.7.1: AWSS2 2.7.2: diffAWSS 2.7.3: OSI2 2.7.4: diffOSI

2.7.5: AWSS2 2.7.6: diffAWSS 2.7.7: OSI2 2.7.8: diffOSI

Figure 2.7: Comparison of the relative differences for the geometry GEOM 3 in two zoomed
views. For this case the maximal difference takes up to approximately 20% in
AWSS and 40% in OSI with respect to the result obtained by full decomposi-
tion. Computational setting: generalized viscosity, periodic inflow.

As last, we present in Figure 2.9 simulation results with a focus on the influence of the
computational setting on the value of OSI (here are the differences mostly distinguishable)
and the corresponding differences between the full and partial decomposition approaches
in the computation of τw. The pictures in Figure 2.9 are of geometry GEOM 2 in two
mutually opposite zooms on the aneurysm head. First, we can notice remarkable influence
of the used viscosity model on the OSI distribution, i.e. the difference in computation with
Newtonian (constant) viscosity and generalized (shear-rate dependent) viscosity, compare
first and third row of the figure. These both cases are results for a periodic inflow of the
velocity. On the other hand, the difference between the distributions of OSI for the case of
periodic and constant inflow is not of such a magnitude. This is due to the fact that the
flow in the aneurysm head is slowed down and it does not exhibit such a strong periodic
character as in the vessel itself. Nevertheless, on the vessel wall are the characteristics
much more distinguishable (partially notable in the zoom views as well). In this set of
pictures, the differences are defined as in (2.12).

We have considered only two averaged hemodynamic indicators. Nevertheless, there are
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2.8.3: OSI along cut 1
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2.8.5: AWSS along cut 2
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Figure 2.8: Direct comparison of the indicators on the line cuts as schematically depicted
in Figures 2.8.1 and 2.8.4. The line cut through the boundary is parametrized
to the interval (0,1), used as a characterization of a position on the cut for
plots in Figure 2.8.2, 2.8.3, 2.8.5 and 2.8.6. As one can see, the differences of
AWSS are placed away from the aneurysm head, while for the OSI they occur
on the top of the head. Full line: full decomposition (indicators computed from
τw,2), dashed line: partial decomposition (indicators computed from τw,1).

also other indicators which play an important role in physiological research of the vessel
wall. The focus was not to specify the whole scale of the relevant indicators since most of
them are directly derived from the wall shear stress vector τw. We rather wanted to give
a direct example that the way of how the wall shear stress vector is computed leads to
significant differences, illustrated on the two most used indicators. Obviously, differences
in the indicators will also have an impact on the interpretation of the results from a
physiological point of view.

2.4 Concluding remarks

In this chapter we have been focused on the blood flow simulation in aneurysms. Mainly
on the illustration of the importance of the formula for the use of the wall shear stress
vector in the computation of hemodynamic indicators. A full decomposition approach is
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2.9.1: µc, gt1 2.9.2: µc, gt1 2.9.3: µc, gt1 2.9.4: µc, gt1

2.9.5: µ(|D|2), gt2 2.9.6: µ(|D|2), gt2 2.9.7: µ(|D|2), gt2 2.9.8: µ(|D|2), gt2

2.9.9: µ(|D|2), gt1 2.9.10: µ(|D|2), gt1 2.9.11: µ(|D|2), gt1 2.9.12: µ(|D|2), gt1

zoom1: OSI2 zoom1: diffOSI zoom2: OSI2 zoom2: diffOSI

Figure 2.9: Comparison of OSI computed by full decomposition (from τw,2) and of the ab-
solute differences between the two approaches, with focus on the influence of
different computational setting. Top row: Newtonian model (constant viscos-
ity), middle row: generalized Newtonian model (non-constant viscosity), con-
stant inflow (described by function gt2), bottom row: generalized Newtonian
model (non-constant viscosity).

a good starting point for the characterization of critical areas of artery walls with respect
to the formation and progression of aneurysms. Nevertheless, in further work the models
should be improved by inclusion of the most significant aspects which can influence those
indicators as well. From our perspective, this includes the following. First, a more realistic
blood model which can, in a reasonable range, capture the pathological behavior of blood
near the critical areas and/or its non-Newtonian properties. And as a second, the influence
of the wall deformation caused by the blood flow circulation. For the considered numerical
method this means to include the fluid-structure interaction, and, for the modeling part,
a reasonable solid-like deformation model.

Another important point is the question about the optimization of the wall shear stress
vector, and as a consequence the optimization of the hemodynamic indicators. By this
we mean the optimal control of the inflow velocity into an arterial system, motivated for
instance by an artificial heart pump. The same question can be asked about the vortex
minimization in the aneurysm with respect to the inflow velocity, see, e.g., [47]. In such
cases the corresponding model problem can be described by the minimization of a tracking
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type cost functional, constrained by the partial differential equation describing blood flow.
Let us mention the following example, which is given as: Minimize the cost functional

J (u,z) :=
1
2
‖u−u‖2

L2(Ω)+
1
2
%|z|2H1/2(Γ)

,

subject to the constraint, the Navier–Stokes equations. Here u describes the desired state,
which could be for instance a constant flow field or the solution of the Stokes equations,
etc. Moreover we consider the cost or regularization coefficient % > 0 and the unknown
control z, which describes the unknown inflow velocity.

In the following we shall first present a unified numerical analysis for such a model problem
in case of the Poisson equation as a constraint. Moreover we present numerical results for
the Navier–Stokes equation, where the focus is on the vortex minimization for an arterial
blood flow application.





3 OPTIMAL BOUNDARY CONTROL PROBLEMS IN
ENERGY SPACES

In this chapter we consider optimal boundary control problems in energy spaces for the
Poisson equation which are broadly used in many applications, such as inflow control. The
idea to use the energy space as a control or regularization space was already introduced
in [49], see also [59], for the case of Dirichlet boundary control problems. The aim of this
chapter is to present a unified analysis of the Dirichlet and the Neumann boundary control
problem for the Poisson equation without box constraints. Further we shall study a finite
element discretization of lowest order. As we will see in this chapter, it turns out that such
an approach can be advantageous compared to classical formulations, where the control
is realized in L2(Γ), see also [39, 59, 63]. For a detailed discussion on the mathematical
and numerical analysis of optimal control problems and their applications we refer, e.g.,
to [37,49,74,81].

This chapter is organized as follows: In Section 3.1 we consider the Dirichlet boundary
control problem for the Poisson equation. First we introduce the Steklov–Poincaré operator
for the realization of the semi-norm in the energy space and derive the first order necessary
optimality conditions, given by the optimality system. For the variational formulation an
elimination of the control is possible and thus a standard structure of saddle point type is
obtained. Existence and uniqueness of a corresponding solution is then proven. Further we
introduce a corresponding finite element discretization of lowest order for which we prove
optimal error estimates. At the end of this section we present several numerical examples
which illustrate the obtained theoretical results.

In Section 3.2 we discuss the related model problem for the Neumann boundary control.
This case is nevertheless more involved, since for the Poisson equation a suitable scaling
has to be introduced in order to guarantee uniqueness of the solution. Due to this rea-
son we consider first the Neumann boundary control problem for the Yukawa equation,
since the constraint has a unique solution. Afterwards we study the optimal Neumann
boundary control for the Poisson equation. Therefore certain Sobolev spaces with addi-
tional constraints on the boundary have to be taken into consideration. It turns out that
the Neumann boundary control problem for the Poisson equation is already included in
the more general case of the Yukawa equation. The existence and uniqueness for both
constraints is investigated. Moreover a finite element discretization of lowest order is in-
troduced. In the case of the Laplace equation it turns out that the primal state, and the
Schur complement equation with respect to the boundary data coincide with the Dirichlet
boundary control problem, see also [42].

33
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3.1 Optimal Dirichlet boundary control

Let Ω ⊂ Rn (n = 2,3) be a bounded Lipschitz domain with a piecewise smooth boundary
Γ = ∂Ω. We assume that the desired state u ∈ L2(Ω) and the right-hand side f ∈ H−1(Ω)
are given. As a model problem, we consider an optimal Dirichlet boundary control problem
for the Poisson equation in the energy space, which is given as follows: Minimize the cost
functional

J (u,z) :=
1
2
‖u−u‖2

L2(Ω)+
1
2
%|z|2H1/2(Γ)

, (3.1)

subject to the constraint
−∆u = f in Ω,

u = z on Γ.
(3.2)

Additionally we may require that the control satisfies the box constraints

za ≤ z≤ zb a.e. on Γ, (3.3)

for given constraints za,zb ∈ H1/2(Γ).

The analysis and corresponding finite element approximation of the optimal control prob-
lem (3.1)–(3.3) was investigated in [59]. As it was motived in the introduction we are
interested in the construction of robust preconditioners for the above model problem. Due
to this reason we only consider the unconstrained model problem.

In the following subsections we explain how the semi-norm in H1/2(Γ) is realized and
derive the first order necessary optimality conditions. For the corresponding variational
formulation it turns out that a formal elimination of the control can be done. We prove
the existence and uniqueness of a solution. Afterwards, a lowest order finite element
discretization is introduced, for which we prove corresponding optimal error estimates.
These results are illustrated by several numerical examples.

3.1.1 Optimality system

Before we derive the optimality system, we need to discuss the realization of the semi-
norm in H1/2(Γ). In this work we use the representation via the so-called Steklov–Poincaré
operator. Other possibilities are the consideration of the Sobolev–Slobodeckii norm or the
hypersingular boundary integral operator, see, e.g., [53,73].

For the derivation of the Steklov–Poincaré operator we split the state into u = u f +uz with
u f ∈ H1

0 (Ω) and uz ∈ H1(Ω), being the unique solutions of

−∆u f = f in Ω,

u f = 0 on Γ,
(3.4)
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and
−∆uz = 0 in Ω,

uz = z on Γ.
(3.5)

For the boundary value problem (3.5) we obtain the following variational formulation: Find
uz ∈ H1(Ω) with uz = z on Γ such that

〈∇uz,∇q〉L2(Ω) = 0,

for all q ∈ H1
0 (Ω). Note this problem has a unique solution uz ∈ H1(Ω), which is the

harmonic extension of the Dirichlet datum z ∈ H1/2(Γ). Green’s first formula

0 = 〈−∆uz,v〉Ω = 〈∇uz,∇v〉L2(Ω)−〈∂nuz,v|Γ〉Γ,

for all v ∈ H1(Ω), then motivates the following definition of the semi-norm

|z|2H1/2(Γ)
:= 〈∂nuz,z〉Γ = |uz|2H1(Ω),

for all z ∈ H1/2(Γ). Now, we introduce the Steklov–Poincaré operator S, as a mapping
S : H1/2(Γ)→ H−1/2(Γ),

Sz := ∂nuz, (3.6)

which realizes the Dirichlet to Neumann map of the boundary value problem (3.5). Con-
sequently, we obtain for the semi-norm, using the Steklov–Poincaré operator (3.6), the
representation

|z|2H1/2(Γ)
= 〈Sz,z〉Γ, (3.7)

for all z ∈H1/2(Γ). The properties of the Steklov–Poincaré operator are summarized in the
following proposition, see also [59].

Proposition 3.1. The Steklov–Poincaré operator, defined in (3.6), is self-adjoint, bounded
and semi-elliptic in H1/2(Γ).

Now, we are in the position to apply the standard theory of optimal control, see, e.g.,
[37,81], for the derivation of the first order necessary optimality conditions as an equivalent
formulation of the optimal control problem (3.1)–(3.2). We derive these conditions in the
following. For the boundary value problem (3.5) we introduce the solution operatorH, with
uz =Hz for all z ∈ H1/2(Γ). Due to the compact embedding H1(Ω) ↪→ L2(Ω), the solution
operator is a mapping H : H1/2(Γ)→ L2(Ω). This gives us the possibility to introduce the
reduced cost functional, depending only on the control z, by

J̃ (z) :=
1
2
‖Hz+u f −u‖2

L2(Ω)+
1
2
%〈Sz,z〉Γ.
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Thus the optimal control problem (3.1)–(3.2) can be written in the following form: Find
the optimal control ẑ ∈ H1/2(Γ) such that

J̃ (ẑ) = min
z∈H1/2(Γ)

J̃ (z) = min
z∈H1/2(Γ)

{
1
2
‖Hz+u f −u‖2

L2(Ω)+
1
2
%〈Sz,z〉Γ

}
. (3.8)

Since the Steklov–Poincaré operator S is a bounded and self-adjoint operator we can apply
a standard result in optimal control theory, see, e.g., [81, Theorem 2.22], which states
that the above reduced minimization problem (3.8) is equivalent to the following operator
equation

H∗(Hz+u f −u)+%Sz = 0, (3.9)

in the sense of H−1/2(Γ), with the adjoint solution operator H∗ : L2(Ω)→ H−1/2(Γ). Note
that in the case of box constraints we would obtain a variational inequality, see, e.g., [59,81].
In order to solve equation (3.9) we need the adjoint solution operator, which is characterized
by the following theorem. The proof can be found, e.g., in [59].

Theorem 3.1. Let ψ ∈ L2(Ω) be arbitrary but fixed. Moreover let p∈H1
0 (Ω) be the unique

solution of the problem
−∆p = ψ in Ω,

p = 0 on Γ.

Then for the adjoint solution operator there holds H∗ψ =−∂n p.

Using the relation u =Hz+u f we obtain

H∗(Hz+u f −u) =H∗(u−u) =−∂n p.

Moreover we get from (3.9) the relation

−∂n p+%Sz = 0,

in the sense of H−1/2(Γ).

As a consequence we obtain the first order necessary optimality conditions which are equiv-
alent to the optimal control problem (3.1)–(3.2). They are given by the following system
of coupled partial differential equations, the so-called optimality system

Primal problem Adjoint problem Optimality condition

−∆u = f in Ω,

u = z on Γ,

−∆p = u−u in Ω,

p = 0 on Γ,
−∂n p+%Sz = 0 on Γ.

(3.10)

This means, that in the following we consider instead of the optimal control problem (3.1)–
(3.2), the optimality system (3.10).
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Remark 3.1. From the optimality system (3.10) we obtain the relation

∆
2 p =−∆u+∆u = f +∆u.

In the limit case, i.e. when the cost coefficient %→ 0, we then conclude the biharmonic
equation of first kind for the adjoint state p,

∆
2 p = f +∆u in Ω,

p = ∂n p = 0 on Γ.
(3.11)

This is a first indication that the optimal Dirichlet boundary control problem is related to
the biharmonic equation of first kind. Note that the primal state can be calculated then by
u = u−∆p.

Remark 3.2. For the optimality system (3.10) it is possible to eliminate the control z.
This can be done by splitting the primal state u = u f +uz and using the relation Sz = ∂nuz.
Moreover we replace the boundary condition uz = z by the optimality condition −∂n p+
%∂nuz = 0, which leads to the optimality system

−∆u f = f in Ω,

u f = 0 on Γ,

−∆uz = 0 in Ω,

%∂nuz = ∂n p on Γ,

−∆p = u f +uz−u in Ω,

p = 0 on Γ.
(3.12)

Note that in a post processing step we then find z = uz|Γ.

3.1.2 Variational formulation

Within this subsection we derive the variational formulation for the optimality system
(3.12). The reason for choosing (3.12) and not (3.10) is the elimination of the control z.
We prove the existence and uniqueness of a solution of the optimality system (3.12) and
present a stability estimate.

Based on the optimality system (3.12) we obtain for all test functions v ∈ H1(Ω)

〈u f +uz−u,v〉L2(Ω) = 〈−∆p,v〉Ω = 〈∇p,∇v〉L2(Ω)−〈∂n p,v〉Γ,

and

0 = %〈−∆uz,v〉Ω = %〈∇uz,∇v〉L2(Ω)−%〈∂nuz,v〉Γ = %〈∇uz,∇v〉L2(Ω)−〈∂n p,v〉Γ,

where we used the boundary condition %∂nuz = ∂n p. Combining these two equations leads
to

〈u f +uz,v〉L2(Ω)+%〈∇uz,∇v〉L2(Ω)−〈∇p,∇v〉L2(Ω) = 〈u,v〉L2(Ω),
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and additionally we add the term %〈∇u f ,∇v〉L2(Ω) on the left- and right-hand side, which
gives

〈u f +uz,v〉L2(Ω)+%〈∇(u f +uz),∇v〉L2(Ω)−〈∇p,∇v〉L2(Ω)

= 〈u,v〉L2(Ω)+%〈∇u f ,∇v〉L2(Ω),
(3.13)

for all v ∈ H1(Ω). Now we consider a test function q ∈ H1
0 (Ω) for which we obtain

〈 f ,q〉Ω = 〈−∆u f ,q〉Ω = 〈∇u f ,∇q〉L2(Ω),

and

0 = 〈−∆uz,q〉Ω = 〈∇uz,∇q〉L2(Ω).

We add these two equations and obtain

〈∇(u f +uz),∇q〉L2(Ω) = 〈 f ,q〉Ω, (3.14)

for all q ∈ H1
0 (Ω). Again we use for the primal state the relation u = u f + uz and obtain

with the equations (3.13)–(3.14) the following variational formulation for the optimality
system (3.12) in saddle point form. Find (u, p) ∈ H1(Ω)×H1

0 (Ω) such that

a(u,v)−b(v, p) = 〈u,v〉L2(Ω)+%〈∇u f ,∇v〉L2(Ω),

b(u,q) = 〈 f ,q〉Ω,
(3.15)

for all (v,q) ∈ H1(Ω)×H1
0 (Ω). The corresponding bilinear forms are given by

a(u,v) = 〈u,v〉L2(Ω)+%〈∇u,∇v〉L2(Ω), b(v,q) = 〈∇v,∇q〉L2(Ω). (3.16)

Next, we prove the existence and uniqueness of a solution of the saddle point formulation
(3.15). Therefore we define the kernel of the bilinear form b(·, ·) by

Ker B :=
{

v ∈ H1(Ω) : b(v,q) = 0 for all q ∈ H1
0 (Ω)

}
⊂ H1(Ω).

Theorem 3.2. Let u ∈ L2(Ω), f ∈ H−1(Ω). Then for the variational (3.15) there exists a
unique solution (u, p) ∈ H1(Ω)×H1

0 (Ω) and there holds the stability estimate

‖u‖H1(Ω)+‖p‖H1(Ω) ≤ c
(
‖u‖L2(Ω)+‖ f‖H−1(Ω)

)
. (3.17)

Proof. The boundedness of the bilinear forms a(·, ·) and b(·, ·) are easy to prove. Further
we obtain by the definition of a(·, ·) the estimate

a(v,v) = ‖v‖2
L2(Ω)+%|v|2H1(Ω) ≥min{1,%}‖v‖2

H1(Ω) = cA
1‖v‖2

H1(Ω),
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for all v ∈ H1(Ω). Since Ker B ⊂ H1(Ω) we conclude the Ker B–ellipticity of the bilinear
form a(·, ·). It remains to prove the inf–sup condition, which is a consequence of Friedrichs
inequality, see, e.g., [11], thus

sup
06=v∈H1(Ω)

b(v,q)
‖v‖H1(Ω)

≥
|q|2H1(Ω)

‖q‖H1(Ω)

≥ (1+ c−2
F )−1‖q‖H1(Ω) = cS‖q‖H1(Ω),

for all q ∈ H1
0 (Ω). Consequently we can conclude by the standard theory of saddle point

problems the existence and uniqueness of the solution (u, p)∈H1(Ω)×H1
0 (Ω). The stability

estimate follows from the estimates above, for the details we refer for instance to [12,
Proposition 1.3] or [73, Theorem 3.11].

3.1.3 Discretization and error estimates

In the following subsection we introduce a finite element discretization for the variational
formulation (3.15). Therefore we denote by Th an admissible, shape-regular and globally
quasi-uniform triangulation into triangles or tetrahedra of the bounded Lipschitz domain
Ω. The elements of Th are denoted by T . Further, we introduce the finite dimensional
subspaces

Vh = span{ϕ1
i }

nI+nC
i=1 ⊂ H1(Ω), Qh = span{ϕ1

i }
nI
i=1 ⊂ H1

0 (Ω), (3.18)

both of piecewise linear and globally continuous shape functions ϕ1
i . Note that nI = dim Qh

is the number of interior degrees of freedom, and, nC is the number of degrees of freedom
on the boundary with dim Vh = nI +nC.

Based on the continuous variational formulation (3.15) we obtain the following discrete
problem. Find (uh, ph) ∈ Vh×Qh such that

a(uh,vh)−b(vh, ph) = 〈u,vh〉L2(Ω)+%〈∇u f ,∇vh〉L2(Ω),

b(uh,qh) = 〈 f ,qh〉Ω,
(3.19)

for all (vh,qh) ∈ Vh ×Qh. For the existence and uniqueness of a discrete solution the
following theorem is valid.

Theorem 3.3. Let u ∈ L2(Ω), f ∈ H−1(Ω). Then for the discrete variational formulation
(3.19) there exists a unique solution (uh, ph)∈Vh×Qh and there holds the stability estimate

‖uh‖H1(Ω)+‖ph‖H1(Ω) ≤ c
(
‖u‖L2(Ω)+‖ f‖H−1(Ω)

)
.

Further, the quasi-optimal error estimate

‖u−uh‖H1(Ω)+‖p− ph‖H1(Ω) ≤ c
(

inf
vh∈Vh

‖u− vh‖H1(Ω)+ inf
qh∈Qh

‖p−qh‖H1(Ω)

)
,

is satisfied, where (u, p) ∈ H1(Ω)×H1
0 (Ω) is the exact solution of (3.15).
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Proof. The proof of existence and uniqueness, as well as the stability estimate is similar to
the proof of Theorem 3.2. Note that the discrete inf–sup condition

sup
0 6=vh∈Vh

b(vh,qh)

‖vh‖H1(Ω)

≥ c̃S‖qh‖H1(Ω),

for all qh ∈Qh can be shown by the same arguments as in the continuous case, due to the
inclusion Qh ⊂ Vh. For the error estimate we obtain from (3.15) and (3.19) the Galerkin
orthogonality

a(u−uh,vh)−b(vh, p− ph) = 0,
b(u−uh,qh) = 0,

(3.20)

for all (vh,qh) ∈ Vh×Qh. Let us consider arbitrary (ũh, p̃h) ∈ Vh×Qh, for which we obtain

a(ũh−uh,vh)−b(vh, p̃h− ph) = a(ũh−u,vh)−b(vh, p̃h− p),
b(ũh−uh,qh) = b(ũh−u,qh),

for all (vh,qh) ∈ Vh×Qh. For this problem we can apply the stability estimate, c.f. [12]
and [73, Theorem 8.7], and, obtain the estimate

‖ũh−uh‖H1(Ω)+‖p̃h− ph‖H1(Ω) ≤ c
(
‖ũh−u‖H1(Ω)+‖p̃h− p‖H1(Ω)

)
.

The desired error estimate follows then by applying the triangle inequality and correspond-
ing infima.

As a direct consequence of the above error estimate we obtain with the standard approxi-
mation property, see, e.g., [73, Theorem 9.10], the following error estimate

‖u−uh‖H1(Ω)+‖p− ph‖H1(Ω) ≤ chs−1 (|u|Hs(Ω)+ |p|Hs(Ω)

)
, (3.21)

where (u, p) ∈ Hs(Ω)×H1
0 (Ω)∩Hs(Ω) is the exact solution for some s ∈ [1,2].

