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Abstract

The aim of the book is to provide an analysis of the boundagyeht method for the

numerical solution of Laplacian eigenvalue problems. Tdyresentation of Laplacian
eigenvalue problems in the form of boundary integral equistieads to nonlinear eigen-
value problems for related boundary integral operatorg ddiution of boundary element
discretizations of such eigenvalue problems requiresag@te methods for algebraic
nonlinear eigenvalue problems. Although the numericaltsmh of eigenvalue problems
for partial differential operators using boundary elemmethods has a long tradition, a
rigorous numerical analysis has not been established s@far of the main goals of this
work is to develop a convergence and error analysis of ther&al boundary element
approximation of Laplacian eigenvalue problems. To thid, éhe concept of eigenvalue
problems for so—called holomorphic Fredholm operator fions is used. This concept is
a generalization of the theory for eigenvalue problems afnlged linear operators. The
analysis of the approximation of eigenvalue problems fdoimorphic Fredholm opera-

tor functions is usually done in the framework of the conoafptegular approximation

schemes. In this work convergence results and error egtinaak derived for Galerkin

discretizations of such eigenvalue problems. These seandt then applied to the dis-
cretizations of Laplacian boundary integral operator eigéie problems. Furthermore,
numerical methods for the solution of algebraic nonlinegemrvalue problems are re-
viewed. The little—known Kummer’s method is presented dadonvergence behavior
for algebraic holomorphic eigenvalue problems is analymedsing the concept of holo-

morphic operator functions. Finally, a numerical exampgleansidered and results of
a boundary element and a finite element approximation of ijgnealues are presented
which confirm the theoretical results.

Zusammenfassung

Die vorliegende Arbeit beschaftigt sich mit der Analysis Bandelementmethode zur nu-
merischen Losung von Eigenwertproblemen fir den Laplager&lor. Die Darstellung
von Eigenwertproblemen des Laplace-Operators in Form vandRtegralgleichungen
fuhrt auf nichtlineare Eigenwertprobleme fir entsprecteeRandintegraloperatoren. Die
Lésung der Randelementdiskretisierung dieser Eigenwadsipme erfordert Algorithmen
fur algebraische nichtlineare Eigenwertprobleme. ObwdiélVerwendung von Rand-
elementmethoden zur numerischen Losung von Eigenwelgran eine lange Tradition
aufweist, existiert dafiir keine vollstdndige numerischmakysis. Ziel dieser Arbeit ist es,
eine Konvergenz- und Fehleranalysis fur die Galerkin—Riamdentmethode fir Eigen-
wertprobleme des Laplace-Operators durchzufiihren. Esgezeigt, dass dafur die Theo-
rie der holomorphen Fredholm Operatorfunktionen ein gesigs theoretisches Konzept
ist. Diese Theorie stellt eine natirliche Erweiterung degkdraltheorie flr beschrankte li-
neare Operatoren dar. Die Untersuchung von Diskretisggmivon Eigenwertproblemen



fur holomorphe Fredholm Operatorfunktionen wird gewdtimlim Rahmen der Theo-
rie regularer Approximationen durchgeftihrt, in welchehsawich die Galerkin-Methode
einordnen lasst. In dieser Arbeit werden Konvergenzaessagd Fehlerabschatzungen
fur Galerkin-Diskretisierungen solcher Eigenwertproidehergeleitet. Diese Ergebnisse
werden dann auf die Diskretisierung von Randintegraleigetproblemen des Laplace-
Operators angewandt. Des Weiteren werden Verfahren zuenschen Losung von alge-
braischen nichtlinearen Eigenwertproblemen untersugabei wird das wenig bekannte
Kummersche Verfahren vorgestellt und die Konvergenz defakeens fur algebraische
holomorphe Eigenwertprobleme unter Verwendung der Teeamn holomorphen Opera-
torfunktionen nachgewiesen. Am Ende der Arbeit wird ein etisthes Beispiel betrach-
tet und die Genauigkeit der Approximationen der Randelémetinode und der Finiten
Elemente Methode fiir die Eigenwerte verglichen. Dabei eedie theoretischen Resul-
tate der Arbeit bestatigt.
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1 INTRODUCTION

Laplacian eigenvalue problems provide a mathematical hfodéhe description of dif-
ferent phenomena in science and engineeiing [18]. Eigeesand eigenfunctions char-
acterize the response of physical systems which are suigjdotces. In acoustics the
eigensolutions describe the resonance behavior of mezdiayistems. Their knowledge
plays an important role for the design of objects which atgesti to oscillations. In quan-
tum mechanics the eigenvalues represent energy levelsriafircguantum mechanical
systems. For the design of waveguides in fiber optics alsmalysis of Laplacian eigen-
value problems is needed. Moreover, Laplacian eigenvatiaggms can be considered as
model problems for more general second order partial @iffeéal operators in elasticity
and electromagnetics.

The computation of eigenvalues and eigenfunctions of lcagheeigenvalue problems can
be done only in a few cases analytically. As for source probléor partial differen-
tial equations the most commonly used numerical methodeditiite element method
(FEM). For this method, a profound functional analyticalnfrework and a rigorous error
analysis have been established for eigenvalue problem&I889| 12, 8]. The finite ele-
ment method for eigenvalue problems is formally equivaterdource problems. Based
on a variational formulation of the eigenvalue problem inagpropriate function space,
approximate solutions are sought in finite-dimensionakpabes. The main idea of the
discretization is to decompose the computational domaimngaometrically simple subdo-
mains, the so—called finite elements, on which finite—dinuerad subspaces are defined,
e.g., polynomials. This approach finally leads in the caskaplacian eigenvalue prob-
lems to algebraic generalized eigenvalue problems witrsspaatrices. Efficient solution
techniques for such problems are presented i [34, 11, 58859Small eigenvalues and
corresponding eigenfunctions can be approximated veyoyé¢he finite element method,
however an accurate approximation of large eigenvaluesnesja very fine discretization
of the computational domain and leads to prohibitive corafpomal costs.

An alternative approach for the numerical solution of La@a eigenvalue problems is
the boundary element method (BEM) [22]81,60/45, 15, 51Wins also used for eigen-
value problems in elastodynami¢s([7] 52] and for plate paisl [2552]. The boundary
element method for Laplacian eigenvalue problems is basestjoivalent boundary inte-
gral formulations which are nonlinear eigenvalue probléongelated boundary integral
operators. Different to finite element approaches whichirec discretization of the com-
putational domain, the use of boundary integral formutegiand boundary element meth-
ods for the numerical solution of the eigenvalue problenaggsiires only a discretization



2 1 Introduction

of the boundary. The discretized eigenvalue problems gebghic nonlinear eigenvalue
problems with fully populated matrices, where the matrikies are transcendental func-
tions with respect to the eigenparameter. Usually, thegengalue problems are solved
by using iterative schemes to determine the roots of theespanding characteristic equa-
tions [81]52, 60,22, 23]. In several publications diffarapproaches are suggested to ap-
proximate the nonlinear boundary integral operator eigkm/problem by a polynomial
one. A Taylor polynomial approximation of the fundamentausion with respect to the
wave number is suggested by so-called multiple reciproogyhods|([4E, 46, 16, 69,15].
In [51] an interpolation of the fundamental solution is doesed. The discretization of
polynomial boundary integral operator eigenvalue prolsldeads to algebraic polyno-
mial eigenvalue problems which can be transformed intovademt generalized eigenvalue
problems.

To our knowledge, a rigorous numerical analysis for the axipnations of boundary inte-
gral operator eigenvalue problems has not be done so fay i@féw works [22[ 23, 84]
the issue of the numerical analysis has been addressed. f@Qhe main goals of this
work is to give a convergence and error analysis of the BubGalerkin boundary ele-
ment approximation of Laplacian eigenvalue problems. V¢ethe concept of eigenvalue
problems for so—called holomorphic Fredholm operator fions [27/97| 26, 55]. This
concept is a generalization of the theory for eigenvaluéleras of bounded linear oper-
ators and provides important tools for the numerical anglgbapproximations of such
eigenvalue problems. The most important result is the sgmtation of the resolvent close
to an eigenvalue as a Laurent series with finite principlé [a&;[26]. The analysis of the
approximation of eigenvalue problems for holomorphic Radch operator functions has
a long tradition [[31ll, 44, 91,90, 47,148] and is usually don¢hm framework of the con-
cepts of the discrete approximation schemé [86] and thdaegpproximation of operator
functions [30]. In this framework a complete convergencalysis and asymptotic error
estimates for eigenvalues are given by Karma_ in([4l7, 48].s&€hresults are also valid for
the Bubnov—Galerkin method since this approach fulfillsrérguired assumptions. Nev-
ertheless, we do a numerical analysis for the Bubnov—Galenkethod using main ideas
of [47,/48], and in addition we present error estimates fgemsvectors, which has not be
done in [47. 4B].

The solution of discretized boundary integral operatoemiglue problems for the Lapla-
cian requires numerical algorithms for algebraic nonliredgenvalue problems. The con-
struction of robust and efficient nonlinear eigenvalue s@\vs a subject of ongoing re-
search and there is a lot of literature on this topic, seeahiew article [63] and references
therein. The numerical analysis of nonlinear eigenvalleessis available only for special
classes of nonlinear eigenvalue problems. In particuiarfdcus lies on polynomial eigen-
value problems. The numerical analysis of algorithms forergeneral nonlinear eigen-
value problems is usually restricted to simple eigenvalddss is mainly due to the fact
that there is no standard theory for general nonlinear gajaa problems. Although most
algebraic nonlinear eigenvalue problems which are consiti@ the literature would fit in



the concept of holomorphic Fredholm operator functionis, ¢tbncept is usually not used
for the analysis of the algorithms. In this work the littlexeevn Kummer’s method 57, 58]
is presented and an error analysis for simple and multiglersialues is given by using the
theory of holomorphic Fredholm operator functions.

This book is organized as follows. In Chapter 2, differemirfalations of Laplacian eigen-
value problems are presented and their properties areilbedciFirst, the standard varia-
tional formulations of Laplacian eigenvalue problems amesidered and they are charac-
terized in terms of compact selfadjoint operators. The-vkelbwn properties of the Lapla-
cian eigenvalue problems follow directly from the specthaory of compact selfadjoint
operators. We briefly address the finite element approxonati eigenvalue problems and
present some error estimates. In the second part of thigesh&oundary integral repre-
sentations of Laplacian eigenvalue problems are derivddfan properties of the related
boundary integral operators are presented.

The concept of eigenvalue problems for holomorphic Freahagberator functions is intro-
duced in Chapter 3. The basic definitions are provided anditapt results of the spectral
theory are summarized.

A numerical analysis for the Bubnov—Galerkin approximatd eigenvalue problems for
holomorphic Fredholm operator functions is done in Chagpidfirst, the convergence of
the approximations of the eigenvalues and eigenvectotsetadntinuous ones is proven.
Then, asymptotic error estimates are derived. Finallysthbility of the algebraic multi-
plicity of the approximations of the eigenvalues is shown.

In Chapter 5, Galerkin boundary element approximation$iefRirichlet and Neumann

Laplacian eigenvalue problem are analyzed. It is showrtliedboundary integral operator
eigenvalue problems which are derived in Chapter 2 are eahes problems of holomor-

phic Fredholm operator functions. The results of Chapteredagplied to the boundary
element approximations of the boundary integral operagmrealue problems. Conver-
gence of the boundary element approximations for the eajeas and the eigenfunctions
are shown and asymptotic error estimates are given.

Numerical algorithms for algebraic nonlinear eigenvalwepems are discussed in Chap-
ter 6. The well-known inverse iteration for nonlinear exggdne problems and two variants
of it, the two—sided Rayleigh functional iteration and tksidual inverse iteration are re-
viewed. The convergence behavior and the computation#s odthese algorithms are
compared. In the second part of this chapter we introducerers method for algebraic
holomorphic eigenvalue problems and analyze its convegproperties.

In Chapter 7, a numerical example for the Dirichlet Laplac&genvalue problem is con-
sidered and results of a boundary element and a finite elesp@nbximation of the eigen-
values are presented. The numerical results of the bourdlament approximations con-
firm the theoretical error estimate. Moreover, a high acyuE the boundary element
approximations is noticeable by a comparatively small nenah boundary elements.
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2 FORMULATIONS AND PROPERTIES OF LAPLACIAN
EIGENVALUE PROBLEMS

In this chapter we present different formulations of the laafan eigenvalue problem on
bounded Lipschitz domains with either Dirichlet or Neumdmmundary conditions. We
first consider the standard variational formulation of treglacian eigenvalue problems
which can be characterized in terms of compact selfadjgatators. We use the spectral
theory for compact selfadjoint operator to analyze the ertgs of the Laplacian eigen-
value problems. Further, we briefly address the finite elémmethod for eigenvalue prob-
lems for compact selfadjoint operators and present soroeestimates for the eigenvalues
and eigenelements.

In the second part of this chapter we derive boundary integpaesentations of Laplacian
eigenvalue problems. These formulations lead to nonliegnvalue problems for related
boundary integral operators. We provide an analysis of thentary integral operators
such that the theory of eigenvalue problems for holomorphéclholm operator functions
can be applied in the following chapters.

2.1 Sobolev spaces

In this section we introduce the relevant function spaceth#®formulations of the Lapla-
cian eigenvalue problems. The main references of thisseetie the textbooks [61]
and [41].

Definition 2.1.1. Let Q be an open subset 8. For k € Ng the Sobolev space Q) is
defined by
WA(Q) == {ue L(Q): 0% € Ly(Q) for |a| <k},
doc o o
al=a+...+aq, andd?u(x) =
=0t tag ) axqt T oxge

wherea = (ay,...,aq) € N9, u(x) are to

be understood as weak partial derivatives.

The Sobolev spadA/z"(Q) is equipped with the norm

1/2
ullwg) = ( 5 / a“u<x>2dx)
=

kg
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and it is a Hilbert space with the inner product
(U Vwiq /0" X)0V(X),
\a <kg

seel6l, p.75]. The definition of Sobolev spa¥g¥Q) can be extended for any arbitrary
s> 0.

Definition 2.1.2. LetQ be an open subset &°. For s= k+ u with ke Ngandu € (0,1),
the Sobolev spaceX{Q) is defined by

WS(Q) = {uc WK(Q) : |09 .0 < o for |a] =k},

where the Sobolev-Slobodeckii semi—noriy o is given by

1/2
. Ju(x) —u(y)?

QQ

The Sobolev spacdé/;(Q) for s= k+ p with k € Ng andu € (0,1) is equipped with the
norm

1/2
[Ullws(o) = <HU|’5VZI<(Q) + Z |5au\ﬁ,g> .
la|=k
Again,W5(Q) is a Hilbert space with respect to the inner product

(U V() = (U Vwg(q | > k// [9%u( . Y))]/|[jf2\:1() aGV(W]dxdy
a=Kg Q

seel[6l, Chapter 3, p.75].

A second family of Sobolev spacets(RY) can be introduced by using the Fourier trans-
form

a(g) = / &2y (x)dx
Rd
for u € L1(Q). The Sobolev spaddS(RY) for s € R is defined by

HS(RY) := {ue S*(RY) : TSu e Lo(RY)},

whereS* (RY) is the space of the continuous linear functionals on the Sdavepace of
rapidly decreasing functions ®&*(RY),

S(RY) :={¢ € C*(RY) : sup|x?¥dP¢(x)| < = for all multi-indicesa andB},

xeRd
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and where7? is the Bessel potential of order
T3u(X) = /(1+ 1E[2)¥20(8)62XdE  for x € RY.
Rd

The Sobolev spacadS(RY) andWs(RY) coincide for eacts > 0, see for example [61,
Theorem 3.16].

For general domain@ c RY the following Sobolev spacé4$3(Q) are defined.

Definition 2.1.3. LetQ be an open subset & and sc R. We define
HY(Q) == {u=Tjq: Te HY(RY)},
with the norm
Ullgsio) := inf Ul| ys(dy -
[Ullhs(@) aeHS(Rd),alQ=uH s (ra)
Further,
ﬁS(Q) — WH'HHS(R%,
H3(@) == Cg @) "
So far we have considered arbitrary non-empty sub@eits R9. In order to relate the

above defined Sobolev spaces to each other we have to makeegufaity assumptions
for the boundary := 9Q. First of all consider the set

Q={x=(X,xq) eRY:xg < f(X)forall X = (xq,...,xq_1) € R4}, (2.1)

wheref : R9-1 — R is a bounded function which Istimes differentiable, and where the
derivatives0? f with |a| = k satisfy

109F(X)—a%f(y)| <M|X —y|* forallX,y e R"?
with somey € [0,1]. Such a se as defined in{2]1) is called@* hypograph.

Definition 2.1.4. The open se® c RYis called a ¢“# domain if its boundary is compact
and if there exist finite familiefV; } and {Q;} which have the following properties:

i) The family{W;} is a finite open cover df.
ii) EachQ;j can be transformed to ak® hypograph by a rigid motion.
iif) For each jthe equality Wh Q =W NQ;j is satisfied.
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If Q is aC%H domain, then the boundary can be parameterizek fayes differentiable
functions. Therefore we call the boundary of%@* domaink times differentiable. If this
property is only locally satisfied, then we call the boundaigcewise smooth.

A C%1 domain is called a Lipschitz domain. For instance, any pafgg bounded domain
in R? and any domain iR which is bounded by a polyhedron is a Lipschitz domain.
Note that a Lipschitz domain may be unbounded. For exanfdkig a bounded Lipschitz
domain, then its complemeRt® \ Q is also a Lipschitz domain.

The following theorem quotes results about the relationthefabove defined Sobolev
spaces for Lipschitz domains.

Theorem 2.1.5.LetQ c RY be a Lipschitz domain. Then, we have for 6:
) W2(Q) = H(Q).

i) H3(Q) c H3(Q).

i) HS(Q)=H§(Q) fors¢ {3,3,3,...}.

Moreover, for all s R,

Proof. Seell6l, Chapter 3]. O

Sobolev spaces on the boundary

In the following we assume th@ c RY is a Lipschitz domain. Thé&s-norm on the
boundaryi” = 0Q is defined by

1/2
Ul = ( / u<x>2dsK) .
r

Forse (0,1) the Sobolev-Slobodeckii-norm is defined by

1/2
lullwsr) (uLz + / s msds(ds/) .

Definition 2.1.6. Let Q ¢ RY be a Lipschitz domain with the boundafy= dQ. The
spaces k(') and H¥(I") are defined as closures,

Lo(r):=Co(r) =,
HS(r) := o) ™0 forse (0,1).
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The spaced (") andH3(I") for s € (0,1) are Hilbert spaces equipped with the inner
products

(UV)ir) i= / (Vs

X —
(UV)hs(ry = (U, V) Ly +// |x y|d 1+)28 (y)]ds(dsy forse (0,1),

seell4l, p. 172].

For indicess > 1 also Sobolev spacé$®(') can be defined, see, e.d..[41, Section 4.2].
This requires fos > 1 stronger regularity assumptions for the boundary thahithechitz
property, i.e., the boundary must be of cl&@&« ands < k+ k. For definitions and details
seel[4l, Section 4.2].

For negative indicesthe Sobolev spacéd43(I") are defined by duality with respect to the
Lo(I")-inner product. More precisely, far< 0 we define the norm

(U, D))
[thhsry = sup 20

. (2.2)
0£ueH—S(I") ullH-s(ry

The closure of.»(I") with respect to[(Z]2) is denoted bi#(I"). Note that for/ € Lo(I") C
H3(TI'), s< 0, andv e H™3(I"), we can identify the duality product by using the inner
product inLy(I"),

£(v) = (v, £>H1/2(r)x|-|fl/2(r) = (% 0)Ly(r);

see[4l, p. 175]. Further, far< 0 we define for functionalé€ H5(I") andv € H~5(I") the
sesquilinear form

(V,g)r = <V7Z>H1/2(r)><H*1/2(r) = f(V) = <\_/, >H1/2(r)><H*1/2(r)' (23)

For an open subs€&y C I' and for a sufficiently smooth boundarywe define the Sobolev
spaces fos > 0,

HS(T o) 1= {v="r,:Ve HS(I)},
H3(Fo) :={v="jr, : ¥ € H¥(T), supp/'C To},
with the norm
s = inf Vs .
IVl[Hs(ro) eHS(})AvwoszVHH (r)

Fors < 0 the Sobolev spaces are defined as dual spaces

He(To) i= [A~%(To)| " and H%(To) = [H~3(ro)] "
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Let us now assume thétis closed and piecewise smooth,

r=| |, iNCj=0 fori#j.

IC-

The Sobolev spaddy,, () for s> 0 is defined by
HSW(I_> ={velz(l):vr € HS(M),i=1,...,3}

with the norm
5 1/2
IVI[Hs, (1) = IVir, s :
Sl i; i sy

J ~
3T = [ A5

Fors < 0 we define

with the norm S
W)= 3 Iy
Lemma 2.1.7.1f w € H5, () and s< 0, then
IWllHs(ry < [[Wilkg,r)- (2.4)

Proof. Seel[83, Lemma 2.20]. 0J

Remark 2.1.8.If Q is a Lipschitz domain, then for all definitions and stateraaiiove
concerning Sobolev spaces on subsets on the bouidargQ we have to assume that
|s| < 1. The results foris| > 1 are only valid if stronger regularity conditions for the
boundaryl” are assumed, se2[41, Section 4.3].

Trace operators and normal derivatives

The trace operators relate the Sobolev spaces on a déimaithe Sobolev spaces on its
boundaryi = 0Q.

Theorem 2.1.9.Let Q be a bounded domain iRd. Define the interior trace operator
Yot C®(Q) — C*(I") by _

ftu = ulr.
If Q is a G 11 domain then the operato,x(‘)”t has a unique extension to a bounded linear

operator .
Wt HS(Q) — HSY2(T) (2.5)

for 3 < s< k. This extension has a continuous right invefseHS~Y/2(I") — HS(Q).
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Proof. Seell6l, Theorem 3.37]. 0

If Q is a bounded Lipschitz domain, i.d&k = 1, then [Z.b) implies that the interior trace
operator is a continuous linear map

y(i)l"lt : HS(Q) _ HSfl/Z(r)
for se (3,1]. This result can be extendedse (3,3), seel[6, Theorem 3.38].