Next, we prove by a duality argument (Aubin–Nitsche trick) an error estimate in the L2(Ω)
norm. Therefore we consider the following adjoint problem: Find (w,r) ∈ H1(Ω)×H1

0 (Ω)
such that

a(w,v)+b(v,r) = 〈u−uh,v〉L2(Ω),

−b(w,q) = 〈p− ph,q〉L2(Ω),
(3.22)

for all (v,q) ∈ H1(Ω)×H1
0 (Ω).

Theorem 3.4. Let the assumptions of Theorem 3.3 be satisfied and let us assume in
addition that for the problem (3.22) the estimate

‖w‖H2(Ω)+‖r‖H2(Ω) ≤ c
(
‖u−uh‖L2(Ω)+‖p− ph‖L2(Ω)

)
,
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is valid, which holds if the domain is either convex or has a smooth boundary. Then there
holds the error estimate

‖u−uh‖L2(Ω)+‖p− ph‖L2(Ω) ≤ chs (|u|Hs(Ω)+ |p|Hs(Ω)

)
, (3.23)

where (u, p) ∈ Hs(Ω)×H1
0 (Ω)∩Hs(Ω) is the exact solution and s ∈ [1,2].

Proof. Let us denote by Q1
Vh

and Q1
Qh

the standard H1(Ω) projection onto the finite ele-
ment space Vh and Qh, respectively. Applying the Galerkin orthogonality (3.20) and the
definition of the auxiliary problem (3.22) leads to the estimate

‖u−uh‖2
L2(Ω)+‖p− ph‖2

L2(Ω) = a(w,u−uh)+b(u−uh,r)−b(w, p− ph)

= a(u−uh,w−Q1
Vh

w)−b(w−Q1
Vh

w, p− ph)+b(u−uh,r−Q1
Qh

r)

≤ cA
2‖u−uh‖H1(Ω)‖w−Q1

Vh
w‖H1(Ω)+‖w−Q1

Vh
w‖H1(Ω)‖p− ph‖H1(Ω)

+‖u−uh‖H1(Ω)‖r−Q1
Qh

r‖H1(Ω)

≤ ch
(
|w|H2(Ω)+ |r|H2(Ω)

)(
‖u−uh‖H1(Ω)+‖p− ph‖H1(Ω)

)
≤ ch

(
‖u−uh‖L2(Ω)+‖p− ph‖L2(Ω)

)(
‖u−uh‖H1(Ω)+‖p− ph‖H1(Ω)

)
.

The assertion then follows by applying the error estimate (3.21).

Remark 3.3. It is important to mention that we do not have an exact representation for
the right-hand side in (3.19), since it involves the solution u f . In particular we consider
u f ,h ∈Qh which denotes the finite element approximation of u f ∈H1

0 (Ω). Thus a perturbed
problem has to be analyzed. By using Strang lemmata, see, e.g. [73, Theorem 8.2, 8.3] we
can prove optimal error estimates, i.e. the above error estimates remain valid.

It remains to answer the question about the order of convergence of the control z on
the boundary. As a direct consequence we obtain from the trace theorem and (3.21) the
following error estimate for the control,

‖z− zh‖H1/2(Γ) ≤ chs−1 (|u|Hs(Ω)+ |p|Hs(Ω)

)
,

assuming the exact solution (u, p) is regular enough, and s ∈ [1,2]. It is known that, in the
case of more regular solutions, the estimate above is not optimal and one can gain in the
convergence rate an additional factor of up to 1/2. The same argument is valid for the
L2(Γ) error of the control on the boundary.

In order to prove an error estimate for the control in the L2(Γ) with an order of hs−1/2 is
quite simple and shown in the following lemma.
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Lemma 3.1. Let the assumptions of Theorem 3.4 be satisfied, then there holds the error
estimate

‖z− zh‖L2(Γ) ≤ chs−1/2 (|u|Hs(Ω)+ |p|Hs(Ω)

)
(3.24)

where (u, p) ∈ Hs(Ω)×H1
0 (Ω)∩Hs(Ω) is the exact solution for some s ∈ [1,2].

Proof. For any v ∈ H1(Ω) we have, see, e.g., [11, Theorem 1.6.6], the estimate

‖v|Γ‖L2(Γ) ≤ c‖v‖1/2
L2(Ω)
‖v‖1/2

H1(Ω)
,

for all v ∈ H1(Ω). This result we can apply to the error of the control z− zh = (u−uh)|Γ,
which leads together with the error estimates (3.21) and (3.23) to

‖z− zh‖L2(Γ) ≤ c‖u−uh‖
1/2
L2(Ω)
‖u−uh‖

1/2
H1(Ω)

≤ chs−1/2 (|u|Hs(Ω)+ |p|Hs(Ω)

)
,

which concludes the proof.

As it was mentioned, both error estimates in H1/2(Γ) and L2(Γ), can be improved when
the solution is regular enough by a factor of up to 1/2. Recently, in [3,55] error estimates
in the L2(Γ) norm in the context of a Neumann boundary value problem and Lagrange
multipliers on the boundary were shown, which are optimal up to a logarithmic factor, in
the case of piecewise linear and globally continuous finite elements. We might use these
ideas for the proof of optimal error estimates for the control z. This can be seen as an
interesting and challenging future work.

Finally, we would like to comment on the linear system for the discrete variational for-
mulation (3.19) of the optimal Dirichlet boundary control problem. As mentioned before
we consider the piecewise linear and globally continuous finite element spaces Vh and Qh,
defined in (3.18), with dimVh = nI +nC and dimQh = nI, respectively. We introduce mass,
stiffness matrices and right-hand sides by

Mh[ j, i] = 〈ϕ1
i ,ϕ

1
j 〉L2(Ω), Ah[ j, i] = 〈∇ϕ

1
i ,∇ϕ

1
j 〉L2(Ω), u[i] = 〈u,ϕ1

i 〉L2(Ω), fI[`] = 〈 f ,ϕ1
` 〉Ω,

for all i, j = 1, . . . ,nI +nC and `= 1, . . . ,nI. Note that Mh,Ah ∈ R(nI+nC)×(nI+nC), u ∈ RnI+nC

and f I ∈R
nI . By separation of interior and boundary degrees of freedom, we can write the

stiffness matrix as

Ah =

(
AII AIC
ACI ACC

)
,

with AII ∈ RnI×nI , AIC = A>CI ∈ RnI×nC and ACC ∈ RnC×nC . Further, we introduce

AIA = A>AI =
(
AII AIC

)
.
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The discrete solution vector u f ∈ RnI of the homogeneous Dirichlet (3.4) problem is then

given by u f = A−1
II f I and consequently is discrete vector of the first equation of (3.19) given

by

f̃ = u+%AAIu f = u+%AAIA−1
II f I,

with f̃ ∈RnI+nC . The equivalent linear system for the discrete variational formulation (3.19)
reads then (

Mh +%Ah −AAI
AIA

)(
u
pI

)
=

(
f̃
f I

)
, (3.25)

where the individual blocks are of the following dimensions, Mh + %Ah ∈ R(nI+nC)×(nI+nC)

and AIA = A>AI ∈ RnI×(nI+nC).

Since the unknown u has its degrees of freedom corresponding to interior and boundary
degrees of freedom, we can separate them and rewrite u = (uI,uC)

> with uI ∈ RnI and
uC ∈RnC . Note that uC is the solution vector for the control zh. Splitting the linear system
into interior and boundary degrees of freedom leads toMII +%AII MIC +%AIC −AII

MCI +%ACI MCC +%ACC −ACI
AII AIC

uI
uC
pI

=

 f̃ I
f̃C
f I

 ,

or, by a simple reordering of the variables, asMII +%AII −AII MIC +%AIC
AII AIC

MCI +%ACI −ACI MCC +%ACC

uI
pI
uC

=

 f̃ I
f I
f̃C

 . (3.26)

In the following we derive the Schur complement system with respect to the control, i.e.
uC. From the linear system (3.26) we obtain

uI = A−1
II
[

f I−AICuC
]
,

and

pI = A−1
II

[
A−1

II
[
MIIuI +MICuC

]
+%
[
AIIuI +AICuC

]
− f̃ I

]
= A−1

II

[
MIIA−1

II f I−MIIA−1
II AICuC +MICuC +% f I− f̃ I

]
,

which results in the Schur complement system[[
MCC−MCIA−1

II AIC−ACIA−1
II MIC +ACIA−1

II MIIA−1
II AIC

]
+%
[
ACC−ACIA−1

II AIC
]]

uC

=
[
ACIA−1

II MII−MCI
]
A−1

II f I + f̃C−ACIA−1
II f̃ I.

(3.27)
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The corresponding Schur complement matrix is then given by

Th +%Sh = MCC−MCIA−1
II AIC−ACIA−1

II AIC +ACIA−1
II MIIA−1

II AIC

+%
[
ACC−ACIA−1

II AIC
]
.

(3.28)

As we will see in the forthcoming chapters this Schur complement consists of the Schur
complement Th of the biharmonic equation and Sh = ACC−ACIA−1

II AIC, which is the Schur
complement of the stiffness matrix of the Laplace equation, or in other words, the discrete
Galerkin matrix of the Steklov–Poincaré operator, see [39, 59]. Note that the Schur com-
plement system (3.27) with the unknown uC is an equation for the discrete control zh, since
we have the isomorphism zh↔ uC ∈ RnC .

3.1.4 Numerical results

In this subsection we emphasize on numerical examples for the energy space approach for
the optimal Dirichlet boundary control problem (3.1)–(3.2). We consider therefore the
mixed discrete variational formulation (3.19) with piecewise linear and globally continuous
finite elements, being equivalent to the linear system (3.25). As a computational domain
we consider the cube Ω = (0, 1

2)
n, for both, n = 2,3. The number of elements for different

refinement levels are given by, N = 4L+1 for n = 2 and by N = 12 · 8L elements for n = 3,
where L denotes the refinement level. Note that we refine the mesh by the midpoints of
the element edges. As given data we consider

%= 1, f = 0, u =

(
n

∑
i=1

(xi(xi−1/2)+1)2

)1/2

. (3.29)

We consider the numerical solution on refinement level L = 9 and L = 6, denoted by
(uh9, ph9,zh9) and (uh6, ph6,zh6), for n = 2,3 as the reference solution for the computation
of the errors. Note that the estimated order of convergence (eoc) might be slightly higher
than predicted by the theory, which is due to the reference solution.

In the following we present errors in the L2 norm for all unknowns. As proven in Section 3.1
we expect second order of convergence for the primal and adjoint state, (uh, ph). For the
control we expect at least 3/2 as order of convergence in the L2(Γ) norm, see error estimate
(3.24).

In Table 3.1 and Table 3.2 we present the corresponding errors and estimated order of
convergence, for the two- and three-dimensional model problem, respectively. We observe
for both examples optimal orders of convergence for the primal and adjoint state, which
illustrates the error estimates. In particular we obtain second order for the control on the
boundary, which is an order of 1/2 more as shown in (3.24).
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L Dofs ‖uh9−uh‖L2(Ω) eoc ‖ph9− ph‖L2(Ω) eoc ‖zh9− zh‖L2(Γ) eoc

0 6 1.99488 e–05 – 2.05235 e–05 – 7.10323 e–05 –
1 18 5.45896 e–06 1.87 2.05682 e–05 0.00 2.29918 e–05 1.63
2 66 4.02234 e–06 0.44 5.25710 e–06 1.97 1.36912 e–05 0.75
3 258 9.96254 e–07 2.01 1.45931 e–06 1.85 3.78661 e–06 1.85
4 1 026 2.39679 e–07 2.06 3.83092 e–07 1.93 9.78068 e–07 1.95
5 4 098 5.91005 e–08 2.02 9.72388 e–08 1.98 2.49145 e–07 1.97
6 16 386 1.46358 e–08 2.01 2.42042 e–08 2.01 6.27297 e–08 1.99
7 65 538 3.53393 e–09 2.05 5.81441 e–09 2.06 1.54177 e–08 2.02
8 262 146 7.70841 e–10 2.20 1.20565 e–09 2.27 3.44813 e–09 2.16
expected 2.00 2.00 1.50

Table 3.1: Errors and eoc for optimal Dirichlet boundary control, n = 2.

L Dofs ‖uh6−uh‖L2(Ω) eoc ‖ph6− ph‖L2(Ω) eoc ‖zh6− zh‖L2(Γ) eoc

0 8 2.43619 e–05 – 3.43965 e–05 – 1.27627 e–04 –
1 28 1.21087 e–05 1.01 2.24667 e–05 0.61 4.84704 e–05 1.40
2 152 4.70483 e–06 1.36 1.00057 e–05 1.17 2.71253 e–05 0.84
3 1 072 1.47357 e–06 1.67 3.19439 e–06 1.65 8.07966 e–06 1.75
4 8 288 4.10507 e–07 1.84 8.58818 e–07 1.90 2.15955 e–06 1.90
5 65 728 9.29795 e–08 2.14 1.83784 e–07 2.22 4.70650 e–07 2.20
expected 2.00 2.00 1.50

Table 3.2: Errors and eoc for optimal Dirichlet boundary control, n = 3.

3.2 Optimal Neumann boundary control

Within this section we apply the energy space control approach to optimal Neumann
boundary control problems. First we derive the first order necessary optimality conditions
for the Yukawa and the Poisson equation. As we will see, the second constraint is more
involved. Afterwards we prove for both constraints the existence and uniqueness of a
solution of the corresponding optimality system. In the case of the Laplace equation, it
turns out that the Schur complement, with respect to the boundary, is the same as in the
case of the optimal Dirichlet boundary control problem, see Section 3.1. Further, we prove
that in this particular case the primal states of Dirichlet and Neumann boundary control
coincide.

In the following Ω⊂ Rn (n = 2,3) shall always denote a bounded Lipschitz domain with a
piecewise smooth boundary Γ = ∂Ω.
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3.2.1 Optimality system – Yukawa

Let us consider the desired state u ∈ L2(Ω) and the right-hand side f ∈ H̃−1(Ω). As a
model problem we consider an optimal Neumann boundary control problem for the Yukawa
equation without box constraints, where we assume the cost coefficient %> 0, which is given
as follows: Minimize the cost functional

J (u,z) :=
1
2
‖u−u‖2

L2(Ω)+
1
2
%‖z‖2

H−1/2(Γ)
, (3.30)

subject to the constraint, with κ > 0,

−∆u+κu = f in Ω,

∂nu = z on Γ.
(3.31)

Note that the assumption κ > 0 has to be made in order to ensure the unique solvability
of the Neumann boundary value problem (3.31). The limit case, i.e. κ = 0, will be treated
later.

In the following, we discuss the realization of the H−1/2(Γ) norm, which is from its idea
strongly related to the realization of the semi-norm in H1/2(Γ) for the Dirichlet boundary
control, see Section 3.1. Further we derive the first order necessary optimality conditions.

We split the state into u = u f + uz, with u f ∈ H1(Ω) and uz ∈ H1(Ω), being the unique
solutions of

−∆u f +κu f = f in Ω,

∂nu f = 0 on Γ,

and
−∆uz +κuz = 0 in Ω,

∂nuz = z on Γ.
(3.32)

Multiplying (3.32) with a test function v ∈ H1(Ω) and applying integration by parts leads
to

0 = 〈−∆uz +κuz,v〉Ω = 〈∇uz,∇v〉L2(Ω)+κ〈uz,v〉L2(Ω)−〈∂nuz,v|Γ〉Γ.

This leads to the following variational formulation. Find uz ∈ H1(Ω) such that

〈∇uz,∇v〉L2(Ω)+κ〈uz,v〉L2(Ω) = 〈z,v|Γ〉Γ, (3.33)

for all v ∈ H1(Ω). For a given z ∈ H−1/2(Γ) this formulation has clearly a unique solution
uz ∈ H1(Ω). We introduce the following weighted norm

‖v‖H1(Ω),κ :=
(
|v|2H1(Ω)+κ‖v‖2

L2(Ω)

)1/2
,
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for all v∈H1(Ω). The variational formulation (3.33) then motivates the following definition
of the norm

‖z‖2
H−1/2(Γ)

:= 〈z,uz|Γ〉Γ = |uz|2H1(Ω)+κ‖uz‖2
L2(Ω) = ‖uz‖2

H1(Ω),κ ,

for all z ∈ H−1/2(Γ).

Now, we introduce the inverse Steklov–Poincaré operator, or Poincaré–Steklov operator,
as a mapping S−1

κ : H−1/2(Γ)→ H1/2(Γ),

S−1
κ z := uz|Γ, (3.34)

which realizes the Neumann to Dirichlet map for the boundary value problem (3.32). Con-
sequently we obtain for the norm in H−1/2(Γ), using the inverse Steklov–Poincaré operator
(3.34), the representation

‖z‖2
H−1/2(Γ)

= 〈S−1
κ z,z〉Γ. (3.35)

We summarize the properties of the inverse Steklov–Poincaré operator in the following
remark.

Proposition 3.2. The inverse Steklov–Poincaré operator S−1
κ , defined in (3.34), is self-

adjoint, bounded and elliptic in H−1/2(Γ).

As for the optimal Dirichlet boundary control problem, see Section 3.1, we derive the
first order necessary optimality condition as an equivalent formulation for the optimal
control problem (3.30)–(3.31), see also [81]. For the boundary value problem (3.32) we
introduce the solution operatorHκ , with uz =Hκz for all z∈H−1/2(Γ). Due to the compact
embedding of H1(Ω) ↪→ L2(Ω), the solution operator is then a mapping Hκ : H−1/2(Γ)→
L2(Ω). This gives us the possibility to introduce the reduced cost functional as

J̃ (z) :=
1
2
‖Hκz+u f −u‖2

L2(Ω)+
1
2
%〈S−1

κ z,z〉Γ.

Thus, the optimal control problem (3.30)–(3.31) can be stated in the following form: Find
the optimal control ẑ ∈ H−1/2(Γ) which satisfies

J̃ (ẑ) = min
z∈H−1/2(Γ)

J̃ (z) = min
z∈H−1/2(Γ)

{
1
2
‖Hκz+u f −u‖2

L2(Ω)+
1
2
%〈S−1

κ z,z〉Γ
}
. (3.36)

Since the inverse Steklov–Poincaré operator S−1
κ is a bounded and self-adjoint operator we

can apply a standard result in optimal control theory, see for e.g. [81, Theorem 2.22], which
states that the above reduced minimization problem (3.36) is equivalent to the following
operator equation

H∗κ(Hκz+u f −u)+%S−1
κ z = 0, (3.37)

in the sense of H1/2(Γ) with the adjoint solution operator H∗κ : L2(Ω)→ H1/2(Γ). In order
to solve this equation we need to characterize the adjoint solution operator for which the
following theorem holds.
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Theorem 3.5. Let ψ ∈ L2(Ω) be arbitrary but fixed. Moreover let p∈H1(Ω) be the unique
solution of the problem

−∆p+κ p = ψ in Ω,

∂n p = 0 on Γ.

Then for the adjoint solution operator there holds H∗κψ = p|Γ.

Proof. For the homogeneous problem (3.32) we obtain the following variational formula-
tions: Find uz ∈ H1(Ω) such that

〈∇uz,∇v〉L2(Ω)+κ〈uz,v〉L2(Ω) = 〈z,v〉Γ,

for all v ∈ H1(Ω). Moreover, we want to find p ∈ H1(Ω) such that

〈∇p,∇v〉L2(Ω)+κ〈p,v〉L2(Ω) = 〈ψ,v〉L2(Ω),

for all v ∈ H1(Ω). Now we set in the first problem v = p and for the second one v = uz.
Consequently we obtain, due to symmetry, the equality

〈Hκz,ψ〉L2(Ω) = 〈uz,ψ〉L2(Ω) = 〈∇p,∇uz〉L2(Ω)+κ〈p,uz〉L2(Ω) = 〈z, p〉Γ = 〈z,H∗κψ〉Γ,

for all ψ ∈ L2(Ω) and z ∈ H−1/2(Γ), which concludes the proof.

Using the relation u =Hκz+u f we obtain

H∗κ(Hκz+u f −u) =H∗κ(u−u) = p|Γ.

Moreover we obtain from (3.37) the relation

p|Γ +%S−1
κ z = 0,

in the sense of H1/2(Γ).

The first order necessary optimality conditions, which are equivalent to the optimal control
problem (3.30)–(3.31), are given by the following optimality system,

Primal problem Adjoint problem Optimality condition

−∆u+κu = f in Ω,

∂nu = z on Γ,

−∆p+κ p = u−u in Ω,

∂n p = 0 on Γ,
p+%S−1

κ z = 0 on Γ.
(3.38)

Remark 3.4. As in the Dirichlet boundary control case we can eliminate the control z by
splitting u = u f +uz. With the relation S−1

κ z = uz|Γ we can replace the boundary condition
∂nuz = z by p+%uz = 0. This leads to the following optimality system

−∆u f +κu f = f in Ω,

∂nu f = 0 on Γ,

−∆uz +κuz = 0 in Ω,

%uz =−p on Γ,

−∆p+κ p = u f +uz−u in Ω,

∂n p = 0 on Γ.

(3.39)

Note the control can be found in a post processing step via z = ∂nuz.
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3.2.2 Optimality system – Poisson

In the previous subsection we considered the optimal Neumann boundary control for the
Yukawa equation. Within this subsection we consider the optimal Neumann boundary
control problem for the Poisson equation. In this particular case we have to be more
careful with the function spaces and equivalent norms, since the state is by the constraint
only unique up to an additive constant.

Let us consider the desired state u ∈ L2(Ω) and a right-hand side f ∈ H̃−1
∗ (Ω), where

H̃−1
∗ (Ω) =

{
f ∈ H̃−1(Ω) : 〈 f ,1〉Ω = 0

}
.

As a model problem we consider an optimal Neumann boundary control problem for the
Poisson equation without box constraints, with a cost coefficient % > 0, which is given as
follows: Minimize the cost functional

J (u,z) :=
1
2
‖u−u‖2

L2(Ω)+
1
2
%‖z‖2

H−1/2(Γ)
, (3.40)

subject to the constraint
−∆u = f in Ω,

∂nu = z on Γ.
(3.41)

Note, that we have to assume a solvability condition for the control z and use the correct
function space for the state u in order to guarantee the uniqueness of a solution of the
constraint (3.41) for a given z. More precisely, for the constraint (3.41), we have to ensure
the solvability condition

〈z,1〉Γ + 〈 f ,1〉Ω = 0,

from which we obtain 〈z,1〉Γ = 0, since f ∈ H̃−1
∗ (Ω). This motivates the definition of the

space

H−1/2
∗ (Γ) :=

{
ψ ∈ H−1/2(Γ) : 〈ψ,1〉Γ = 0

}
,

for the control z. Before we identify the corresponding dual space, a different type of
scaling has to be introduced. Note, that this is only for theoretical reasons necessary and
not needed for computations, which will be more clear later. Without loss of generality, let
us assume that diam(Ω) < 1 for n = 2, which can be realized by simple scaling. Further,
we introduce for a given ψ ∈ H−1/2(Γ) the single layer boundary integral operator V :
H−1/2(Γ)→ H1/2(Γ) by

(V ψ)(x) :=
∫
Γ

U∗(x,y)ψ(y) dsy,
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for x ∈ Γ, where

U∗(x,y) =


− 1

2π
log |x− y| for n = 2,

1
4π|x− y|

for n = 3,

denotes the fundamental solution of the Laplace operator. The single layer boundary
integral operator is bounded and elliptic in H−1/2(Γ), see, e.g., [73, Theorem 6.22, 6.23].
Consequently, we can introduce the natural density weq ∈ H−1/2(Γ), which is the unique

solution of the following saddle point problem. Find (weq,λ ) ∈ H−1/2(Γ)×R such that

〈V weq,ψ〉Γ−λ 〈1,ψ〉Γ = 0,
〈weq,1〉Γ = 1,

for all ψ ∈H−1/2(Γ). It turns out, see [73, p. 144] that the dual space of H−1/2
∗ (Γ) is then

H1/2
∗ (Γ) = [H−1/2

∗ (Γ)]∗ =
{

v ∈ H1/2(Γ) : 〈v,weq〉Γ = 0
}
,

with the corresponding norm

‖v‖
H1/2
∗ (Γ)

=
(
〈v,weq〉2Γ + |v|2H1/2(Γ)

)1/2
,

which defines an equivalent norm in H1/2(Γ) by the norm equivalence theorem of Sobolev,
c.f. [73, Theorem 2.6]. Further, we introduce the space

H1
∗ (Ω) =

{
v ∈ H1(Ω) : 〈v|Γ,weq〉Γ = 0

}
,

equipped with the norm

‖v‖H1
∗ (Ω) =

(
〈v|Γ,weq〉2Γ + |v|2H1(Ω)

)1/2
,

which defines an equivalent norm in H1(Ω), by the same arguments as above.

As in the previous sections we split the primal state u = u f + uz, where u f ∈ H1(Ω) and
uz ∈ H1(Ω) are the solutions of the Neumann boundary value problems

−∆u f = f in Ω,

∂nu f = 0 on Γ,
(3.42)

and
−∆uz = 0 in Ω,

∂nuz = z on Γ.
(3.43)
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Since uz is via the problem (3.43) only uniquely determined up to an additive constant, we
introduce the following decomposition

uz = u0 +αΩ, (3.44)

with u0 ∈ H1
∗ (Ω) and αΩ ∈ R. Consequently, we have

〈uz,weq〉Γ = 〈u0,weq〉Γ +αΩ〈1,weq〉Γ = αΩ.

We shall note at this point that for the boundary value problem (3.42) only one particular
solution u f is needed.

Now, we multiply the equation (3.43) by a test function and apply integration by parts.
This leads to the following variational formulation. Find u0 ∈ H1

∗ (Ω) such that

〈∇u0,∇v〉L2(Ω) = 〈z,v|Γ〉Γ, (3.45)

for all v ∈ H1
∗ (Ω). This problem has clearly a unique solution u0 ∈ H1

∗ (Ω). In particular
this motivates the following definition of the norm

‖z‖2
H−1/2
∗ (Γ)

:= 〈z,u0|Γ〉Γ = 〈∇u0,∇u0〉L2(Ω) = ‖u0‖2
H1
∗ (Ω),

for all z ∈ H−1/2
∗ (Γ).

Now, we can introduce the stabilized inverse Steklov–Poincaré operator as a mapping

S∗ : H−1/2
∗ (Γ)→ H1/2

∗ (Γ),

S−1
∗ z := u0|Γ, (3.46)

which realizes the Neumann to Dirichlet map for the boundary value problem (3.43). This

definition implies the following representation of the norm in H−1/2
∗ (Γ),

‖z‖2
H−1/2
∗ (Γ)

= 〈S−1
∗ z,z〉Γ,

for all z ∈ H−1/2
∗ (Γ). Let us summarize the properties of the stabilized inverse Steklov–

Poincaré operator.

Proposition 3.3. The inverse stabilized Steklov–Poincaré operator S−1
∗ , defined in (3.46),

is self-adjoint, bounded and elliptic in H−1/2
∗ (Γ).

It remains to determine the unknown parameter αΩ ∈ R of the decomposition (3.44).
Therefore we rewrite the cost functional (3.40) with the definition of the inverse stabi-
lized Steklov–Poincaré operator as

J (u,z) = 1
2
‖u0 +αΩ +u f −u‖2

L2(Ω)+
1
2
%〈S−1
∗ z,z〉Γ

=
1
2
‖u0 +u f −u‖2

L2(Ω)+αΩ〈u0 +u f −u,1〉L2(Ω)+
α2

Ω

2
|Ω|+ 1

2
%〈u0|Γ,z〉Γ.
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Minimization with respect to αΩ leads to

αΩ =
1
|Ω|
〈u−u0−u f ,1〉L2(Ω),

and consequently with the definition of αΩ follows

〈u−u,1〉L2(Ω) = 〈u0 +u f −u,1〉L2(Ω)+αΩ|Ω|= 0.

Thus, we have u−u ∈ L2
∗(Ω), where

L2
∗(Ω) =

{
v ∈ L2(Ω) : 〈v,1〉L2(Ω) = 0

}
.

Similarly to the optimal Neumann boundary control problem for the Yukawa equation, in
Subsection 3.2.1, we derive the first order necessary optimality condition as an equivalent
formulation for our problem (3.40)–(3.41), see [81]. Therefore we introduce, for the bound-

ary value problem (3.43) the solution operator H∗, which is for each z ∈ H1/2
∗ (Γ) defined

by

H∗z = u0−
1
|Ω|
〈u0,1〉L2(Ω),

where u0 ∈H1
∗ (Ω) is the unique solution of (3.45). Then the solution operator is obviously

a mapping H∗ : H−1/2
∗ (Γ)→ L2

∗(Ω). Let us recall that

u−u = uz +u f −u =H∗z+ |Ω|−1〈u0,1〉L2(Ω)+αΩ +u f −u,

which gives us the possibility to introduce the reduced cost functional as

J̃ (z) :=
1
2
‖H∗z+ |Ω|−1〈u0,1〉L2(Ω)+αΩ +u f −u‖2

L2(Ω)+
1
2
%〈S−1
∗ z,z〉Γ.

By this observation, the optimal control problem (3.40)–(3.41) can be formulated in the

following way: Find the optimal control ẑ ∈ H−1/2
∗ (Γ) such that

J̃ (ẑ) = min
z∈H−1/2

∗ (Γ)

J̃ (z)

= min
z∈H−1/2

∗ (Γ)

{
1
2
‖H∗z+ |Ω|−1〈u0,1〉L2(Ω)+αΩ +u f −u‖2

L2(Ω)+
1
2
%〈S−1
∗ z,z〉Γ

}
,

(3.47)

is satisfied. Since the inverse stabilized Steklov–Poincaré operator S−1
∗ is a bounded and

self-adjoint operator, we can apply as before the result [81, Theorem 2.22], which states
that the above reduced minimization problem (3.47) is equivalent to the following operator
equation

H∗∗(H∗z+ |Ω|−1〈u0,1〉L2(Ω)+αΩ +u f −u)+%S−1
∗ z = 0, (3.48)

in the sense of H−1/2
∗ (Γ) with the adjoint solution operator H∗∗ : L2

∗(Ω)→H1/2
∗ (Γ). To solve

this equation we need the adjoint solution operator, which is characterized by the following
theorem.
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Theorem 3.6. Let ψ ∈ L2
∗(Ω) be arbitrary but fixed. Moreover, let p∈H1

∗ (Ω) be the unique
solution of the problem

−∆p = ψ in Ω,

∂n p = 0 on Γ.

Then for the adjoint solution operator there holds H∗∗ψ = p|Γ.

Proof. We proceed with the proof similarly as the proof of Theorem 3.5. From the decom-
position uz = u0 +αΩ and the variational formulation (3.45) we obtain: Find u0 ∈ H1

∗ (Ω)
such that

〈∇u0,∇v〉L2(Ω) = 〈z,v|Γ〉Γ,

for all v ∈ H1
∗ (Ω). Moreover, we want to find p ∈ H1

∗ (Ω) such that

〈∇p,∇v〉L2(Ω) = 〈ψ,v〉L2(Ω),

for all v ∈ H1
∗ (Ω). As previously, we set in the first problem v = p and for the second

problem v = u0, and obtain, due to symmetry, the equality

〈H∗z,ψ〉L2(Ω) = 〈u0,ψ〉L2(Ω)−|Ω|−1〈u0,1〉L2(Ω)〈ψ,1〉L2(Ω) = 〈u0,ψ〉L2(Ω)

= 〈∇p,∇u0〉L2(Ω) = 〈z, p|Γ〉Γ = 〈z,H∗∗ψ〉Γ,

since ψ ∈ L2
∗(Ω). This concludes the proof.

By using uz =H∗z+ |Ω|−1〈u0,1〉L2(Ω)+αΩ we obtain

H∗∗(H∗z+ |Ω|−1〈u0,1〉L2(Ω)+αΩ +u f −u) =H∗∗(u−u) = p|Γ.

In particular, we obtain from (3.48) the relation

p|Γ +%S−1
∗ z = 0,

in the sense of H1/2
∗ (Γ). As a consequence an arbitrary constant can be added. In particular

we can add αΩ and because of S−1
∗ z = u0|Γ the above equation turns into

p|Γ +%uz|Γ = 0. (3.49)

Note that the assumption u− u ∈ L2
∗(Ω) ensures the solvability of the adjoint equation,

while p|Γ ∈ H1/2
∗ (Γ) is the scaling condition for uniqueness.

The first order necessary optimality conditions, which are equivalent to the optimal control
problem (3.40)–(3.41), are given by the optimality system

Primal problem Adjoint problem Optimality condition

−∆u = f in Ω,

∂nu = z on Γ,

−∆p = u−u in Ω,

∂n p = 0 on Γ,
p+%S−1

∗ z = 0 on Γ.
(3.50)
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Remark 3.5. As in the previous subsection for the Yukawa equation we can eliminate the
control z by splitting u = u f + uz. With the relation (3.49) we can replace the boundary
condition ∂nuz = z by p+%uz = 0. This leads to the following optimality system

−∆u f = f in Ω,

∂nu f = 0 on Γ,

−∆uz = 0 in Ω,

%uz =−p on Γ,

−∆p = u f +uz−u in Ω,

∂n p = 0 on Γ.
(3.51)

Again, the control can be found in a post processing step by z = ∂nuz.

3.2.3 Variational formulation

In the following we prove the existence and uniqueness of a solution of the Neumann
boundary control problem, for both constraints, the Yukawa equation (3.31) and the Pois-
son equation (3.41). Note that in the latter case we assume the scaling condition

〈 f ,1〉Ω = 0.

For both constraints, i.e. Poisson and Yukawa equations, we can write the corresponding
optimality systems, for κ ≥ 0, as

−∆u f +κu f = f in Ω,

∂nu f = 0 on Γ,

−∆uz +κuz = 0 in Ω,

%uz =−p on Γ,

−∆p+κ p = u f +uz−u in Ω,

∂n p = 0 on Γ.

(3.52)

From (3.52) we obtain for the first equation the following variational formulation: Find
u f ∈ H1(Ω) such that

〈∇u f ,∇v〉L2(Ω)+κ〈u f ,v〉L2(Ω) = 〈 f ,v〉Ω,

for all v ∈ H1(Ω). This problem has a unique solution u f ∈ H1(Ω) for κ > 0 and a unique
solution u f ∈ H1

∗ (Ω) in the case κ = 0. The corresponding variational formulation for uz
and p reads then: Find (uz, p) ∈ H1(Ω)×H1(Ω) with %uz =−p on Γ, such that

〈uz,v〉L2(Ω) −〈∇p,∇v〉L2(Ω)−κ〈p,v〉L2(Ω) = 〈u−u f ,v〉L2(Ω),

〈∇uz,∇q〉L2(Ω)+κ〈uz,q〉L2(Ω) = 0,
(3.53)

for all (v,q) ∈ H1(Ω)×H1
0 (Ω).
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In order to prove the existence and uniqueness of the solution of the variational formulation
above, we introduce the following solution operators. Let ϕ ∈H1/2(Γ) be arbitrary but fixed
and let uϕ ∈ H1(Ω) with uϕ = ϕ on Γ be the unique solution of

〈∇uϕ ,∇q〉L2(Ω)+κ〈uϕ ,q〉L2(Ω) = 0,

for all q ∈ H1
0 (Ω). Then we introduce the operator Hκ : H1/2(Γ)→ H1(Ω), defined as

uϕ = Hκϕ . For the related Neumann datum we introduce, for all κ ≥ 0, the associated

Steklov–Poincaré operator Sκ : H1/2(Γ)→ H−1/2(Γ), defined via

Sκϕ := ∂nuϕ .

Note that Sκ is semi-elliptic in H1/2(Γ) for all κ ≥ 0, see Proposition 3.1. Further, we
introduce the operator Tκ,% : H1/2(Γ)→ H−1/2(Γ), by

Tκ,% :=H∗κHκ +%Sκ . (3.54)

Due to boundedness of the Steklov–Poincaré operator Sκ and the fact that

‖uϕ‖H1(Ω) ≤ c‖ϕ‖H1/2(Γ),

we can conclude the boundedness of Tκ,%,

‖Tκ,%ϕ‖H−1/2(Γ) ≤ cTκ,%

2 ‖ϕ‖H1/2(Γ).

Lemma 3.2. The operator Tκ,% : H1/2(Γ) → H−1/2(Γ), defined in (3.54), is elliptic in

H1/2(Γ), i.e.,

〈Tκ,%ϕ,ϕ〉Γ ≥ cTκ,%

1 ‖ϕ‖2
H1/2(Γ)

,

for all ϕ ∈ H1/2(Γ) and κ ≥ 0.

Proof. The ellipticity follows directly from the definitions and properties of Hκ and Sκ .
More precisely we have

〈Tκ,%ϕ,ϕ〉Γ = 〈Hκϕ,Hκϕ〉L2(Ω)+%〈Sκϕ,ϕ〉Γ
= 〈uϕ ,uϕ〉L2(Ω)+%〈∇uϕ ,∇uϕ〉L2(Ω)+%κ〈uϕ ,uϕ〉L2(Ω)

≥min{%,1+κ%}‖uϕ‖2
H1(Ω) ≥ cTκ,%

1 ‖ϕ‖2
H1/2(Γ)

,

for all ϕ ∈ H1/2(Γ), which proves the assertion.

In order to prove the existence and uniqueness of the mixed variational formulation (3.53),
we would like to use standard results for saddle point problems, see, e.g., [12, 73]. This is
nevertheless more complicated due to the boundary condition %uz =−p. Alternatively, we
consider the operator Schur complement equation with respect to the adjoint state p|Γ on
the boundary.
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Theorem 3.7. Let u ∈ L2(Ω), then for all κ ≥ 0 and %> 0 there exists a unique solution
(uz, p) ∈ H1(Ω)×H1(Ω) of the variational formulation (3.53).

Proof. For a given ψ ∈ L2(Ω) and κ ≥ 0 let Nκ : L2(Ω)→H1
0 (Ω) be defined as uψ =Nκψ ,

where uψ ∈ H1
0 (Ω) is the unique solution of the homogeneous Dirichlet boundary value

problem

〈∇uψ ,∇q〉L2(Ω)+κ〈uψ ,q〉L2(Ω) = 〈ψ,q〉L2(Ω),

for all q ∈ H1
0 (Ω). Consequently we obtain for the corresponding Neumann datum

〈∂nNκψ,ϕ〉Γ = 〈∂nuψ ,uϕ〉Γ
= 〈∇uψ ,∇uϕ〉L2(Ω)+κ〈uψ ,uϕ〉L2(Ω)−〈ψ,uϕ〉L2(Ω)

=−〈ψ,Hκϕ〉L2(Ω) =−〈H∗κψ,ϕ〉Γ,

for all ϕ ∈ H1/2(Γ). By the definition of Hκ we conclude from the primal problem that

%uz =−Hκ p|Γ.

Further, we have from the adjoint problem the relation

p =Hκ p|Γ +Nκ(uz +u f −u) =Hκ p|Γ +Nκ(−%−1Hκ p|Γ +u f −u)

=Hκ p|Γ−%−1Nκ(Hκ p|Γ +%(u−u f )),

and consequently for the associated Neumann datum, using the relation above,

∂n p = Sκ p|Γ +%−1H∗κ(Hκ p|Γ +%(u−u f )) = 0.

This means that we have to solve the variational formulation

〈Tκ,%p|Γ,ϕ〉Γ = %〈H∗κ(u f −u),ϕ〉Γ,

for all ϕ ∈ H1/2(Γ), where Tκ,% =H∗κHκ +%Sκ . As proven in Lemma 3.2 the operator Tκ,%

is bounded and elliptic for all κ ≥ 0, see also [59]. Consequently the above variational
formulation has a unique solution p|Γ ∈H1/2(Γ). Further, we can conclude the existence of

a unique solution (uz, p) ∈ H1(Ω)×H1(Ω) by solving the related Dirichlet and Neumann
boundary value problem.

As stated in Theorem 3.7, the variational formulation (3.53) of the optimality system, has
a unique solution also in the particular case κ = 0. By taking the test function v = 1, we
conclude from the variational formulation (3.53) the solvability condition

〈u−u,1〉L2(Ω) = 0.
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If the state u ∈ H1(Ω) is known we can compute the control z in a post processing step
as

z = ∂nu on Γ,

which, by Green’s formula, automatically satisfies

〈z,1〉Γ = 〈∂nu,1〉Γ = 0,

and thus the control z belongs to H−1/2
∗ (Γ). Hence, we conclude that the Neumann bound-

ary control problem for the Laplace equation is a priori included in the more general case
of the Neumann control problem for the Yukawa equation, κ ≥ 0.

3.2.4 Discretization

The finite element discretization of the variational formulation (3.53) as well as the related
error analysis can be done similarly as in the case of the Dirichlet boundary control problem,
see Section 3.1, and also [59]. As before, we consider an admissible, shape-regular and
quasi-uniform triangulation Th and introduce the finite element spaces

Vh = span{ϕ1
i }

nI+nC
i=1 ⊂ H1(Ω), Qh = span{ϕ1

i }
nI
i=1 ⊂ H1

0 (Ω),

of piecewise linear and globally continuous shape functions, defined in (3.18). With the
separation of interior and boundary degrees of freedoms we have for the dimensions of the
finite element spaces dimVh = nI + nC and dimQh = nI, as introduced in Section 3.1. Let
us denote by u f ,h ∈ Vh the finite element solution of (3.52). The corresponding variational
formulation reads then: Find (uz,h, ph) ∈ Vh×Vh with %uz,h =−ph on Γ, such that

〈uz,h,vh〉L2(Ω) −〈∇ph,∇vh〉L2(Ω)−κ〈ph,vh〉L2(Ω) = 〈u−u f ,h,vh〉L2(Ω),

〈∇uz,h,∇qh〉L2(Ω)+κ〈uz,h,qh〉L2(Ω) = 0,
(3.55)

for all (vh,qh) ∈ Vh×Qh.

We introduce standard finite element mass and stiffness matrices, as well as the right-hand
side vectors, by

Mh[ j, i] = 〈ϕ1
i ,ϕ

1
j 〉L2(Ω), Ah[ j, i] = 〈∇ϕ

1
i ,∇ϕ

1
j 〉L2(Ω), u[i] = 〈u,ϕ1

i 〉L2(Ω), f [i] = 〈 f ,ϕ1
i 〉Ω,

for all i, j = 1, . . . ,nI +nC. Additionally, we consider the weighted combination

Ah,κ [ j, i] = 〈∇ϕ
1
i ,∇ϕ

1
j 〉L2(Ω)+κ〈ϕ1

i ,ϕ
1
j 〉L2(Ω),
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for all i, j = 1, . . . ,nI +nC. Note that for the case κ = 0 there holds Ah,0 = Ah. The discrete
variational formulation (3.55) is then equivalent to the linear systemMII −AII,κ −AIC,κ −%−1MIC

AII,κ −%−1AIC,κ

MCI −ACI,κ −ACC,κ −%−1MCC

uI
pI
pC

=

 ũI
0

ũC

 , (3.56)

where the modified right-hand side is given by ũ= (ũI, ũC)
>= u−A−1

h,κ f . As for the Dirichlet
boundary control problem we derive the Schur complement system. By using

uI = %−1A−1
II,κAIC,κ pC,

and

pI = A−1
II,κ
[
%−1MIIA−1

II,κAIC,κ pC−AIC,κ pC−%−1MIC pC− ũI
]
,

we can derive the Schur complement system as[[
MCC−MCIA−1

II,κAIC,κ −ACI,κA−1
II,κMIC +ACI,κA−1

II,κMIIA−1
II,κAIC,κ

]
+%
[
ACC,κ −ACI,κA−1

II,κAIC,κ

]]
pC

= %
[
ACI,κA−1

II,κ ũI− ũC
]
,

with the Schur complement

Th,κ +%Sh,κ = MCC−MCIA−1
II,κAIC,κ −ACI,κA−1

II,κMIC

+ACI,κA−1
II,κMIIA−1

II,κAIC,κ

+%
[
ACC,κ −ACI,κA−1

II,κAIC,κ

]
.

(3.57)

Note that the Schur complement matrix Th,κ +%Sh,κ defined in (3.57), coincides with the
Schur complement matrix Th + %Sh of the Dirichlet boundary control problem defined in
(3.28), for the particular case κ = 0, i.e., Th,0 + %Sh,0 = Th + %Sh. Using the discrete opti-
mality condition

pC +%uC = 0,

we can rewrite the Schur complement equation in terms of uC and thus obtain

(Th,κ +%Sh,κ)uC = ũC−ACI,κA−1
II,κ ũI. (3.58)

This means, that for κ = 0 and f = 0 the discrete Schur complement equation of the Neu-
mann boundary control problem (3.58) coincides with the Schur complement equation of
the Dirichlet boundary control problem (3.27). In this particular case the Schur comple-
ment equation is given by

(Th +%Sh)uC = uC−ACIA−1
II uI.
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The linear system (3.58) admits a unique solution uC ∈RnC , from which we can determine
uI ∈RnI , and therefore u = (uI,uC)

>↔ uh ∈ Vh defines an approximate state. From this we
can find a piecewise constant approximation of the control z by computing

zh = ∂nuh on Γ. (3.59)

Remark 3.6. If we consider the finite element space Zh ⊂ H−1/2(Γ) for the discrete con-
trol, the discretization of the original optimality system, which includes the unknown z,
would require an approximation zh ∈ Zh of the control z ∈ H−1/2(Γ). Correspondingly, the
variational formulation of the optimality condition (3.49) would be then formulated as

〈ph +%uh,µh〉Γ = 0,

for all µh ∈ Zh. Since this corresponds to a mixed finite element discretization scheme, the
discrete inf–sup condition,

c̃S‖µh‖H−1/2(Γ) ≤ sup
vh∈Vh

〈µh,vh〉Γ
‖vh‖H1(Ω)

, (3.60)

for all µh ∈ Zh, is required. Note that this excludes the choice of a piecewise constant
approximation zh of the control which is defined on the boundary mesh of the piecewise
linear finite element approximations uh and ph. If the mesh size H of the finite element
space ZH on the boundary is nevertheless coarse enough, i.e. h≤ cH, the inf–sup condition
(3.60) is valid, see [73, Theorem 11.5]. In our situation, when the control is eliminated,
the computation of (3.59) is a post processing step, i.e. a discrete inf–sup condition such
as (3.60) is not required.

For κ = 0 the optimality condition of the Dirichlet boundary control problem involves the
same operator as for the Neumann boundary control problem, and since the system matrices
of both Schur complement systems (3.28) and (3.57) coincide, one may rise the question if
there is a relation between the solutions of the underlying Dirichlet and Neumann boundary
control problems.