For a bounded Lipschitz domah ¢ RY there exists a unique outward unit normal vector
n:9Q — RY almost everywherd [61, p. 96f]. We define for a functioe C*(Q) the
interior normal derivative _

AMu:= Oulr - n.

The interior normal derivativg™ can be extended to a bounded linear operator
W HY(Q,8) — HYA(T),
seel[1¥, Lemma 3.2], where
HY(Q,A) = {uec HY(Q): Auc Ly (Q)}.
In a similar way an exterior trace operator and an exteriomab derivative with respect

to a bounded Lipschitz domaid can be defined. S€°:=RY\ Q and letn be again the
outward unit normal vector d2. Then we define for a functiome C*(Q°¢)

¥ =ulr,
yVi¥tu: = 0Oulr-n.

For the exterior trace operatg§* there exists a bounded linear extension to
B Hb(Q%) — HY2(T),
seel[1¥, Lemma 3.2], where
HS(QF) := {u: Q° — C: u|gerk € HY(QCNK) for any compacK c RY},

for s> 0. Also the exterior normal derivativﬁXt can be extended to a bounded linear
operator
Y Hibe(Q%.8) — HY2(T),

seel[17, Lemma 3.2], where

Hio(Q%A) == {ue HE(Q%A) : Au € Lyjoc(Q0)}.
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2.2 Variational formulation of Laplacian eigenvalue problems

In this section we analyze the standard variational fortrieof the Laplacian eigenvalue
problem with either Dirichlet or Neumann boundary condis@n bounded Lipschitz do-
mains inRY. We will show that these eigenvalue problems can be forradlat terms
of compact selfadjoint operators. Therefore we use thetsgebeory for compact self-
adjoint operators to characterize the properties of thegmealue problems. The main
references of this section aiel[4, 8].

First, we consider the Dirichlet Laplacian eigenvalue feobin the classical form:
FindA € C and 0+ u € C?(Q) NC%Q) such that

—Au=Au onQ, yY'u=0 onl=9Q. (2.6)

A solution (A, u) of (Z8) is called an eigenpair of the Dirichlet Laplaciagezivalue prob-
lem in the classical sense. Multiplying the first equationtliy complex conjugate of a
test functionv H&(Q), integrating over the domaf and using integration by parts, we
obtain the variational formulation df{2.6):

FindA € C and 0+ u € H}(Q) such that

a(u,v) = Ab(u,v) forallu,ve H}(Q) (2.7)

with the sesquilinear forra(-,-) : H3(Q) x H3(Q) — C defined by

a(u,v) ::/Du-ﬁ/dx (2.8)
Q

and the sesquilinear fori(-,-) : L2(Q) x L2(Q) — C defined by

b(u,v) ;= [ uvdx (2.9)
/

A solution (A,u) € C x H}(Q) \ {0} of (1) is called an eigenpair df{2.6) in the weak
sense. Every eigenpajd,u) which fulfills the eigenvalue probleni{2.6) in the classical
sense is obviously a solution of the variational problEnd)2.

On the other hand, ifA,u) € C x H}(Q) \ {0} is a solution of the variational eigenvalue
problem [Z¥) and if we assume that C2(Q), then we can apply Green’s formula to
(Z2-1) and obtain with the DuBois-Reymond lemrnal [61, TheoBerhthat(A,u) is a solu-
tion of the eigenvalue problem in the classical sense. Heweive assumptionsc C%(Q)
requires in general stronger regularity conditions on thraainQ than the Lipschitz prop-
erty. From the regularity result inl[2, Theorem 9.8] it folle that an eigenfunction of
the variational problem is i6%(Q) if the domain is of clas€®.
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Let us now consider the sesquilinear foaf,-) as defined in[{2]18). By the Cauchy—
Schwarz inequalitya(-, -) is bounded om}(Q). From the Poincaré’s inequality

ullLyi@) <cllDull,q) forallueHy(Q),
see, e.g.[119]/187, Lemma 10.2], it follows ttet, -) is H&(Q)-elliptic, ie.,
a(u,u) > cHuHal(Q) forallue H}(Q).

In addition, the sesquilinear forat-, -) is Hermitian. Therefore we may considgr, -) as
inner product of the Hilbert spad¢}(Q). Define

[H3(Q)]* := {f : H}(Q) — C, f is continuous and conjugate-lingar

then as a consequence of the Riesz representation thewene.g.,[[99, p. 105], there
exists an isomorphisR: [H3(Q)]* — H3(Q) such that

f(v) =a(Rf,v) (2.10)

is satisfied for allf € [H}(Q)]* andv € H3(Q).
Further let us define the opera®rH(Q) — [H&(Q)]* by

(SU(-):=b(u,-) forueHIQ). (2.11)

The operato6is obviously linear and bounded. Sinog, -) is the inner product i2(Q),

it follows by Rellich’s embedding theoreril [1] th&: H}(Q) — [H3(Q)]* is compact.

Using the definitiond{2.10) and(Z]11) RfandsS, respectively, we have the representation
a(RSUV) = (SU(v) = b(u,v)

for all u,v € H}(Q). Hence, the variational problem

a(u,v) = Ab(u,v) = Aa(RSuv) forallve H3(Q)

is equivalent to
u=ARSu (2.12)
Consequently(A,u) € C\ {0} x H}(Q) is an eigenpair of the variational problem{2.7) if

and only if()\l,u) is an eigenpair of the eigenvalue problem

u=RSu inH(Q). (2.13)

>| =

Let us define the operator
T:=RS:H}(Q) — H(Q), (2.14)
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then from the properties of the operatdtandSit follows immediately thafl is linear,
bounded and compact. Furthermofiejs selfadjoint with respect to the inner product
a(-,-), since

a(RSuv) = b(u,v) = b(v,u) = a(RSvu) = a(u,RSy

is satisfied for all,v € Hé(Q). Finally, notice that all eigenvalues of the variationgjezi-
value problem[(Z17) are larger than zero, because othemgsgould have an eigenvalue
A <0 and a corresponding eigenfunctiog:Q € H&(Q) such that

a(u,u) = Ab(u,u) <0, (2.15)

which is a contradiction to the fact that the sesquilineamfay(-,-) is H}(Q)-elliptic. In
the next theorem we summarize the above results.

Theorem 2.2.1.(A,u) € C x H}(Q) is an eigenpair of the eigenvalue problem12.7), if

1
and only if(X’ u) is an eigenpair of the eigenvalue problem

Tu= )\lu, (2.16)

where T: H&(Q) — H&(Q) is defined by[(2.14). The operator T is linear, compact and
selfadjoint.
So we can use the spectral theory of compact selfadjointtgasrfor the analysis of the

variational eigenvalue problen(2.7).

Theorem 2.2.2.Let T: X — X be a linear, compact and selfadjoint operator on a Hilbert
space X and let(T) the spectrum of T, i.e.,

o(T)={A €C:(Alx—T) is notinvertiblg.
Then:

i) o(T)\ {0} consists of countably many eigenvalues with zero as the modgible
accumulation point.

i) All eigenvalues are real.

i) The eigenelements are orthogonal in X.

iv) The geometric multiplicity of each eigenvaldiés finite, i.e..dimkenAlx — T) < co.
v) The ascent

»#(T,A) :=max{ne N:ker(Aly —T)"1£ker(Alx —T)"}

of each eigenvalug is equal tol.
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vi) The algebraic multiplicity
m(T,A) := dim ker(()\ Iy — T)%<“>) (2.17)
of each eigenvalug is equal to its geometric multiplicity.

Proof. The assertions follow from the Riesz—Schauder theory forgarct selfadjoint op-
erator, see, e.gll[4, Satz 9.6 and Satz 10.12]. O

Using Theoreri 2212, we can summarize the properties ofahational eigenvalue prob-

lem (Z.0).

Corollary 2.2.3. Consider the variational formulation of the Dirichlet Laaian eigen-
value problem[{Z]7). Then:

i) All eigenvalues are real and strictly positive.
i) The set of eigenvalues is a countable infinite sequencegiligeto +oo.
i) The dimension of the geometric eigenspace of each eigeawasfinite, i.e.,

dimsparfu € H3(Q) : a(u,v) = Ab(u,v) forallve H}(Q)} < . (2.18)
iv) The eigenfunctions are orthogonal i} ().

Let us now consider the Neumann Laplacian eigenvalue pmbl&he formulation in
classical form reads as follows:
FindA € C and 0+ u € C2(Q) NCY(Q) such that

—Au=Au ongQ, My=0 ondQ=T. (2.19)

The variational problem is derived in the same way as for thiellet case and leads to:
FindA € C and 0# u € HY(Q) such that

a(u,v) = Ab(u,v) forallve HY(Q), (2.20)

wherea(-,-) : HY{(Q) x H{(Q) — C andb(-,-) : Lo(Q) x L»(Q) — C are defined as if{2.8)
and [Z.9), respectively. An eigenpdik,u) of (ZI9) is obviously also an eigenpair of
the variational formulatior.{Z.20). On the other hand, wevgéh the same arguments as
for the Dirichlet case that a solutiqi ,u) € C x H1(Q) \ {0} of the variational problem
(20 is a solution of the eigenvalue probldm(2.19) in tlhassical sense if € C?(Q).

Before we can show that the Neumann variational eigenvalablgm is equivalent to
an eigenvalue problem for a compact selfadjoint operaterhave to make two remarks.
First, if u+# 0 is a constant function o, then(0,u) is an eigenpair of the Neumann
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eigenvalue problem in the classical and in the variatioaass. Ifu € H1(Q) is an eigen-
function of [2.2D) corresponding to a nonzero eigenvalnd,ifwe choose as test function
v=10onQ, then from

O:a(u,l):)\/udx
Q

/udx: 0.

Q

it follows that

Therefore, we can restrict the corresponding space for dnational formulation of the
Neumann eigenvalue problem({Z.20) for nonzero eigenvaties

HY(Q) == {ue HY(Q): /udx: o}, (2.21)
Q

The Poincaré’s inequality{Z110) holds alsoldh(Q), see, e.g.[T87, Lemma 10.2], and so
the sesquilinear formy(-,-) is H(Q)-elliptic. Sincea(-,-) is Hermitian and bounded, it
defines an inner product &f1(Q). Therefore, we can conclude with the same arguments
as in the Dirichlet case that there exists a linear, compafzdjoint operator

W: HY(Q) — HX(Q)

such thatA,u) € C\ {0} x H}(Q) is an eigenpair of the Neumann variational eigenvalue
problem [2.2D) if and only itX’ u) is an eigenpair of the eigenvalue problem

Wu= )%u in H1(Q).

Hence, the properties of the variational Neumann eigeevaitablem follows from Theo-
remZZ2.P.

Remark 2.2.4. Theoreni2.2]2 shows that all eigenvalues of a compact seifadper-
ator are real. Moreover, the eigenelements may be taken teddesee [[8, Remark 4.1].
Therefore eigenvalue problems in Hilbert spaces for cornpaléadjoint operators may be
formulated in terms of real Hilbert spaces.

For the numerical approximations of the eigenvalue probl€iil) and[(Z.20) regularity
properties of the eigenfunctions are important. There &ferent results with respect
to the assumptions on the boundary, see, €.3., [8, Theorgn[32, Theorem 2.4.2.7]
or [35, Chapter 9 and 11]. Here we quote a general result3&«prollar 9.1.19].
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Theorem 2.2.5.Let Q be a bounded domain of class®H with ke No. Let u € [0,1]
and let(A,u) be an eigenpair of the variational eigenvalue probléml(27}2.20). Let
s>0and
s<k+u if ue{0,1},
s<k+4pu if pe(0,1),
then
ue HS(Q).

It is important to mention that the conditions on the bougdarTheorenZ. 215 for the
regularity of the eigenfunctions are sufficient but not rssegy conditions.

2.3 FEM for eigenvalue problems of compact selfadjoint opeators

In this section we consider variational posed eigenvaloblpms which can be reduced to
eigenvalue problems for compact selfadjoint operators b¥hly sketch a finite element
approximation of such problems and present an apriori @stmate for the eigenpairs.
The main reference of this section is the review article f[Babuska and Osborn.

Let X andW be real Hilbert spaces whekeis compactly imbedded . We consider
the following eigenvalue problem: Find ,u) € R x X\ {0} such that

a(u,v) =Ab(u,v) forallveX, (2.22)
where
a(, ) : XxX—R
is a bounded symmetric ant-elliptic bilinear form, and where
b(-,-) :WxW =R
is a bounded and symmetric bilinear form which satisfies

b(u,u) >0 forall0+# ueX.

From the assumptions on the spaces and the bilinear forrfwlodvs with the same ar-
guments as for the variational eigenvalue probleims (2.d) @®0) that there exists a
compact selfadjoint operatdr: X — X such that

a(Tu,v) =b(u,v) forallu,veX. (2.23)

Further,(A,u) € R x X is an eigenpair of{Z.22) if and only @f)%,u) is an eigenpair of the

eigenvalue problem
1
Tu=—u InX.
A
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By TheoreniZ.Z]2, the eigenvalue problém(P.22) has a cbladaquence of eigenvalues.
Let {A;}{>; denote the ordered sequence of eigenvalues Ayith Ai; 1 and where thé;
are repeated according to their multiplicities. Then, tbeesponding sequende; }°

of eigenelements can be chosen such that

a(u,uj) = Aib(ui,uj) = &,
see Theorefi 2.2.2.

The finite element method for eigenvalue problems is foryredjual to the finite element
method for source problems. Here we present a conformingg felement method for
eigenvalue problems. A discontinuous Galerkin methodasgmted in[6]. In order to ap-
proximate the eigenvalues and eigenelements of the eilyenpeoblem[[Z.22) a sequence
of finite dimensional subspacdXn }neny C X is chosen which has the approximation

property

lim inf [[u—xn|lx=0 forallueX.
N—o00 XN EXN

Approximate solutions of the eigenvalue problém (P.22)satations of the Galerkin vari-
ational problem which reads as follows: Fifdly,un) € R x Xy \ {0} such that

a(uN,vN) = )\Nb(UN,VN> for all vy € Xn. (2.24)

Let {¢1,...,¢n,} be a basis oKy, then the variational problem is equivalent to the alge-
braic generalized eigenvalue problem: Fiidg}, z) € R x R™ \ {0} such that

Az= ANBz
with z= (z1,...,2y),

Ali,jl=a(¢i.¢;),  Bi,j]=Db(¢i,¢;)  forl<i,j<ny,

NN

and wherauy = lei ¢i. The Galerkin eigenvalue problefn(Z.24) has a finite sequehc
i=

eigenvalues
AN <AoN <. < ApgN

where the corresponding sequence of eigenelen{entg ™, can be taken to satisfy

a(ui N, UjN) = AjNb(Ui N, U N) = & (2.25)

The analysis of the Galerkin variational eigenvalue problan be again reduced to a
corresponding eigenvalue problem of a compact selfadjgperatorTy : X — Xy C X
which is defined by

a(Tyu,vny) =b(u,vy) forallue X, wy € Xy.
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The operatofy can be written aB\ T, wherePy : X — X denotes the projection &f onto
Xn defined by

a(Pyu,vy) = a(u,vy) forallue X, wy € Xn.
From the approximation property &f and the compactness ®f the operator conver-

gencel, — T follows, seell8, Section 2.8]. These considerations arbakes for the error
estimates which are given in the next theorem.

Theorem 2.3.1.Let A« be an eigenvalue of (ZP2) with the geometric multiplicitsrgl
assume thady = A 1 = ... = Ay q—1. Then:

I) There exists a constant€ 0 such that

M <AN S AAHCR(A)  forj=Kk,....k+q—1, (2.26)
where
dn(Ak) := sup inf [[u—¢]x,
(= sup inf |lu—¢|
and where

E(Ax) := {u is an eigenvector correspondingA@ with ||u|| = 1}.

ii) Letun be an eigenelement correspondinghigy for j =k, ...,k+q—1, then there
exists a constant & 0 such that

inf — U < Ak)- 2.27
0 U= Ui < ceh(A) @27)

Proof. Seel8, p. 699]. O

TheoreniZ.3]1 shows that as for source problems a quasiammor estimate for eigen-
functions for compact selfadjoint operators can be achlidweusing finite element ap-
proximations. For additional results concerning the earaalysis we refer ta [8, Section 7
and 8] and references therein.

2.4 Boundary integral formulations of Laplacian eigenvalie
problems

The numerical solution of Laplacian eigenvalue problentk Wwoundary element methods
is based on equivalent boundary integral representat@®h&[./ 60, 45, 22, 15]. These
representations differ in the choice of the fundamentaltsmh and in the choice of the
boundary integral equations. In all cases these formulatiead to nonlinear eigenvalue
problems for related boundary integral operators.
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In this section we derive boundary integral formulationstfte Dirichlet and Neumann
Laplacian eigenvalue problem on bounded Lipschitz dom&ins R? with piecewise
smooth boundary. For this purpose we consider the Helmbgltation

—Au—k’u=0 ongQ, (2.28)

since every eigenpaik?, u) of a Laplacian eigenvalue problem is a solution[Qf (2.28). In
the following we will give an introduction to boundary intedjequations for the Helmholtz
equation and provide a review of important properties ofameesponding boundary in-
tegral operators. The main references for this sectiori@ ELl7| 41, 83].

A fundamental solutiotJ;! for k € C of the Helmholtz equatioi{Z.28) iR® is given by

1 &K=yl

U;<X7y) = E.[ |X—y‘

forx#vy, (2.29)

see, e.g.[161, Theorem 9.4]. The single layer potentiahfeunctionw € H*1/2(r) and
k € C is defined by

(V(K)W)(x) := /U,}k(x,y)w(y)dsy forxe QUQ°, (2.30)
r

which provides a solution of the Helmholtz equatibn(2.28 [61, p. 202]. For a function
ve HY2(I") andk e C the double layer potential is defined by

(W(K)W)(X) = / YUz (xy)v(y)ds, forxe QUQS, (2.31)

which is also a solution of the Helmholtz equati@n (2.28),[61, p.202]. Applying the
interior trace operatog™ and the normal derivativg™ to the potentials yields

Y (k) =V (K), (2.32)
W (K) = —%l +K(k), (2.33)
VW (k) = %| +K'(k), (2.34)
VMW (k) = —D(k), (2.35)

almost everywhere oh, see (61, p. 218], with the single layer potential oper&t(x) :
H~1/2() — HY/2(I"), the double layer potential operatétk) : HY/2(I') — HY2(I), the
adjoint double layer potential operatéf(k) : H=%/2(") — H=Y2(I") and the hypersingu-
lar boundary integral operat®x(k ) : HY/2(I") — H=Y/2(T"). Note that it is sufficient, due to
their use within a variational framework, to consider thexabrepresentations on smooth
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parts of the surface. These boundary integral operatoroatenuous linear operators and
admit the following representatioris |17, p.615]:

(V (K)W) () = / U (x, y)w(y)ds, forxer, (2.36)
r

(V) (9= [ AUz (cyviy)ds,  forxer,

(D(K)V) (x) := —yt / YU (X yV(y)ds, forxer. (2.37)

The integral representation ¥f k) andD(k) are to be understood as weakly singular and
as hypersingular surface integral, respectively. Thegiais forK(k) andK’(k) are in
general Cauchy singular integrals.

Using the single layer potential and the double layer paagrany weak solutioru of
([Z2Z8) can be represented by

u(x) = (V(K)y"u)(x) — (W(K)yi"u)(x) forxe Q, (2.38)

see, e.g. 1681, Theorem 7.5]. Applying the trace operqt@'i?sand y'i”‘ to (Z38) leads to
the boundary integral equations

W09 = (VK 00+ 00— (KOW'W(9 forxel,  (2.39)

ty(x) :% M) -+ (K (K)yMu) (%) + (DY) (x) for x T (2.40)

Let us now consider the exterior Helmholtz equation
—Au=k?u onQ°=R3\Q. (2.41)

Here we assume that> 0 and introduce the following radiation condition

2
Iiim ds, =0. (2.42)

9BR(0)

, .
@UW) —iKu(y)

The single layer potentidl {Z.B0) and the double layer pab@.31) provide solutions of
(Z7Z3), seel[61, p. 202]. Any solutiane HL (Q°) of (ZZ3) which fulfills the radiation
condition [Z.4R) can be represented by

u(x) = —(V(K)y2U) (x) + (W(K)ye¥u)(x) forx e QF, (2.43)
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seel61, Theorem 6.10]. Applying the operatgf§ andys* to (Z43) leads to the boundary
integral equations [61, p. 218]

VEu(x) = —(V(K)y2u) (x) + %yg"tu(x) + (K(K)y§¥u)(x) forxeT, (2.44)
VXu(x) = %yf"tu(x) — (K'(K)y&u) (x) — (D(K)Y§Xu)(x)  forxeT. (2.45)
The potentials7(K) andW(k) satisfy the jump relations on the boundary

WV (KW— iV (K)w=0, VYV (K)w—y"™V (K)w=—w forwe H Y3 (2.46)
VWKV — W (KIv=V, VPW(K)\V—y"W(k)v=0  forve HY?(M). (2.47)
The following two lemmas address the uniqueness of theisakibf exterior boundary

value problems for the Helmholtz equation.

Lemma 2.4.1.Letk € R,. Let ue H} (Q°) be a solution of the exterior boundary value
problem
~Au—k?u=0 onQ°

with either a homogeneous Dirichlet boundary condition
¥ u=0 onr,

or with a homogeneous Neumann boundary condition
yWu=0 onr.

If u satisfies the radiation conditioR{Z142), ther=0 on Q°.

Proof. See, e.g.[113, Theorem 7.6.1, Theorem 7.6.2]. 0J
Lemma 2.4.2.Letk e R,.

i) Ifwe H™Y2(I) with V(k)w=0onT, thenV (k)w= 0 0on QF.

i) If veHY2() with D(k)v=0onT, then Wk)v=00nQ°.
Proof. i) Let k € R, and letw € H=Y/2(I") with V(k)w = 0 onT. The single layer po-
tential V (k)w € HZ_(Q°) is a solution of the Helmholtz equation &@Ff and fulfills the

radiation condition[(2.42), see, e.d.,[61, Theorem 7.1%cfem 9.6]. From the jump
relation [Z.46) oV (k) and from [2:3R) we obtain

ngt\N/(K)W: 6nt\7(K)W:V(K)W: 0 onl.