Theorem 3.8. For given u ∈ L2(Ω) and %> 0 we consider the Dirichlet boundary control
problem (3.10) with f = 0 and the state solution uD ∈ H1(Ω). Further, we consider the
Neumann boundary control problem (3.50) with κ = 0, f = 0 and the state solution uN ∈
H1(Ω). Then the states coincide, i.e. we have uD = uN in H1(Ω).

Proof. Let (uD, pD)∈H1(Ω)×H1
0 (Ω) be the unique solution of the optimality system (3.10),

i.e.
−∆uD = 0 in Ω,

%∂nuD = ∂n pD on Γ,

−∆pD = uD−u in Ω,

pD = 0 on Γ.
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Using the representation ∂nw= Sw|Γ−N f on Γ, where N is the Newton potential, to describe
the Dirichlet to Neumann map subject to the solution of the Poisson problem −∆w = f in
Ω, we obtain

∂nuD = SuD|Γ, ∂n pD = SpD|Γ−N(uD−u),

and therefore

Nu = %SuD|Γ−SpD|Γ +NuD = %SuD|Γ +NuD.

Analogously, let (uN , pN) ∈H1(Ω)×H1(Ω) be the solution of the optimality system (3.50),
i.e.,

−∆uN = 0 in Ω,

%uN =−pN on Γ,

−∆pN = uN−u in Ω,

∂n pN = 0 on Γ.

As above we can write

0 = ∂n pN = SpN|Γ−N(uN−u) =−%SuN|Γ−N(uN−u),

and hence

Nu = %SuN|Γ +NuN .

In particular, we obtain

%S(uN|Γ−uD|Γ)+N(uN−uD) = 0,

which means that, ũ = uN−uD is a solution of the homogeneous Neumann boundary value
problem

−%∆ũ+ ũ = 0 in Ω,

∂nũ = 0 on Γ.

Since this problem admits the unique solution ũ = 0 we can therefore conclude uD = uN ,
which concludes the proof.

3.3 Concluding remarks

In this chapter we have studied optimal boundary control problems in the energy space.

In the first section, on optimal Dirichlet boundary control, we have started with the deriva-
tion of the first order necessary optimality conditions. In particular, it has been possible to
eliminate the control and derive a mixed variational formulation for which we have proven
the existence and uniqueness of a solution, including a stability estimate. The correspond-
ing finite element discretization has been done by piecewise linear and globally continuous
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shape functions for which we have proven optimal error estimates. Corresponding numer-
ical examples have illustrated these theoretical results.

The optimal Neumann boundary control has been treated in the second part of this chapter.
It turned out that many ideas from the Dirichlet control case could be applied. First, we
have considered as a constraint the Yukawa equation, since this equation has a unique
solution. For this model problem we have derived the optimality system. In the second
part, we have considered the Neumann boundary control for the Poisson equation, where
we had to introduce a stabilized inverse Steklov–Poincaré operator. It nevertheless turned
out that this problem is a special case of the Yukawa equation. Existence and uniqueness of
the problem has been shown. Further, we proved that in the case of the Laplace equation
as a constraint, the primal states of Dirichlet and Neumann boundary control problems,
coincide.

In the upcoming chapters we apply the boundary control approach in the energy space to
a blood flow related application, as motivated in Chapter 1 and 2. Further, we discuss the
construction of robust preconditioners for the problems stated in this chapter. As it was
mentioned, the optimality system leads in the limit case, i.e., for %= 0, to the biharmonic
equation of first kind. Due to this reason this model problem should be studied and
corresponding preconditioning strategies discussed. These ideas shall be applied afterwards
for the optimal Dirichlet and Neumann boundary control problem.





4 AN OPTIMAL CONTROL PROBLEM FOR ARTERIAL
BLOOD FLOW

In Chapter 2 we have discussed the numerical simulation of hemodynamic indicators, such
as the wall shear stress and the oscillatory shear index. From the point of optimization,
we can ask how to minimize such factors, for instance by controlling the inflow velocity.
An important point here is the specification of a reasonable cost functional, which should
be done in such a way that those risk factors are minimized. Within this chapter the
focus will be laid on vortex minimization for arterial blood flow. In particular we apply
the ideas of the optimal Dirichlet boundary control in the energy space, introduced in the
previous chapter, see also [39,59], to a blood flow related problematics. More precisely, we
are interested in the control of the inflow velocity (inflow profile) into an artery, subject to
the minimization of vortices of the flow. Such simulations can be used for example for the
inflow control of artificial heart pumps. For the description of the blood flow we consider
the Navier–Stokes equations (1.8) with a constant viscosity, i.e. (1.4). One may also think
of an extension to the generalized viscosity (1.5) or even more advanced models, which can
be seen as a future work. We shall point out that the two dimensional model problem was
already studied in [39].

This chapter is organized as follows: After the introduction of the model problem and
a suitable Sobolev space for the control we discuss the realization of the cost functional.
Therefore we introduce the vector valued Steklov–Poincaré operator via a Laplace problem,
which allows us to rewrite the norm in H̃1/2(ΓC). Further, we present the first order
necessary optimality conditions in form of the optimality system, for which we introduce a
finite element discretization. In particular we consider a stabilized finite element method,
as discussed in Chapter 1, which allows a lowest order approximation. Several numerical
results illustrate the advantages of the energy control approach. The optimization of the
wall shear stress, or other hemodynamic indicators, will be discussed at the end of this
chapter.

Let Ω⊂Rn (n = 2,3) be a bounded Lipschitz domain with boundary Γ = ∂Ω. As a model
problem we consider the stationary Navier–Stokes equations with a constant viscosity ν > 0
and mixed boundary conditions on mutually different parts of the boundary, i.e. a Dirichlet
boundary ΓD, a Neumann boundary ΓN, and a control boundary ΓC, all of positive measure.
As it was mentioned previously in Chapter 1, these parts describe the inflow and outflow
boundary, as well as the arterial wall. For the given data we assume the optimal state
u∈ L2(Ω)n, the force term f ∈ H̃−1(Ω)n and a given inflow, which is given via g̃∈H1/2(ΓD)

n,
as described in Chapter 1.

63
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The corresponding optimal control problem is given as follows: Minimize the cost func-
tional

J (u,z) :=
1
2
‖u−u‖2

L2(Ω)+
1
2
%|z|2H1/2(ΓC)

(4.1)

subject to the constraint

−ν∆u+(∇u)u+∇p = f in Ω,

div u = 0 in Ω,

u = g̃ on ΓD,

ν∂nu− pn = 0 on ΓN,

u = z on ΓC.

(4.2)

Note that this optimal control problem is one of the simplest to consider for the construction
of optimal inflow profiles, with focus on the minimization of the vortex in the flow field.
Other choices for the cost functional are possible. For instance, one can consider the
optimal state u as the solution of the Stokes equations, or replace the argument in the
tracking term by curl u, see, e.g., [47]. Additionally we may also apply box constraints for
the control z, see, e.g., [19].

In order to define a suitable Sobolev space for the control z, we need to specify the inter-
sections of the different boundary parts. Namely, for our particular application, the blood
flow optimization, we assume for the control boundary

ΓD∩ΓC 6= /0, ΓN∩ΓC = /0.

This then motivates for the control z to introduce the space

H̃1/2(ΓC)
n =

{
v = ṽ|ΓC

: ṽ ∈ H1/2(Γ)n, supp ṽ⊂ ΓC

}
.

Note that the dual space is

H−1/2(ΓC)
n = [H̃1/2(ΓC)

n]∗,

see also [73]. The choice of the control space H̃1/2(ΓC)
n needs to be reflected in the

cost functional (4.1). This means that we replace the semi-norm by |z|H̃1/2(ΓC)
, where

the realization of this particular semi-norm needs to be discussed. For this purpose we
introduce the following vector valued Laplace problem

−∆uz = 0 in Ω,

uz = 0 on ΓD,

∂nuz = 0 on ΓN,

uz = z on ΓC.

(4.3)
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Instead, we may also think of realizing the semi-norm by the harmonic Stokes equations or
an Oseen-type problem. These alternatives are not discussed here. Note that this choice
can nevertheless be of great importance for the construction of robust preconditioners.

For the boundary value problem (4.3) we obtain the following variational formulation: Find
uz ∈ H1

0 (Ω,ΓD)
n with uz = z on ΓC such that

〈∇uz,∇v〉L2(Ω) = 0,

for all v∈H1
0 (Ω,ΓD∪ΓC)

n. This problem has a unique solution uz ∈H1
0 (Ω,ΓD)

n for a given

z ∈ H̃1/2(ΓC)
n. Green’s first formula

0 = 〈−∆uz,v〉Ω = 〈∇uz,∇v〉L2(Ω)−〈∂nuz,v|Γ〉ΓC
,

for all v ∈ H1
0 (Ω,ΓD)

n, then motivates, as in Section 3.1 for the Poisson equation, the
following definition of the semi-norm

|z|2
H̃1/2(ΓC)

:= 〈∂nuz,z〉ΓC
= 〈∇uz,∇uz〉L2(Ω) = |uz|2H1(Ω),

for all z ∈ H̃1/2(ΓC)
n. Now, we introduce the Steklov–Poincaré operator S, as a mapping

S : H̃1/2(ΓC)
n→ H−1/2(ΓC)

n,

Sz := ∂nuz, (4.4)

which realizes the Dirichlet to Neumann map for the boundary value problem (4.3). As a
consequence we obtain for the semi-norm, using the Steklov–Poincaré operator (4.4), the
following relation

|z|2
H̃1/2(ΓC)

= 〈Sz,z〉ΓC
, (4.5)

for all z ∈ H̃1/2(ΓC)
n. It is further important to mention that the semi-norm | · |H̃1/2(ΓC)

is

an equivalent norm in H̃1/2(ΓC)
n. Let us summarize the properties of the Steklov–Poincaré

operator.

Proposition 4.1. The Steklov–Poincaré operator, defined in (4.4), is self-adjoint, bounded
and elliptic in H̃1/2(ΓC)

n.

In particular the cost functional (4.1), using the relation (4.5), ca be written as

J (u,z) :=
1
2
‖u−u‖2

L2(Ω)+
1
2
%〈Sz,z〉ΓC

.
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4.1 Optimality system

In order to obtain the first order necessary optimality conditions for the optimal control
problem (4.1)–(4.2) we apply the formal Lagrange method, see, e.g., [81]. Introducing the
adjoint velocity w and the adjoint pressure r, these conditions are given by the following
optimality system:

Primal problem

−ν∆u+(∇u)u+∇p = f in Ω,

div u = 0 in Ω,

u = g on ΓD,

ν∂nu− pn = 0 on ΓN,

u = z on ΓC,

Adjoint problem

−ν∆w− (∇w)u− (∇w)>u−∇r = u−u in Ω,

div w = 0 in Ω,

w = 0 on ΓD∪ΓC,

ν∂nw+(u ·w)n+(u ·n)w+ rn = 0 on ΓN,

Optimality condition

−ν∂nw− (u ·w)n− (u ·n)w− rn+%Sz = 0 on ΓC.

(4.6)

We would like to mention that there exists an alternative formulation of the adjoint equa-
tions given by

−ν∆w− (∇w)u+(∇u)>w−∇r = u−u in Ω,

div w = 0 in Ω,

w = 0 on ΓD∪ΓC,

ν∂nw+(u ·w)n− (w ·n)u+ rn = 0 on ΓN.

The form of the adjoint equations depends on the sequence of integration by parts and
linearizing the constraint (4.2). It turns out that the first formulation of the adjoint
equations in (4.6) is less restrictive in terms of regularity of the velocity u, which can
be advantageous. Due to this reason we use the formulation (4.6).

4.2 Variational formulation and discretization

In the following we discuss the variational formulation of the optimality system (4.6) and
introduce a stabilized finite element discretization. In particular, we discuss the finite
element approximation of the Steklov–Poincaré operator S, for the details we refer to [39].
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For the optimality system (4.6) we obtain the following variational formulation, see also [39].
Find (u, p,w,r,z) ∈ H1(Ω)n×L2(Ω)×H1

0 (Ω,ΓD∪ΓC)
n×L2(Ω)× H̃1/2(ΓC)

n, with u = g on
ΓD such that

−〈u,σ〉L2(Ω) +a(w,σ)+a∗1(w,u,σ)+b(σ ,r) =−〈u,σ〉L2(Ω),

b(w,s) = 0,
a(u,v)+a1(u,u,v) −b(v, p) = 〈 f ,v〉Ω,
b(u,q) = 0,
〈u,Eϕ〉Ω−a∗1(w,u,Eϕ) −a(w,Eϕ) −b(Eϕ,r)

+%〈Sz,ϕ〉ΓC
= 〈u,Eϕ〉L2(Ω),

(4.7)

for all (v,q,σ ,s,ϕ) ∈H1
0 (Ω,ΓD)

n×L2(Ω)×H1
0 (Ω,ΓD∪ΓC)

n×L2(Ω)× H̃1/2(ΓC)
n. The cor-

responding linear forms are given by

a(u,v) = ν〈∇u,∇v〉L2(Ω), a1(w,u,v) = 〈(∇u)w,v〉L2(Ω), b(u,q) = 〈div u,q〉L2(Ω),

a∗1(w,u,v) = 〈(∇v)u,w〉L2(Ω)+ 〈(∇u)>w,v〉L2(Ω)+ 〈w ·u,div v〉L2(Ω).

Note that the uniqueness of the primal and adjoint pressure is guaranteed by the Neumann
boundary conditions.

To the nonlinear variational problem of the optimality system (4.6) we apply a standard
Newton method, which leads to a linear variational formulation, see Chapter 1 and [39].

In the following we discuss a finite element discretization of the variational formulation
(4.7) of the optimality system. As in the previous section, we are interested in a low order
discretization of the problem, to lower the number of degrees of freedom. We consider
an admissible, shape-regular and quasi-uniform triangulation Th of the domain Ω and the
finite element spaces (1.13), i.e.,

Vh ⊂ H1(Ω)n, Qh ⊂ L2(Ω),

both of piecewise linear and globally continuous finite elements. Since the finite element
pairing (Vh,Qh) does not satisfy the discrete inf–sup condition we consider a suitable sta-
bilization. As discussed in Chapter 1, we use the Dohrmann–Bochev stabilization (1.14),
see also [6], being advantageous in computations in comparison to other stabilized finite
element methods. Applied to the discrete variational formulation of (4.7) the term

c(qh, ph) =
1
ν
〈ph−Q0

h ph,qh−Q0
hqh〉L2(Ω),

is added in the second and fourth equation, where Q0
h denotes the standard L2(Ω) projection

onto the space of piecewise constants, see also [39].

It remains to discuss the discretization of the Steklov–Poincaré operator S. As we have
already mentioned in the beginning of this section, its realization is done via the vector
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valued Laplace problem (4.3). For the discretization, we consider the finite element space
with zero Dirichlet boundary conditions, given by

Vh,0 ⊂ H1
0 (Ω,ΓD)

n.

The discrete variational formulation of problem (4.3) is then given as follows. Find uz,h ∈
Vh,0 with uz,h = zh on ΓC such that

〈∇uz,h,∇vh〉L2(Ω) = 〈∂nuz,h,vh〉ΓC
,

for all vh ∈ Vh,0. According to the separation of interior and boundary degrees of freedom,
where we denote by index I interior and Neumann degrees of freedom and by C the degrees
of freedom of the control on ΓC, we can split uz = (uz,I,zC)

> ↔ uz,h ∈ Vh,0. Further, we
obtain with the isomorphism zC↔ zh ∈ Zh = Vh|ΓC

the following equivalent linear system(
AII AIC
ACI ACC

)(
uz,I
zC

)
=

(
0

ShzC

)
. (4.8)

Note that ShzC denotes the discrete Neumann data on the control boundary ΓC. Deriving
the Schur complement with respect to the discrete control zC leads to the following Galerkin
matrix of the discrete Steklov–Poincaré operator,

Sh = ACC−ACIA−1
II AIC.

The advantage of the approach is that the implementation of any boundary integrals is not
necessary, even though a boundary control problem is considered.

At last, we would like to mention that in a practical implementation, we may not realize
the discrete Steklov–Poincaré operator due to the inversion of A−1

II . We rather prefer the
computation of the additional unknown uz,I with the representation (4.8) for Sh. The
disadvantage is that the number of degrees of freedom increases, which is nevertheless
rather small compared to the total number of degrees of freedom.

4.3 Numerical results

As a numerical example we consider the control of the inflow in an artery, see Figure 4.1.
The model problem consists of a host artery, the lower left one, where we impose a parabolic
inflow boundary condition g with |g| ≤ 1. On the upper left arterial part, which models
the bypass, we consider the control boundary ΓC. Further, an aneurysm sack is considered
and three outlets on the right part of the artery, where we impose a do-nothing boundary
condition, i.e., a Neumann boundary condition. On the arterial wall we consider a no-
slip boundary condition, i.e. zero Dirichlet boundary condition. Further, we consider the
following given data

f = 0, ν = 0.04, u = (0,1,0)>, %= 1,
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Figure 4.1: Geometry with host artery, bypass and aneurysm sack.

which corresponds to a Reynolds number Re≈ 100.

In order to demonstrate the advantages of the method we compare the results with those
obtained by the L2(ΓC)

n control approach. The geometry in Figure 4.1 is triangulated into
385 606 tetrahedra, where an adaptive refinement on the control boundary ΓC is considered,
see Figure 4.2.1. The global linear system is solved by the direct solver Pardiso, see [7]. The
total number of degrees of freedom (DoFs) are presented in Table 4.1 for both approaches.

Total DoFs Control DoFs

L2(ΓC)
n 500 008 3 632

H̃1/2(ΓC)
n 667 075 3 632

Table 4.1: Total number of degrees of freedom (DoFs) for the different approaches and
degrees of freedom on the control boundary ΓC.

In Figure 4.2, the solution profiles on the control boundary ΓC are depicted, i.e., the
magnitudes of the controls zh for both approaches. In the case of the (classical) L2(ΓC)

n

control approach we obtain, as shown in subfigure 4.2.2, a non-physical inflow profile where,
in addition, a boundary layer occurs due to the no-slip condition on the arterial wall. On
the other hand, for the H̃1/2(ΓC)

n case in subfigure 4.2.3 we obtain a smooth inflow profile
of physical relevance. Another important factor, showing that the H̃1/2(ΓC)

n gives better
results with respect to the optimization, is the vortex formation in the aneurysm. The
Figure 4.3 clearly shows that the new approach can significantly minimize the vortex (which
is actually the aim), while in the classical approach the vortex of the flow is preserved.
The reason for the non-physical solution in the case of an L2(ΓC)

n control approach can
be explained as follows. If we consider a function in L2(ΓC)

n, there exists no continuous
extension to H1(Ω)n, see the classical trace theorems, stated in [11,30,33,73]. Further, the
no-slip boundary condition, i.e., continuity on I = ΓC∩ΓD can not be imposed. This is the
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4.2.1: Adaptive mesh on ΓC. 4.2.2: L2(ΓC)
n control. 4.2.3: H̃1/2(ΓC)

n control.

Figure 4.2: Mesh and solutions at the control boundary ΓC.

4.3.1: L2(ΓC)
n control. 4.3.2: H̃1/2(ΓC)

n control.

Figure 4.3: Streamlines of the velocity u and vortex formation.

advantage of considering the control in H̃1/2(ΓC)
n, which is the natural trace space if the

velocity is considered in H1(Ω)n. For a further discussion on the differences between these
approaches we refer to [39,59].

4.4 Concluding remarks

In this section, we have presented a Dirichlet boundary control approach in the energy
space for a blood flow related application. In particular, we have controlled the inflow
velocity (inflow profile) at a part of the boundary. The numerical examples demonstrate
the advantages of this method.
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We would like to mention, that there exists a similar approach where the more regular
space H1

0 (ΓC)
n for the control is considered. The corresponding cost functional would be

then of the form

J (u,z) :=
1
2
‖u−u‖2

L2(Ω)+
1
2
%|z|2H1(ΓC)

,

where the semi-norm can be simply realized by

|z|2H1(ΓC)
= 〈∇z,∇z〉L2(ΓC)

.

Consequently, the introduction of the Steklov–Poincaré operator is not necessary which
simplifies the method. On the other hand, this approach requires a priori, a more regular
velocity, i.e., u∈H3/2(Ω). This extra regularity is of course questionable for some problems,
for instance when the domain has sharp re-entrant corners.

As an outlook we would like to mention the optimization of the wall shear stress (WSS).
As it was introduced in Chapter 2, the wall shear is calculated from the wall shear stress
vector τw, and thus is in general in H−1/2(Γ)n. Let us consider the desired wall shear stress
by τw, which might be for instance a constant (of physiological value). Further, we denote
by ΓO ⊂ Γ, the observation boundary, which is for instance the wall of the aneurysm. Then
the optimal control problem could be given as follows. Minimize the cost functional

J (u,z) :=
1
2
‖τw− τw‖2

H−1/2(ΓO)
+

1
2
%|z|2H1/2(ΓC)

,

subject to the constraint, the Navier–Stokes equations (4.2). We think that this optimal
control problem, applied for the case of an aneurysm with bypass, can bring a better un-
derstanding of the bypass inflow realization. At this point, it is clear that the correct
derivation of the wall shear stress is essential for a reasonable optimal control setting.
Moreover, the above model problem is from a mathematical point of view a nice combi-
nation of the Dirichlet and Neumann boundary control approaches. In the case that the
constraint is the Poisson equation, this problem is also known as the Cauchy problem, with
the aim of recovering the unknown boundary condition on a part of the boundary.

As a further extension of this work we would like to mention the analysis and corresponding
numerical analysis for the nonlinear optimal control problem (4.1)–(4.2), including error
estimates.

Finally, we would like to mention the development of preconditioners for such problems, in
order to compute the numerical results for the simulation in a reasonable time. As a first
step in this direction, we consider in the upcoming chapters robust preconditioners for the
optimal boundary control problem with the Poisson equation as a constraint.





5 THE BIHARMONIC EQUATION

In this chapter we aim to analyze a mixed finite element discretization of the biharmonic
equation of first kind, which has applications in fluid/solid mechanics and, as we have seen
in Remark 3.1, also in PDE constraint optimization. In particular it describes the optimal
solution in the limit case, when the cost coefficient is % = 0. This, as we will see in the
forthcoming chapters, will be important for the construction of preconditioners.

For a standard discretization of the biharmonic equation of first kind the solution space
H2

0 (Ω) is required, see, e.g., [11,16]. Thus, for a conforming discretization of the formulation
in H2

0 (Ω), special finite elements, such as the Argyris element, are in general needed. In
order to reduce the regularity of the solution space, we consider a mixed formulation of the
biharmonic equation of first kind, where an additional unknown is introduced. This method
was first introduced and analyzed in [13, 17]. Its main advantage lies in the possibility of
using lowest order finite elements, i.e. standard piecewise linear and globally continuous
ones. Nevertheless, the disadvantage of this formulation is that existence and uniqueness
results for the solution are only obtained when the domain is a convex polygon. This issue
will be discussed in the following.

The chapter is organized as follows: In the first section we show the existence and unique-
ness of a solution for the mixed problem in the continuous setting, under the assumption
that the domain is a convex polygon. Afterwards, we introduce a lowest order finite ele-
ment method by using piecewise linear and globally continuous shape functions. We prove
the existence and uniqueness of a corresponding discrete solution and comment on error
estimates. Several numerical examples are presented.

5.1 Variational formulation

Let Ω ⊂ Rn (n = 2,3) be a bounded Lipschitz domain with boundary Γ = ∂Ω, and let
f ∈H−2(Ω) be given. The biharmonic equation of first kind for the unknown p is given by

∆
2 p = f in Ω,

p = ∂n p = 0 on Γ.
(5.1)

The standard variational formulation in H2
0 (Ω) is obtained as follows. We multiply the

equation above with a test function q ∈H2
0 (Ω) and apply integration by parts twice, which

lead to the following variational formulation. Find p ∈ H2
0 (Ω) such that

〈∆p,∆q〉L2(Ω) = 〈 f ,q〉Ω, (5.2)

73
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for all q∈H2
0 (Ω). By using the fact that ‖∆q‖L2(Ω) defines an equivalent norm in H2

0 (Ω) we

obtain the existence and uniqueness of a solution p ∈H2
0 (Ω) of the variational formulation

(5.2), see also [16,33].

Remark 5.1. In the particular case that f ∈H−1(Ω) and the domain Ω is a convex polygon
we have for the solution of (5.2) that p ∈ H2

0 (Ω)∩H3(Ω), see, e.g., [12, p. 164] and [33].

As it was pointed out at the beginning of this chapter, it might be of interest to reduce
the regularity of the solution space H2

0 (Ω), which would give us the possibility to use a
lowest order finite element approximation. Therefore we introduce an additional unknown
u =−∆p. Multiplication with a test function v ∈H1(Ω), applying integration by parts and
using the boundary condition ∂n p = 0 on Γ lead to

0 = 〈u,v〉L2(Ω)+ 〈∆p,v〉Ω = 〈u,v〉L2(Ω)−〈∇p,∇v〉L2(Ω).

For the remaining equation, i.e. −∆u = f , we obtain with a test function q ∈ H1
0 (Ω) and

applying integration by parts

〈 f ,q〉Ω = 〈−∆u,q〉L2(Ω) = 〈∇u,∇q〉L2(Ω).

Hence we conclude the following mixed variational formulation of the boundary value
problem (5.1) in saddle point form: Find (u, p) ∈ H1(Ω)×H1

0 (Ω) such that

a(u,v)−b(v, p) = 0,
b(u,q) = 〈 f ,q〉Ω,

(5.3)

for all (v,q) ∈ H1(Ω)×H1
0 (Ω), where the bilinear forms are given by

a(u,v) = 〈u,v〉L2(Ω), b(v,q) = 〈∇v,∇q〉L2(Ω).

As first, we observe that the bilinear form a(·, ·) is not elliptic in H1(Ω). We shall note
that for the existence and uniqueness of a solution, using the saddle point theory, only the
ellipticity on the kernel

Ker B :=
{

v ∈ H1(Ω) : b(v,q) = 0 for all q ∈ H1
0 (Ω)

}
⊂ H1(Ω),

is required. This is nevertheless also not valid for the bilinear form a(·, ·), see also [13]. As
a consequence the classical theory of saddle point problems is not applicable. Note that
the kernel Ker B describes all harmonic functions which are the solutions of the Laplace
equation.

In the case that the domain Ω is a convex polygon, the existence and uniqueness of a
solution of the formulation (5.3) can be proven, see also [12,17,33]. This result is formulated
in the following theorem.
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Theorem 5.1. Let Ω be a convex polygon and f ∈ H−1(Ω). Then for the variational
formulation (5.3) there exists a unique solution (u, p)∈H1(Ω)×H1

0 (Ω). Moreover we have
p ∈ H2

0 (Ω), which is the unique solution of (5.2).

Proof. First, we prove the existence of a solution. From Remark 5.1 we have the existence
and uniqueness of p ∈ H2

0 (Ω)∩H3(Ω) satisfying ∆2 p = f in the sense of H−1(Ω). Further
we define u = −∆p and conclude due to the regularity of p that u ∈ H1(Ω). This gives
the first equation of (5.3). The remaining term −∆u = f in H−1(Ω) leads to the second
equation. As a consequence we have the existence of (u, p)∈H1(Ω)×H1

0 (Ω) which satisfies
(5.3).

Now, let (u, p) ∈ H1(Ω)×H1
0 (Ω) be one solution of (5.3). From the first equation of the

variational formulation (5.3), follows

〈∇p,∇q〉L2(Ω) = 〈u,q〉L2(Ω),

for all q ∈ H1
0 (Ω), due to the inclusion H1

0 (Ω) ⊂ H1(Ω). This problem has for each given
u∈H1(Ω) clearly a unique solution p∈H1

0 (Ω), which is depending on u∈H1(Ω). Since we
assumed the domain Ω to be a convex polygon, we can conclude that p ∈ H2(Ω)∩H1

0 (Ω)
and that the equation

−∆p = u, (5.4)

is valid in the sense of L2(Ω), see, e.g., [33]. Consequently, we obtain by Green’s first
formula and the first equation of (5.3) the relation

〈∂n p,v〉Γ = 〈∇p,∇v〉L2(Ω)−〈u,v〉L2(Ω) = 0,

for all v ∈ H1(Ω), from which we conclude ∂n p = 0 on Γ. Thus we have p ∈ H2
0 (Ω).

Now we consider the second equation of (5.3) for all test functions q ∈ H2
0 (Ω), since we

have the inclusion H2
0 (Ω)⊂ H1

0 (Ω). By applying integration by parts we obtain

〈−u,∆q〉L2(Ω) = 〈 f ,q〉Ω,

for all q ∈ H2
0 (Ω). Now we can insert (5.4) and obtain

〈∆p,∆q〉L2(Ω) = 〈 f ,q〉Ω,

for all q∈H2
0 (Ω). This problem has now a unique solution p∈H2

0 (Ω). In particular we have
p ∈ H2

0 (Ω)∩H3(Ω), see Remark 5.1. As a consequence, we also have a unique auxiliary
variable by the relation u =−∆p ∈ H1(Ω). This concludes the proof.
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As we have seen, the main disadvantage of the formulation (5.3) is the lack of the ellipticity
of the bilinear form a(·, ·). In order to apply the theory of saddle point problems a new
formulation was recently proposed in [86], where the solution space for the auxiliary variable
u is enriched. This means, it is based on a formulation in the space

H−1
∆

(Ω) =
{

v ∈ L2(Ω) : ∆v ∈ H−1(Ω)
}
,

equipped with the corresponding norm

‖v‖H−1
∆

(Ω) =
(
‖v‖2

L2(Ω)+‖∆v‖2
H−1(Ω)

)1/2
.

The corresponding variational formulation for the problem (5.1) is then given as follows.
Find (u, p) ∈ H−1

∆
(Ω)×H1

0 (Ω) such that

〈u,v〉L2(Ω)+ 〈p,∆v〉Ω = 0,

〈∆u,q〉Ω =−〈 f ,q〉Ω,

for all (v,q) ∈ H−1
∆

(Ω)×H1
0 (Ω). Note that we have for the Sobolev space H−1

∆
(Ω) the

inclusions

H1(Ω)⊂ H−1
∆

(Ω)⊂ L2(Ω).

For the details we refer to [86].

5.2 Discretization and error estimates

Within this section we introduce a mixed finite element discretization for the biharmonic
equation of first kind (5.1). The main advantage of the variational formulation (5.3) is that
we can use for instance standard piecewise linear and globally continuous finite elements.
In the following we introduce a discrete variational formulation, show the existence and
uniqueness of its solution and comment on corresponding error estimates. Afterwards we
present some numerical examples.

Let us consider an admissible, shape-regular and globally quasi-uniform triangulation Th
of the domain Ω into triangles or tetrahedra, denoted by T . We introduce the finite
dimensional subspaces

Vh = span{ϕ1
i }

nI+nC
i=1 ⊂ H1(Ω), Qh = span{ϕ1

i }
nI
i=1 ⊂ H1

0 (Ω), (5.5)

where ϕ1
i denotes the piecewise linear and globally continuous shape functions, for all

i = 1, . . . ,nI +nC. Note that nI = dimQh denotes the number of interior degrees of freedom,
while nC denotes the number of degrees of freedom on the boundary, which implies dimVh =
nI +nC.
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The discrete variational formulation, corresponding to (5.3), is then given as follows. Find
(uh, ph) ∈ Vh×Qh such that

a(uh,vh)−b(vh, ph) = 0,
b(uh,qh) = 〈 f ,qh〉Ω,

(5.6)

for all (vh,qh) ∈ Vh×Qh.

In the following we shall investigate the existence and uniqueness of a discrete solution. In
particular we discuss the choice of the finite element spaces Vh and Qh. Let us recall that
the standard theory for saddle point problems is not applicable since the bilinear form a(·, ·)
is neither elliptic in H1(Ω) nor in Ker B. Nevertheless we can show an inf–sup condition
for the bilinear form b(·, ·) under a certain assumption on the finite element spaces.

Lemma 5.1. Let us assume for the finite element spaces Vh and Qh the inclusion Qh ⊂Vh,
then the following discrete inf–sup condition is valid,

sup
0 6=vh∈Vh

b(vh,qh)

‖vh‖H1(Ω)

≥ c̃S‖qh‖H1(Ω),

for all qh ∈Qh.

Proof. Due to the inclusion Qh ⊂ Vh and Friedrichs inequality we have

sup
06=vh∈Vh

b(vh,qh)

‖vh‖H1(Ω)

≥
|qh|2H1(Ω)

‖qh‖H1(Ω)

≥ (1+ c−2
F )−1‖qh‖H1(Ω) = c̃S‖qh‖H1(Ω),

for all qh ∈Qh. This concludes the proof.

In particular we observe for the finite element spaces in (5.5) the inclusion

Qh ⊂ Vh,

and thus we can conclude the discrete inf–sup condition of Lemma 5.1.

For the equivalent linear system of the discrete variational formulation (5.6), let us intro-
duce the standard mass, stiffness matrices and right-hand side vector by

Mh[ j, i] = 〈ϕ1
i ,ϕ

1
j 〉L2(Ω), Ah[`, i] = 〈∇ϕ

1
i ,∇ϕ

1
` 〉L2(Ω), fh[`] = 〈 f ,ϕ1

` 〉Ω,

for all i, j = 1, . . . ,nI + nC and ` = 1, . . . ,nI, respectively. Note that Mh ∈ R(nI+nC)×(nI+nC)

and Ah ∈ R(nI+nC)×nI . With the isomorphisms uh ↔ u ∈ RnI+nC and ph ↔ p ∈ RnI , the
corresponding equivalent linear system for the discrete variational formulation (5.6) is
given by (

Mh −A>h
Ah

)(
u
p

)
=

(
0
f h

)
. (5.7)

For the existence and uniqueness of a discrete solution, the following result is valid.
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Theorem 5.2. Let us consider the finite element spaces Vh and Qh, defined in (5.5). Then
for the discrete variational formulation (5.6) exists a unique solution (uh, ph) ∈ Vh×Qh.

Proof. Let us consider the linear system (5.7), which is equivalent to the discrete variational
formulation (5.6). The mass matrix Mh is obviously invertible. Further, the discrete inf–
sup condition of Lemma 5.1 implies that Ah has full rank, in particular rank Ah = nI. Note
that this can be also seen from the fact that we have

Ah = (AII,AIC),

by the separation of interior and boundary degrees of freedom. The matrix AII ∈ RnI×nI ,
associated to the interior degrees of freedom, is of full rank since it corresponds to a
Dirichlet boundary value problem. As a consequence we have that rank Mh > rank Ah, since
rank Mh = nI +nC. Thus the linear system has a unique solution (u, p)>. Since we have the
isomorphisms u↔ uh ∈ Vh and p↔ ph ∈Qh, we have a unique solution (uh, ph) ∈ Vh×Qh.
This concludes the proof.

In the following we comment on error estimates for the discrete variational formulation
(5.6). Note that the standard procedure for the derivation of error estimates for saddle
point problems is not applicable, due to the lack of the ellipticity of the bilinear form a(·, ·).
Thus other technique have to be taken into consideration. The following result is obtained
by [69, Theorem 1].

Theorem 5.3. Let Ω be a convex polygon and let the exact solution of problem (5.3) be
regular enough, i.e. p ∈ H1

0 (Ω)∩H4(Ω). Then there holds the error estimate

‖p− ph‖L2(Ω)+h1/2| lnh|‖u−uh‖L2(Ω) ≤ ch| lnh|2‖p‖H4(Ω). (5.8)

We shall note that the error estimate (5.8) is far away from optimal, which would mean of
second order when using linear basis functions.

5.3 Numerical results

In this section we present some numerical examples for the biharmonic equation of first
kind, in particular we are interested in the order of convergence of the mixed finite element
discretization. Therefore we consider the discrete variational formulation (5.6) with piece-
wise linear and globally continuous finite elements, being equivalent to the linear system
(5.7). In the following we present numerical result for the two and three dimensional model
problems, where we consider as a computational domains Ω= (0, 1

2)
n and Ω=B1/2(0), both
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for n = 2,3. The corresponding exact solutions, for both computational domains, are given
by

p =


2−n

n
∏
i=1

(cos(4πxi)−1) for Ω = (0, 1
2)

n,

2n exp
(

n
∑

i=1
x2

i − 1
4

)−1

for Ω = B1/2(0).
(5.9)

We shall note that the exact solution is regular.

Example 1

In the first numerical example we consider the two dimensional model problem and for
both domains a uniform triangulation Th with N = 4L+1 elements for all refinement levels
L. The initial triangulation into 4 elements is done via the diagonals and its refinement
is obtained by congruent triangles via the edge midpoints. In the following we present
discretization errors and estimated order of convergences for the different problems.

L DoFs ‖u−uh‖L2(Ω) eoc ‖p− ph‖L2(Ω) eoc

0 6 7.70425 e–01 – 1.19188 e–02 –
1 18 1.24647 e+00 -0.69 2.05581 e–02 -0.79
2 66 4.46978 e–01 1.48 3.41882 e–03 2.59
3 258 1.22460 e–01 1.87 1.20219 e–03 1.51
4 1 026 4.11720 e–02 1.57 3.19848 e–04 1.91
5 4 098 1.06405 e–02 1.95 8.12152 e–05 1.98
6 16 386 2.68684 e–03 1.99 2.04068 e–05 1.99
7 65 538 6.73385 e–04 2.00 5.10939 e–06 2.00
8 262 146 1.68452 e–04 2.00 1.27774 e–06 2.00
9 1 048 578 4.21188 e–05 2.00 3.19525 e–07 2.00

10 4 194 306 1.05299 e–05 2.00 8.00297 e–08 2.00
observed 2.00 2.00

Table 5.1: Errors and eoc for Ω = B1/2(0), n = 2.

In Table 5.1 and Table 5.2 we present the obtained numerical results. The computations
were performed until level L = 10, where the total number of degrees of freedom (DoFs) is
2nI +nC on each refinement level L. For both considered problems we observe second order
of convergence with respect to the L2(Ω) norm for both variables.

Example 2

In order to illustrate the convergence also for the three dimensional model problem, we
consider as a second example Ω = B1/2(0) and Ω = (0, 1

2)
3 for n = 3 as a computational
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L DoFs ‖u−uh‖L2(Ω) eoc ‖p− ph‖L2(Ω) eoc

0 6 1.37310 e+01 – 8.89720 e–02 –
1 18 9.66346 e+00 0.51 8.45632 e–02 0.07
2 66 4.08556 e+00 1.24 3.43389 e–02 1.30
3 258 1.10158 e+00 1.89 9.83510 e–03 1.80
4 1 026 2.84739 e–01 1.95 2.57842 e–03 1.93
5 4 098 7.20626 e–02 1.98 6.54275 e–04 1.98
6 16 386 1.80891 e–02 1.99 1.64289 e–04 1.99
7 65 538 4.52866 e–03 2.00 4.11010 e–05 2.00
8 262 146 1.13251 e–03 2.00 1.03032 e–05 2.00
9 1 048 578 2.83306 e–04 2.00 2.55362 e–06 2.01

10 4 194 306 7.08294 e–05 2.00 6.39816 e–07 2.00
observed 2.00 2.00

Table 5.2: Errors and eoc for Ω = (0, 1
2)

2, n = 2.

domain. As before we consider a uniform triangulation Th with N = 32 ·8L for the ball and
N = 12 ·8L elements for all refinement level L, performed until L = 6.

L DoFs ‖u−uh‖L2(Ω) eoc ‖p− ph‖L2(Ω) eoc

0 20 1.71952 e+00 – 1.48296 e–02 –
1 104 1.50511 e+00 0.19 1.37640 e–02 0.11
2 720 7.38096 e–01 1.03 3.97069 e–03 1.79
3 5 536 2.12025 e–01 1.80 1.22816 e–03 1.69
4 43 840 6.62657 e–02 1.68 3.44279 e–04 1.83
5 349 824 1.72605 e–02 1.94 8.84893 e–05 1.96
6 2 796 800 4.37609 e–03 1.98 2.22934 e–05 1.99
observed 2.00 2.00

Table 5.3: Errors and eoc for Ω = B1/2(0), n = 3.

From the results in Table 5.3 for the ball B1/2(0) we observe, as in the previous example,

second order of convergence with respect to the L2(Ω) norm, for both variables. This, on
the other hand, is not that case for the results, presented in Table 5.4 for the cube (0, 1

2)
3.

Here we observe a reduced convergence rate for the auxiliary variable u. This means, even
tough the error estimate (5.8) might not be optimal, optimal convergence rates, meaning
second order, are in general not obtained. For a better understanding we have additionally
plotted the error ‖u− uh‖L2(Ω) for this case in Figure 5.1. As we can see the order of

convergence of the error is close to h3/2| lnh|. It might be possible to improve the error
estimate (5.8), which can be seen as a challenging future work.
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L DoFs ‖u−uh‖L2(Ω) eoc ‖p− ph‖L2(Ω) eoc

0 10 1.10988 e+01 – 5.54297 e–02 –
1 44 8.33870 e+00 0.41 5.24166 e–02 0.08
2 280 5.39055 e+00 0.63 3.29991 e–02 0.67
3 2 096 2.16529 e+00 1.32 1.28502 e–02 1.36
4 16 480 7.31154 e–01 1.57 3.93101 e–03 1.71
5 131 264 2.64592 e–01 1.47 1.06426 e–03 1.89
6 1 048 960 1.13068 e–01 1.23 2.72788 e–04 1.96
observed 1.20 2.00

Table 5.4: Errors and eoc for Ω = (0, 1
2)

3, n = 3.
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Figure 5.1: Order of convergence of the error ‖u−uh‖L2(Ω) for Ω = (0, 1
2)

3, n = 3, Table 5.4.

5.4 Concluding remarks

In this chapter we have analyzed a mixed finite element method for the biharmonic equation
of first kind. In particular we have discussed the existence and uniqueness of a solution and
commented on corresponding error estimates. Numerical examples have been presented,
with focus on the order of convergence.

In the upcoming chapter we discuss the construction of robust preconditioners for the mixed
finite element method. We shall note that this might not be straight forward, which is due
to the lack of the ellipticity of the bilinear form a(·, ·). This results shall be afterwards
applied to the optimal boundary control problems which were discussed in Chapter 3.





6 PRECONDITIONING STRATEGIES FOR THE
BIHARMONIC EQUATION

In this chapter, we derive a robust preconditioner for the mixed finite element formulation
of the biharmonic equation of first kind (5.1). Therefore, we consider the variational for-
mulation (5.6) where all unknown variables are discretized by piecewise linear and globally
continuous finite elements. This formulation is then equivalent to the linear system (5.7),
which is the starting point for the construction of the preconditioner.

The construction of preconditioners for the biharmonic problem started in the 1990’s.
For a review on existing preconditioners for the biharmonic equation we refer to [4, 8, 48,
61, 62]. First results on iterative methods for the mixed finite element discretization for
the biharmonic equation were given for Uzawa–type methods in [48], and for a multilevel
algorithm in [61], where convergence was shown assuming H3(Ω)–regularity of the solution.
In [8], the authors considered a preconditioned conjugate gradient method for solving the
Schur complement system with respect to the primal variable. Afterwards, in [62] it was
shown that the Schur complement matrix is spectrally equivalent to a mesh depending
norm where the related preconditioner is realized by a special factorization. A variable
V–cycled multigrid approach was considered for piecewise quadratic or higher order shape
functions in [35]. Further, a W–cycled multigrid method was analyzed with a sufficiently
high number of smoothing steps. More recently in [56], an arbitrary black box multigrid
approach for the biharmonic equation was studied. A different approach for the iterative
solution of the mixed finite element formulation is based on the elimination of all interior
degrees of freedom. This requires the solution of two Dirichlet boundary value problems
for the Poisson equation, and results in a Schur complement system to find the Dirichlet
datum of the dual variable, see, e.g., [17, 31].

We consider the construction of a block diagonal preconditioner, see for instance [22], where
the main difficulty lies in the construction of a preconditioner for the Schur complement. It
turns out, as already shown in [62], that the Schur complement with respect to the boundary
is related to a harmonic extension of the boundary data. This implies an equivalent norm in

the piecewise defined fractional Sobolev space H̃−1/2
pw (Γ). First, we consider a representation

of this particular Sobolev norm by using locally defined single layer boundary integral
operators. In fact, this approach corresponds to an additive Schwarz method, see therefore
[36,57]. Although this method results in a constant bound of the spectral condition number,
its realization requires the inversion of a block diagonal matrix including a coarse problem.
Instead, one may use multilevel representations of fractional Sobolev norms [10,26,58,60],
i.e. of H−1/2(Γ), which results in an almost optimal preconditioner where the spectral
condition number is constant up to a logarithmic term, see also [41].

83



84 6 Preconditioning strategies for the biharmonic equation

The chapter is organized as follows: In the first part we introduce fractional Sobolev spaces
on the boundary which are needed for the construction of the preconditioner for the Schur
complement system. Afterwards, several general spectral equivalence results are stated. It
turns out that the Schur complement equation induces an equivalent norm in the fractional

Sobolev space H̃−1/2
pw (Γ) for which we construct two different types of preconditioners. The

first is derived from boundary element methods via the single layer boundary integral
operator. For the second preconditioner we consider a multilevel approach of BPX type.
Afterwards we propose two different preconditioner for the global system. Several numerical
examples illustrate the obtained theoretical results.

Let us recall from Chapter 5, the linear system (5.7), which is the starting point for the
construction of a preconditioner. According to interior and boundary degrees of freedom
we can decompose the vector u = (uI,uC)

> ∈ RnI+nC , where we denote by nI and nC the
number of interior and boundary degrees of freedom, respectively. Consequently we can
rewrite the linear system (5.7), by using AIC = A>CI ∈ RnI×nC , asMII MIC −AII

MCI MCC −ACI
AII AIC

uI
uC
p

=

 0
0
f h

 ,

or, by a simple reordering of the variables and introducing p̃I =−p, f I = f h, asMII AII MIC
AII AIC
MCI ACI MCC

uI
p̃I
uC

=

 0
f I
0

 . (6.1)

Note that the matrix of the linear system (6.1) is symmetric and indefinite. As mentioned
above, the aim is the construction of a block diagonal preconditioner, which is of the form(

CAh

CTh

)
, (6.2)

where CAh ∈R2nI×2nI is a preconditioner for the upper left 2×2 block and CTh ∈RnC×nC is a
preconditioner for the Schur complement, of the matrix in (6.1). The latter one, as in most
cases, is the more difficult one to construct and treated first within this section. From the
linear system (6.1) we obtain

uI = A−1
II
[

f I−AICuC
]
,

and

p̃I =−A−1
II
[
MIIuI +MICuC

]
=−A−1

II MIIA−1
II f I +A−1

II MIIA−1
II AICuC−A−1

II MICuC,

which results in the Schur complement system[
MCC−MCIA−1

II AIC−ACIA−1
II MIC +ACIA−1

II MIIA−1
II AIC

]
uC

=
[
ACIA−1

II MII−MCI
]
A−1

II f I.
(6.3)
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In order to use for example a preconditioned conjugate gradient scheme for an iterative
solution of the linear system (6.3) we need to have a preconditioner CTh for the Schur
complement matrix

Th = MCC−MCIA−1
II AIC−ACIA−1

II MIC +ACIA−1
II MIIA−1

II AIC. (6.4)

For all vC ∈ RnC we rewrite the induced bilinear form as

(ThvC,vC) = (MCCvC,vC)−2(MCIA−1
II AICvC,vC)+(MIIA−1

II AICvC,A
−1
II AICvC)

= (MCCvC,vC)+2(MCIvI,vC)+(MIIvI,vI),

in which we define

vI :=−A−1
II AICvC ∈ RnI .