Thus, by Lemm&ZA Y (k)w = 0 onQ°.
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ii) Let k € Ry and letv € HY2(I") with D(k)v =0 onT. ThenW(k)v € HL.(Q°) is
a solution of the Helmholtz equation d2® and fulfills the radiation conditiol(Z.%2),
see(6l, Theorem 7.15, Theorem 9.6]. Using the jump reldiahl) ofW (k) and [Z.3b),
we get .

VW (K)v= "W (k)v=—D(k)v=0 onl.

Hence, by LemmBZ4.1, the assertion follows. O

Now we can state the following equivalence between the weakilation of the Dirichlet
Laplacian eigenvalue problei(P.7) and the boundary iatégrmulation [Z.3DB).

Theorem 2.4.3.Consider the Dirichlet Laplacian eigenvalue problem

2

—Au=k?u onQ, yYlu=0 onr. (2.48)

) If (k,u) € Ry x H&(Q) is an eigenpair of[(Z.48) in a weak sense, then the normal
derivativeyi"'u # 0 and w= y{"u fulfills the boundary integral equation

V(k)w=0 onT. (2.49)

The eigenfunction u admits the representation

u=V(k)w onQ.

i) If (k,w) € Ry x H™Y/2(")\ {0} fulfills the boundary integral equatioi{Z}49), then
u=V(kK)w is an eigenfunction of the eigenvalue problém (2.48) inwkaek sense
corresponding to the eigenvalu@ .

Proof. i) Let (k,u) € Ry x H&(Q) be an eigenpair of the Dirichlet Laplacian eigenvalue
problem [Z4B) in the weak sense. Then the boundary inteqradtion[[2.39) gives
0=V (k)y"u onr.
Using the representation formu[@a{2.38), we can write themfunctionu as
u=V(K)y"u onQ.
Sinceu # 0 onQ and sincé/ (k) is linear, it follows that™u # 0 onr".

ii) Let (k,w) e R x H=%2(I")\ {0} be a solution of the boundary integral equation{R.49).
The functionu defined by N

u=V(k)w onQ

is a weak solution of the Helmholtz equatién{2.48), CE(®.3 he boundary condition of
(Z.43) is fulfilled, since byl(2.32) and by assumptiorvgrwe have

Whu= "V (K)w=V(K)w=0.
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It remains to show that # 0 onQ. FromV (k)w = 0 onT it follows by LemmdZZP that

V(k)w=0 onQ°
and thereforq/thV(K)W: 0 onT. Using the jump relatior {Z46) &f(k), we get
YW (k)w=w#£0 onl. (2.50)

Henceu=V (k)w+ 0 onQ. Thus,uis an eigenfunction of the eigenvalue probl€m{P.48)
in the weak sense corresponding to the eigenvafue O

TheoreniZ.4]3 provides an equivalent boundary integrai@dation of the Dirichlet Lapla-
cian eigenvalue problem and it reads as follows:
Find (k,w) € R, x H~Y2(T")\ {0} such that

V(k)w=0. (2.51)

Obviously, the eigenvalue problein(2.51) is a nonlineagiglue problem.

Note that an alternative boundary integral formulationtfa Dirichlet Laplacian eigen-
value problem is possible by using the boundary integrahtgn [Z420). This yields the
following eigenvalue probleni]23]: Fingk,w) € R, x H=1/2(I")\ {0} such that

1
—5W+ K'(k)w=0.

Also for the Neumann Laplacian eigenvallie (2.20) problemivedent boundary integral
formulations can be stated. First, we consider the bounidéegral equation{2.40).

Theorem 2.4.4.Consider the Neumann eigenvalue problem
—Au=«k?u onQ, Ny=0 onr. (2.52)

) If (k,u)e Ry xH 1(Q) is an eigenpair ofi{2Z.32) in the weak sense, tbﬂéhu #0and
v = yitu fuffills the boundary integral equation

D(k)v=0 onTl. (2.53)
The eigenfunction u admits the representation

u=-W(k)v onQ.

i) If (k,v) € Ry x HY2(I")\ {0} fulfills the boundary integral equatiofi{2153), then
u= —W/(k)v is an eigenfunction of the eigenvalue probl€m ({2.52) inthak sense
corresponding to the eigenvalu@ .
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Proof. i) Let (k,u) € R, x H(Q) be an eigenpair of the Neumann Laplacian eigenvalue
problem [Z5PR) in the weak sense. The boundary integraltEqu@.40) shows that

0=D(k)yMu onr.
Using the representation formu[a{2.38), we can write themfunctionu by
u=-W()y"u onQ.
Sinceu # 0 onQ and sincaV(k) is linear, it follows thatyj"u # 0 onT".

ii) Let (k,v) € Ry x HY/2(T")\ {0} be a solution of the boundary integral equation (2.53).
The functionu defined by
u=-W(k)v onQ

is a weak solution of the Helmholtz equatién(2.52), CI_I}.3 he boundary condition of
[Z52) is fulfilled, since by[{Z:32), we hayé'u = —yi"™W(k)v = D(k)v= 0. It remains to
show thau# 0 onQ. FromD(k )v=0 onr it follows by LemmdZ. 4R thai=W(k)v=0
on Q° and thereforgf*W(k)v =0 onT. Using the jump relatiod(Z47) &¥(k), we get

—YMW(k)v=v#£0 onl.

Hence,u= —W(k)v# 0 onQ. Thus,u is an eigenfunction of the Neumann eigenvalue
problem [Z.5R) in the weak sense corresponding to the edieew? . O

An alternative formulation of the Neumann Laplacian eigdug is obtained by using the
boundary integral equation (Z139). This yields the eighrevaroblem|[2B]:
Find (k,v) € R, x HY2(")\ {0} such that

%V—l— K(k)v=0.

In the following we analyze the properties of the boundategdnal operator¥ (k) and
D(K).

Lemma 2.4.5.Letk € C. Then the operators
V(k)=V(0): H Y2(r) — HY2(I)
D(k)—D(0) : HY2(I") — H=Y2(T)
are compact.
Proof. In [[77, Lemma 3.9.8] the assertions are proven for kealhe proof there remains

valid also for complex because it relies on the regularity of the kernel of the spoad-
ing Newton potential from which required mapping propertiee derived. O
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Lemma 2.4.6. The operator \(0) : HY/2(I") — HY2(I") is H-Y2(")-elliptic, i.e., there
exists a constant,c> 0 such that

(V(OWW)r > ov W 1z ) (2.54)
holds for all we H=Y/2(I").
Proof. See, e.g./140]/1€1, Corollary 8.13]. O

A direct consequence of LemraZl4.5 and Lerimal.4.6 is theiiolg result forV (k).

Theorem 2.4.7.The boundary integral operator(«) : H=1/2(I") — HY/2(I") is Fredholm
with zero index.

Proof. The operatoV (k) : H=Y/2(I") — HY/2(I") is a compact perturbation of th&/2(T")-
elliptic operato/ (0),
V(K) = V(0) +V (k) —V(0).

ThereforeV (k) is Fredholm and ind (k) = 0, see, e.g.[ 161, Theorem 2.38]. O

In the following we will show that the hypersingular operaii{k) is also Fredholm op-
erator with zero index. Howevep,(0) is notH/2(I")-elliptic, since

kerD(0) = spaq1r},

where + = 1 onl". But, if we consider the subspace

HZ2(M) = {ve HYA(T) : (v Ir)r = 0},

wherelr e H-1/2(T") is defined by

1r(v):/v(x)ds< forve HY2(r),
r

then there exists a constam > 0 such that

(%D(OW)r = o||V|[Zuz, forallve HY2(m), (2.55)
see, [[83, p. 147],161, Theorem 8.21]. Let us define the stabilboundary integral

operator N o
D(0) :=D(0) + & (-, 1r)r1r, (2.56)

with £ € R... Then the operatdd(0) is HY/2(I")-elliptic, see[8B, p. 177]. Hence, we can
state the desired result fox(k).
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Lemma 2.4.8.Letk € C. The boundary integral operator(®) : HY/2(I') — H=Y2(T") is
Fredholm withindD(k) = 0.

Proof. We can write
D(k) = D(0) +D(k) — D(0) + & (-, ir)r Ir.
The operator
D(k) —D(0) + & (-, ir)rir : HY2(M) — H~Y2(T)

is compact, sinc®(0) — D(k) and the operator defined lw— (v, 1r)rir are compact.
Further, the operatdp(0) : HY2(I") — H=Y/2(I") is HY/2(I")-elliptic. Thus,D(k) is Fred-
holm and ind (k) = 0, seel[6ll, Theorem 2.38]. O
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3 EIGENVALUE PROBLEMS OF HOLOMORPHIC FREDHOLM
OPERATOR FUNCTIONS

Boundary integral formulations of Laplacian eigenvaluetjdems lead to nonlinear eigen-
value problems for related boundary integral operators.tahdard theory for general
nonlinear eigenvalue problem is not available. Howevargigenvalue problems for so-
called holomorphic Fredholm operator functions a geneatibn of the theory of linear
eigenvalue problems has been developed(150, 28, 27, 16695R This theory will be
essential for the analysis and the discretization of boynofdegral operator eigenvalue
problems in the subsequent chapters.

3.1 Holomorphic operator functions

In this section we give a short introduction to holomorphindtions which map into Ba-
nach spaces. We will restrict ourselves to the basic defitstand some important results
which are needed for our purpose. For a detailed presentatid analysis of this topic we
refer to [39].

Definition 3.1.1. Let/A be an open and connected subsef@ind let B be a Banach space.
A function u: A — B is called holomorphic o\ if it can be represented as the sum of a
power series

(o]

uA) =y A -pa, aeB,
k=0

which is convergent in B in a neighborhood of any paqirg A.

The following theorem gives useful equivalent charactgrans of holomorphic func-
tions.

Theorem 3.1.2.Let A be an open and connected subsetCoiet B be a Banach space,
and let u: A — B. The following statements are equivalent:

I) uis holomorphic om\.

i) uis differentiable for ever € A, i.e., there exists @' (A ) € B such that

u(A +h)—u(A)

—u(A)|| =0.

B

lim
h—0

29
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iil) The function defined by — (u(A ), g)sxp+ is holomorphic on\ for all g € B*, where
(-,-)BxB* denotes the duality pairing of B and its dudl.B

Proof. See, e.qg./ 1101, Chapter V.3] ar 39, Chapter 3.2]. 0J

Let X andY be Banach spaces and I&tX,Y) be the space of the bounded linear operators
which map fromX intoY. Let

[Allzxyy == sup  [|AX]y

xeX, [[x[x<1

be the induced operator norm, thé(X,Y) is a Banach space and the above definition and
characterizations of holomorphic functions can be applesb-called operator functions
A: N\ — L(X,Y). In the next corollary we specify the property iii) in Theor&.1.2 for
operator functions.

Corollary 3.1.3. Let A: A — L(X,Y) be an operator function oN. Then the following
statements are equivalent:

1) Ais holomorphic on\.

ii) The function defined by — (A(A)X,g)yxy+ is holomorphic oM\ for all x € X and
allgeY™.

Proof. See|[49, Theorem 3.12]. O

In the next corollary we show that the maximum modulus pglecfor holomorphic func-
tionsf : A — C is also valid for holomorphic operator functions.

Corollary 3.1.4. Let A: A — L(X,Y) be a holomorphic operator function @gaand let/\g
be a bounded and closed subsefofThen

max||A(A = max ||A(A ) 3.1
max|[A)llcoxy) = max [AM) ey, (3.1)

Proof. Using that

IYlly =" sup (¥, Q)yxv-
geY*,llglly=<1
for everyy € Y, we can write
IAM vy = sup [[AA)Xly = sup [{A(A)X G)yxy|.
xeX, [Xl|x<1 XeX, [x]x <1
geY* glly« <1

By Corollary[3.1.B, the function defined By— (A(A )X, 9)v xy+ is holomorphic om\q for
all x e X andg € Y*. Hence, the assertion follows from the maximum modulusqpie
in C [72, Theorem 10.24]. 0J
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Definition 3.1.5. Let A: A — £(X,Y) be a holomorphic operator function @k The set
p(A)={A eN:3AN) e L(Y,X)}

is called resolvent set of A. The complement of the resobegnnhA is called spectrum
o(A) of A.
A numberig € A is called eigenvalue of A if there exists a non trivi@kxX such that

A(Ag)X® = 0.
X2 is called eigenelement of A corresponding to the eigenvijue
In the next lemma we present an important result for the veswlof a holomorphic oper-
ator function.

Lemma 3.1.6.Let A: A — L(X,Y) be a holomorphic operator function @ghand assume
that Ag € p(A). Then there exists a neighborhoogWp) C A of Ag, & > 0, such that
AA)"te L£(Y,X) forall A € Us(Ag). Moreover, the function @)~1: Us(Ag) — L(Y,X)
is holomorphic and its derivative admits the representatio

d

- (A = —AQ) T AR

Proof. ForAg € p(A) andA € A we can write

A = [A)A(A0) TA(A0) = [Iv — [AAo) —AN)]A(0) ] Aldo).  (3.2)
The holomorphy of the operator functiédnimplies that there exists@ > 0 such that

1AG0) =AM ARO) | 2yy) < IAR) = AR £x.v) [IAR) |y ) < 1
forall A € Us(Ap). By the Neumann series theorem we have
_ _1k
[Iv = [A(0) ~A)]AM0) 1] 7= 3 [(A(R0) ~AA))A(Ao) 7]

k=0

forall A € Us(Ao), where the series converges in the operator norm and defbmsaed
linear operator which maps frodinto itself. Using [3.R) we obtain fok € Ug(A)
e 19k
AMARND) LY [(Ado) —AA)AMLY) ] =1y (3.3)
k=0

Thus, the invers&(A) 1 € L(Y, X) exists for allA € Us(Ag) and admits the representation
_ e 19k
A t=AM0) 1S [(Ao) —AA))A) ] (3-4)
K=0
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Next, we can also write
AA + h)‘1 =A(A )‘1 i [(A()\) —A(A +h))A(A )‘1} k (3.5)
K=0

for A € Us(Ap) and sufficiently smalh > 0. From the continuity of the operator function
A the continuity ofA(-)~ onUz(Ao) follows with (38). Therefore we can conclude

AN +h)1—A)L _1AA) —AA +h)
h h

ash — 0. Thus, by Theoref-3.3.2(-)~ 1 is holomorphic orUs(Ao). O

AA+h A TAN)AN) T

= A)

As a consequence of the last lemma we see that the resolventdeolomorphic operator
function is open and that its spectrum is closed.

3.2 Basics of eigenvalue problems of holomorphic Fredholmperator
functions

The study of eigenvalue problems for holomorphic operatocfions with Fredholm oper-
ators has a long tradition [50,128]271[76/97 26, 55]. Witfedent concepts and approaches
a wide range of results has been derived. For the numeriedysis of approximations
of such eigenvalue problenis |88]B1.,144/90/ 47, 48] thesdtsemre essential, in particular
for the error analysis. In this section we provide the basitna@tions and concepts of the
theory for eigenvalue problems for holomorphic Fredholrerapor functions and present
the main results. For a detailed presentation and analysigfer to [55].

Definition 3.2.1. We call an operator function AA — L£(X,Y) Fredholm if the operator
AA): X =Y
is Fredholm for allA € A.

Theorem 3.2.2.Let A: A — L(X,Y) be a holomorphic Fredholm operator function and
let the resolvent sga(A) of A be not empty. Then:

i) The indexndA(A) =0forall A € A.
ii) The spectrunw(A) has no cluster points in.
iif) EachA € g(A) is an eigenvalue of A.

Proof. For i), seel[31]. For ii), se€[26, Corollary 8.4]. iii) folles from i), because i\(A)
is not surjective theW\(A ) is not injective. Hence, il € o(A) thenA(A) is not injective
and thus there existsxa# 0 with A(A)x= 0. O
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The concept of Jordan chains for linear eigenvalue probleEande extended to holomor-
phic eigenvalue problems.

Definition 3.2.3. Let A: A — L(X,Y) be a holomorphic operator function ofv. Let
(A0,x°) be an eigenpair of the eigenvalue probleiAAx = 0. Elements% x*,...,x™1in
X are called generalized eigenelements if they satisfy

n . .
Z« j—l'A(J)()\o)x”J =0 forn=0,1,....m—1. (3.6)
j=0 1

The ordered collection®x!, ..., x™ 1 is called Jordan chain of length m corresponding
to Ao.

For linear eigenvalue problems with compact operators ¢ngth of any Jordan chain
of a nonzero eigenvalue is finitel [4, Satz 9.6]. In the caseigdrwalue problems for
holomorphic Fredholm operator functions this result ig tior any eigenvalue.

Lemma 3.2.4.Let A: A — L(X,Y) be a holomorphic Fredholm operator function 6n
and letp(A) # 0. LetAg € A be an eigenvalue of the eigenvalue problefa x = 0, then
the length of any Jordan chain correspondinghtois finite.

Proof. Seel[55, Lemma A.8.3.]. 0

With the last lemma we can define the maximal length of thealoathain of an eigenele-
ment and of an eigenvalue.

Definition 3.2.5. Let A: A — L(X,Y) be a holomorphic Fredholm operator function An
and letp(A) # 0. LetAg € A be an eigenvalue of the eigenvalue problef x = 0.

) Let>? be an eigenelement corresponding\tp The maximal length of a Jordan chain
beginning with R is called the order A, A, x0) of the eigenelemenPx
i) By
#(AAg) = max  m(A, Ao, X)
xekerA(Ag)\{0}
we denote the maximal length of Jordan chains corresponming.

i) The closed linear hull of all generalized eigenelements cb&esponding to\g is
called the generalized eigenspacé’GAg) of A corresponding tdo.

For the numerical analysis of the discretization of eig&mgroblems for holomorphic
operator functions it is essential that the dimension ofgéeeralized eigenspace for all
eigenvalues is finite.
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Lemma 3.2.6.Let A: A — L(X,Y) be a holomorphic Fredholm operator function dn
and letp(A) # 0. LetAg € A be an eigenvalue of the eigenvalue problefh x= 0. Then,

dimG(A, Ag) < 5(A, Ag) - dimkerA(Ao). (3.7)
Proof. See[44, pp. 7]. O

The generalized eigenspace of an eigenvalue can be desbsilan ordered collection of
eigenelements$ [55, Proposition A.4.5.], this motivatesfttilowing definition.

Definition 3.2.7. Let A: A — L£(X,Y) be a holomorphic Fredholm operator function on
A and letp(A) # 0. LetAg € A be an eigenvalue of the eigenvalue problefd x=0. A
system of eigenelemen%x . ,xg corresponding to\g is called canonical if

) X0,...,x3 is a basis okerA(Ao),
i) M(A,A0,X}) = 5(A, Ao),
iii) x? is an eigenelement of the maximal possible order belongirsgine direct comple-
ment M in kerA(Ao) to the linear huIIspar{xg,...,x(j’il} e,

MA 0. X9) = max m(A Ag.X) forj=2....J.
( ) M0, ]) XM\ (0} ( ) /0 ) J IRRRR

Obviously, a canonical system of eigenelements of an eajeevs not unique, but the

order of the eigenelements of two canonical systems cascid

Lemma 3.2.8.Let A: A — L(X,Y) be a holomorphic Fredholm operator function on
A and letp(A) # 0. LetAg € o(A) and suppose thatfx...,xJ and &,...,u are two
canonical systems of the eigenvalye Then,

m(A, Ao, X°) = m(A Ag,u°) fori=1,....J. (3.8)
Proof. See[55, Proposition A.4.6.]. 0J

With the last lemma we can define partial multiplicities of@genvalue and extend the
concept of algebraic multiplicity of linear eigenvalue plems to eigenvalue problems for
holomorphic Fredholm operator functions.

Definition 3.2.9. Let A: A — L(X,Y) be a holomorphic Fredholm operator function An
and letp(A) # 0. LetAg € A be an eigenvalue of the eigenvalue problef }x = 0 and
x‘l’, .. .,xg be a corresponding canonical basis of the eigenspace. Tinbars

mi(A Ag) := m(A Ag,X°) fori=1,...J
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are called partial multiplicities of A corresponding #p. The number

J
mM(Ag) = > Mm(A Ag)
2
is called the algebraic multiplicity of A a\p.

The next technical result is needed later for the numeritalysis of the discretization of
eigenvalue problems of holomorphic Fredholm operatortions.

Lemma 3.2.10.Let A: A — L(X Y) be a holomorphic Fredholm operator function, let

p(A) # 0 and letAg € o(A). Let )Q .,x3 be a canonical system of eigenelements of A
corresponding toAg. If m(A Ao, X0) = m(A, )\o,x(j’) =m for somel <k < j <J and if
(ak,aj) # (0,0), then

m(A, Ao, akx,((’ + ajx?) =m. (3.9)

Proof. If ax =0 oraj =0, then [3.P) is obviously fulfilled. Therefore let us assutime
ax # 0 andaj # 0. Sincex(l’,...,x0 is a canonical system of eigenelements &rd |, it
follows thatx) ¢ spar{x,...,xY_;} and therefore

(Gka-|- ajX; ) ¢ Spar{xl? 7X(j)71}'

Hence by iii) of DefinitioTZZITM(A, Ao, oo + ajx%) <M(A, Ag,X7) =m. Letx), ... X1
andx?, .. ,xrj“*1 some Jordan chains & andx{, respectively. Then it can be seen very
easily that

A + aixS, oG+ apxt, ... o T+ apdt
is a Jordan chain o4 corresponding td of lengthm. Thus,
0 0
M(A, Ao, QX + ajXj) = m.
L
For the investigation of the length of the Jordan chains dtiusopartial multiplicities of an
eigenvalue the concept of Jordan functions / root functimssbeen used in[20,164]47].

Definition 3.2.11. Let A: A — L(X,Y) be a holomorphic operator function and & €
o(A). A holomorphic function uUg(Ag) — X in a neighborhood oAy is called a Jordan
function of order m for A corresponding 1 if

i) u(Ag) #0and
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i) Ao is a zero of multiplicity m of the function:fA — A(A)u(A), i.e.,

%[A()\)U(A)]A:Aozo forj=0,1,...,m—1 and
dm
arm AAUA)] 2, # 0. (3.10)

Note, if uis a Jordan function foA corresponding tdo, thenu(Ap) is an eigenelement of
A corresponding tdg. The following lemma shows that for every Jordan functioormfer
ma corresponding Jordan chain of lengtltan be constructed.

Lemma 3.2.12.Let A: A — L(X,Y) be a holomorphic operator function, l1ay € o(A)
and let u: Us(Ag) — X be a Jordan function of order m. Then

um™Y(Ag) (3.11)

u()\o),%U/()\O),%U(Z)()‘O)""’ (m—1)!

is a Jordan chain of A corresponding 4@.

Proof. Since the functiorf : A — A(A)u(A) has a zero of multiplicityn, we have

0 g5 AU gy = 5. s A o™ 0

n .
=n! ,ZOJ_

]
1

mu(”’j)()\o) forn=0,...,m—1.

AD (A0
O

If a Jordan chain of lengtim s given, then a corresponding Jordan function can be easily
constructed by a polynomial.

Lemma 3.2.13.Let A: A — L(X,Y) be a holomorphic Fredholm operator function with
p(A) # 0 and let(Ag,x°) be an eigenpair of A with r= m(A, Ao, X°). Let

be some Jordan chain of »f maximal order. Then the polynomial
UA) =X+ (A = At 4. 4 (A = Ag)™ Ixm-1

is a Jordan function of A corresponding Ag of order m.
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Proof. Sincex? is an eigenelement, we haug)g) = x° £ 0. By Definition[3ZB of a
Jordan chain we have

n
1 .. .
—AV QU1 =0, n=0,1,...,m-1.
I b b ) Y
j;vl'

With u®(Ag) = kIxX for k=0,1,...,m—1 we obtain

d" N n! : i
v [AAUA)]5 2y, = j;mA(l)()\o)u( D(Ag)

n
1 .. .
=nl'S =AD" =0, n=0,...,m-1,
j;)“

which implies that the functiorf : A — A(A)u(A) has a zero of multiplicity at leash.
The functionf must have a zero of multiplicity equatsbecause otherwise,

1
u(Ag) =0, U (Ag) =x4,...

1
(m-1) _ Jm-1 (m) _

"(m—1)!

would be, by Lemm&32112, a Jordan chain®bf lengthm-+ 1> m=m(A, Ao, x°). But
this is a contradiction to the fact thai(A, Ao, x°) is the maximal length of a Jordan chain
beginning withx. O

At the end of this section we cite the Keldysh theorém [[50, 36is the key tool of the
numerical analysis of the discretization of eigenvaluédfems for holomorphic Fredholm
operator functions. Moreover, we use it for the constructbeigenvalue solvers for al-
gebraic holomorphic eigenvalue problems. The theorem stioat the resolvent admits a
representation as Laurent series in a neighborhood of egehvalue, where the principal
part of the Laurent series is a finite sum.

Theorem 3.2.14.Let A: A — L(X,Y) be a holomorphic Fredholm operator function and
let p(A) # 0. LetAg € o(A), then forA € A\ {Ao} sufficiently close tdg we have

AN = S (4~ Ao) B F R
k=r

where r= (A, Ag), Bx € L(X,Y) are operators of finite rank with B# 0, and where F is
a holomorphic operator function.

Proof. See [27],[[55, Theorem A.10.2.]. 0
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3.3 Adjoint eigenvalue problems

For the numerical analysis of approximations of holomarptigenvalue problems we
have to consider also the adjoint eigenvalue problem. S are different definitions
of the adjoint of an operator, we want to specify these défimitin detail.

Definition 3.3.1. Let X be a Banach space. A continuous map X which maps X into
itself is called a conjugation on X if

X+y=X+y, ax=ax and (X)=X

is satisfied for all xy € X anda € C.

Notice that a conjugation is bounded, conjugate-linead, lams a bounded inverse. A
conjugation orX induces also a conjugation on the dual spéte- L(X,C) by

(X Fxsxs = (X F)yx,x» forxeX, feX”, (3.12)

where(-,-)x xx+ is the duality pairing oK x X*, i.e.,
(X, Fyxxx+ = f(x) forxe X, feX*.
Further we can define a bounded sesquilinear formx xx- : X x X* by

[X, f]XxX* = <X, f>x><x* forx e X, f e X*.

If X is reflexive and itX** is identified withX, then we have

[X, f]xxx* = [f7X]X*><X‘ (313)

If conjugations are defined on a Hilbert spacand on its duakK* by (3.12), then from

[V x| = [V Bhesoxs | = [T Fxex| (3.14)
it follows that
I = sup [ Ibeoxl gy [ Thooc] gy,
ozxex  IXlIx oxex  IIXlIx

Thus, the conjugation 0X* is a conjugate-linear bijective isometry &i. By the Riesz
representation theorem, see €.al [99, p. 105], there excsinjugate-linear bijective isom-
etryJ : X — X* such that

(X, Iy xxx+ = (X,¥)x (3.15)
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is satisfied for alk, y € X. Therefore we can define a linear bijective isometryX — X*
by x — J(X). Thus, we can represent the inner producXoby the sesquilinear form
[-,-]xxx= in the following way,

[Xv ly]XXX* = <X7W>X><X* = <X,Jy>X><X* = (X7y>x' (316)

If X andY are both equipped with a conjugation andhiE £(X,Y), then we define the
adjointA* : Y* — X* of Asuch that

X, A"Q]xxx+ = [AX, gy sy
is satisfied for alk € X andg € Y*.

If X andY are Hilbert spaces andAfc £(X,Y), then the Hilbert space adjoiAt : Y — X
is defined such that

(X AY)x = (AXY)y (3.17)

Is satisfied for alk € X andy € Y. The relation between the adjoiat : Y* — X* and the
Hilbert space adjoird* : Y — X is

I A Iy = A

Definition 3.3.2. Let A: A — L(X,Y) be a holomorphic Fredholm operator function. The
operator function

A A A €N} — L(YF,XF)

defined by
A*(A)=AA)*

is called adjoint operator function of A.
In the next lemma we show that the properties of a holomortedholm operator func-

tion remain valid for its adjoint.

Lemma 3.3.3.Let A: A — L(X,Y) be a holomorphic Fredholm operator function with
p(A) #0and letY be reflexive. Then the adjoint operator function

A {A A €N} — L(YF,XF)

is holomorphic and A(A) is Fredholm withindA*(A) = Ofor all A € A.
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Proof. Let u € A\ be arbitrary but fixed. Sinc& is holomorphic om\, there exists @ > 0
such thatA(A ) admits a representation as power series

(o]

AA) = k;)(" —W)*Be, BeeL(X,Y),

which is convergent i€ (X,Y) for all A € Us(u). Then, by Theoreii 3.2, we can write

[ee]

(AQ)X vy = [AA)X Glvxys = 5 (A = L)X [Bix, Glycy-
k=0

for A € Us(u), where the series is convergent foralt X andg € Y*. Consequently, for
A €Us() also

[ee]

S (A =1 B Ay v (3.18)
k=0
Is convergent for atk € X andg € Y*.
Let us now consider the adjoint operator functiomofrhich is given byA*(A) = A(A)*.
We can write forA € Us(T1), x € X andg € Y*,

(A" (M), X x x = (AA)* G X)xrsx = [AA)* G, X]xxx

[ee]

= [0, A )Xy xv = [AA)X, Gy oy = kZ (A = 1)X[BiX, Gy ey
=0

8

=y (A~ H)k[BkX, Ay sy
K=0

where we used that is reflexive and[(3.13). Thus, by (3118), the function

A = (A(A)G, X)xxx
is holomorphic orlJs(fr) for all x € X andg € Y* and we conclude with Corollafy 3.1.3
thatA* : {A 1 A e A} — L(Y*,X*) is holomorphic.

Sincep(A) # 0, it follows immediately from Theorem3.2.2 thatiAth ) =0 forallA € A.
The adjoint operator of any Fredholm operator with index®Bresdholm with index 0, see,

e.g., [61, Theorem 2.27]. This implies that N\ )* = indA*(A) =0forallA e A. O

The Fredholm alternative, see, e.0.,/[61, Theorem 2.2@}yslthat
dimkerA(Ag) = dimkerA*(Ao).

Hence, A is an eigenvalue oA if and only if Ao is an eigenvalue of*. Further, the
geometric multiplicities ofAp andA o coincide. Also the partial and algebraic multiplicities
of Ag andA g are equal as we see in the next lemma.
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Lemma 3.3.4.Let A: A — L(X,Y) be a holomorphic Fredholm operator function and
let p(A) # 0. Then,Ag € g(A) if and only ifA € o(A*) and the geometric, partial, and
algebraic multiplicities coincide.

Proof. See[55, Proposition A.9.2.]. 0

If X is a Hilbert space and&: A\ — L(X,X) is a holomorphic Fredholm operator function,
then we want to consider the Hilbert space adjoint

AA =17TAN) " (3.19)
and defined* : {A : A € A} — L(X,X) by
A(A) =175 ().

Remark 3.3.5.If X is a Hilbert space and if X= Y, then LemmB&-3.3.3 and Lemma3.3.4
remain valid when we replace’ Ay A, sincer : X — X* is an isomorphism.
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4 APPROXIMATION OF HOLOMORPHIC EIGENVALUE
PROBLEMS

The approximation of eigenvalue problems for holomorphdRolm operator functions
is in the most cases analyzed by using the concept of thellsat@hscrete approxima-
tion schemel[86] together with the concept of the regular@pmation of operator func-
tions [30]. Such approaches [31] 441 91,9047, 48] requEsai@mptions on the approxi-
mation spaces as well as several assumptions on the ap@atmms of the operator. The
Galerkin approximation of eigenvalue problems for holopiee Fredholm operator func-
tions of the formA(A) =T +S(A), whereT is elliptic andS(A ) is compact, fulfills those
assumptions. Nevertheless, we will establish an altamma&ibnvergence and error anal-
ysis for the Galerkin discretization of such eigenvaluebpgms in this chapter. For that
we only have to assume the standard approximation propeéthesequence of the trial
spaces.

4.1 Assumptions and basic properties

We consider eigenvalue problems
AA)x=0 (4.1)

for holomorphic operator functions
AN\ — L(X,X),

where/A C C is an open and connected subseCoand X is a Hilbert space ovet. We
assume that the operat&fA ) admits the representation

AA)=T+SA) forallA €A, (4.2)
whereT € L(X, X) is X-elliptic, i.e., there exists a constagit > 0 such that
(TxX)x >cr|x|§ forallxe X, (4.3)

and whereS(A) € L(X,X) is compact for all € A. These assumptions on the operator
function A imply that A(A) is Fredholm with indA(A) = 0 for all A € A. Indeed, by
the Lax-Milgram theorem, see, e.d.] [4, Satz 4.7], the dpef& has a bounded inverse
and therefore in@ = 0. Since every compact perturbation of a Fredholm operatar i
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Fredholm operator with the same ind&x|[61, Theorem 2.26;avelude that the operator
A(A) is Fredholm with ind\(A) =0 for allA € A.

For the Galerkin approximation of the eigenvalue probled)(We assume that there exists
a sequence

{Xn}nen (4.4)

of nested finite dimensional subspa2@s_ X with X, C X, 1, which satisfies the approx-
imation property

lim inf ||[x—Xx =0 forallxe X. 4.5
lim_inf {[x—x|x S (4.5)

Theorem 4.1.1.Let X be a Hilbert space and let W be a finite dimensional sutespéX.

I) veW is a best approximation to& X with respecttoW, i.e.,
X—V||x = Iinf ||[x—w 4.6
[x—Vlx = Inf [x—w]x. (4.6)

if and only if
(x—v,w)x =0 forallweW. 4.7)

i) For every element g X there exists a unique best approximatioa W with respect
toW.

Proof. Seell6l, Lemma 2.28, Lemma 2.29]. 0J

Using Theoreni 4111, we can define for every N a map
Pr: X — Xy C X (4.8)

which maps each element pic X to its unique best approximation K. The operator
P : X — X is a projection, since I, = X, andPyx, = X, for all x, € X,. The operatoR,
is linear, since by Theorem4.1.1, we have

0= a(X—PX,Z0)x + B(Y— Py, Z0)x = (aX+ By — [aPX+ BPhY], Za)x

for all X,y € X andz, € X,. Thus,aPx+ BPRy = Py(ax+ By).

Further,
IPallzx x) =1, (4.9)
since we have on the hand

[Pnll2ix ) = [IPaPall 2ox,x) < IPall 2o x) 1Pl 2% %)
.e.,|[Pallz(x x) = 0 or [Pl £(x x) = 1. On the other hand, by i) of Theordm4I1.1,

IXI% = [IPx+x =PIk = [IPaX[[% + X PaxlI% > [[Pax[§  forall xe X,
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Le., [[Pallcxex) < 1.
P, is selfadjoint, because by using again i) of Theofem%.1. $eecthat
(P, Y)x = (PX, Pay)x + (PaX, Y — Pay)x = (PaX, Pay)x = (X— PnX, Pay)x + (X, Pay)x
= (X Pay)x (4.10)
forall x,y € X.

Finally, the approximation property{4.5) oK, }nery implies that

rI‘im IXx—Pax||x =0 forallx e X. (4.11)

Lemma 4.1.2.Let G be a finite dimensional subspace of X and }efncy be a sequence
of finite dimensional subspaces of X which has the approiamatoperty [4.5). Then for
any c> Owe have

sup inl‘(n [X—Xn|]lx — 0 asn— co. (4.12)

xeG €
lIXlIx <c

Proof. Letx,...,xK be some orthonormal basis Gfand letc > 0 be arbitrary but fixed.
From the approximation property of the spaegsit follows that for everye > 0 there
exists aN € N such that for alh > N there exists a subséx?, ..., xX} c X, satisfying

£
kc

Letx € G with ||x||x < ¢, thenx admits a representation by

k .
X= Zaix'
i=
k

with |aj| < c. So we conclude fox, = Zlaixin € X, with (I3) that

X —xlx < — forl<i<k. (4.13)

k k

inf ||x—Xx <lx=S aiX ||x = ai(x — X
Xnean nllx < | i;'””x Hi; i( n)|[x

k o e kK
< 3 lanllX -l < 3 lail <e,
i= i=

which implies that

sup inf ||[X—Xy|| — 0 asn— co.
G Xn€Xn
lll<e
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4.2 Convergence results for Galerkin approximations

In this section we consider eigenvalue problems
A(A)x=0 (4.14)

for holomorphic Fredholm operator functioAs A — £(X,X) with A(A) =T +S(A) as
given in [4.2). We use a Bubnov-Galerkin method with the #est trial space$Xn}nen

as given in[[44) for the approximation of the eigenvalueofem [4.14).

A pair (AJ,x3) € A x X, \ {0} is an approximate solution of the eigenvalue problEm{4.14)
if it satisfies the Galerkin variational eigenvalue problem

(AAE v)x =0 forall vy € X, (4.15)
The orthogonality relatiori.(4l.7) gives
(AAINE = PAAC, vn)x =0 forall vy € X,

This implies thatAJ,x3) € A x X, \ {0} is a solution of the Galerkin variational eigenvalue
problem [4.1Db) if and only if it is a solution of the projectedenvalue problem

PAANE = 0. (4.16)
The convergence analysis of the approximate solutionseoéitjpenvalue probleni{4114)
follows [3€].
Lemma4.2.1.Let A: A — L(X,X) be as given in{4]12) and IéiA, } ey C A be a sequence
with

r!im An=2Ao EA. (4.17)

Suppose thafx, }nen is @ sequence withpe X, and ||xq||x = 1 such that

lim PhA(An)X, = O. (4.18)

Nn—oo
Then there exists an elemeftxX with ||x°||x = 1 and
A(Ao)x2 = 0. (4.19)
Further there exists a subsequero, }keny C {Xn}nen With

lim 1X° = Xn||x = O. (4.20)
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Proof. Since{x}ncwy is @ bounded sequence in the Hilbert spdcéhere exists a weakly
convergent subsequenég, }key [98, Theorem 111.3.7], i.e., there existsxd € X such
that

lim (xa,, V)x = (x%v)x forallve X. (4.21)

First we show that

llm(PnkA()‘nk)XnkvV)X = llm(xnkvAMnk)*PnkV)X = (XO,A()\ O)*V)X = (A()\O)XO,V)X
(4.22)
holds for allv € X. We have
IAAn) " Prv = A(20)"VlIx < [[[A(An)" — A(A0)"[PaVl|x + [|A(A0) " [Pr v — V][I
< AMAR)™ = A0) 2 x,x) PVl + 1AR) ™| £ x x) TPy — Vi Ix
< AR = AR0) | £x,x)IVIIx 4 1AR0) | 2 x x) I[Py — Vi Ix  (4.23)

forallve X, where we used thgf|| - (x x) = 1, seel(4B). The holomorphy of the operator
functionA: A — L(X,X) implies

IAAR)™ = AA0) [l £(x x) = [IAMAn) = A(Ao) "l (x x) — O

ask — o and together with the approximation propefty (4.11)X%§},.n We get from

@.23)
I!im |A(An ) Pa v —A(Ag)*V|[x =0 forallve X. (4.24)

Using (42%) and{4.21) we obtain

[ (s A(Ang)"PoV)x — (X, A(A0) Vx|
< | (s Al ) *PoV = A(A0) V) x| + | (X — X, A(A0) V)|
< %01 [ AAn,)* Py — A(A0) V][ x + | (¥, —X°, A(A0)"V)x| — O

ask — oo for all v € X, thus we have showf (422),

lim (P A(An ) Xn, V)x = (A(A0)X®,v)x  forallve X.

k— 00

Therefore[4.18) implies that
(AA)X°,v)x =0 forallve X,

hence
A(Ag)X® = 0. (4.25)
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SinceS(A) : X — X is compact for alk € A, the convergenc8(Ag)xn, — S(Ao)x° follows
from the weak convergenecg, — x°. Together with the continuity of the operator function
S: A — L(X,X),

lim [1S(An) = S(A0)ll £(x x) = O,

we obtain

1S(An) X — S(A0)X[Ix < [|[S(An,) — S(A0) Xy I + [IS(A0) X —X°)llx — O ask — eo.

This yields

1S(20)%° — P SAn )0 l1x < [[S(A0)%” — P S(A0)X [ + [P [S(A0)X° — S(An ) xn] I

< [(1x = Pa) S(A0)X°Ix + [|S(20)X° = S(An )X lIx — O
(4.26)

ask — . SinceA(A) =T +S(A), we get with [£2b),[{418) and(4126)

1T = Py, Ty lIx = [A(A0) — S(A0)]X° — Pr [A(An,) — S(An)]Xn,[|x
< || [A()\0>XO - PnkA()\nk>Xnk||X + ||S()\0>XO - PnkS(Ank)XnkHX —0
(4.27)

ask — . Using thatT is X-elliptic and thatP,, is selfadjoint, it follows with[[4.211) and
(@.21) that

( _Xnk)7xo_xnk)x‘

(TXOvXO)X - (TXnkvXO)X‘ + |<TXnk7Xnk)X - (TXO,Xnk)X|
(XO,T*XO)X - (XnkaT*XO)X| + [(T X, PreXn ) x — (T)p7Xnk)X|

= (XO,T*XO)X — (XnkaT*XO)X| + | (P T X, Xn )x — (T)p7Xnk)X|

(O, T)x = (X TN+ [[Pa T, — T x[X [Ix — O

ask — oo, thus
lim [x°—xn |Ix =0
k— 00

and||X%||x = 1, since||Xn,||x = 1. O
Note that the last lemma does not assert the existence ofvargimg sequence of eigen-
values of the projected eigenvalue problems.

Lemma 4.2.2.Let A: A — L(X,X) be given as in[{4]2) and suppose tiiatC p(A) is a
compact set irC. Then there exist a constan{fp) > 0 and a N/\g) € N such that for
alln > N(/Ap) and all x, € X, with ||X,||x = 1 the following properties hold:
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IPWA(A )Xallx > C(Ag) forall A € Ao, (4.28)

i) [PhAA)] 7L Xy — X, exists and is uniformly bounded,

forall A € Ao. (4.29)

IFANT lcxexs < 73

Proof. i) Let us assume that the inequalify {4.28) does not hold nTthere exists a sub-
sequencgAn, bken C Ao and a subsequende, freny With X, € Xn, and||xn, ||x = 1 such
that

lim Py A(An )Xn, = 0.

k— 00

Since/\q is compact, there exists a subsequefse }keny C {An, Jken such that

lim Aﬁk — A" e N

k—oo

LemmdZ.Z1l implies that there exists%e X with ||X°||x = 1 and

which is a contradiction to the fact that € Ao C p(A). Thus, inequality[{4.28) holds.
i) Part i) implies thatP,A(A ) : Xn — Xn is injective for allA € Ag and alin> N(A). Since

X is finite dimensional, we conclude tHa#A(A ) : X, — X, is invertible for allA € Ag and
alln> N(Ag). From the estimaté&{4.P8) it follows for adh € X, with ||xs||x = 1 that

1= [[%nllx = [PRAA)[PAR)]nllx > C(Ao) | [PRAR)] ™l
forall A € Ag and alln > N(/Ag), which proves the inequality {4.29). O
The next theorem shows that for every eigenvalua tifere exists a converging sequence
of eigenvalues of the projected eigenvalue problems.
Theorem 4.2.3.Let A: A — L(X, X) be as given in[{4]2).

) For each eigenvalugg € o(A) there exists a sequen¢ag'} >\ of eigenvalues of the
projected eigenvalue problemAA)xS = 0 such that

lim AJ = Ao.

Nn—oo
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i) If {Ad}nen is a sequence of eigenvalues of the projected eigenvalixgmo

and if {x%} ne is a sequence of corresponding eigenelements WRithX%, and

1X0||x = 1, then
1im A8 = o € 0(A).

Moreover, every limit point® of the sequence} ey is an eigenelement of A corre-

sponding to\g with ||%°]|x = 1.