By using the isomorphism v = (vI,vC)
> ∈ RnI+nC ↔ vh ∈ Vh we finally obtain

(ThvC,vC) = (Mhv,v) = 〈vh,vh〉L2(Ω) = ‖vh‖2
L2(Ω). (6.5)

Note, that vh ∈ Vh is the discrete harmonic extension of vh|Γ↔ vC ∈RnC which is the unique
solution of the variational problem

〈∇vh,∇qh〉L2(Ω) = 0,

for all qh ∈Qh, where the finite element space Qh is defined in (5.5). In order to construct
a robust preconditioner we need to have equivalence estimates for the harmonic extension
vh in the L2(Ω) norm.

6.1 Sobolev spaces and trace theorems

In this subsection we introduce the Sobolev spaces and trace theorems which are needed
for the construction and the analysis of the preconditioners for the biharmonic equation
(5.1). We shall not give a review on all details, just state the main ideas which are needed
further on. For the basics we refer to [1, 30,33,53,73].

Since the boundary Γ= ∂Ω was assumed to be piecewise smooth, and thus is decomposable
into J ∈ N smooth parts, we have

Γ =
J⋃

i=1

Γi, Γi∩Γ j = /0 for all i 6= j, i, j ∈ {1, . . . ,J}.

Let s ∈ [0,3/2] and we define the Sobolev space of piecewise smooth functions

Hs
pw(Γ) =

{
v ∈ L2(Γ) : v|Γi ∈ Hs(Γi), i = 1, . . . ,J

}
, (6.6)
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with the corresponding norm

‖v‖Hs
pw(Γ)

=

(
J

∑
i=1
‖v|Γi‖

2
Hs(Γi)

)1/2

.

Note that with Sobolev–Slobodeckii norm, see, e.g., [73, p. 36], we can easily show

‖v‖Hs
pw(Γ)

≤ ‖v‖Hs(Γ),

for all v ∈ Hs(Γ) and consequently have the inclusion Hs(Γ)⊂ Hs
pw(Γ). We recall that for

any smooth and open part Γi ⊂ Γ, i = 1, . . . ,J we have

H̃s(Γi) =
{

v = ṽ|Γi : ṽ ∈ Hs(Γ), supp ṽ⊂ Γi

}
,

with the norm

‖v‖H̃s(Γi)
= inf

ṽ∈Hs(Γ):ṽ|Γi
=v
‖ṽ‖Hs(Γ).

These definitions motivate the following space

H̃s
pw(Γ) =

{
v ∈ L2(Γ) : v|Γi ∈ H̃s(Γi), i = 1, . . . ,J

}
, (6.7)

with the corresponding norm

‖v‖H̃s
pw(Γ)

=

(
J

∑
i=1
‖v|Γi‖

2
H̃s(Γi)

)1/2

.

For the dual spaces we have

H−s(Γi) = [H̃s(Γi)]
∗, H̃−s(Γi) = [Hs(Γi)]

∗,

for all i = 1, . . . ,J and s∈ [0,3/2], respectively. Moreover, the dual spaces of (6.6) and (6.7)
are then given by

H̃−s
pw(Γ) =

J

∏
i=1

H̃−s(Γi), H−s
pw(Γ) =

J

∏
i=1

H−s(Γi),

with the norms

‖ψ̃‖H̃−s
pw(Γ)

=

(
J

∑
i=1
‖ψ̃|Γi‖

2
H̃−s(Γi)

)1/2

, ‖ψ‖H−s
pw(Γ)

=

(
J

∑
i=1
‖ψ|Γi‖

2
H−s(Γi)

)1/2

,

for all ψ̃ ∈ H̃−s
pw(Γ), ψ ∈ H−s

pw(Γ) and all s ∈ [0,3/2]. The relation of the dual spaces is
pointed out in the following lemma.
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Lemma 6.1. For all s ∈ [0,3/2] we have H̃−s
pw(Γ)⊂ H−s(Γ), i.e. for all ψ ∈ H̃−s

pw(Γ) there
holds the inequality

‖ψ‖H−s(Γ) ≤ ‖ψ‖H̃−s
pw(Γ)

. (6.8)

Proof. Let ψ ∈ H̃−s
pw(Γ), then there holds

‖ψ‖H−s(Γ) = sup
06=v∈Hs(Γ)

〈ψ,v〉Γ
‖v‖Hs(Γ)

≤ sup
06=v∈Hs

pw(Γ)

J
∑

i=1
〈ψ|Γi,v|Γi〉Γi

‖v‖Hs
pw(Γ)

≤ ‖ψ‖H̃−s
pw(Γ)

.

For a further discussion of the above Sobolev spaces we refer to [30,53,73], and the references
therein.

For the trace theorems in H2(Ω) the following definitions are needed. We denote by

Ii, j := Γi∩Γ j for all i 6= j, i, j ∈ {1, . . . ,J},

the interface between two smooth boundary parts, and, by

vi = v|Γi,

the restriction of v ∈ Hs(Γ), s ∈ [0,3/2] to Γi for all i = 1, . . . ,J. Note that there holds
Ii, j = I j,i for all i 6= j, i, j = 1, . . . ,J. Then we define the compatibility condition

vi|Ii, j = v j|Ii, j
for all i 6= j, i, j ∈ {1, . . . ,J}. (6.9)

This means that we have continuity of the function across the interfaces.

The following statements are the Dirichlet and Neumann trace theorems and inverse trace
theorems for the Sobolev space H2(Ω) where Ω is a piecewise C1,1 domain, i.e. the individ-
ual parts Γi are of class C1,1 for all i = 1, . . . ,J. The corresponding proofs can be found for
instance in [33, Chapter 1.5.2], [30, Theorem I.1.6 and Remark 1.1, p. 9] and [38, Theorem
4.2.1, p. 178].

Theorem 6.1 (Dirichlet trace theorem). Let Ω ⊂ Rn, n = 2,3, be a bounded Lipschitz

domain with piecewise smooth boundary Γ. For all v ∈ H2(Ω) we have v|Γ ∈ H3/2
pw (Γ),

satisfying the compatibility condition (6.9), and

‖v|Γ‖H3/2
pw (Γ)

≤ cT,D‖v‖H2(Ω).

Vice versa, for each λ ∈H3/2
pw (Γ) which is satisfying the compatibility condition (6.9) there

exists a v ∈ H2(Ω) with v|Γ = λ on Γ and

‖v‖H2(Ω) ≤ cIT,D‖λ‖H3/2
pw (Γ)

.
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Theorem 6.2 (Neumann trace theorem). Let Ω ⊂ Rn, n = 2,3, be a bounded Lipschitz

domain with piecewise smooth boundary Γ. For all v ∈ H2(Ω) we have ∂nv ∈ H1/2
pw (Γ) and

‖∂nv‖
H1/2
pw (Γ)

≤ cT,N‖v‖H2(Ω).

Vice versa, for each λ ∈ H1/2
pw (Γ) there exists a v ∈ H2(Ω) with ∂nv = λ on Γ and

‖v‖H2(Ω) ≤ cIT,N‖λ‖H1/2
pw (Γ)

.

An extended version, see [30, Theorem I.1.6, p. 9 and p. 184], of the second statement of
Theorem 6.2 is given as follows, where we enforce zero Dirichlet boundary conditions.

Lemma 6.2. Let Ω ⊂ Rn, n = 2,3, be a bounded Lipschitz domain with piecewise smooth

boundary Γ. For each λ ∈H1/2
pw (Γ) there exists a v ∈H2(Ω)∩H1

0 (Ω) with ∂nv = λ on Γ and

‖v‖H2(Ω) ≤ c̃IT,N‖λ‖H1/2
pw (Γ)

.

Proof. Let λ ∈ H1/2
pw (Γ) be given. From Theorem 6.2 follows that there is ṽ ∈ H2(Ω) with

∂nṽ = λ on Γ and

‖ṽ‖H2(Ω) ≤ cIT,N‖λ‖H1/2
pw (Γ)

.

Now, from Theorem 6.1 follows that ṽ|Γ ∈H3/2
pw (Γ) and satisfies the compatibility condition

(6.9). Let us consider now the problem

∆
2w = 0 in Ω,

w = ṽ|Γ on Γ,

∂nw = 0 on Γ.

Multiplication with a test function ϕ ∈H2
0 (Ω) and applying integration by parts twice lead

to the following variational formulation. Find w ∈ H2(Ω) with w = ṽ|Γ and ∂nw = 0 on Γ

such that

〈∆w,∆ϕ〉L2(Ω) = 0,

for all test functions ϕ ∈ H2
0 (Ω). We decompose w = w0 + E ṽ|Γ with w0 ∈ H2

0 (Ω) and a

continuous extension E : H3/2
pw (Γ)→ H2(Ω) due to Theorem 6.1, c.f. also [30, p. 16–17].

Thus we obtain

‖∆w0‖2
L2(Ω) = 〈∆w0,∆w0〉L2(Ω) =−〈∆E ṽ|Γ,∆w0〉L2(Ω) ≤ ‖∆E ṽ|Γ‖L2(Ω)‖∆w0‖L2(Ω),
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and consequently, due to the norm equivalence in H2
0 (Ω),

‖w0‖H2(Ω) ' ‖∆w0‖L2(Ω) ≤ ‖∆E ṽ|Γ‖L2(Ω) ≤ ‖E ṽ|Γ‖H2(Ω).

This means we get by Theorem 6.1 the estimate

‖w‖H2(Ω) ≤ c‖E ṽ|Γ‖H2(Ω) ≤ ccIT,D‖ṽ|Γ‖H3/2
pw (Γ)

≤ ccIT,DcT,D‖ṽ‖H2(Ω) = c2‖ṽ‖H2(Ω).

Choosing now v= ṽ−w∈H2(Ω) satisfies ∂nv= λ and v|Γ = 0 on Γ. Consequently we obtain

‖v‖H2(Ω) ≤ ‖ṽ‖H2(Ω)+‖w‖H2(Ω) ≤ (1+ c2)‖ṽ‖H2(Ω) ≤ (1+ c2)cIT,N‖λ‖H1/2
pw (Γ)

,

which concludes the proof.

6.2 Spectral equivalence estimates

Let us consider for some given z ∈ H1/2(Γ) the following homogeneous Dirichlet problem

−∆uz = 0 in Ω,

uz = z on Γ.
(6.10)

Then the corresponding unique solution uz ∈ H1(Ω) is called harmonic extension. The
results of the previous subsection are required to prove the following theorem.

Theorem 6.3. Let Ω ⊂ Rn, n = 2,3, be a convex and bounded Lipschitz domain with
piecewise smooth boundary Γ. For z ∈H1/2(Γ) let uz ∈H1(Ω) be the harmonic extension of
problem (6.10). Then there hold the spectral equivalence inequalities

‖z‖
H̃−1/2
pw (Γ)

' ‖uz‖L2(Ω),

for all z ∈ H1/2(Γ).

Proof. We will first prove the upper estimate ‖uz‖L2(Ω) ≤ c2‖z‖H̃−1/2
pw (Γ)

. For a test function

v ∈H2(Ω)∩H1
0 (Ω) we have, since uz ∈H1(Ω) is the harmonic extension of z ∈H1/2(Γ), by

applying duality and the Hölder inequality,

〈−∆v,uz〉L2(Ω) = 〈∇v,∇uz〉L2(Ω)−〈∂nv,uz〉Γ

=−〈∂nv,z〉Γ =−
J

∑
i=1
〈∂nv|Γi,z|Γi〉Γi

≤
J

∑
i=1
‖∂nv|Γi‖H1/2(Γi)

‖z|Γi‖H̃−1/2(Γi)
≤ ‖∂nv‖

H1/2
pw (Γ)

‖z‖
H̃−1/2
pw (Γ)

.
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Let wz ∈ H1
0 (Ω) be the unique solution of the Dirichlet problem

−∆wz = uz in Ω,

wz = 0 on Γ.

Since Ω is assumed to be convex, we have wz ∈ H2(Ω)∩H1
0 (Ω), which satisfies

‖wz‖H2(Ω) ≤ c‖uz‖L2(Ω).

Thus, with Lemma 6.2 we conclude

‖uz‖2
L2(Ω) = 〈−∆wz,uz〉L2(Ω) =−〈∂nwz,z〉Γ

≤ ‖∂nwz‖H1/2
pw (Γ)

‖z‖
H̃−1/2
pw (Γ)

≤ c‖wz‖H2(Ω)‖z‖H̃−1/2
pw (Γ)

≤ c2‖uz‖L2(Ω)‖z‖H̃−1/2
pw (Γ)

.

This proves the upper estimate and it remains to show the inequality

c1‖z‖H̃−1/2
pw (Γ)

≤ ‖uz‖L2(Ω),

for all z ∈ H1/2(Γ). From Lemma 6.2 we conclude that for any λ ∈ H1/2
pw (Γ) there exists a

v ∈ H2(Ω)∩H1
0 (Ω) such that ∂nv = λ on Γ is satisfied and

‖v‖H2(Ω) ≤ c̃IT,N‖λ‖H1/2
pw (Γ)

.

Hence we find

‖z‖
H̃−1/2
pw (Γ)

= sup
0 6=λ∈H1/2

pw (Γ)

〈z,λ 〉Γ
‖λ‖

H1/2
pw (Γ)

= sup
06=λ∈H1/2

pw (Γ)

〈∆v,uz〉L2(Ω)

‖λ‖
H1/2
pw (Γ)

≤ sup
0 6=λ∈H1/2

pw (Γ)

‖∆v‖L2(Ω)‖uz‖L2(Ω)

‖λ‖
H1/2
pw (Γ)

≤ c̃IT,N‖uz‖L2(Ω),

which completes the proof.

Now we are in a position to state the required spectral equivalence inequalities for the Schur
complement Th, defined in (6.4). Let us consider piecewise linear and globally continuous
shape functions on the boundary by restriction to the boundary, i.e. φk := ϕnI+k|Γ for all
k = 1, . . . ,nC. Then we can define the finite element trace space

Zh := span{φk}nC
k=1 = Vh|Γ = span{ϕnI+k|Γ}

nC
k=1 ⊂ H1/2(Γ). (6.11)

Theorem 6.4. For all zC ∈ RnC ↔ zh ∈ Zh there hold the spectral equivalence inequalities

(ThzC,zC)' ‖zh‖2
H̃−1/2
pw (Γ)

.
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Proof. For zh ∈ Zh↔ zC ∈RnC let uzh ∈H1(Ω) be the harmonic extension for which we have,
by Theorem 6.3,

c1‖zh‖H̃−1/2
pw (Γ)

≤ ‖uzh‖L2(Ω) ≤ c2‖zh‖H̃−1/2
pw (Γ)

. (6.12)

On the other hand, by defining uI = −A−1
II AICzC and by setting u = (uI,zC)

>↔ uzh,h ∈ Vh,
which is the discrete harmonic extension of zh, we obtain by using (6.5),

(ThzC,zC) = ‖uzh,h‖
2
L2(Ω).

Since uzh,h ∈ Vh is the standard finite element approximation of uzh ∈ H1(Ω), we have,
by applying the spectral equivalence (6.12), the standard finite element error estimate in
L2(Ω), the continuity of the Dirichlet trace of the harmonic extension uzh ∈H1(Ω), and an
inverse inequality, the estimate

‖uzh,h‖L2(Ω) ≤ ‖uzh‖L2(Ω)+‖uzh,h−uzh‖L2(Ω)

≤ c2‖zh‖H̃−1/2
pw (Γ)

+ c3h‖uzh‖H1(Ω)

≤ c2‖zh‖H̃−1/2
pw (Γ)

+ c4h‖zh‖H1/2(Γ)

≤ c2‖zh‖H̃−1/2
pw (Γ)

+ c5‖zh‖H−1/2(Γ).

Now the upper estimate follows by using (6.8). To prove the reverse estimate we first have,
by using an inverse inequality, and the bound of the Dirichlet trace of the discrete harmonic
extension uzh,h ∈ Vh ⊂ H1(Ω),

‖uzh,h‖L2(Ω) ≥ c6h‖uzh,h‖H1(Ω) ≥ c7h‖zh‖H1/2(Γ) = c7
h‖zh‖H1/2(Γ)

‖zh‖H̃−1/2
pw (Γ)︸ ︷︷ ︸

=:α

‖zh‖H̃−1/2
pw (Γ)

.

On the other hand we conclude, as above,

‖uzh,h‖L2(Ω) ≥ ‖uzh‖L2(Ω)−‖uzh,h−uzh‖L2(Ω)

≥ c1‖zh‖H̃−1/2
pw (Γ)

− c4h‖zh‖H1/2(Γ) = (c1− c4α)‖zh‖H̃−1/2
pw (Γ)

.

In particular we have

‖uzh,h‖L2(Ω) ≥max{c7α,c1−αc4}‖zh‖H̃−1/2
pw (Γ)

,

and by using

min
α>0

max{c7α,c1−αc4}=
c1c7

c7 + c4
> 0,

the proof is concluded.
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6.3 Schur complement preconditioners

In this section we discuss two different approaches for the construction of a preconditioner
for the Schur complement matrix Th as defined in (6.4). By this we mean a discrete operator,

which reflects the spectral equivalence inequalities in H̃−1/2
pw (Γ), see Theorem 6.4. The first

approach is based on the local single layer boundary integral operator. Further, we also
present a multilevel approach of BPX type which sometimes can be more useful. Therefore
we need additional spectral equivalence inequalities which relates the Schur complement
Th to a Sobolev norm in H−1/2(Γ), which is, as we will see, in general only optimal up to a
logarithmic factor. Corresponding numerical examples illustrate the obtained theoretical
results.

6.3.1 The SLP preconditioner

For the Schur complement matrix Th, defined in (6.4) we know form Theorem 6.4 that it
satisfies the spectral equivalence inequalities

(ThzC,zC)' ‖zh‖2
H̃−1/2
pw (Γ)

=
J

∑
i=1
‖zh|Γi‖

2
H̃−1/2(Γi)

, (6.13)

for all zC ∈RnC↔ zh ∈ Zh, where the finite element trace space Zh is defined in (6.11). For the
construction of a preconditioning matrix CTh it is therefore sufficient to find a computable
representation of the local Sobolev norms ‖·‖2

H̃−1/2(Γi)
, for all i = 1, . . . ,J, which can be done

by using local boundary integral operators, see, e.g., [38,73].

For a given ψi ∈ H̃−1/2(Γi), i = 1, . . . ,J, we define the local single layer boundary integral
operator as

(Viψi)(x) =
∫
Γi

U∗(x,y)ψi(y)dsy, (6.14)

for x ∈ Γi, where

U∗(x,y) =


− 1

2π
log |x− y| for n = 2,

1
4π|x− y|

for n = 3,

is the fundamental solution of the Laplace operator. It turns out that the local single layer
boundary integral operator Vi : H̃−1/2(Γi)→H1/2(Γi) is bounded and elliptic in H̃−1/2(Γi),
see, e.g., [54, Theorem 2.4], and hence the duality product

‖ψi‖2
Vi

:= 〈Viψi,ψi〉Γi ' ‖ψi‖2
H̃−1/2(Γi)

, (6.15)
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defines an equivalent norm in H̃−1/2(Γi), for all i = 1, . . . ,J. Note that for the two-
dimensional case we assume that the length of all Γi are less than 4, see [54, Theorem
2.4]. By combining the spectral equivalence inequalities (6.13) and (6.15) we therefore
conclude for the Schur complement the spectral equivalence inequalities

(ThzC,zC)'
J

∑
i=1
〈Vizh|Γi,zh|Γi〉Γi =

J

∑
i=1

(A>i Vi,hAizC,zC), (6.16)

for all zC ∈ RnC ↔ zh ∈ Zh. In (6.16), Vi,h ∈ RnC,i×nC,i with nC,i = dimZh|Γi is the Galerkin
boundary element matrix of the local single layer boundary integral operator given by

Vi,h[`,k] = 〈Viφk,i,φ`,i〉Γi,

for all k, `= 1, . . . ,nC,i, and

Zh|Γi = span{φk,i}
nC,i
k=1,

is the localized finite element space, for all i = 1, . . . ,J. The relation between the global and
local degrees of freedom is described by connectivity matrices Ai ∈ RnC,i×nC . The spectral
equivalence inequalities (6.16) imply the definition of the preconditioning matrix

CSLP :=
J

∑
i=1

A>i Vi,hAi, (6.17)

where the spectral condition number of the preconditioned system,

κ(C−1
SLPTh)≤ c, (6.18)

is bounded by a constant which is independent of the discretization.

The application of the preconditioning matrix C−1
SLP requires the solution of a linear system,

v =C−1
SLPr. Since the preconditioner (6.17) corresponds to an additive Schwarz method, see

e.g. [11], for the discrete single layer boundary integral operator [36,57], it can be realized
by solving local subproblems which correspond to all the interior degrees of freedom within
Γi, and by solving a coarse Schur complement system which corresponds to all degrees of
freedom along the interfaces. In the particular case of a two-dimensional polygonal bounded
domain the dimension of the coarse system coincides with the number of corner points,
which is in general rather small. The situation can be quite different when considering
more general three-dimensional polyhedral domains. This motivates the use of global
preconditioning strategies such as a multilevel approach wich implies a spectral equivalent
preconditioner in H−1/2(Γ).
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6.3.2 The BPX preconditioner

For the definition of a global preconditioning matrix CTh in H−1/2(Γ) we need to have, in
addition to (6.13), the spectral equivalence inequalities

‖zh‖2
H̃−1/2
pw (Γ)

' ‖zh‖2
H−1/2(Γ)

,

for all zC ∈RnC ↔ zh ∈ Zh. As we will see this estimate is depending on a logarithmic term
of the mesh size h. First, we recall from (6.8) the estimate

‖zh‖H−1/2(Γ) ≤ ‖zh‖H̃−1/2
pw (Γ)

, (6.19)

for all zC ∈RnC ↔ zh ∈ Zh, where Zh is the finite element trace space defined in (6.11). The
proof of the reverse inequality is more involved.

Theorem 6.5. Let the boundary Γ be piecewise smooth and let zh ∈ Zh where the mesh size
h is assumed to be sufficiently small. Then there holds the estimate

‖zh‖H̃−1/2
pw (Γ)

≤ c2J[1− logh]‖zh‖H−1/2(Γ). (6.20)

Proof. The proof of (6.20) follows the ideas as used for the analysis of the additive Schwarz
method for the single layer boundary integral operator, see, e.g., [36,57]. For s ∈ (0, 1

2) and
i = 1, . . . ,J we first have, see, e.g., [54, Lemma 2.3],

‖φ‖H̃s(Γi)
≤ c

1/2− s
‖φ‖Hs(Γi),

for all φ ∈ Hs(Γi). By using a duality argument and the inverse inequality we therefore
conclude, for ε ∈ (0, 1

2),

‖zh‖H̃−1/2(Γi)
≤ ‖zh‖H̃−1/2+ε (Γi)

= sup
06=φ∈H1/2−ε (Γi)

〈zh,φ〉Γi

‖φ‖H1/2−ε (Γi)

≤ c
ε

sup
0 6=φ∈H1/2−ε (Γi)

〈zh,φ〉Γi

‖φ‖H̃1/2−ε (Γi)

≤ c
ε
‖zh‖H−1/2+ε (Γi)

≤ c̃
ε

h−ε‖zh‖H−1/2(Γi)
.

Finally, by choosing ε =−1/ logh∈ (0, 1
2), which is satisfied for sufficient small h, we obtain

‖zh‖H̃−1/2(Γi)
≤ c[1− logh]‖zh‖H−1/2(Γi)

.
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Now the assertion follows by summing up, and by using again a duality argument,

‖zh‖2
H̃−1/2
pw (Γ)

=
J

∑
i=1
‖zh‖2

H̃−1/2(Γi)
≤ c2[1− logh]2

J

∑
i=1
‖zh‖2

H−1/2(Γi)

≤ c2[1− logh]2
(

J

∑
i=1
‖zh‖H−1/2(Γi)

)2

= c2[1− logh]2
(

J

∑
i=1

sup
0 6=φi∈H̃1/2(Γi)

〈zh,φi〉Γi

‖φi‖H̃1/2(Γi)

)2

= c2[1− logh]2
(

sup
φ=

J
∑

i=1

φi
‖φi‖H̃1/2(Γi)

, 06=φi∈H̃1/2(Γi)

〈zh,φ〉Γ
)2

≤ c2[1− logh]2
(

sup
φ∈H1/2(Γ), ‖φ‖

H1/2(Γ)
≤J
〈zh,φ〉Γ

)2

≤ c2J2[1− logh]2‖zh‖2
H−1/2(Γ)

,

which completes the proof.

By combining the spectral equivalence inequalities (6.13) with (6.19) and (6.20) we conclude
the spectral equivalence inequalities

c̃1‖zh‖2
H−1/2(Γ)

≤ (ThzC,zC)≤ c̃2J2[1− logh]2‖zh‖2
H−1/2(Γ)

, (6.21)

for all zC ∈RnC ↔ zh ∈ Zh. It remains to find a preconditioner which is spectrally equivalent

to the discrete norm in H−1/2(Γ). One possibility is the use again a boundary integral
operator, namely the stabilized discrete hypersingular boundary integral operator as a
preconditioner of opposite order [75]. However, in the following we consider a geometric
multilevel operator, see [10,60], for piecewise linear and globally continuous basis functions
on the boundary to represent the norm in H−1/2(Γ). Other choices involve algebraic or
artificial multilevel operators as considered in, e.g., [26,58,72].

For the construction of the multilevel preconditioner we consider a sequence of admissible
globally quasi–uniform nested finite element meshes {Thi}i∈N0 of mesh size hi ' 2−i. Let
{Vhi}i∈N0 ⊂ H1(Ω) denote the related sequence of finite element spaces with piecewise
linear and globally continuous basis functions. Then we consider the restrictions on the
boundary,

Zi := span{φ i
k}

ni
C

k=1 = Vhi|Γ = span{ϕ i
nI,i+k|Γ}

ni
C

k=1 ⊂ H1/2(Γ),

with i ∈ N0. This results in a sequence of nested spaces of the form

Z0 ⊂ Z1 ⊂ . . .⊂ ZL = ZhL ⊂ ZL+1 ⊂ . . .⊂ H1/2(Γ),
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where L denotes the current level of interest. With respect to the boundary element spaces
Zi, i ∈ N0, of piecewise linear globally continuous shape functions φ i

k we introduce, for a
given z ∈ L2(Γ), the L2–projection Qi : L2(Γ)→ Zi as the unique solution Qiz ∈ Zi of the
variational problem

〈Qiz,vhi〉L2(Γ) = 〈z,vhi〉L2(Γ),

for all vhi ∈ Zi. In addition we set Q−1 := 0. It turns out, see, e.g., [10, 60, 73], that the
multilevel operator

B−1/2 :=
∞

∑
i=0

hi(Qi−Qi−1) : H−1/2(Γ)→ H1/2(Γ), (6.22)

defines an equivalent norm in H−1/2(Γ), and that its inverse operator is given by

B−1
−1/2 = B1/2 =

∞

∑
i=0

h−1
i (Qi−Qi−1) : H1/2(Γ)→ H−1/2(Γ).

As in [73, Corollary 13.7] we finally conclude that the preconditioner CTh of the Schur
complement Th is given by

CBPX := MhLB−1
hL

MhL , (6.23)

where

MhL [`,k] = 〈φ
L
k ,φ

L
` 〉L2(Γ), BhL [`,k] = 〈B1/2φ

L
k ,φ

L
` 〉Γ,

for all k, ` = 1, . . . ,nL
C denote the standard mass matrix and the Galerkin matrix of the

multilevel operator B1/2. Moreover, by using the spectral equivalence inequalities (6.21)
we conclude the following bound for the spectral condition number of the preconditioned
system,

κ(C−1
BPXTh)≤ cJ2[1− logh]2. (6.24)

Note that J depends on the geometry of Ω, but not on the discretization.

For the application v =C−1
BPXr, e.g., within a conjugate gradient scheme, we obtain, as for

the standard BPX multilevel approach [10,73], the representation

v =
L

∑
i=0

αiRiM−1
hi

R>i r,

with coefficients

αi =


1
hL

for i = L,

1
hi
− 1

hi+1
for i = 0, . . . ,L−1,



6.3 Schur complement preconditioners 97

where Ri : RnC,i→RnC,L is the prolongation operator which is related to the nested sequence
of piecewise linear finite element spaces on the boundary. While for the application of mul-
tilevel preconditioners for (pseudo)differential operators of positive order one can replace
the inverse mass matrices M−1

hi
by its diagonals, this is not possible in the case of the Schur

complement Th which is the Galerkin discretization of a (pseudo)differential operator of
order −1, in particular we have

αi < 0,

for all i= 0, . . . ,L−1. As a consequence we need to use the inverse mass matrices M−1
hi

, or its
approximation, which can be realized at low cost by a few conjugate gradient iterations.

6.3.3 Numerical results

For the numerical experiments we consider the biharmonic Dirichlet boundary value prob-
lem (5.1) in the domains Ω = B1/2(0) and Ω = (0, 1

2)
n, both for n = 2,3. The linear system

(6.3) is solved by a conjugate gradient scheme without (CG) and with (PCG) precondi-
tioning up to a relative error reduction of ε = 10−8. In all following tables we present,
for a sequence of different levels L, the number of required PCG iterations, and the re-
lated numbers nI,L and nC,L of degrees of freedom in the interior and on the boundary,
respectively.

Example 1

In the first numerical example we choose the right-hand side f as in the previous section
of this chapter, namely (5.9).

For the two-dimensional test problems we first consider the discrete single layer boundary
integral operator preconditioner (6.17), see Table 6.1. As expected from the estimate
(6.18) we observe a constant number of PCG iterations for both computational domains.
Next we consider the multilevel preconditioner (6.23), the results are given in Table 6.1
too. In the case of the circular domain Ω = B1/2(0) with a smooth boundary Γ = ∂Ω

we observe a constant number of PCG iterations since the Sobolev spaces H−1/2(Γ) =

H̃−1/2
pw (Γ) coincide. In contrast to the circular domain, for the polygonal bounded domain

Ω = (0, 1
2)

2 we observe a slightly increasing number of PCG iterations, which corresponds
to the logarithmic behavior of the spectral condition number bound (6.24).

Example 2

In this example the right–hand side f is chosen by an arbitrary vector with values in [−1,1],
generated by rand().
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Ω = B1/2(0) Ω = (0, 1
2)

2

L nI,L nC,L CSLP CBPX CSLP CBPX

0 1 4 1 1 1 1
1 5 8 5 5 5 5
2 25 16 10 10 7 6
3 113 32 13 12 5 5
4 481 64 12 11 9 9
5 1 985 128 13 13 11 12
6 8 065 256 14 14 11 14
7 32 513 512 13 15 11 14
8 130 561 1 024 13 15 11 15
9 523 265 2 048 12 15 11 15

10 2 095 105 4 096 12 15 11 16

Table 6.1: PCG iterations for CSLP and CBPX preconditioner, n = 2.

Ω = B1/2(0) Ω = (0, 1
2)

2

L nI,L nC,L CG iter PCG iter CG iter PCG iter

0 1 4 1 1 1 1
1 5 8 3 5 3 5
2 25 16 9 11 9 11
3 113 32 19 15 22 16
4 481 64 25 16 30 18
5 1 985 128 33 17 38 19
6 8 065 256 43 17 49 20
7 32 513 512 53 16 63 21
8 130 561 1 024 70 16 80 22
9 523 265 2 048 88 16 101 23

10 2 095 105 4 096 114 16 128 24

Table 6.2: Iterations for the multilevel preconditioner CBPX, n = 2.

In Table 6.2 we present iteration numbers for the multilevel preconditioner (6.23) for the
two-dimensional test problems. As in Example 1, we observe a constant number of PCG
iterations for Ω = B1/2(0), while for the square Ω = (0, 1

2)
2 we obtain a logarithmic factor,

corresponding to the spectral condition number bound (6.24). This logarithmic behavior
is more obvious when considering the three-dimensional test problem with Ω = (0, 1

2)
3, see

Table 6.3.
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Ω = B1/2(0) Ω = (0, 1
2)

2

L nI,L nC,L CG iter PCG iter nI,L nC,L CG iter PCG iter

0 1 18 12 12 1 8 2 2
1 19 66 23 16 9 26 18 15
2 231 258 31 25 91 98 29 24
3 2 255 1 026 43 29 855 386 41 27
4 19 871 4 098 54 30 7 471 1 538 55 30
5 166 719 16 386 71 31 62 559 6 146 72 34
6 1 365 631 65 538 91 31 512 191 24 578 94 37

Table 6.3: Iterations for the multilevel preconditioner CBPX, n = 3.

Example 3 (non-convex domains)

So far we presented numerical results for convex domains. Even tough we assumed for the
spectral equivalence estimates in this section the domain to be convex, we would like to
demonstrate the effectiveness of the preconditioner for non-convex domains too.

Figure 6.1: Fichera cube, n = 3.

In particular we consider the following two cases, the two-dimensional L-shaped domain
Ω = (−1

2 ,
1
2)

2\(−1
2 ,0)

2 with J = 6 and the Fichera cube Ω = (0,1)3\(0, 1
2)

3 with J = 9
smooth boundary parts. Note, the number of iterations will depend on the number of
smooth parts J, see (6.24). In both cases the right-hand side f is an arbitrary vector with
values in [−1,1], as in the previous example.

In Table 6.4 we present corresponding iteration numbers. We observe a logarithmic be-
havior of the iteration numbers for the preconditioned system, influenced by the number
of smooth parts J.
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L–shape, n = 2 Fichera cube, n = 3
L nI,L nC,L CG iter PCG iter nI,L nC,L CG iter PCG iter

0 3 8 8 8 2 26 22 23
1 17 16 16 14 34 98 39 36
2 81 32 25 19 397 386 49 48
3 353 64 33 20 3 803 1 538 65 59
4 1 473 128 43 21 33 207 6 146 84 71
5 6 017 256 54 23 277 359 24 578 108 79
6 24 321 512 69 25
7 97 793 1 024 91 26
8 392 193 2 048 116 29
9 1 570 817 4 096 154 30

10 6 287 361 8 192 197 34

Table 6.4: Iterations for the multilevel preconditioner CBPX for non-convex domains.

6.4 Global preconditioners

In order to solve the global linear system (6.1) using an iterative method efficiently, a global
preconditioner (6.2) is needed. In the previous section we have seen the construction of
preconditioners CTh for the Schur complement equation. Within this section we propose,
without any numerical analysis, two preconditioners CAh for the upper left block(

MII AII
AII

)
. (6.25)

Note that this 2×2 block is symmetric and indefinite. Let us denote by CMG ∈RnI×nI the
preconditioning matrix, which is obtained when we apply a V–cycled geometrical multigrid
V (2,2), i.e. with 2 pre-smoothing and 2 post-smoothing steps, to the stiffness matrix
AII ∈RnI×nI . For a further discussion on multigrid methods we refer for instance to [34].

From the theory of saddle point problems, see, e.g., [12,22,73], it is easy to prove that the
upper left 2×2 block (6.25) is spectrally equivalent to(

AII
AII

)
.

Nevertheless, numerical results show that this preconditioner, where the individual blocks
are realized by CMG in combination with CBPX for a preconditioned GMRES method, fails.
The iteration numbers do not grow as fast as without preconditioning, but no robustness
with respect to the discretization can be observed.

Alternatively, we propose for CAh the following two preconditioners, where AII is already
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realized by CMG,

CAh,1 =

(
CMG

CMG

)
, CAh,2 =

(
MII CMG

CMG

)
.

The corresponding inverse of the preconditioners are then given by

C−1
Ah,1

=

(
C−1
MG

C−1
MG

)
, C−1

Ah,2
=

(
C−1
MG

C−1
MG −C−1

MGMIIC−1
MG

)
.

Note that the preconditioner CAh,2 is the upper left block (6.25) itself, where the stiffness
matrices are replaced by its multigrid realization CMG. Further, it is important to mention,
that if CMG is a good preconditioner for AII, it is in general not true that CMGM−1

II CMG

is a good one for AIIM−1
II AII. In the following numerical results we consider for the Schur

complement preconditioner CTh always the BPX preconditioner CBPX (6.23).

6.4.1 Numerical results

We present numerical results for the preconditioning of the linear system (6.1). The global
preconditioner is given in (6.2), where CAh is either CAh,1 or CAh,2 and the Schur complement
preconditioner CTh is in all considered cases CBPX defined in (6.23). As computational
domains we consider Ω = B1/2(0) and Ω = (0, 1

2)
n, both for n = 2,3. For the iterative

solution of the linear system (6.1) we use generalized minimal residual method without (I)
and with (CAh,1 or CAh,2) preconditioning up to a relative error reduction of ε = 10−8. In
all following tables we present, for a sequence of different levels L, the number of required
PGMRES iterations, and the related numbers DoFs = 2nI,L + nC,L denoting the global
number of degrees of freedom.

Example 1

In this example we consider the right-hand side f generated by the exact solutions (5.9),
with the results presented in Table 6.5. As expected we get in the case of Ω = B1/2(0)
nearly constant iteration numbers and in the case of Ω = (0, 1

2)
2 we obtain a logarithmic

factor, as we have seen it for the Schur complement preconditioner in the previous section.
Further, we observe that the iteration numbers of the preconditioner CAh,2 are smaller in
comparison to CAh,1. This is due to the fact that we consider for CAh,2 the inverse of the
upper left 2×2 block where we replace AII by its approximation CMG.
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Ω = B1/2(0) Ω = (0, 1
2)

2

L DoFs I CAh,1 CAh,2 I CAh,1 CAh,2

0 6 3 3 3 3 3 3
1 18 10 6 5 6 6 4
2 66 37 9 7 27 9 7
3 258 157 13 9 163 16 12
4 1 026 >500 15 11 >500 23 18
5 4 098 21 17 28 21
6 16 386 25 18 38 31
7 65 538 27 19 51 36
8 262 146 28 20 59 40
9 1 048 578 30 20 64 43

10 4 194 306 31 21 69 46

Table 6.5: GMRES iterations with and without preconditioning, n = 2.

Ω = B1/2(0) Ω = (0, 1
2)

2

L DoFs I CAh,1 CAh,2 I CAh,1 CAh,2

0 6 3 3 3 3 3 3
1 18 15 13 11 15 13 9
2 66 59 21 16 59 27 18
3 258 236 29 22 234 36 26
4 1 026 >500 35 26 >500 47 33
5 4 098 40 28 53 37
6 16 386 43 29 59 40
7 65 538 47 31 64 43
8 262 146 49 33 70 46
9 1 048 578 51 33 76 50

10 4 194 306 53 35 81 54

Table 6.6: GMRES iterations with and without preconditioning, n = 2.

Example 2

In order to check the reliability for the preconditioner we choose again for the right-hand
side f an arbitrary vector with values in [−1,1], generated by rand(). The corresponding
numerical results are presented in Table 6.6 for n= 2 and in Table 6.7 for n= 3. For the ball
Ω = B1/2(0) we observe again almost constant iteration numbers, while for the Ω = (0, 1

2)
n,

with n = 2,3 we observe the known logarithmic behavior in the iteration numbers. As in
the previous examples the preconditioner CAh,2 performs better.
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Ω = B1/2(0) Ω = (0, 1
2)

3

L DoFs I CAh,1 CAh,2 DoFs I CAh,1 CAh,2

0 20 11 11 11 10 4 4 4
1 104 53 24 20 44 30 24 19
2 720 451 35 30 280 196 46 36
3 5 536 >500 41 34 2 096 >500 58 42
4 43 840 45 37 16 480 66 49
5 349 824 48 39 131 264 76 54
6 2 796 800 52 40 1 048 960 87 60

Table 6.7: GMRES iterations with and without preconditioning, n = 3.

Example 3 (non-convex domains)

As in the numerical results for the preconditioning of Schur complement equation in Section
6.3, we consider numerical results for the case of non-convex domains too. As previously
we consider the two-dimensional L-shaped domain Ω = (−1

2 ,
1
2)

2\(−1
2 ,0)

2 with J = 6 and

the Fichera cube Ω = (0,1)3\(0, 1
2)

3 with J = 9 smooth boundary parts.

L–shape, n = 2 Fichera cube, n = 3
L DoFs I CAh,1 CAh,2 DoFs I CAh,1 CAh,2

0 14 14 14 12 30 22 21 22
1 50 46 29 22 166 92 47 40
2 194 174 39 29 1 180 >500 70 57
3 770 >500 50 36 9 144 88 71
4 3 074 59 40 72 560 111 87
5 12 290 66 45 579 296 133 103
6 49 154 72 48 4 632 000 159 122
7 196 610 77 52
8 786 434 81 55
9 3 145 730 89 59

10 12 582 914 95 69

Table 6.8: GMRES iterations with and without preconditioning.

In Table 6.8 we present the corresponding numerical results. We observe for both domains
a logarithmic behavior of the iteration numbers and a significant influence of the number
of smooth boundary parts J.
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6.5 Concluding remarks

In this chapter we have considered the construction of preconditioners for the biharmonic
equation of first kind (5.1). At first, we have developed a preconditioner for the Schur
complement system with respect to the boundary degrees of freedom. The analysis has
shown a constant condition number for the local single layer potential preconditioner CSLP

(6.17) and a logarithmic dependency for the BPX preconditioner CBPX (6.23). For both
cases, the presented numerical examples illustrate these properties. In the last part of the
chapter we have presented two global, block diagonal, preconditioners. Numerical examples
have affirmed the expected behavior.

As an outlook we would like to mention the extension of the spectral equivalence estimates
for the Schur complement preconditioner to the case of non-convex domains. Another
interesting and important question is a possible modification of the BPX preconditioner in
order to eliminate the logarithmic dependency in the condition number. Also, we would
like to name a possible application to adaptive methods, in h and p, as well as the analysis
of the global preconditioner.

Furthermore, we would like to mention the application of these ideas for the construction
of preconditioners to boundary control problems in the energy space, which will be the
topic of the next chapter.



7 PRECONDITIONING STRATEGIES FOR OPTIMAL
BOUNDARY CONTROL PROBLEMS

The aim of this chapter is to present a unified analysis and construction of preconditioners
for boundary control problems. While the main focus of the research is aimed to the con-
struction and numerical analysis of preconditioners for distributed control problems, see,
e.g., [21, 68, 85], less work seems to be done in the case of preconditioners for boundary
control problems. In a recent article, [32], multilevel preconditioners for the solution of
unconstrained Neumann boundary control problems were considered. The proposed pre-
conditioner turns out to be robust with respect to all regularization parameters. However,
since the discretization of the related optimality system is a mixed finite element scheme,
a discrete stability condition for the discrete Neumann control and the discrete Dirichlet
trace of the state has to be ensured. While this stability condition excludes the use of
standard piecewise linear finite elements for the state and associated piecewise constants
for the Neumann control, piecewise linear basis functions are used for the approximation
of the control in [32]. Although one may consider basis functions which are discontinu-
ous across corners or edges, such an approach seems not to be very practicable from an
application point of view.

As we have seen in (3.28) and (3.57), the Schur complement system, solved for both the
Dirichlet and Neumann boundary control problem, is a linear combination of the Schur
complement matrix which is related to a mixed finite element approximation of the bi-
harmonic equation of first kind, and of the finite element approximation of the Steklov–
Poincaré operator which realizes the Dirichlet to Neumann map related to the homogeneous
partial differential equation. Moreover, the latter is scaled by the cost or regularization
parameter. Consequently the same ideas for preconditioning of Dirichlet and Neumann
boundary control problems can be applied. Since the system matrix is an additive com-
position of discrete pseudo differential operators of different order, i.e., of orders ±1, an
appropriate preconditioner has to take care of this behavior. In particular, multilevel op-
erators, see, e.g., [10,60], are known to be applicable in this situation. Within this section
we discuss the construction of preconditioners for the optimal Dirichlet boundary control
problem (3.1)–(3.2). In particular, we focus on the robustness of the preconditioner with
respect to the mesh size h and the cost coefficient %, i.e., iteration numbers are independent
of these quantities.

This chapter is organized as follows: In the beginning we recall the Schur complement equa-
tion with respect to the control and present corresponding spectral equivalence estimates.
Afterwards, we present two different type of preconditioners for the model problem. First,
we consider a preconditioner as a combination of the local single layer potential operator

105
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and the hypersingular operator. For this approach the proof of a constant spectral condi-
tion number is presented. Since it might be more applicable to use a multilevel method in
practice, we also present the construction of corresponding multilevel BPX type precondi-
tioner. In particular, it is an extended version for the biharmonic equation, discussed in
Chapter 6, where we obtain a logarithmic dependency in the spectral condition number for
domains with a piecewise smooth boundary. Numerical examples illustrate the obtained
theoretical results.

7.1 Schur complement preconditioners

Starting point is, as in the construction of the preconditioner for the biharmonic equation,
the linear system (3.25). Due to the separation of interior and boundary degrees of freedom
corresponding, i.e. u = (uI,uC)

> with uI ∈ RnI and uC ∈ RnC , we obtain the linear system
(3.26) MII +%AII AII MIC +%AIC

AII AIC
MCI +%ACI ACI MCC +%ACC

uI
p̃I
uC

=

 f̃ I
f I
f̃C

 .