Proof. i) Let us assume the contrary of assertion i) and let
&n:=inf{{Ado—A|: A € o(PA)} forn> No.
Then there exists a subsequeReg, }ken C {&n}nen and a constard > 0 such that
inf{{Ao—A|:A e o(P,A)} =&, >¢ forallkeN.
Hence, we have
Ue(Ao) ={A 1 |A — Aol < €} C p(PyA) forallkeN.

By Theoreni:3.212, all eigenvaluesAfre isolated, which implies that there exis& a 0
with & < € such that
Ns:={A:|A —=Ap| =3} C p(A).

Since/\s is a compact subset @f we can use LemniaZ.2.2 to conclude that there exits a
N(As) € N and a constard(A5) > 0 such that for alh, > N(Ay)

NsCp(P,A)  and || [PnkA()\)]ilHﬁ(xannk) <c(As) forall A € As.

By Theoren3:116, the operator functify, Al(-) =1 : A — L(Xq,, Xn,) is holomorphic on
the set
{A1|A =2A¢| <O} C p(RA),

therefore we can apply the principle of maximum of modulug)and obtain
1Pa AR £ty 30 < SA5)  for all me > N(Ag).

Since for allx € X

IPvA(AQ)Pix — A(A0)X[|x < [[PhA(Ao)Prx — PhA(Ao)X]|x + [|PrA(Ao)x — A(Ao)X||x
< [|AC) [ x ) 1 (Br = 1x)X][x + [|(Fa = 1x)A(A0)X[[x — O



4.3 Asymptotic error estimates 51

asn — oo, it follows for all x € X that
PhA(Ag)Paix — A(Ag)X
asn — o, Hence, forx’ € kerA(Ag) with ||X°||x = 1 andng > N(A5) we get
1Pax = [[[PhAM0)] Pr AAo) P
< o(A\s)[|PhA(A0)PaXllx — c(A5)[|A(A0)x")x = O,
which is a contradiction t§jPy, X°||x — [|X°||x = 1. Thus i) holds.
i) follows immediately from Lemm&Z.211. O

4.3 Asymptotic error estimates

For the error analysis of the Galerkin approximations of éfgenvalue probleni{4.114)
we use the approach df [47,148]. There an error analysis engier so—called regular
approximations of eigenvalue problems for holomorphidRm@m operator functions. The
idea of that approach is to construct for the eigenvaluelprog forA andP,A equivalent
eigenvalue problems for matrix functiods andM,. The error analysis is done then for
the matrix functiondM andM,.

We follow [47]48] for the construction of the matrix funatisM andM,, as well as for the
error analysis. But since we have other assumptions forgheaimations, we use partly
other arguments. Moreover, we also give error estimatethioeigenelements which is
not done in[|47,48].

The first result in this section provides the theoreticaldatthis approach.
Lemma 4.3.1.Let X,Y and Z be Banach spaces and let

A:N— L(X)Y), R:AN—L(X,)Y),

C:N—=L(X,Z2), D:AN—L(Z,X), M:N—L(Z,2)

be holomorphic operator functions. Let® be Fredholm for allA € A, let Ag € 0(A)
and letp(A) # 0. LetA C p(R) and let the following relations

AA) =R(A) [Ilx —D(A)C(A)], (4.30)
M(A) = Iz —C(A)D(A) (4.31)

hold for all A € A.
) If A(Ag)x’ =0and0 +# X € X, then
X0 =D(A0)C(A0)xX°, C(A)X’*#0 and M(Ag)C(Ag)X° = 0.
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i) IfM(Ag)%=0and0+#2 € Z, then
2 =C(A)D(A0)Z, D(A0)2#0, and A(Ag)D(Ag)2L =0.

iii) If uis a Jordan function of order m for A correspondingkg then the function
f:A—C(A)u(A)

is a Jordan function of order > m for M corresponding td.
iv) If vis a Jordan function of order fior M corresponding ta\o, then the function

g:A—D(A)V(A)

is a Jordan function of order i n for A corresponding td\,.

v) 1fx% x1, ..., XM is a Jordan chain of A corresponding #g and n{A, Ap,x%) = m+ 1,
then n{M, Ag,C(Ag)x°) = m+1.

vi) 120, Z,...,Z"is a Jordan chain of M corresponding #g and n{M, Ag,Z°) = m+1,
then mA, Ag,D(Ag)Z°) = m+ 1.

vii) If x9,. ..,xf]’ Is a canonical system of eigenelements of A corresponding,tthen
C()\o)xg, . ,C(Ao)xg’ is a canonical system of eigenelements of M corresponding to
Ao and the partial and algebraic multiplicities of A and M coide.

Proof. i) If A(Ag)x? =0 andx? # 0, then the constructiofi{Z130) AfandA C p(R) imply
that [lx — D(A)C(A)]x° = 0 andx? = D(A)C(A)x® # 0. Thus,C(A)x0 # 0. Further, with
M(A)=1z—C(A)D(A) it follows

M (A0)C(A0)X° = [Iz — C(A0)D(A0)]C(A0)X° = C(Ag)[Ix — D(Ag)C(Ag)X° = 0.

i) If 220 andM(Ag)Z = 0, then the definition oM(A) = 1z — C(A)D(A) implies that
C(A0)D(Ag)Z = 2 # 0. Further, with[[230) we obtain
A(A0)D(20)Z = R(A0)[Ix — D(A0)C(A0)]D(A0)Z°
= R(A0)D(A0)[22 —C(A0)D(A0) L] = 0.

i) Let u: A — X be a Jordan function of orden, then the functiolA\(A )u(A) has a zero

of multiplicity mandu(Ag) # 0. Hence by part i)C(Ag)u(Ag) # 0. By using [43]1) and
(4.30) we can write

M(A)C(A)u(A) = [Iz = C(A)D(A)]C(A)u(A) = C(A)[Ix = D(A)C(A)]u(A)
[CARA) A )U(A).
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Since all occurring functions are holomorphic, we concltitg the multiplicity of Ag
of the functionA — M(A)C(A)u(A) is greater than or equal tm. Thus, the function
f:A+— C(A)u(A) is a Jordan function of order greater than or equahto

iv) The proof can be done analogously as for part iii).
V) Let (Ag,x°%) be an eigenpair oA and letx’, x, ..., x™ be a Jordan chain witm+ 1 =
m(A, Ag,x°%). Then, by Lemm&3.213, the function

Ui A =X+ (A=At 4. (A —Ag)™XT

is a Jordan function oA corresponding tdo of orderm+ 1. From iii) we know that the
functionf : A — C(A)u(A) is a Jordan function d¥l corresponding tdo of order at least
m-+ 1. By Lemmd3.Z.712,

1 1 1
f(Ao) = C(Ag)X, T f/(Ao), o f@(Ag),..., ﬂﬂm) (Ao)

is a Jordan chain d¥l corresponding tdo. Assume thain(M, Ag,C(A0)X°) > m+1, then

there exists a Jordan chain
CA)X°, 2, 2, ..., 2™

of M and by Lemm&3.2.13 there exists a Jordan function
WiA = CANO+ (A =A)Z 4.+ (A —Ag) ™2™

of M of order at leasin+ 2. From iv) it follows that the functiog: A — D(A)w(A) is a
Jordan function oA of order at leasin+ 2. Hence, by Lemma=3.Z112 and by i),

1

m+1
(m+ 1)!9( )

g(Ao) = D(A0)W(Ag) = D(Ag)C(Ag)X° = x°, %g’()\o), %g@) (Ao); -,

is a Jordan chain oA corresponding td\g of lengthm+ 2 beginning with the eigenele-
mentx®. This is a contradiction to the fact thai(A Ag,xX°) = m+41. Thus, we have
M(M, A0,C(A0)X°) = m+1.

vi) The proof can be done analogously as for part v).

vii) Let X0, ... ,xf]’ be a canonical system of eigenelementéa@brresponding tdg. First
we show thatC(Ag)xX3,...,C(A0)x§ is a basis of the eigenspace MfAo). From i) we
know thatC(Ao)X(j’ are eigenelements & corresponding tdg for j =1,...,J. Assume
that

CI]_C()\())X%_) +.. 4+ GJC()\())XS) =0

for some(ay,...,a;)" € C’. Then by i) we have

GlD()\())C()\o)Xg_) + ...+ GJD()\Q)C()\o)Xg = alxg +...+ CIJXS) =0,
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implying thataj =0 for j = 1,...,J. ThusC(Ag)X?,...,C(A)xJ are linearly independent
in Z. Assume now that there existsZA € Z such thatC(Ao)X;, . ..,C(A0)x,2° are lin-
ear independent eigenelementshvfcorresponding td\g in Z. Then from ii) it follows
analogously as above th@, . ,Xﬁ’, D(A0)Z° are linear independent eigenelementshof
corresponding ta\o, which is a contradiction to the fact thef,...,xJ is a basis of the
eigenspace ké¥(Ag). HenceC(Ag)x), ...,C(A0)X] is a basis of the eigenspace MAo).

Next we show tha€(Ao)x?,...,C(A0)x] is a canonical basis of kit(Ag). Let us consider

Jordan chains of?

mj—1
X

0,1
Xy X[, X

Y

of maximal ordem; = m(A,)\o,x?) for j=1,...J. From v) we know that
M(A, 20,X)) = m(M,A0,C(A0)x)) for j=1,....J.

First we show that«(M, Ag) = m(M, Ag,C(A0)x?). Assume the contrary, then there exists
a Jordan chai@, ...,z of M corresponding tdo with i > m(M, Ag,C(A0)x}). By Vi),
there exists a Jordan chain Afbeginning withD(Ag)Z) of lengthmi > (A, Ag), which
gives a contradiction. Hence(M, Ag) = m(M, Ag,C(20)X?).

It remains to show iii) of the DefinitioR’3.2. 7 oA and the elemenB(Ag)xd, ..., C(A0)x.
We do this by induction. Let us assume that the conditiomfipefinition[3.2.Y is fulfilled
for C(Ag)x1,...,C(Ag)xj forsomej € 2,...,J—-1, i.e.,

C(A0)X] € kerA(Ao) \ spa{C(Ao)x}, ...,C(A0)X_1} =: Mj and
M(M, ,C(A0)X) = maxm(M, Ao, 2).
zeM;
We show that this condition holds also 18Ao)x], . ..,C(A0)x?,C(A0)X, ;. Assume the
contrary, then there exists a Jordan ctdiz?; . .., 2" with
2 ¢ spar{C(Ao)Xa, - --,C(Ao)Xj_1} andm > m(M, A0,C(A0)Xj11) = Mj1.  (4.32)

Suppose that
ax§+ ...+ ajx¢ + aj11D(A0)2 =0

for some(ay, ..., aj41) " € CITL Fromi),D(Ag)C(Ag)X’ =x fori=1,..., j, we get then

0= a1D(A0)C(A0)X] + ...+ ajD(A0)C(A0)X] + 1D (Ag) 2
= D(Ao) [01C(A0)X} + ... +ajC(A)X¥ + aj;12°] .

With (@.32) and ii) we conclude that =0 fori=1,...,j+1 and hence

D(A0)2 ¢ spar(x},...,x%} andm(A, Ao, D(A0)2) > mj;1 = m(A, Ao, x%, ;).
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This is a contradiction to the fact that the partial multgles of a Jordan chain do not
depend on the special choice of the canonical system of eigeents, see Lemria3R.8.
Thus, condition iii) of the DefinitioR 3.217 of a canonicalksgm of eigenelements is ful-
filled for C(A0)x?,...,C(A0)x3, which proves the assertion. O

In the following we will construct for the eigenvalue probig4.13),
A(A)x=0,
a decomposition of\(A ) according to LemmBa4.3.1,
AA) =R()[Ix ~ D(A)C(A)],
with operator functions of the form
C:A—L(X,C) and D:A— £(CX),

whereC’ is the standard-dimensional complex vectorspace. Then, the operatotiumc
A: N\ — L(X,X) is equivalent to the matrix functiod : A — £(C7,CY),

M(A) =15 —C(A)D(A),
in the sense of Lemnia 4.B.1.

Lemma 4.3.2.Let A: A — L(X,X) be a holomorphic Fredholm operator function with
pP(A) #0, Ap € a(A) anddimkerA(Ag) = J.

Let )éf,...,xg be some canonical system of eigenelements of A corresgptaliy with
Mg = M(A, Ao, X2) fork=1,...,J. Let

-1
X0, XK
be some Jordan chain of maximal length bfoxr k=1,...,Jand let

-1
aA) = mZ (A =Ag)'X, fork=1,...,J. (4.33)

Then,
0 forj=0,1,...m—1

u#0  forj=m,

fork=1,...,J, where y,...,u; are linearly independent in X and constitute a basis in
some direct complementBh A(Ag) in X, i.e.,

| =

(4.34)

dl
g A&y, = {

—

X =ImA(Ag) ®spaquy,...,us}. (4.35)
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Proof. The property[[4.34) follows immediately from Lemia 3.2.4ce the functions
ay are Jordan functions of ordei.

By Theoreni:3:Z]2A(Ao) is a Fredholm operator function with iddAo) = 0 and therefore
codimImA(Ag) = dimkerA(Ag) = J. Assume that[{4.35) does not hold. Then, either
ui,...,uj are linearly dependent or I1A{Ap) Nsparfuy,...,us} # {0}. In both cases there
existasy,...,a3 € C such that

|al|+...+|aJ|7éO and 01U1+...+C¥JUJ:G€|mA()\0>. (4.36)
Let X € X with A(Ag)X = G, and let
m=maxm:k=1,...,J; ax # 0}.

Consider the functioa: A — X defined by

a(A) = < éoak()\ —)\o)m_m‘ak()\)> — (A =20)"a. (4.37)

Then
a(Ao) = ) aak(do) = ) g # 0
me=m me=m

becausexﬁ are linearly independent eigenelementé\ébr k= 1,...,J. The elemena(Ap)

is a nontrivial linear combination of eigenelements of ontkef a canonical system of the
eigenspace ok corresponding to the eigenvaldg Therefore, by Lemmia3. 2110, we have
mM(A, Ag,a(Ag)) = m.

Let us consider

Ay,

= 3 A (1) o 0 ™ 0,
ax 1=

d" ~
- W[(A —A0)"AA) Ay, (4.38)
We have
d! . _ /0 if j #m—m,
aaT LaKA =20y, = { a(m-mgt, if j=m-m.  *39)

Note, if ] = m—my, then

n—j <m-1—-(m-my)=m—1, ifn<m-1
n—j =m, if n=m.
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Since the functiora is a Jordan function oA corresponding tdo of ordermy, and using
the definition ofuy, we get

dn-| [0 if j=m—mcandn<m-1,
dAn-i AR )]]r=n = { mdue if j=m—m¢andn=m.

(4.40)

Hence, from[(4.38) we conclude with(4139) ahd (#.40) that

dn

arn [A(A)a(A)]jp2p, =0 for0O<n<m-1

and, by using thay¥ 4, 20 akUx = V= A(Ag)X,

(;\—mm [AA)aA)]pope= D <minmk) o (M—m)mlu — mA(Ag)K = .

ax#0

Thus, the functiora is a Jordan function of order at leasty- 1. By Lemmda3.2.72, we
havem(A, Ag,a(Ap)) > m+ 1, which is a contradiction to the fact thatA, Ag,a(Ag)) = m.
Therefore assumptiof{4136) gives a contradiction andemuently [4.3b) holds. [

Define
Ui(A) = (A —A0) " MAN)a(A) forA #Apandi=1,....J, (4.41)

where the functior; is given by [4:3B). Lemm&a4.3.2 shows that the func#dh )a;(A)
has atAg a zero of multiplicitym;, therefore the function; can be continued at = Ag by
continuity by
1 dm
Ui(Ag) := mldAm

Note that the functioni; is holomorphic om\ and that by Lemm&Z4.3.2 we have

[AA)ai(A)]ja=p, = Ui- (4.42)

X =ImA(Ag) ®spaui(Ao),...,Us(Ao)}. (4.43)

Let us now consider the adjoint eigenvalue problanA )x = 0. Lemm&a 334 and Re-
mark[3.3.b show thado is an eigenvalue oA if and only if Ag is an eigenvalue of*.
Furthermore, the geometric and partial multiplicities\g@fandA ¢ coincide. Let

¥o,. %8
be some canonical system of eigenelement*aforresponding ta g with
Mg = m(A*7X07y(k)>

fork=1,...,J. Let .
Yo, Vies - Yo~ (4.44)
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be some Jordan chain of maximal ordnkrofyﬁ fork=1,...,J. Finally, let us define the
functionsby : C — X by

me—1 L
be(A) = ZO(/\—/\O)Jy,J( fork=1,...,J.
=

In an analogous way as férandAg we can define holomorphic functions

Vii: {A:Aen =X, k=1,..1J,

for A* by
(A —A0) ™A (A)bi(A) for A # Ao,
R [ LT RO R

With LemmaZ3.P we get the decomposition
X =ImA*(Ao) @ spar{vi(Ao),...,Vi(Ao)}.

Let us further define the operator functiokis A — L£(X,X) andK, : A — L(X,X) for

ne N by
J

K(A)x:= Z(x,vi (A))xui(A) and Kp(A)x:=PK(A). (4.46)
i=
Obviously, the operator&(A) andKn(A) are compact for alh € A, since both have a
finite dimensional range. Notice that— v;(A) is antiholomorphic img. But it can be

easily seen that — (x,Vi(A))x is holomorphic imo. Since the function; is holomorphic
in Ao, it admits a representation by

and by Theorern 3.11.2,

A= (Vi(A),X)x = %(/\ —20)' (%, X)x

is holomorphic i g for all x € X. This implies that

(o] (29

A= (% Vi(A))x = (%, _;(X—Xo)ivi)x = %(A —20)' (%, %)

is holomorphic inAg for all x € X. Hence K andK, are also holomorphic. Let us finally
define the operator functios: A — L(X,X) andR, : A — L(X,X) for n € N by

RA):=AA)+K(A) and Ry(A):=PR(A). (4.47)
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The next lemma shows th&A) : X — X andR,(A) : X, — X, have a bounded inverse
in a neighborhood\; C A of Ag. Moreover, we we can show thRk(A)~1 is uniformly
bounded iM\; for sufficiently largen.

Lemma 4.3.3.Let A be as given if(4.2). Further, let R ang Be as defined il {4.47).
Then there exist a neighborhodd C A of Ag and a N(A1) € N such that the following
properties hold:

i) The operators
RA): X=X and R(A): Xy— Xy

are invertible for all n> N(Az) and allA € A;.
ii) Forany compact\; C A; there exista NA,) € N and a constant@\,) > 0 satisfying

SUP{ [Ra(A) | skt A € A2 1= N(A) b < c(a).

Proof. First we show thaR(Ag) is invertible. SinceR(Ag) = A(Ag) + K (Ap) is a compact
perturbation of the Fredholm operat&fAg) with indA(Ag) = 0, it follows thatR(A) is
Fredholm and in&(Ag) = 0, seel[6ll, Theorem 2.26]. To prove the invertibilityRifAo), it
suffices therefore to show thR{Ao) is injective. Suppose th&{(Ag)X = 0 for somexe X,
then, by construction dR(Ag) andK(Ag), we haveA(Ag)X = K(Ag)X = 0. From

J
K(o)R= Y (%4 (Fo)xti(Ao) =0

it follows that B
()N(,Vi()\o>)x20 foriel,...,J, (4.48)

sinceu;(Ap) are linearly independent 4 by construction{Z41) and LemriiaZ]3.2. From
X € kerA(Ag) we get(X,A*(Ao)y)x = 0 for ally € X and thus

(X%,2)x =0 forallze ImA*(Ao). (4.49)
SinceX = ImA*(Ag) ®spar{vi(Ag),...,v3(Ao)}, we get with [Z4B) and(Z.49) that
(X,w)x =0 forallwe X,

which implies thak= 0. ConsequentlyR(Ao) is injective and thus invertible.

By Lemmal3LB, there exists a neighborhobd:= Us(Ag) of Ag such that we have
R(A)~te £(X,X)forall A € A;. Using the definition[[4]2) oA, we can write

RA)=AA)+KA)=T+SA)+KQA)=T+C(A) forallA €A,



60 4 Approximation of holomorphic eigenvalue problems

whereT is X-elliptic andé()\) is compact. By LemmB4.2.2, there exist for any compact
N2 € A1 aN(A2) € N and a constant(Az) > 0 such thatR,(A)~1 € L£(X,, X,) for all
n> Ny and allA € A\, satisfying

IRa(A) ™ £t ) < S(A2)-

O

Now we are able to define equivalent matrix functidhsand M, for A andP,A, respec-
tively, in the sense of Lemnia4.8.1. We can write foralf A, where/\; is given as in
Lemm&4.3B,

A(A) =R(A)~K(A) =R@A)[Ix —R(A)K(A)]

=Rl = 3 (MR )

DefineC(A) : X — CJ andD(A) : C? — X by

J
CA) == ((-,viA))x, - -, (-, va(A))x), D(A)(&y,....,&) = .;EiR()\)_lui (A),

then we can write
A(A) = R(A)[lx —D(AIC(A)] forall A € Ay. (4.50)
Now we can define the matrix functiovi : A; — £(C?,C”) by
M(A) =1, — C(A)D(A) (4.51)
and have
(M) (&1, - £9)) = & — (DA)EM(T)x
5 ii & (RO (1), (M)x. (4.52)

Analogously we can derive a matrix functidwy, for P,A. For allA € A1, where/\; is
defined as in Lemma4.3.3, we can write

PRAY) = Ra(A) = Kn(A) = Re(A) 1, — Ra(A) *Kn(A)]
J

= Ry(A)[Ix _Zl("vi (A))xRa(A) *Pui(A)].
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DefineC, : Ay — L(Xn, CY) andDy, : Ay — L(C?, X)) by

Cn(A) = ((,va(A))x, -, (va(A))x),  Da(A)(éL,-.... & Zif. )Pt (A),

then
PvA(A) = Ra(A)[Ix, — Dn(A)Cn(A)].
Finally, let us define the matrix functidl, : A; — £(C?,CY) by

Mn(2) =13 — Ca(A)Dn(A), (4.53)
then

(Mn(A) (&1, ...,&))i = & — (Dn(A) &, Vi(A))x
J
=&~ 5 &(R(A)'Pauj(A),vi(2))x. (4.54)
=1

With the above constructions of the matrix functidnsndM, we can apply LemmaZ.3.1
which shows that the eigenvalue problemsAandM and forP,A andM,, are equivalent
in N1.

Corollary 4.3.4. Let M and M, be defined byi{4.51) and{4153), respectively.

i) Ap € /\1 is an eigenvalue of A if and only A is an eigenvalue of M. For any eigen-
valueAp € o(A) N1 the geometric, partial, and algebraic multiplicities argual for
A and M.

i) Ag € A1 Is an eigenvalue of fA if and only ifAg is an eigenvalue of M For any
Ao € o(PA) N1 the geometric, partial, and algebraic multiplicities argueal for
P,A and M,.

In the next lemma we consider the matrix functioisand M, and give an asymptotic
error estimate for the matrix entries which depends on tipeaqimation property of the
trial spacesX, with respect to the generalized eigenspaceé @hd A*. This estimate
is essential for the derivation of the error estimate for éigenvalues of the Galerkin
approximation.

Lemma 4.3.5.Let M and M, be defined by (4.51) an(4153), respectively. Then for every
compact\, C /A1 there exist a constan{f,) > 0 and a N N such that the estimate

sup{|mI(A) —mI(A)]: A € Ap, 1< j < I}
<C(Az) sup inf |[z—xalx sup inf |z—ynlx (4.55)

2eG(AAg) Xn€ 2eG(A* 1) In
lzlx <1 lzx<1

holds for all n> N.
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Proof. Let A, be an arbitrary but fixed compact subsef\af ForA € A\, we can write
mI(A) —ml (A) = (Ra(A) "Puj(A), Vi(A))x — (R(A) uj(A), vi(A))x
A) TR —RA) Huj(A),i(A))x
A)TIRR(A) = IXJR(A) Ui (A),wi(A))x. (4.56)
We have
[Ra(A)"IRR(A) = Ix]% =0
for all x, € X, and therefore
[Ra(A) *PR(A) — Ix]x = [Ry(A) "*PR(A) — Ix] (X — Xn) (4.57)
for all x e X and allx, € X,. Using thatR, is selfadjoint, we obtain
0= (R[R(A)Rn(A) = Ix]Px,y)x
= (X Pa{[Ra(A) H*RA) = Ix }Poy)x
= (% {P[Ra(A) T"R(A) = Ix}Py)x
for all x,y € X from which we get
= (X% {Pa[Ra(A) ' R(A)" = Ix}¥n)x (4.58)
for all x e X and ally, € X,. Since
Ra(A) T"RR(A) —Ix = R(A) HR(A)Ra(A) ~*Pr — IX]R(A),
we obtain with [£57) and{4.58)
([Ra(A)*PaR(A) — Ix]x y)x

= (R(A)HRA)R(A) P = Ix]R(A) (X—%n), Y)x
= (R(A)(X—=n), {Pa[Ra(A) T*RA)* = Ix}[R(A) ~H"y)x
= (R(A)(X=n), {Pa[Ra(A) T RA)" = Ix H[RA) "y = yn})x
= ([RA)R(A) TP = IX]R(A ) (X—Xn), [R(A) 7"y = Yn)x (4.59)
for all x, y € X and allx,, yn € X,. From [4.56) we get
M (A) —mll(A)| =

= [([Ra(A)"RAR(A) — Ix]R(A) "ty (A )v.(x))xl B
= |([RA)Ra(A) 1P~ IxJR(A)[RA) i (A) —xal, [R(A) Vi(A) —yn)x|

< IRAIR(A) P = IXIR(A) [l £x ) [IRA) MU (A) = XalIx [ITR(A) *Wi(A) — ynllx
(4.60)
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for all Xn, Yn € Xn. By LemmdZ31B, the inverd®,(A) L is uniformly bounded on\,, i.e.,
there exists a consta@p > 0 and aN, € N such that

IRA(A) Yl xoxy) <C2 forall A € Az and alln > No.
With the continuity ofR and using thali P/ £ (x, x,) = 1, We get
I[R(A)R(A) P = IXIR(A) | £ x )
< (IR 2, x) IRa(A) ™ £ 30 x0) + L IR [ £x x) < €2

forall A € A\ and alln > Ny,. From [4.6D) it follows that
. - . i . 1~
() = )] < ¢z inf [RO)0i(4) =xally inf [[[RO) % (A) ~ynllx (4.61)

forall A € Ay and alln > Ny.

Next we show thaR(A ) ~tu;j(A) is an element of the generalized eigenspaca, Ao) for
allA e A, and forj =1,...,J. Recall the definition{4.41) of the functian,

u() = {(A — o) MA(N)aj(A) for A # Ao,

Uj for A = Ao,
where
m;—1
aj(A) =Y (A =20
2
and Where<'j‘ are generalized eigenelementsfo€orresponding td. By Lemma 4.3

and by the construction of the operator functRwe see thaR(Ao) ~1u; is an element of
the eigenspace k&fAo) and therefore it is also an element of the generalized egeas
G(A,Ao). ForAg # A € Ay we can write

RA) L =AR)YAR) +K(A) —KM)RA)T=AA)Iix —K(A)RLA)]. (4.62)
Using the definition of the function; we have
AT (A) = (A = Ao) MAM) AR )3j(A) = (A —Ao) May(A)

and we see that
uj(A) € G(A,Ag), (4.63)
sincea;(A) is a linear combination of generalized eigenelements. Wencée

AAN) KA )x= i\(x, ViA))xAA) tui(A)  forallx e X,
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and with [ZEB) we havA(A) 1K (A)uj(A) € G(A, Ag). Hence, with[Z62) we conclude
R(A)~1uj(A) € G(A Ao).

In a similar way we show now thdR(A)~*v; (A) is an element of the generalized
eigenspac&(A*,Ag) for all A € Ay andi = 1,...,J. Recall the definition[{4.45) of the
functionv;, B B
(A —Ao) ™A (A)bi(A) for A # Ao,
ViA)=q¢ 1 dMm _
| T A B, 5, forA =2,

where
m—1

bi(A)= 3 (A—20)"
=g,
and where/< are generalized eigenelementsidfcorresponding td o. By LemmaZ3P
and by the construction of the operator functi®nwe see thafR(Ao) 1]*Vi(Ao) is an
element of the eigenspace Ke&fAg) C G(A*,Ao). ForAg # A € Ay we can write

)" ={RQ) K(A)—K(@A)AR) Y
Z{['x— )] AN
=[A(A)” ]{lx ( )[R} (4.64)

Note that forK (A )* we have

k=
J
= > (X Uk(A))xVik(A))x = (X, K(A)*y)x (4.65)

for all x,y € X. Using tha A(A)~1]* = A*(A)~1, we can write
[A) T Vi(A) = (A =A0) MAT(X) TAT (A )Vi(Ao) = (A —A0) ™Vi(A),
and with the definition of the function we have
[AQ)TVi(A) € G(A", Ao)- (4.66)
Moreover with [4.6b) we get

AX)YKAYY=T (y.u(A)xA X)) forallye X,

and with [Z66) we havA(A) ~1*K(A)*Vi(A) € G(A*, Ao). From [Z64) we conclude that

[ROA) I Vi(A) € G(A*, Ap).
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Since the functionR(A) =L, [R(A)~Y*, uj(A), andvi(A) are continuous ir\y, there exists
a constantz > 0 such that

IRA)fuj(A)lIx <cz and  [[R(A)*W(A)[Ix < c3
forall A € A, and for 1< i, j < J. Hence, we get the estimates

sup inf [[RA)2ui(A) —=xallx < sup inf ||z—xn|lx =c3 sup inf ||z—Xa[|x
supinf, [RA)ui(A) —allx < sup inf llz=xalix =cs sup inf z—x|
llzlx <c3 Ilzlx <1

forl<j<Jand

sup_inf [[[R(A) " *i(A) = yallx < sup inf [lz—ynx =c3 sup _inf ||z—yallx
AeN, Yn€Xn 26G(A* Tg) Yn€Xn 26G(A* T ) Yn€Xn
llzllx <c3 lzlx<1

for 1 <i < J. Therefore we finally obtain fronfi.L{Z51) the estimate

sup{[mI(A)—mii (M) 1A e Ny, 1<, j< I}
< e sup ig;nllz—anx sup inf ||z—yn|lx

2eG(ANg) Xn 2€G(A* A g) In
Izl <1 Izl <1
for all n > N,. O
Let us definel, andd;; by
dv= sup inf ||z—xn]lx and dj= sup inf ||z—yn|x. (4.67)
2€G(AAg) Xn€Xn 26G(A* Ag) YNEXn
lzlx <1 lzllx <1

LemmdZ4. 1P shows that
dy—0 and d;—0

asn — o, sinceG(A, Ag) andG(A*, Ao) are finite dimensional subspacesgfsee Lemma
B.2.6. Using the matrix norm

IM|[£(co,c0y i= sup Imli|  forM e C>,
1<i,j<J

we get from [[£.55) the following convergence result
SUp{HM()\) — Mn()\ ) ||[,((CJ,(CJ) A€ /\2} < Cdnd; —0 (468)

asn — . Hence, the sequendd,} <y of matrix functions is uniformly convergent in
every compact subséb of A;.

With the estimate[{4.68) we are now able to prove an asyntpéotdr estimate for the
eigenvalues of the projected eigenvalue problem{4.16).
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Theorem 4.3.6.Let A: A — L(X,X) be as given in[{4]2). Let; C A be a compact set
such thato/\c C p(A) andAcNo(A) = {Ao}. Then there exist a constant0 and a
N € N such that

(PR A)NA#D (4.69)

and
IAS = Ao| < C(dnd)Y* forall AJ € o(PA) NAC (4.70)

hold for all n> N, with d, and d; given as in[[4.87) and: = »(A, Ag).
Proof. The assertiong (P,A) NA¢ # 0 for sufficiently largen, is a direct consequence of
i) of TheorenTZ.213.

Let us choose a neighborhodd C A of Ag such thatvi(A ) andMu(A ) are defined for all
A € A1 and alln > N;. Then, by CorollarfZ43]4 and Theorém 412.3 we have

{Ao} = 0(A)NAL = 0(M) N A,

4.71
o(PA)NAc = 0(PA)NAL=0(My) NAL ( )

for all n > N;. By Theoreni3.2.14, we can represent the invé$&) 1 by
M) ™= 5 (A—20)My forall A €Ujz(A0)\ {Ac}, (4.72)

k=—r

for sufficiently smalld > 0 with Us(Ao) C A1 and where = »(M, Ag).

Choose & > 0 with U5(Ag) C Us(Ao). By Theoren[4.213, there existsNg > Ny such
that

o(PhA)NAc CUg(Ag) forall n> Ns.

With @71) andJs(Ag) C A1 it follows that

0(PhA) NAc = 0(PyA)NUg(Ag) = 0(Mp) NUgs(Ag)  for all n > Ns. (4.73)

So it is sufficient to consider the eigenvaluedvandM, in U5(Ao).

Using the representatiofi{4172) of the inveké@\ ), we can define the matrix function
H :Us(Ao0) — £(C’,CY) by
H(A) = (A —=20)'M(A) .

The matrix functiorH is continuous ifJs(Ag) and therefore there existea> 0 such that

IHA)lzcocoy < forall A € Us(Ao). (4.74)

Obviously, we have

1A =20) ™M) Yl es.00) = IHA) | geo,00) S @
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forall A € Us(Ag) \ {Ao}. If A € Us(Ao) \ {Ao} satisfies
4= 20) "M(A) = (A = 20) "Mn(A)] v < o (4.75)

then by the Neumann series theoréni [21, Lemma 8.3], thexdfiatiétion (A —Ag) ~"Mp(A)
is invertible. Using the estimatE(4168), we have for sudfitly largen € N,
1(A = 20) " [M(A) = Mn(A)]]l £(c.c9) < S(8)]A — Ao| "y

forall A € Us(Ap) \ {Ao}. Hence, for all € Ug(Ag) \ {Ao} with

1
c(0)|A — Ag| "dndt < —,
C1

Le.,
|)\ —)\0|r > clc(é)dnd;,
it follows with (@75) that the inversiln(A )~ exists. Consequent € a(Mn) NUg(Ao)
holds only if
MS —)\0|r < 010(5)dndﬁ
is satisfied. This gives witli {4V 3) amd= (M, Ag) = »(A, Ag) the error estimaté(410).
]

In the next theorem we give an asymptotic error estimateHerdigenelements of the
projected eigenvalue problefi{4116). The error estimgbewiés on the error of the eigen-
value of the projected eigenvalue problem and on the appration property of the trial
spaces with respect to the eigenspace.

Theorem 4.3.7.Let A: A — L(X,X) be as given in[{4]2) and lety be an eigenvalue
of A. Let{Ag}r-n, b€ @ sequence of eigenvalues of the projected eigenvallsepre

PA(A )X, = 0 which converges tdo, and Iet{xf]’}??:nO be a sequence of corresponding
eigenelements witlx X, and||x3||x = 1. Then there exist a constant-cO and a Ne N
such that

XOEkerA(AO) ” " HX N <‘ " 0| )’OekerAF()/\o) Xn€Xn Hyo nHX) ( )
Y0l <1

holds for all n> N.

Proof. Let {Ag}r_n,, be a sequence of eigenvalues of the projected eigenvallbéepie
PA(A )X, = 0 which converges to an eigenvalig of A, and Iet{xf,’}‘r’f:nO be a corre-
sponding sequence of eigenelements withe X, and ||x3||x = 1. Let us first define
KON € kerA(Ag) by

0 40n : 0
X5 — X = min X — X|[x. 4.77
|| n ||X xekerA()\o)H n ||X ( )
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The above minima are attained, since A@ko) is a finite dimensional subspace Xf
Using Lemmd4.Z]1, we have

lim [xy —>"|x = 0. (4.78)
With the approximation property i, }nen We get
X = Paf>lx < [ = %27 4 [[R" — P — O (4.79)
asn — o, Letg, andx2" ¢ ker(A, Ag) defined by

0 0,n . 0
&n = ||X5 — By = min Xp — X||x. 4.80
n H n n ”X xePnker(A,)\o)” n ”X ( )

The above minima are attained, siriggkerA(Ap) is a finite dimensional subspace Xf
Let us consider the estimate

inf X = xlIx < 112 —X"x < 133 = PP x 4 || x> =37 x. (4.81)
xekerA(Ap)
Using [4.80) and{4.79) we get
13— P < (X3 — Pl < |33 =" [x + 180" — Paf®"|x — O (4.82)

asn — oo, from which it follows that lim,_.. ||P.x%"|x = 1. Therefore the sequence
{x®"}> . is bounded by a constang > 0. Hence, using LemniaZ1.2 we get the es-
timate

PPN 0Ny < sup [[R2—2x=co sup inf [[xa—Y°lx. (4.83)
DekerA(Ag) yOekerA(Ag) Xn
1201<cq llyOllx <1

Let us consider nowx3 — P,x%"||x. First we show that there exists a constant- 0 such
that
X3 = P < c1[PhAAS) X3 — P [ (4.84)

holds for sufficiently largen € N. Assume the contrary, then there exists a subsequence
{0, = ProdX@en € Q- P®M}_ such that

X0 = Pro®™[1x > [[PrAAG*) X, — Prd®™][1x (4.85)
holds for allk € N. With the continuity ofA and with [£8P) we have
IPRARAG) X, — Pro®™ ][ < cf3q, — Prx®™[|x — 0
ask — oo. Assumption[(4.85) implies then that

ng - I:)nkxomk
3R, — PrdX®M([x

lim PrAAGY)

_o. (4.86)
X



4.3 Asymptotic error estimates 69

By LemmdZ.Zl1, there exist a subsequence

ng - Pﬁkxo’nk c { ng — PnkXO’nk }
fic kST EIX ) ey X3, = P x| keN

and ayP € kerA(Ao) such that

lim Xﬂ Pnkxo -

ke [[3Q, — P X0 |x

=0

So we conclude

&, < xgk—Pﬁkxovﬁk ]xA — Py, OnkHXPnkyOH
. X — Py X0k
< ngk - Pﬁkxoﬁka ||X%)nk_ Pﬁkl;(o’ﬁka - Pﬁkyo
X
Pr X0k
= Hxnk_Pnk Onka <|| ||x0 pnl;(OnkH + HyO_PﬁkyOHx> (4.87)
X

= £,0(1),
which is a contradiction. Consequently, estimaie {4.84d$o
Using the continuity of, there exist a constant > 0 and aN € N such that
[IPhA(An) = PrA(A0) [ (x x) < C2lAg — Aol (4.88)
for alln > N. SincePh,A(AJ)XE = 0, we can write

PRAAG) D8 — P = [PrA(Ro) — PrAAB) " — PrA(Ao) P,

and with [£:8%) and (4.88) we get
[ — Px™] | < c1 {||[PhAA0) — PRAAG)] Px®"||y + || PrA(A0) Pax®" | }
< €1C2|An — Ao ||Px®"|| + 1 || PrA(A0) Px®" (4.89)

for sufficiently largen € N. Sincex®" € kerA(Ag), we have

[[PRAA0) P, = [|PrA(A0) Px®" — PhA(A0)x2" |,
< HA<A0>H£<X,X> [P =

Using that the sequend®x®"} ey is bounded, we get froni{Z4189)

8- Rotl < (a3 2ol+ [,
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for sufficiently largen. Hence, we finally obtain froni{4.81) with{4183) the estimat

inf  [PC—x|x <c||Ad=Ao|+ sup inf [|y°—Xallx (4.90)
8 Xle < el 128 Aol + sup inf [l
IOl <1
for sufficiently largen. O

Using the error estimat&(4]70) for the eigenvalues of tlogepted eigenvalue problem,
we get from [4.76) the following asymptotic error estimaiethe eigenelements
inf  [DXQ—x||x < c[(dnd)Y#AM) 4], (4.91)
xekerA(Ag)

where we used that the eigenspaceA{@p) is a subset of the generalized eigenspace
G(A Ag).

4.4 Stability of the algebraic multiplicities

Approximations of linear and nonlinear eigenvalue proldafiect the geometric and al-
gebraic multiplicities of the eigenvalues [75] 35,144, 2] general, a multiple eigenvalue
of the continuous problem splits into several discretergigkies. In this section we show
that for eigenvalue problems for holomorphic Fredholm aparfunctions the algebraic
multiplicity is stable under Galerkin discretization,.j.the algebraic multiplicity of a con-
tinuous eigenvalue is equal to the sum of the algebraic piudities of its discretizations.
For the proof we use again the equivalence of the eigenvaioielegns for the opera-
tor functionsA and P,A to the eigenvalue problems of the matrix functidvisand My,
seel[4¥]. Another approach for the proof is chosen Iinl[10Gretan alternative equivalent
characterization of the algebraic multiplicity from_[28]used.

For our approach we need the following essential result vbimows how the perturbation
of a holomorphic operator function effects the algebraidtipiicities of its eigenvalues.

Theorem 4.4.1.Let A C C be open and connected with a simple rectifiable boundary. Let
A: A — L(X,Y) be holomorphic o\ and continuous oi\. Leta(A)NA = {Ay,..., A}

and letA\ {A1,...,An} C p(A). Then there exists & > 0 such that for each function

B: A — L(X,Y) which is holomorphic o and continuous o, and which satisfies

B(A)—A(A o
max([B(A) —AA)llzexy) <O,

it follows thata (B) N\A = {pa,..., 4}, A\ {H1,..., 4} C p(B) and

n

Z m(AAj) = ki m(B, Uk )-
=1

k=1
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Proof. See [24]. O

Theorem 4.4.2.Let A: A — L(X,X) be given as in[{4]12) and Iét. C A be compact and
connected with a simple rectifiable boundary. Bét. C p(A) and A¢N o (A) = {Ao}.
Then there exists a(M\) € N such that for all > N(A¢) we have

m(A, )\0) = Z m( PhA, )\0). (4.92)
Ao€a(PhA)NA:

Proof. Consider the matrix functionsl andM, as defined in[{4.31). Chooge> 0 suf-
ficiently small such that the matrix functiohd andM, are defined iftJg(Ag). For suffi-
ciently largen € N we have by Theorein 4.2.3

I (PA) NAc = a(PA) NUg(Ag). (4.93)

CorollarylZ3% shows that

0(A)NUg(Ag) = (M) NUg(Ao) = {Ao} (4.94)

and that the algebraic multiplicities a§ coincide forA andM. Further, again by Corollary
734, we have
0(Mn) NUg(Ag) = 0 (PhA) NUg(Ag),
and
m(PnA7AO) - Z m(Mn,)\O) (495)

Ao€a(PhA)NUe(Ao) Ao€0(Mn)NU¢g(Ag)

for sufficiently largen € N. Using [4.68), we have

Ae%?éo) IM(A) =Mn(A) |l z(ca,coy =0 ash— oo.

So we may apply Theorem4.%.1 and obtain

m(M, Ag) = Z M(Mp, Ao)

AoEO’(Mn)ﬂUg(Ao)

for sufficiently largen € N. From [4.95),[(4.94) and (4.P3) the assertion follows. [
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5 GALERKIN APPROXIMATION OF BOUNDARY INTEGRAL
OPERATOR EIGENVALUE PROBLEMS

Discretizations of boundary integral formulations of Laghn eigenvalue problems by
using boundary elements are considered in many works| 856251, 52,13, 14, 84] and
references therein. However, only in a few works| [22[23,t84]issue of the numerical
analysis is addressed. To our knowledge, a rigorous nuatenmalysis of the discretiza-
tions of boundary integral operator eigenvalue problermokudging error estimates for the
eigenvalues and eigenelements has not be done so far.

In this chapter we show that the boundary integral formatetiof the Dirichlet and Neu-
mann Laplacian eigenvalue problem which we derived in Glradtare eigenvalue prob-
lems for holomorphic Fredholm operator functions. Therefee can apply the results of
Chaptei¥ to Galerkin boundary element discretizationdefaoundary integral operator
eigenvalue problems. We prove the convergence of the boyetement approximations
for the eigenvalues and eigenelements and give asymptoticestimates. Furthermore,
we show that the algebraic multiplicity of the eigenvalues stable under Galerkin dis-
cretizations.