Our aim is the construction of a block diagonal preconditioner(
CAh

CTh+%Sh

)
, (7.1)

where CAh ∈R2nI×2nI denotes a preconditioner for the upper left 2×2 block, while CTh+%Sh ∈
RnC×nC denotes the one corresponding to the Schur complement system. From the linear
system (3.26) we obtain the Schur complement system (3.27),[[

MCC−MCIA−1
II AIC−ACIA−1

II MIC +ACIA−1
II MIIA−1

II AIC
]

+%
[
ACC−ACIA−1

II AIC
]]

uC

=
[
ACIA−1

II MII−MCI
]
A−1

II f I + f̃C−ACIA−1
II f̃ I,

where the corresponding Schur complement matrix (3.28) is given by

Th +%Sh = MCC−MCIA−1
II AIC−ACIA−1

II AIC +ACIA−1
II MIIA−1

II AIC

+%
[
ACC−ACIA−1

II AIC
]
.

As it was mentioned in the end of Section 3.1, it consists of a biharmonic part Th, see (6.4),
and the cost coefficient % weighted part Sh =ACC−ACIA−1

II AIC, which is the discrete Galerkin
matrix of the Steklov–Poincaré operator, see [39, 59]. Note that the Schur complement
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system with the unknown uC is an equation for the discrete control zh, since we have the
isomorphism zh↔ uC ∈ RnC .

For all vC ∈ RnC we introduce

vI :=−A−1
II AICvC ∈ RnI ,

and thus rewrite the induced bilinear form of the Schur complement (3.28) as

((Th +%Sh)vC,vC) = (MCCvC,vC)−2(MCIA−1
II AICvC,vC)+(MIIA−1

II AICvC,A
−1
II AICvC)

+%
[
(ACCvC,vC)− (ACIA−1

II AICvC,vC)
]

= (MCCvC,vC)+2(MCIvI,vC)+(MIIvI,vI)

+%
[
(ACCvC,vC)−2(ACIA−1

II AICvC,vC)+(ACIA−1
II AICvC,vC)

]
= (MCCvC,vC)+2(MCIvI,vC)+(MIIvI,vI)

+% [(ACCvC,vC)−2(ACIvI,vC)+(AIIvI,vI)] .

By using the isomorphism v = (vI,vC)
> ∈ RnI+nC ↔ vh ∈ Vh we finally obtain

((Th +%Sh)vC,vC) = (Mhv,v)+%(Ahv,v) = 〈vh,vh〉L2(Ω)+%〈∇vh,∇vh〉L2(Ω)

= ‖vh‖2
L2(Ω)+%|vh|2H1(Ω).

(7.2)

As in Chapter 6, we would like to point out that vh ∈ Vh is the discrete harmonic extension
of vh|Γ↔ vC ∈ RnC which is the unique solution of the variational problem

〈∇vh,∇qh〉L2(Ω) = 0,

for all qh ∈Qh.

In order to construct the preconditioner for the Schur complement Th+%Sh we need spectral
equivalence estimates with respect to the boundary and correspondingly efficient invertible
operators. In Chapter 6 we already treated the term ‖ · ‖L2(Ω) of (7.2) for a harmonic
function. Here, we have to consider the additional term | · |H1(Ω). Since vh ∈Vh, constructed
as above, is harmonic, it easily follows that

c1|vh|Γ|2H1/2(Γ)
≤ |vh|2H1(Ω) ≤ c2|vh|Γ|2H1/2(Γ)

. (7.3)

Further, let us consider piecewise linear and globally continuous shape functions on the
boundary by restriction to the boundary, i.e. φk := ϕnI+k|Γ for all k = 1, . . . ,nC. Then we
can define, as in Chapter 6, the finite element trace space

Zh := span{φk}nC
k=1 = Vh|Γ = span{ϕnI+k|Γ}

nC
k=1 ⊂ H1/2(Γ). (7.4)

According to Theorem 6.4 and (7.3) the following statement holds true.
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Theorem 7.1. Let Ω ⊂ Rn, n = 2,3, be a convex and bounded Lipschitz domain with a
piecewise smooth boundary Γ. Then, for all zC ∈ RnC ↔ zh ∈ Zh there hold the spectral
equivalence inequalities

((Th +%Sh)zC,zC)' ‖zh‖2
H̃−1/2
pw (Γ)

+%|zh|2H1/2(Γ)
. (7.5)

The following Lemma might be of interest for small cost coefficients and be advantageous
in implementation of some preconditioner, where the semi-norm part can be replaced by
the full norm.

Lemma 7.1. Let the assumptions of Theorem 7.1 be valid and let us further assume a
cost coefficient % < 1. Then, for all zC ∈ RnC ↔ zh ∈ Zh there hold the spectral equivalence
inequalities

((Th +%Sh)zC,zC)' ‖zh‖2
H̃−1/2
pw (Γ)

+%‖zh‖2
H1/2(Γ)

.

Proof. We only need to show the lower estimate, since the upper one is trivially satisfied

by Theorem 7.1. By the definition of the norm in H̃−1/2
pw (Γ) we obtain

‖zh‖H̃−1/2
pw (Γ)

= sup
0 6=φ∈H1/2

pw (Γ)

〈zh,φ〉Γ
‖φ‖

H1/2
pw (Γ)

≥ 1
|Γ|
〈zh,1〉Γ,

and consequently, because of the equivalence of norms

‖zh‖2
H̃−1/2
pw (Γ)

+%|zh|2H1/2(Γ)
≥ c
(
‖zh‖2

H̃−1/2
pw (Γ)

+ 〈zh,1〉2Γ
)
+%|zh|2H1/2(Γ)

≥ c
(
‖zh‖2

H̃−1/2
pw (Γ)

+%〈zh,1〉2Γ +%|zh|2H1/2(Γ)

)
≥ c
(
‖zh‖2

H̃−1/2
pw (Γ)

+%‖zh‖2
H1/2(Γ)

)
,

which concludes the proof.

Note that the spectral equivalence estimates (7.5) have the advantage that they are satisfied
for all cost coefficients %> 0.

For the iterative solution of the Schur complement equation (3.27) with the symmetric,
positive definite and parameter–dependent system matrix Th +%Sh we need to have a pre-
conditioning matrix CTh+%Sh which is robust with respect to the discretization parameter
h, and with respect to the cost coefficient %.

In what follows we present two preconditioners for the Schur complement equation (3.27).
First we consider a preconditioner, derived from boundary element methods, which is a
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combination of the local single layer potential for the H̃−1/2
pw (Γ) part, see Chapter 6, and

the hypersingular operator for the H1/2(Γ) part. This combination results in a constant
spectral condition number of the preconditioned system. The second preconditioner is
based on the multilevel idea, where a BPX type preconditioner is derived. As in the
case of the biharmonic equation we obtain a spectral condition which is constant up to a
logarithmic term. Numerical examples illustrate the obtained theoretical results.

7.1.1 The SLP–HYP preconditioner

As it was shown in Chapter 6, the local single layer potential induces an spectral equivalent

norm to the norm of H̃−1/2
pw (Γ). It remains to construct an operator which reflects the semi-

norm in H1/2(Γ). Consequently, the weighted sum of both would then satisfy the spectral
equivalence estimate (7.5).

For a given ψ ∈ H1/2(Γ), we define the double layer potential

(Wψ)(x) =
∫
Γ

[
∂n,yU∗(x,y)

]
ψ(y)dsy,

for x ∈Ω, where U∗(x,y) denotes the fundamental solution of the Laplace equation. From
this we can deduce the so-called hypersingular boundary integral operator D : H1/2(Γ)→
H−1/2(Γ) defined by the negative Neumann trace of double layer potential, i.e.

(Dψ)(x) =−∂n(Wψ)(x),

for x ∈ Γ. The duality product, induced by the hypersingular operator, represents an
equivalent semi-norm in H1/2(Γ), i.e.

〈Dψ,ψ〉Γ ' |ψ|2H1/2(Γ)
,

for all ψ ∈ H1/2(Γ), see, e.g., [73, Theorem 6.24].

Let us recall from Chapter 5 that a piecewise smooth boundary Γ, can be decomposed into
smooth parts, i.e.

Γ =
J⋃

i=1

Γi.

Therefore we consider the preconditioner (6.17) for the H−1/2
pw Γ norm, with the local single

layer boundary integral operators Vi : H̃−1/2(Γi)→ H1/2(Γi), for all i = 1, . . . ,J. In com-
bination with the hypersingular operator leads this to the following Schur complement
preconditioner

CSLP–HYP :=
J

∑
i=1

A>i Vi,hAi +%Dh. (7.6)
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Further, we obtain for the preconditioned system, due to the spectral equivalence of both
operators, the spectral condition number

κ(C−1
SLP–HYP(Th +%Sh))≤ c,

bounded by a constant which independent of the discretization, i.e. independent of the
mesh size h and the cost coefficient %.

7.1.2 The BPX preconditioner

For the derivation of a multilevel preconditioner for the Schur complement matrix Th of the
biharmonic equation, see Chapter 6, we obtained in Theorem 6.5 the spectral equivalence
estimates

‖zh‖H−1/2(Γ) ≤ ‖zh‖H̃−1/2
pw (Γ)

≤ c2J[1− logh]‖zh‖H−1/2(Γ),

which are satisfied for all zh ∈ Zh. Note that the logarithmic factor does not appear when
Γ is smooth. Hence, by combining the above estimate with (7.5) we conclude the spectral
equivalence inequalities

c̃1

[
‖zh‖2

H−1/2(Γ)
+%|zh|2H1/2(Γ)

]
≤ ((Th +%Sh)zC,zC)

≤ c̃2 max
{

1,J2[1− logh]2
}[
‖zh‖2

H−1/2(Γ)
+%|zh|2H1/2(Γ)

]
,

(7.7)

for all zC ∈RnC↔ zh ∈ Zh. Since the spectral equivalence inequalities (7.7) involve fractional
Sobolev norms of different order, an appropriate preconditioner has to take this behavior
into consideration. A possible choice are multilevel preconditioners, see, e.g., [10,60].

As in the construction of a multilevel preconditioner for the biharmonic equation in Chap-
ter 6, we consider sequence of admissible globally quasi–uniform nested finite element
meshes {Thi}i∈N0 of mesh size hi ' 2−i. Let {Vhi}i∈N0 ⊂H1(Ω) denote the related sequence
of finite element spaces with piecewise linear and globally continuous shape function. Let
Zi = Vhi|Γ denote the restrictions on the boundary. This results in a sequence of nested
spaces of the form

Z0 ⊂ Z1 ⊂ . . .ZL = Zh ⊂ ZL+1 ⊂ ·· · ⊂ H1/2(Γ),

where L denotes the current level of interest. With respect to the boundary element
spaces Zi of piecewise linear and globally continuous shape functions, we introduce the L2

projection Qi : L2(Γ)→ Zi, i ∈ N0, and we set Q−1 := 0. It turns out, see, e.g., [10, 60, 73],
that the multilevel operator

Bs :=
∞

∑
i=0

h−2s
i (Qi−Qi−1),
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defines an equivalent norm in Hs(Γ), for all |s|< 3
2 . For s =−1

2 the operator B−1/2 defines

an equivalent norm in H−1/2(Γ), and consequently a preconditioner for the complement
matrix Th of the biharmonic equation. It remains, a preconditioner for the semi–norm in
H1/2(Γ). Therefore we consider

|v|2H1/2(Γ)
= ‖v‖2

H1/2(Γ)
−‖v‖2

L2(Γ) ' 〈B1/2v,v〉Γ−‖v‖2
L2(Γ) = 〈(B1/2−B0)v,v〉Γ,

where we used the representation

‖v‖2
L2(Γ) = 〈B0v,v〉L2(Γ),

for all v ∈ H1/2(Γ). Thus, we finally define the preconditioning operator as

A := %(B1/2−B0)+B−1/2,

i.e. we conclude the multilevel representation

A :=
∞

∑
i=0

[
%(h−1

i −1)+hi
]
(Qi−Qi−1).

Note that we obtain for inverse multilevel operator the representation

A−1 =
∞

∑
i=0

[
%(h−1

i −1)+hi
]−1

(Qi−Qi−1).

As in [73, Corollary 13.7] we finally conclude that the preconditioner CTh+%Sh of the Schur
complement matrix Th +%Sh (3.28) is given by

CBPX = MhLB−1
hL

MhL , (7.8)

where

MhL [`,k] = 〈φ
L
k ,φ

L
` 〉L2(Γ), BhL [`,k] = 〈A

−1
φ

L
k ,φ

L
` 〉Γ

for all k, ` = 1, . . . ,nC,L denote the standard mass matrix and the Galerkin matrix of the

multilevel operator A−1. For the application v =C−1
BPXr, e.g., within a conjugate gradient

scheme, we obtain, as for the standard multilevel approach [10,73], the representation

v =
L

∑
i=0

αiRiM−1
hi

R>i r,

with coefficients

αi =


hL

%(1−hL)+h2
L

for i = L,

hi

%(1−hi)+h2
i
− hi+1

%(1−hi+1)+h2
i+1

for i = 0, . . . ,L−1,
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where Ri : RnC,i→RnC,L is the prolongation operator which is related to the nested sequence
of piecewise linear finite element spaces on the boundary. While in the application of mul-
tilevel preconditioners for (pseudo)differential operators of positive order one can replace
the inverse mass matrices M−1

hi
by their diagonals, this is in general not possible in the

current situation, since the coefficients αi might be negative. Note that this depends on h
and %. Consequently we need to use the inverse mass matrices M−1

hi
, or its approximation,

which can be realized by a few conjugate gradient iterations.

To summarize, due to the spectral equivalence inequalities (7.7) the spectral condition
number of the preconditioned system is bounded as

κ(C−1
BPX(Th +%Sh))≤ cJ2[1− logh]2, (7.9)

where the constant c neither depends on the discretization parameter h, nor on the cost
coefficient %. Note that the logarithmic factor does not appear when Γ is smooth and that
J depends only on the geometry Ω and not on the discretization.

7.1.3 Numerical results

In the following we present numerical examples which illustrate the obtained theoretical
results from the previous part. As computational domains we consider Ω = B1/2(0) and

Ω = (0, 1
2)

n, both for n = 2,3, and the given data (3.29), i.e.

f = 0, u =

(
n

∑
i=1

(xi(xi−1/2)+1)2

)1/2

,

for different cost coefficients % > 0. The linear system (3.27) is solved by a conjugate
gradient scheme with preconditioning up to a relative error reduction of ε = 10−8, where the
preconditioner is either the combination of local single layer potential and hypersingular
boundary integral operator CSLP–HYP (7.6) or the multilevel BPX preconditioner CBPX

(7.8). In the following tables we present, for a sequence of different refinement levels
L and cost coefficients % = 10−i, the number of required PCG iterations. For the related
numbers nI,L and nC,L, denoting the degrees of freedom in the interior and on the boundary,
respectively, we refer to the numerical results in Chapter 6.

Example 1

In the first numerical example we consider the preconditioner arising from boundary ele-
ment methods, CSLP–HYP. The corresponding results for the tow dimensional model prob-
lem are presented in Table 7.1 and Table 7.2. We observe in both cases, i.e. for Ω = B1/2(0)
and Ω = (0, 1

2)
n, for all cost coefficient % = 10−i, i = 0, . . . ,10, constant iteration numbers

with respect to the mesh size h. Nevertheless, the iterations slightly vary with respect to
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the cost coefficients, i.e. we obtain increasing iterations until %= 10−5 and afterwards they
decrease again. This phenomena was also observed in [9].

L\i 0 1 2 3 4 5 6 7 8 9 10

0 3 3 3 3 3 3 3 3 3 3 3
1 5 5 5 5 5 5 5 5 5 5 5
2 7 9 9 9 9 9 9 9 9 9 9
3 9 12 14 14 13 13 13 13 13 13 13
4 10 12 16 17 16 15 14 14 14 14 14
5 9 12 16 18 18 16 15 15 15 15 15
6 9 11 15 18 18 17 15 15 15 15 15
7 8 11 15 17 18 17 15 14 14 14 14
8 8 10 14 16 17 17 16 14 14 14 14
9 7 9 13 15 16 17 17 15 14 13 13

10 6 9 13 14 15 16 16 16 14 13 13

Table 7.1: CSLP–HYP iterations for %= 10−i, Ω = B1/2(0).

L\i 0 1 2 3 4 5 6 7 8 9 10

0 2 2 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3 3 3 3 3
3 5 5 5 5 5 5 5 5 5 5 5
4 9 9 9 9 9 9 9 9 9 9 9
5 9 10 11 13 15 12 11 10 10 10 10
6 9 10 11 14 16 15 12 11 11 11 11
7 9 10 11 13 16 16 14 11 11 11 11
8 9 10 11 13 16 17 16 13 11 11 11
9 9 9 10 12 15 16 16 15 12 11 11

10 9 9 10 12 15 16 16 16 13 11 11

Table 7.2: CSLP–HYP iterations for %= 10−i, Ω = (0, 1
2)

2.

Example 2

As a second example we consider the BPX preconditioner CBPX. First we consider Ω =
B1/2(0) for n= 2, where we observe constant iteration numbers with respect to the mesh size
h, see Table 7.3. On the other hand, we observe in Table 7.4 and Table 7.5 a logarithmic
factor of h in the iteration numbers for the cube for n = 2,3, which corresponds to the
theoretical results in the previous subsection. Furthermore we observe, as for the boundary
element preconditioner, an increase and decrease with respect to the cost coefficient, see
[9].
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L\i 0 1 2 3 4 5 6 7 8 9 10

0 2 2 2 2 2 2 2 2 2 2 2
1 5 5 5 5 5 5 5 5 5 5 5
2 9 9 9 9 8 8 8 8 8 8 8
3 15 14 16 14 12 11 11 11 11 11 11
4 17 17 20 22 15 12 12 12 12 12 12
5 18 17 22 28 20 14 13 13 13 13 13
6 18 17 23 29 27 18 13 13 13 13 13
7 18 17 21 29 30 24 15 13 13 13 13
8 18 17 21 29 30 30 19 13 13 13 13
9 18 17 21 29 30 31 26 16 13 13 13

10 18 17 21 29 30 30 31 21 14 12 12

Table 7.3: CBPX iterations for %= 10−i, Ω = B1/2(0).

L\i 0 1 2 3 4 5 6 7 8 9 10

0 2 2 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3 3 3 3 3
3 5 5 5 5 5 5 5 5 5 5 5
4 9 9 9 9 9 9 9 9 9 9 9
5 15 15 16 17 17 13 13 12 12 12 12
6 18 17 20 26 31 23 14 14 14 14 14
7 19 18 20 29 41 37 19 15 15 15 15
8 18 18 20 29 42 49 29 16 15 15 15
9 18 18 20 29 43 54 45 22 16 15 15

10 19 18 21 29 44 55 55 36 18 16 16

Table 7.4: CBPX iterations for %= 10−i, Ω = (0, 1
2)

2.

Remark 7.1. In all considered numerical examples we have seen constant or constant up
to logarithmic term iteration numbers of the preconditioned linear system. Even though, we
can prove the robustness of both preconditioners with respect to the cost coefficient %, the
numerical results show a slight increase and decrease. As mentioned before, this behavior
was observed previously in a different context in [9], where the authors gave no explanation
for this phenomena.

We would like to mention that in the BPX preconditioner CBPX the coefficients αi can be
negative and positive, depending on hi and %. The refinement level on which the αi turn
from negative coefficients to positive ones, differ for different %. This might be an indicator
for the behavior of the iteration numbers. The question if a modified preconditioner, in
particular of multilevel BPX type, can capture this behavior is open.
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L\i 0 1 2 3 4 5 6 7 8 9 10

0 4 2 2 2 2 2 2 2 2 2 2
1 14 14 14 13 13 13 13 13 13 13 13
2 30 34 40 27 23 22 22 22 22 22 22
3 36 42 63 56 32 27 27 27 27 27 27
4 38 46 73 87 50 30 29 29 29 39 29
5 38 47 76 108 86 44 33 33 33 33 33
6 38 45 75 116 121 74 40 37 37 37 37

Table 7.5: CBPX iterations for %= 10−i, Ω = (0, 1
2)

3.

7.2 Concluding remarks

In this chapter we have developed a preconditioner for the Schur complement equation of
the optimal Dirichlet boundary control problem. Therefore, the ideas of the biharmonic
equation of first kind form Chapter 6, were applicable. In particular, two preconditioners
were introduced, where the first one was motivated from boundary element methods. It
was possible to prove the robustness of this approach with respect to the mesh size h and
the cost coefficient %. For practical reasons we have also presented a mulitlevel method of
BPX type. For this approach we have proven robustness up to a logarithmic term of the
mesh size h. Numerical examples illustrated these results.

Since the Schur complement matrices for the Dirichlet and Neumann boundary control
have the same structure, see (3.28) and (3.57), and in particular coincide in the case of the
Laplace equation, we can use the same ideas for preconditioning of the Neumann boundary
control problem.

As an outlook we would like to mention the construction of a global robust preconditioner.
Moreover, it would be interesting to apply these ideas for the construction of a robust
preconditioner for the Dirichlet and Neumann boundary control of the Stokes equations.
And finally, to the Navier–Stokes equations and their time depended version, which could
be used for many applications, see also Chapter 4.





Outlook and open problems

In the following, we summarize the open problems and possible extensions of this work.
Even tough, some of them were already mention in the concluding remarks of the individual
chapters, we would like to recapitulate them in a more compact form here.

In Chapter 6 and 7, we presented spectral equivalence estimates for the Schur complement
preconditioner of the biharmonic equation and the optimal boundary control problem,
where we made the crucial assumption that the domain has to be convex or the boundary
is smooth. In the numerical results we presented some examples for non-convex domains,
such as the L-shaped domain and the Fichera cube, too. For both we obtained the expected
behavior of the preconditioner, even though the derived theory is not applicable. Conse-
quently, it would be interesting to extend the spectral equivalence estimates to results for
the non-convex case, which seems to be a challenging problem. Another interesting point is
the study of the preconditioner for the corresponding adaptive problem, where local mesh
refinement has to be taken into account. Further, we have already mentioned that the
analysis of the global preconditioners should be included in a possible future work.

In the case of the optimal boundary control problems in Chapter 7, we observed for the
preconditioner a slight variety in the iteration numbers with respect to the cost coefficient.
This might be due to the fact that the coefficient in the multilevel method changes their
sign, which is dependent on the mesh size and the cost coefficient. The question is, if
it is possible to construct a modified multilevel preconditioner which is able to capture
this problem. This can be a challenging and interesting problem, which could be also
applied for several other problems. Moreover, we would like to extend this work to robust
preconditioner for the boundary control of the Stokes equations. Here, we would have an
additional parameter, namely the viscosity, which has to be taken into account in order to
obtain robustness of the preconditioner.

In Chapter 3 we discussed error estimates for the optimal boundary control problem. An
important an interesting question are the optimal error estimates on the boundary for the
control, where we gain a factor of up to 1/2 in the order of convergence, assuming the
solution is regular enough. In order to prove these error estimates we would like to apply
the ideas of [3, 55].

Within this thesis, we did not discuss any box constraints. One possibility to treat such ad-
ditional constraints and their connection to Signorini type boundary conditions is discussed
in [59]. Consequently, we may ask what happens in such a case with the preconditioner
and which modifications we would have to make. As a last point we would like to mention
the discretization of the control, for the Neumann control. We have eliminated the control
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in the variational formulation for the Neumann control problem, which has the advantage
that an inf–sup condition is not needed and the control can be calculated in a post pro-
cessing step. In the case of box constraint the situation might be different, which is an
interesting question to investigate.

For the application part of this thesis we would like to mention the optimization of wall
shear stresses as it was discussed at the end of Chapter 4. Further, the study of the
hemodynamic indicators for the fluid-structure-interaction problem and the construction
of corresponding preconditioners would be challenging.
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