5.1 Properties of boundary integral operator eigenvalue poblems

First we consider the boundary integral formulation of thadblet Laplacian eigenvalue
problem [ZB1): Findk,w) € R, x H-Y/2(I")\ {0} such that

V(k)w=0. (5.1)

By TheorenfZ417, the single layer potential oper#&ttr) is Fredholm for alk € C. Next
we show thaV (-) defines a holomorphic operator function.

Lemma 5.1.1. The operator function

ViC— L(HY2(),HY2(T)),
K —V(K),

where (k) is the single layer potential operator as given[in{2.36Yydaomorphic.

73
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Proof. According to Corollary"3.T]3 it is sufficient to show that fis@ction
fraw(K) = (V (K)EW) 20y cn-12(r)
is holomorphic orC for everyt,w € H=¥?(I"). Fork € C we can write

gkl-—yl
|- =Vl

ft,W(K) = <V(K)t7W>Hl/Z(r)fol/Z(r) = <E.[

N ZO 4n/ n!

Here we used that the operatyr: H=Y2(I") — HY/2(I") defined by

t(y)dsy, >|—|l/2 «H=1/2(T)

n-1
| ()d%U >H1/2 M)xH-1/2(r): (52)

iy —y/n-1
(A9 = o / s e

n!

is linear and bounded for everyc Ng. This property ofA, can be shown fon > 1 in
a similar way as it is done for the case= 0 in [83, Chapter 6], since the kernel Af
for n > 1 is more regular than the kernel 8§. Note thatAg is the single layer potential
operator of the Laplace equation.

The representation(3.2) of the functidy, shows thatf; , : C — C is holomorphic for
everyt,w € H-Y/2(I") and we conclude with Corollafy3.1.3 that the operator fiamct
V:C — L(H~Y2(r),HY2(I")) is holomorphic. O

Next we consider the boundary integral formulation of theildann Laplacian eigenvalue
problem [ZEB): Findk,u) € R, x HY2(")\ {0} such that

D(k)u=0. (5.3)
Lemma 5.1.2. The operator function

D:C— LHY(),HY4T)),
K — D(K),

where Ok) is the hypersingular boundary integral operator as giver{d31), is holo-
morphic.

Proof. The proofis done in an analogous manner as in the case ofitjle tayer operator.
We show that the function

gu7V(K) = <D(K>U,V>H71/2(r)><H1/2(r) (54)
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is holomorphic orC for everyu,v e HY2(I"). Fork € C we can write

elK\—I

Juv(K) = <D(K)U7V>Hfl/2(r)xH1/2(r) (" 4H/th (Y)dsy,v)- 1/2(1) xH1/2(T)

= m'”\ " g
- 1 47T n! U(Y)ds), V)n-1/2(r)xhiz(r)- (5.5)

Here we used that the trace opergtffis linear and thaBy, : HY/2(I") — H~Y/2(I") defined
by

n n—-1
(Bau)(X) : 471/ ”tl‘x y| ————u(y)ds (5.6)

is linear and bounded for everye Ny. The operatoBy is the hypersingular operator of
the Laplace equation. IA[B3, Chapter 6] it is proven @t £(HY2(M),H-Y2(I)). In

a similar way this can be shown {8 for n > 1, since the kernel d8, for n > 1 is more
regular than the kernel dp.

Becauseg, : C — C is holomorphic for every,v € HY/("), it follows by Corollary
313 that the operator functidh: C — £(HY/2(I"),H-Y2(")) is also holomorphic. O

In order to apply the results of Chapfér 4 to the eigenvaloblpms [B11) and {5 3), we
have to introduce additional operators such that we geheajee problems of the required
form as in [Z2). Consider the Riesz map HY2(I') — H-Y2(I"), then the operator
g2y - HY2(T) — H™Y/%(T") defined by

Iqiz)Vi=Jv forve HY2(I)

is an isomorphism, see Sectionl3.3. Recalling the defin{Zd®) of the sesquilinear form

(uw)r = <U7V_V>H1/2(r) xH-Y2(T)>

we can write
(Us ta/2r)\V)r = (U Tz VInaziry -1z = (U IV gz cn-120) = (U V)pz(ny
for all u,v € HY2(I"). Consequently, we have
(u,wW)r = (u, lHl/g(r)lgll/z(r)W)r = (u, l;ll/z(r)W)Hl/z(r) (5.7)
for allue HY2(I") andw € H=Y2(I"). Using the Hilbert space adjoihgll/z(r)]* we get

<u7l|_|1/2( r )Hl/Z(r) = ([l;ll/Z(r)]*wW)H*l/z(r) forallue H1/2(r), we H—1/2(r).

(5.8)
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Define

T = {1 " HYA(D) — HY2(T), (5.9)

then we can write using(3.7) arld (b.8)
(UW)r = (Zu,W)yy 12, forallue HY#(M),we HY2(T). (5.10)

Note thatZ : HY2(I') — H=Y2(T") is an isomorphism. Finally, using{5]10) we have the
representations

(V(K)t,W)r = (ZV (K)t, W)y 12y forallt,we HY2(r), (5.11)
and
(U, D(K)V)r = (U, Z*D(K)V) a2y forallu,ve HY2(T). (5.12)
Theorem 5.1.3.Consider the operator function
IV :C — LHY2(M),HY2(r)),
K — IV (K), (5.13)
whereZ : HY2(I') — H-Y2(T") is given as in[(519). Then:

i) The operator functioffV : C — £(H~Y2(I"),H=Y4(I")) is holomorphic and the op-
erator 7V (k) is a compact perturbation of the H/2(")-elliptic operatorZV (0) for
all k € C.

i) The spectra of V an@V coincide and
kerV (k) =kerZV (k)

for anyk € C. Further, for any eigenvalug € o(V) the maximal length of a Jordan
chain and the algebraic multiplicity are equal for V afiy ,

%(V,K) = »(IV,K), m(V,K) = m(ZV,k).

Proof. i) The holomorphy ofZV follows directly from the holomorphy of . Next, we can
write
IV(k) =IV(0) +Z(V(k) = V(0)),

whereZ(V (k) —V(0)) : H=Y2(") — H~Y2(I") is compact, since, by LemriaZ}.5, the op-
eratorV (k) —V(0) : H=Y2(I") — HY2(T") is compact. Théd—Y2(T")-ellipticity of ZV (0)
follows from the ellipticity ofV (0), see LemmB&Z4.6. With{5111) we have

(IV(O)t,t)y-vzry = (VO )r = Oyt 1o, forte H-Y3(T).

i) The assertions are a direct consequence of the facZth&t'/2(F) — H~Y/2(I") is an
isomorphism. O
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Also the eigenvalue problems for the operator functibnsC — £(HY2(),H-Y2())
andZ*D : C — L(HY?(I"),HY2(T")) are equivalent.

Theorem 5.1.4.Consider the operator function
T°D: C — LHY?(M),HY2(T)),
K — Z*D(K), (5.14)
whereZ* : H=Y2(I") — HY/2(I") is given as in[[5.112). Then:

i) The operator functiol*D : C — L£(HY?(T"),HY2(")) is holomorphic and for any
k € Cthe operatoiZ*D(k ) is a compact perturbation of the¥®(")-elliptic operator
7*D(0), whereD(0) is given as in[[Z36).

i) The spectra of D an@*D coincide and
kerD(k) = kerZ*D(k)

for anyk € C. Further, for any eigenvalug € g(D) the maximal length of a Jordan
chain and the algebraic multiplicity are equal for D addD,

#(D,K) = »(Z*D,K), m(D,k) = m(Z*D, k).
Proof. The proof can be done in a similar way as for Theofemb.1.3. O

For the error estimates of the Galerkin approximations efttbundary integral operator
eigenvalue problems we have to consider the Hilbert spgomadperators ofV (k) and
Z*D(K).

Lemmab5.1.5.Letk € R, then

Proof. Letk € R andt,w e HY/2(I"), then
gKlx— yI

X — yl

(I (WD 130y = V(KN 220) = 4 / / dsi(¥)ds

1 g iK|x=y|
= ET/WW) t(x)dsds, = <W’V(_K)t>H*1/2(r)le/Z(r)

X—yl|

= <V( K)t,W>H1/2( MxH-Y2(r) = mr
WH Y2y — (W7IV(_K)t)H—1/2(r).
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Next we consider the adjoint of the hypersingular oper&(). The following repre-
sentation of the duality pairing of the hypersingular opar&iolds for piecewise smooth
functionsu,v e HY2(MNc(r),

gk x-y]
(D(K)U, V) py-1/2(r ) v 4n// Xyl (curl-u(y), curl-v(y))ds,ds

gKx— y\
// x— y‘ (X)(n(x),n(y))ds,ds,, (5.15)

seel66, Theorem 3.4.2], where
curl-u(x) = n(x) x OdG(x) forxeTl,

and wheren is the outward unit normal vector ands 'some (locally defined) extension of
u into the neighborhood df.

Lemma 5.1.6.Letk € R, then

[Z"D(k)]* =Z*D(—kK).

Proof. Using the representation (5]115), we get ko€ R and piecewise smooth functions
u,ve HY2(r)nc(r)

(V,I*D(K)U)Hl/z(r) -

,D(K)Wr = (V. D(K)U) a2y sem 12y
D<K)U7V>H*1/2(F)><H1/2(F) = <D(—K)V7U>H*l/2(r)le/Z(r)
WHlﬂ(r)folﬂ(r) = (U,D(=K)V)r

U Z*D(—K)V) /2y = (Z"D(=kK)V, W2y

Thus,[Z*D(k)|* = Z*D(—k). O

5.2 Boundary elements

Recall that we have assumed tifat- R3 is a Lipschitz domain with piecewise smooth
boundaryi = dQ. We consider a family',} of decompositions of the boundalry

h
=T, (5.16)

with boundary elements,. We restrict ourselves to plane triangles for the choicenef t
boundary elements. The errors which may occur by this apmation of the boundary
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[ are not considered here. For an analysis of these error§6SeeFor each boundary
decomposition[{5.16) we assume that two neighboring baynelaments share either a
node or an edge. We define the local mesh size of a boundargeiem

1/2
hy .= /dS(
U

and the global mesh sizes of a boundary decompodition

h=hnax:= max hy, hmin:= min h,.
(=1,....,ny =1,...,n

The diameter of a boundary elemanis defined by

dy == sup|x—yl.

X,yety

We assume that the familyi ,} is uniformly shape regular, that is, there exists a constant
¢ > 0 which is independent of the boundary decomposition suah th

d, <ch, forall/=1,...,n,

For the Galerkin discretization of the boundary integratrapor eigenvalue problems we
consider finite dimensional trial spaces with respect tbthendary decompositiors,. A
conforming trial space dfl ~1/2(I") is (), the space of piecewise constant functions. We
use{w?}ghzl as basis functions ¢ (") with respect to the boundary decompositian
Wheretp,f‘ is constant one on the boundary elemergnd elsewhere zero. The Sp&ér)
of continuous piecewise linear functions is a conformirial space oH?(I'). We use
nodal basis functionﬁl)l-h}?i1 for §H(T"), where the vertices of the boundary decomposition
'y are the nodes. Le{ixj}rj@l be the set of vertices 6, then the basis functions &(I")
are given by

1 for x = xj,

¢Jh(x): 0 for x =% # X,
piecewise linear elsewhere

forj=1,....,m.
The trial spaceﬁ(r) andSﬁ(l‘) have the following approximation properties.

Theorem 5.2.1.Letn € {0,1}, 0 € [-1+n,n], and se [0,n + 1]. Then there exists a
constant ¢~ 0 such that for any & H3(I")

inf ”V—VhHHU r S ChSiGHVHHs r- (517)
&) (r) (r)

Vhe
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Proof. See, e.q./ 78, p. 252],183, Section 10.2]. 0J

Similar approximation results are also valid for open pByisf . For a piecewise smooth
boundary we have for € H5,,(I")

inf _JIV—=Vhllyn-12(r) < Chs_”+1/2||V||H3W(r)a (5.18)
vheS, (M)

wheren € {0,1} andse [n —1/2,n +1], seel[7D, Theorem 2.1, Theorem 2.3].

5.3 Convergence, asymptotic error estimates and stability

Dirichlet Laplacian eigenvalue problem

The boundary integral formulation {Z151) of the Dirichletdlacian eigenvalue problem is
by Theoreni 5. 113 equivalent to the boundary integral opeggenvalue problem:
Find (k,w) € R x H=Y2(I")\ {0} such that

IV (K)w=0. (5.19)

Using a family of finite dimensional subspaciﬁ@) spanned by piecewise constant basis
functlons{t,u }g 1, the Galerkin variational eigenvalue problem reads a®Vid! Find
(Knh,Wh) € C x () \ {0} such that

(ZV (Kn)Wh, Vh) 172y = (V (Kh)Wh, Vn)r =0 (5.20)

is satisfied for all, € (). Setting
N
Wh = ; Wy,
=

then the variational probleri(5]J20) is equivalent to thehtgic nonlinear eigenvalue prob-
lem: Find(knh,w) € C x C™\ {0} such that

Vh(Kn)w =0, (5.21)

k.1 gl Knlx— Y|
h(kn) k. €] == 471// IX— y\

Ty Tk

where

fork./=1,...,n,.

The following theorem shows the convergence of the Galegproximationgkp, wy,) to
an eigenpaifk,w) of the continuous eigenvalue problem{5.19).



5.3 Convergence, asymptotic error estimates and stability 81

Theorem 5.3.1.

i) Let{(kn, W)} be a sequence of eigenpairs of the Galerkin variational [gob{5.20).
If

lim Kh = K
h—0 ’

thenk is an eigenvalue dfV.
ii) For each eigenvalug of ZV there exists a sequence of eigenpdifsn, wy)} of the
Galerkin variational problem({5.20) withwh||;-1/2-) = 1 such that
lim |kh—k|=0
h*>0| h |

and

lim inf W— W[ =0.
h—0wekerZV (k) ” h”H )

Proof. We show that the assumptions of Theollem4.2.3 are fulfilled TBeorenT5.T13,
IV : C — L(H~YZ(T),H~Y2(I")) is a holomorphic operator function and for aky C
the operatofZV (k) is a compact perturbation of ld~1/2(I")-elliptic operator. Further,
Theoreni5.2]1 shows that the family of trial spa¢g¥")} approximatesd ~/2(I"),

lim inf  |lu— vy, 0 forallue H Y2().
h—>0vhe$(r)” il y2(ry = ()

Thus, the assertions follow from Theoré€m42.3. O

Next we give an error estimate for the discretizationg w,).

Theorem 5.3.2.Letk € 0(ZV)NR and leto(ZV) NUs(K) = {k }, where
Us(k) ={n eC:|k—pul <3}

Then there exists ah> 0 such that for all he (0, hg)

/3(TV.K)

K —Kn| < cd for all Ky € (Vi) NUs(K) (5.22)
is satisfied, where
d,= su inf ||t —th| - ,
tEG(IVPK) the () | ”H ()
HtHH—l/Z(r)Sl

and wherex(ZV, k) is the maximal length of a Jordan chain andZ¥, k) is the general-
ized eigenspace &f as defined in Definition=3.2.5. Further, for any, w kerV,(kp) with

”WhHHfl/Z(r) =1,

inf — _ < — 2
weke!PIV(K)”W Wil 2(r) < C(|K = Kn| +0h) (5-23)

is satisfied.



82 5 Galerkin approximation of boundary integral operatoeeiglue problems

Proof. The error estimaté{5.P3) for the eigenelements follows édietely from Theorem
H.3.1. For the error estimate {5122) of the eigenvalues we t@aconsider the adjoint of
IV (K). Letk € o(ZV) be real, then Lemnia’s.1.5 shows that

Since kefZV (k) = kerZV (—k), we conclude
kerZV (k) = kerZV (k)|* = kefZV]*(K)

and
G(ZV,K) = G(ZV,—k) = G([ZV]*,K). (5.24)

Applying TheoreniZ.316 the error estimdie ($.22) followtwb.23). O

Using the approximation property ﬁ(r), we can give the following error estimates.

Corollary 5.3.3. Letk € o(ZV)NR and leto(ZV) NUg(K) = {k }. Let k=dimG(ZV, k)
and let{ty,...,tx} be an orthonormal basis of the generalized eigenspa@®/3x). As-
sume thatt }K , C Hpw(I") for some s [-1/2,1], then there exists agh> 0 such that for
all h € (0, ho)

k
‘K _ Kh‘ < C<h23+1)1/%(IV,K) ZlHti HHSW(F) for all ky € O'(Vh) ﬂU5(K) (525)
i=

is satisfied. Further, for any ye kerVi(kp) with ||wh||H,1/2(r) =1

wekerV (k)

K
inf ||w—wh||H,1/2(r) <c <|K — Kp| +hSTY/2 Zl It ||HSW(F)> (5.26)
1=
is satisfied.

Proof. Let k € 0(ZV) be real and le{ti}¥_; be an orthonormal basis of the generalized
eigenspac&(ZV, k). Assume thaft;}X_, c How(I) for somes e [-1/2,1]. We show that

k
su inf ||t —ty|[,_ <25 (tillys (. 5.27
teG(Vg) theﬁi(F)H In-2/2r) 2 il g, () (5.27)
HtHHfl/z(r)Sl

Since{ti}k ; C HS, (") and (") is a finite dimensional subspace f ¥/%(I"), there
exists an elemertt, € (") and a constarg; > 0 such that

1t —tinllg-22(ry =, éninr) 1t = thlly-1/2(r) < Cih%l/thiHng(r)
h
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fori=1,....k see[&IB). Let € G(V,k) with |[t][,;-12r) < 1, thent admits a represen-

tation
K

t="9 ait, |ai| <Ll (5.28)
2,

k
Setf, = Z\aiti’h’ then we obtain

i=
k

inf ||t —tq|| < It =t - = o (t —t; _
the$(r)” hHH vy = ” hHH v2(r) ”uzl |(| l,h)HH 2(r)

k k
hSHL/2)) 1/2 < |t
< i;CIh Itills,,r) < ch®" i;HtIHHgW(r),

which shows that{5.27) holds. Hence, the error estim&i@g)and [5.26) follow from
G22) andI(523). 0

In the casex(ZV,k) = 1, i.e., the algebraic multiplicity ok is equal to its geometric
multiplicity, the generalized eigenspa@¢ZV, k) coincides with keZV (k). If in addition
kerZV (k) C HF}W(F), then we get with Corollarf5.3.3 the following error estiemfor
the Galerkin approximationsy, wy),

k
K —Kn| < chSi;Hti g, - (5.29)

k
i _ _ 3/2 .
Wek‘QI/(K) W —Wh[yy-172ry < © <|K Kn|+h i;Htl ||H,}W(r)> ;

where{ty, ...t} is some orthonormal basis of K& (k) in H=%/2(I").

Next we show that the algebraic multiplicity of an eigeneabf ZV is stable under the
Galerkin discretizatiorf {5.20), that is, the sum of the bfgéec multiplicities of the discrete
eigenvalues corresponding to a continuous eigenvalaequal to the algebraic multiplic-
ity of k.

Theorem 5.3.4.Letk € o(ZV)NR and leto(ZV) NUs(k) = {k}. Let MZV,k) the
algebraic multiplicity ofk. Then there exists gh> 0 such that for all h< hg

M(ZV, k) = > m(Vi,Kn).
Khea (Vh)NUs(K)

If 5(ZV,K) = 1, then we have for all k< hg
dimkerZV (k) = dim{t, € H™Y2(I") : V (kp)th = 0 andk, € o(Vi,) NUs(Kp) }-

Proof. The assertions follow immediately from TheorEm4.4.2. O



84 5 Galerkin approximation of boundary integral operatoeeiglue problems

Neumann Laplacian eigenvalue problem

The boundary integral formulation{2]53) of the Neumannlaejan eigenvalue problem
is by Theoreni 5,114 equivalent to the boundary integral atpeeigenvalue problem:
Find (k,u) € R, x HY2(I")\ {0} such that

7*D(k)u=0. (5.30)

Using a sequence of finite dimensional subs@l,éﬁ) spanned by continuous piecewise
linear basis function§f},",, the Galerkin variational formulation reads as followsadFi
(Kn,Un) € C x SK(I") \ {0} such that

(Vh, Z"D(K)Un) /2y = (Vn, D(K)Un)r =0 (5.31)

is satisfied for alv, € SH(T). Setu, = 37, udl, then the variational problerfi(5131) is
equivalent to the algebraic nonlinear eigenvalue probl&ind (kn,u) € C x C™ \ {0}
such that

Dh(Kn)u =0, (5.32)

where
Dh(Kn) [k, €] := (¢¢, D(Kn)i)r- (5.33)
For an appropriate integral representation of the matriies\[5.3B) sed (5.15).

Again, the convergence and error analysis of Chdgdter 4 caappked, sinceZ*D is a
holomorphic Fredholm operator function afg'(I")} is a sequence of conforming trial
spaces with

lim inf [v—v —0 forallve HY2(r).

hHOVhES%(r)H h||H1/2(r) ( )
Hence, convergence results and error estimates can bedémm Theoreni 4.2.3, The-
orem[4.36 and TheoremM4.B.7. Also the stability result cddremZ. 4R concerning the
algebraic multiplicities remains valid. Here we want toeggonly an error estimate for the
discretizationgKp, Up).

Theorem 5.3.5.Letk € g(Z*D) be real and leto (Z*D) NUs(K) = {K }.

Let k=dimG(Z*D, k) and let{ws,...,w} be an orthonormal basis of the generalized
eigenspace @*D, k). Assume thafw;}K ; C How(T") for some s= [1/2,2], then there
exists a lj > 0 such that for all h< hg

k
IK — Kn| < c(h?S~1)Y/#(Z'Dk) Z\HWi ||HSW(F) for all kp € 0(Dp) NUg(K). (5.34)
i=

Further, for any @ € kerDy(kp) with ||Uh||H1/2(r) =1

k
inf - <c||k- hs=1/2 s 5.35
LA U= Unlljazr) < <|K Kn| + i;HWI [IHs,,(r) (5.35)

is satisfied.
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Proof. Using that[Z*D(k)]* = Z*D(—«k) and using the approximation properfy (3.18)
of SL(I"), the error estimate§ (2134) arld (3.35) follow from TheofeBi@and Theorem
B3 O

If 2(Z*D,k) =1 and keZ*D(k) C ng(r), then we obtain the error estimates
L
k=l <o 5 [
i=
3/2 <
e 10 Uy < € 1=l +°2 5 [l )

where{ws, ..., w} is some orthonormal basis of KD (k) in HY/?(I").
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6 NUMERICAL METHODS FOR ALGEBRAIC NONLINEAR
EIGENVALUE PROBLEMS

The Galerkin discretization of the boundary integral folations of the Laplacian eigen-
value problemd(5.19) anf(5130) leads to algebraic noatieggenvalue problems of the
form: Find(A,x) € C x C"\ {0} such that

A(A)x=0 (6.1)

is fulfilled, whereA: C — C™" is a holomorphic matrix function. The subject of alge-
braic nonlinear eigenvalue problems is an active and op&hifighe numerical analysis.
There is a lot of literature on numerical methods, see thiewework |[63] and references
therein. However, black-box solvers as for linear eigamyg@roblems are not available for
general nonlinear eigenvalue problems. Polynomial eigieseproblems are a special case
of nonlinear eigenvalue problems because they can be tramsél into equivalent linear
eigenvalue problems [63]. Therefore they can be treatddrdiitly than general nonlin-
ear eigenvalue problems. In the following we will not dissusethods for polynomial
eigenvalue problems but focus on general nonlinear eige@yaoblems.

The classical and standard approach for problems with natelsize is either to consider

the nonlinear eigenvalue problem as system of nonlineaatesns and use a variant of

Newton’s method, see [56,42]57,5/71,80], or to reducednémear eigenvalue problem to

a sequence of linear eigenvalue problems and use appmloni@ar eigenvalue solvers, see
[73/96194]. The first class of methods can be characterigetliét-and-invert methods and

they are generalizations of methods for linear eigenvatablpms as the inverse iteration
or the Rayleigh quotient iteration.

In many applications the size of the nonlinear eigenvalublems gets very large and
therefore projection methods as Arnoldi/Krylov type methd92, 43/ 62, 44] and the
Jacobi-Davidson type methdd [93] 82] have been introduthdse methods project large
problems into appropriate subspaces whereby the size pfrthdems is reduced. For the
solution of the projected problems the above mentionedistaihmethods are used.

The crucial point of all methods for nonlinear eigenvaluehiat they converge in gen-
eral only locally. Appropriate approximations of the eigans are needed to guarantee
convergence of the methods. In particular there is in génerguarantee to find all eigen-
values in a specified domain. There are some techniques stegges deflatior |38, 62]
or the use of nonlinear Rayleigh functionélsl[9€, 94] to cwene this problem. However,

87
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these techniques works only either for polynomial problem&r problems with certain
structure.

The convergence and error analysis of methods for nonlieggnvalue problems is in
almost all cases restricted to simple eigenvalues. Thisislyndue to the fact that a stan-
dard theory for nonlinear eigenvalue problems has beenstabkshed so far. Although
most algebraic nonlinear eigenvalue problems which arsidered in the literature would
fit into the concept of holomorphic Fredholm operator fumies, this concept is not used
for the analysis of the standard algorithms.

In the following we will first review the standard Newton typethods for nonlinear eigen-
value problems and then present the little—known Kummeegghaod [57,58]. For Kum-

mer’'s method we will give a convergence analysis for simpié multiple eigenvalues.
Methods which reduce the nonlinear eigenvalue problemssieqaence of linear eigen-
value problems are not considered here nor projection ndetho

6.1 Standard Newton type methods

6.1.1 Inverse iteration

One of the classical approaches for the solution of the nealtieigenvalue problem{6.1)
is to apply Newton’s method to the extended system

F(x,A) = ( yﬁ()_?_))—‘l) - (g) : (6.2)

where the second equation is a normalization constraitit sdtne chosen vectere C".
The Newton iteration is given by

F' (5. 4) (}-ﬁﬁ:’-}i) = —F (%), (6.3)

where

= (M) A08)

The derivativeF’ exists, since the matrix functiolis holomorphic. The systerfi (6.3) can
be written as

A (%11 = %) + (Aisa = A)A (A)x = —A(A)x;,
V(%1 —%) = V% +1
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which is equivalent to
AA)Xi 1= (Ai = Aip ) A (i),
VX =1

Letuy,,; € C" be a solution of

(6.4)

A1 = A ()X,

then, by using thak;, ; = (A — Aiy+1)ui1, we get from the second equation i {6.4) that
Wi —Ais1)u 4 = 1 and finally

U

VUi

The described method as summarized in Algorillhm 1 is a neatimersion of the inverse
iteration and was introduced in_[88] for nonlinear eigemegbroblems.

Aip1=Ai—

and X1 =

H
ViUig

Algorithm 1 Inverse iteration

1: Input: Ag,Xo,V such thatx, = 1

: fori=0,1,2,... until convergencedo
solveA(A)u;, 1 = A'(Ai)x; for ui, 4
Aipr=Ai— (V%) / (VUi q)

Xi1= 9i+1/\_’H9i+1
end for

o g R wn

The inverse iteration has the following convergence priyper

Theorem 6.1.1.LetA, be an algebraically simple eigenvalue0f{6.1) andxcorrespond-
ing eigenvector withWx, = 1. Then the inverse iteration converges locally quadratjcal

to (X,,Ax).

Proof. Since the inverse iteration is Newton’s method applied ® ribnlinear system
®32),F(x,A) =0, it suffices to show thdt’ is Lipschitz continuous in a neighborhood of
(X,,As) and that~’(x,, A, ) is a nonsingular matrix, see [20, Theorem 2.1]. The fundfibn
is locally Lipschitz continuous because the matrix funct#fois holomorphic. It remains
to show tha¥’(x,, A,) is a nonsingular matrix. Assume that

() (UY)) e

for someze C" andu € C. SinceA, is an algebraically simple eigenvalue, it follows by
Definition[32.9 that kef(A,) = spar{x, } and that the maximal length of a Jordan chain
corresponding tad, is one, i.e., there exists reoe C" such that
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Consequently (A,)x, ¢ ImA(A,). Together with the first equation &I {®.5) it follows that
0=A(A)z= pA (X)X,

andu = 0. SinceA, is a geometrically simple eigenvalue, there exists saraeC such that

z= ax,. Using the second equation &f{6.5) and the normalizatimaitonv"'x, = 1, we

get 0=Vvz=avlx, = a. Hence,(z u) = (0,0) and thereforé’(x,,A,) is nonsingular.
0]

In the case of linear eigenvalue proble®& ) = B— Al, Algorithm [ is the classical
inverse iteration, if no updates fdr are computed, that is if step 4 is neglectedA Ifs
updated as in step 4, then Algoritiiin 1 is a variant of Raylejgbtient iteration for linear
problems with the two-sided Rayleigh quotient

The classical Rayleigh quotient iteration for linear pesbk is obtained, if for the update

H
Qi+1B£'i+1
H
Uiialipa

in step 4 the one-sided Rayleigh quotidnt; = is used.

6.1.2 Rayleigh functional iterations

As for linear eigenvalue problems also for nonlinear eigdune problems several different
updates foir in Algorithm[ are suggested in order to improve the convecgeoehavior.
These updates use in addition approximations of the le&insigctor and different types
of nonlinear Rayleigh functionals, which are generalmasi of the Rayleigh quotient for
linear problems. A vectoy, € C"\ {0} is called a left eigenvector of the eigenvalueof

the eigenvalue probleri(6.1) if it is a solution of the adiceiquatiom()\*)”y* =0.

In this section we present the two-sided Rayleigh funclideeation [71], [80, Section 4.2]
and the complex symmetric Rayleigh functional iteratio@, [8hapter 7]. Both methods
have a higher convergence rate than the inverse iteratmra Eomprehensive discussion,
an error analysis, and comparison of different methodsgRayleigh functionals we refer
to [80Q].

Two-sided Rayleigh functional iteration

The two-sided Rayleigh functiongl: C" x C" > | — C for a holomorphic matrix function
A:C — C™"is defined implicitly by

WHA(p(u,w))u=0, (6.6)
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see [8D, p. 38]. I\, is an algebraically simple eigenvalue dfandx, andy_ are corre-
sponding right and left eigenvectors, respectively, tienfinctionalp is IocaIIy uniquely
defined [80, Theorem 3.5]. For a given approximatiayw) for the eigenvectorsx,,y )
the two-sided Rayleigh functiongl(u, w) provides an appropriate approximation for the
eigenvalue ang is stationary atx,, y*) [80, Chapter 3]. The use of the two-sided Rayleigh
functional as updates for the eigenvalues in the inversatita requires approximations
of the left eigenvector. Therefore an additional iterationthe approximation of the left
eigenvector has to be implemented, which leads, combin#dthe use of the Rayleigh
functional, to Algorithn{R.

Algorithm 2 Two-sided Rayleigh functional iteration

1: Input: )\o,>_<0,¥0 such thatg'xo = Yy, = 1
2: fori=0,1,2,... until convergencedo

3: oIveA()\ ) Uiy g = =A(Aj)x foru, ¢

a: solveA(A)" w4 = A(A)y. for w4
5 Xiy1=Uiy1/|[Yiqll

6 ¥, = Wiy 1/ [[Wiyql
7

8

: solveyH A(Ai+1)Xi1 = 0 for Aiyq
: end for

The costs for the two-sided Rayleigh functional iteratioa higher compared with the
inverse iteration, since in addition a second linear systatha nonlinear equation have
to be solved in every iteration step. If the linear systemtaps3 is solved by factoriz-
ing the matrixA(4;), then the same factorization can be used for the conjugatspse
A(A)H for solving the second linear system in step 4. Howeverglamgpblems require
in general a preconditioned iterative solver. In this cadeast only one preconditioner
is needed to solve both linear systems. If the problem is lterm) then the right and the
left eigenvector coincide and only one linear system hagtedived. The computation of
the Rayleigh functional in stdp 7 requires the solution obalimear equation and it can be
tricky. In general some iterative solver has to be used. Disésdor it can be expensive if
the computation of the corresponding matrix is complex.

Local cubic convergence of the two-sided Rayleigh funcalateration for algebraically
simple eigenvalues is shown in[80, Theorem 4.13]. To oumkedge no analysis has be
done for multiple eigenvalues.

Complex symmetric Rayleigh functional iteration

The Galerkin discretization of the boundary integral folations of the Laplacian eigen-
value problemd(5.19) and{5]30) leads to complex symmeigienvalue problem§{5.121)
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and [5.3P). For such eigenvalue problems a one—sided Rayienctional can be used for
the updates of the eigenvalues in the inverse iteratiand@&apter 7]. The equivalence

AAX =0 &  x/A(A)=0'
motivates to define the so—called complex symmetric Ralylkigctionalps by
u"A(ps(u))u=0.

For complex symmetric eigenvalue problems the use of thdelRgyy functional ps as
update for the eigenvalues in the inverse iteration yielttscal cubic convergencé [BO,
Theorem 7.7].

6.1.3 Residual inverse iteration

A simplified version of the inverse iteration is the so—adltesidual inverse iteration,
which was introduced by Neumai€r [67]. The idea can be desdras follows: The
equation[(614) of the Newton iteration can be written as

X — X1 = %+ (Airs — A)A) A ()
= A) AN + (g1 = A)A (A)] %
= A T AQ)% + O = Aif).

Neglecting the second order term gives
Xi11=% —AQA) A1)

Neumaier showed that X in A(/\i)*l is replaced by a fixed shitt, then the iteration still
converges![67]. Howeveh;, 1 has to be updated in each iteration step by the solution of
the nonlinear equation

VAIA(0) TA(Ai41)x = 0.

Using this update for the approximation of the eigenvaluekly the residual inverse iter-
ation, which is summarized in Algorithim 3.

The advantage of the residual inverse iteration comparddtive inverse iteration is that
the system matrix which has to be inverted remains the samiegdihe iteration. More-
over, the computation of the derivati¥é(A;) is no more longer needed. If the problem
size is small a factorization @&(o) can be computed in advance which allows an efficient
realization ofA(g) ! in step 3 and step 4 of Algorithf 3. For large problems anfitega
solver is needed twice in one iteration step which is a digathge compared with the in-
verse iteration where only once in one iteration step aatite¥ solver is needed. Besides,
for the residual inverse iteration a nonlinear equationtbdse solved for the updates of
A.
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Algorithm 3 Residual inverse iteration

1: Input: 0,%,,Vv such thawx, =1

2: fori=0,1,2,... until convergencedo
3:  solvevl'A(g) tA(Ai11)x = 0 for A1
4 =AM

5. solveA(o)s =, for s
6: Up1=X—§ y

70 X =U 1 /V'U, g

8: end for

A convergence result for the residual inverse iterationvsrmgfor the case if\, is a simple
zero of deA(A,) = 0, seel[6)7]. Ifx, is a corresponding eigenvector g with VH'x, = 1,
then the residual inverse iteration converges fot@llx,) sufficiently close tqA., x) with
the error estimates

—X
7—*”:(’)(|O‘—)\*|> and |)\|+1—)\*|:O(HX|_)—(*H)
”XI_)_(*”

In [80, Section 4.2] it is shown that a quadratic convergesrder for the residual inverse
iteration is obtained if the two-sided Rayleigh functisa used for the updates df

6.2 Kummer's method

In this section we want to derive Kummer’s method for algebh@lomorphic eigenvalue
problems, where we follow the work of Langér [58]. Kummeraduced in[[5F] an iter-
ative method for polynomial eigenvalue problems in aripjtdimensional Hilbert spaces.
In his approach he constructed a scalar holomorphic fumatioich has the eigenvalues
as zeros. Langer showed [n [58] that this approach can bededieto general holomor-
phic eigenvalue problems. Langer required the assumptatrtthe spectrum of the holo-
morphic operator function consists only of isolated eigdmes which are poles of the
corresponding resolvent. This assumption is always fetfifior eigenvalue problems for
holomorphic Fredholm operator functions, provided thatsolvent set of the operator
function is not empty, see Theordm312.2 and Thedrem 3.2nlgarticular, we have the
following representation of the resolvent of a holomorghatrix function.

Lemma 6.2.1.Let A be an open and connected subseCoénd let A: A — C"™" be a
holomorphic matrix function with a non-empty resolvent@gh). Let A, € o(A), then
there exists & > Osuch thatforallk € {u € A:|u—A.| < dandu # A.} the resolvent
admits the representation
-1
AA) =5 (A =A)B+F(A), 6.7)
k=—r
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where g € C™" for k= —r,...,—1 with B_; # 0, F is a holomorphic matrix function,
and r= (A, A,) is the maximal length of a Jordan chain of A corresponding.to

Proof. SinceA(A) € £(C",C") is obviously a Fredholm operator for alle A, the repre-
sentation of the resolved(A )1 follows immediately from Theorei 3.2114. O

Let us in the following assume that: A — C"™" is a holomorphic matrix function with
p(A) #0. If A, is an eigenvalue oA, then, by Lemm&®.2.1, we have the representation
-1 00
AA) =S A=A)Be+ S (A —A)Bx forA €U\ {A.}, (6.8)
k=—r k=0

with B_, # 0. Therefore there exist vectorsz € C" such that
(2B_rW)2 £ 0. (6.9)
Define the functiorp : p(A) — C by
$(A) = (ZAR) W), (6.10)
theng is holomorphic orJs(A.) \ {A.}, because& admits the representation
6N = (AN 2= 3 (A-A B2+ 3 (A -AEBw:

Since|¢(A)| — o asA — Ao, there exist @ > 0 with & < d and a constar > 0 such
that
K<|p(A)| forallA € Ug (A)\{A}. (6.11)

Hence, we may define the functign: Us (A.) — C by

1

= forA £A,,

w<A>:{¢<A> oAz 6.12)
0 forA = A..

The functiony is holomorphic orJ; (A.) and allows the Taylor series expansion

(A -A)

r (Z? B*r lV_V)Z r
(zBw)z (A=2) H@B—t\,_\,)g +O((A=A)*2).

YA)=

We see thad. is a zero ofy with multiplicity r. From

W) =22 forallA € Ug (A)\ A}
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it follows thaty/’(A) = 0inUs, (A.) \ {A.} ifand only if ¢'(A) = 0. Since|¢’(A)| — ~ as
A — A, there exists @& > 0 such that

9'(A)] >0 forallA €Ug (A)\ {A.}.

Hence,A, is the only zero of in Us,(A,) and its multiplicity is(r — 1). Thus, we may
define the functiom : Us,(A.) — C by

wir)
n@ﬁ{WM)fmA*“’ (6.13)
0 forA = A,,

which is holomorphic and admits the Taylor series expansion

(z,B_r+1W)2

nA) = %(A EERANE -

A =22+ 0((A =A)3). (6.14)

Further, we have
nA)=0 and n'(A)==. (6.15)

Thus, we have described the eigenvaluas zero of the functiongg andn, which is the
essential idea of Kummer’s approach. The use of Newton'ioteto determine the zero
of the functiony yields finally Kummer’'s method [57,58]. In the following thieem we
show its convergence property.

Theorem 6.2.2( [58, Satz 3]) Let s€ N, where s<r = (A /A,). There exists a B 0
with R< & such that the iteration

Y(A) -
Air1=Ai—sn(A)=A—s fori=0,1,2,... 6.16
i+1 [ Sr’( ) | LAU/()‘I) ( )
converges for anyp € Ur(A,) to A,. If s=r, then the convergence rate is quadratic and

we have
Aiy1— A, R (ZB_r11W)2
(Ai—=A)2  r(zBw)

If s < r, then the convergence rate is linear and we have

asi— o, (6.17)

Air1 — As r—s
—

asi— oo, (6.18)

Proof. We use the Banach fixed point theorem for the function

f(A) = A —sn(A)
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to prove the convergence of the iterati@n (.16). Sihds holomorphic orJ;,(A.) and
since

f’()\*)zl—sn’()\*)zl—s% <1 (6.19)
there exists & > 0, where we choosk < &, such that
[f'(A)| <1 forallA € Ur(A,).

Hence, by the Banach fixed point theorem the iterafion16&a6yerges ta. for all initial
valuesig € UR()\*).

Using the Taylor series expansidn (8.14)piéve obtain from formula{6.16)
Aix1— A=A —sn(Ai) — A,

1 2(Z,B_r11W)2

= A=A =s|=(Ai-A) + (i - A r2@B_rv_wz+c9((/\—/\*>3) , (6.20)

which shows the convergence rates (6.17) and16.18). O

In practical computations(A, A,) is not known a priori and therefoge= 1 is chosen for
the iteration [(6.16), which gives the classical Newton'shmod for y(A) = 0. Then, a
quadratic convergence rate is obtaineds(A,A,) = 1.

Let us now consider the implementation of Kummer's methodcdRing the definition

©.12) ofy,

W)= 5 = ah) Ty A € VBV
we get . .
;llll(())\\)):_ d(z,A(M V_Z)Z _ (z,dA(M V_Z)Z . 6.21)
AN W, (2 AN W),
Using the representatiof (8.2) for the derivatived¢f) —, we can write
di/\A(/\ )= —AN)TIANAN) T
and obtain
YA _ (ZAQR) 'w) (ZAA) 'w),

WA) AR TIARAR) W) ([AX) T Z A (A)AR) ),

Letx € C"andy, € C" denote the solutions of

AQxi=w and ANy =z (6.22)
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then we can write Kummer’s iteration {6116) as

(Z? )_(i)z

Aig=Aj— —=22
Ty A (A)%)2

where we have sat=1.

Kummer's method also approximates a right and a left eigetovéoy x; andy,, respec-
tively. In the following theorem we give a convergence refar the right eigenvector.

Theorem 6.2.3( [68, Satz 4]) Let x be defined by[{6.22), then there existg & IN such
that

%
1Xil212
for alli > ig, where c> Ois a constant which is independent of i.

<chi—A (6.23)

in X—
xekerA(Ay)

Proof. Letx; be the solution of
A(A)X = W.

Then, using the representati@n{6.8)XA ) ~1, we can write

B_rw C(A)w
DA AT

% =AA) tw= Z )*Buw = (6.24)

where

C(A) = i(/\ —A)Br it

k=

The operator functio : Us(A.) — C is holomorphic, sincez (A — A,)¥By is holomor-
K=0
phic onUs(A,) by assumptior[{€]8). For the normxfwe get

12 v ey Borw]|3 (Brw,CA)W)2  [[IC(A)wlI3
1B-rwi|3
A —A*)ZrX(Ai)’

(6.25)

with
2RE(A —A) (B-rw, C(A )w)2] N A —A*IZHC()\)v_\IHg

XA):=1+
||B—rV_V||% ||B—rV_V||%

The functiony is well defined, sincdB_,w||3 # 0 by assumptiori{6.9). Note thatis real
valued, continuous ods(A.), and

X(A) =1
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Using [62#) and{6.25) we can write
X B_rw C(Ai)w ) A= A" 1
B * Ai) e 6.26
||)_(|||2 <()\i—)\*)r ()\i_)\*)l’—l ||B_rV_V||2X( I) ( )

The vectorB_;w is an eigenvector of the operator functidrcorresponding ta., since
from

(A =AW= (A — 1) ANAR)

—AQB W S (A=A )ACS (A —A)KB
k=1

for A € Us(Ay) \ {A.}, it follows that

0= /\Iin} (A —A)'w=A(A,)B_ w.

Therefore also 8 DAL
o . —rW i — A ~1/2
= Aj € kerA(A,).
SRRy W - P )

Thus, we get from{6.26)

o X

- Xl

_ IC(A)wll2
o IB-rw|2

o X
X. —
o Iz

inf XA Y2 A=A (6.27)

xekerA(Ay)

=
SinceC(Aj) — B_;;1 andx(Aj) — 1 asi — o, there exists & € N such that
ICAWI2 < [B_raw|2+1  and  x(A) Y2<2

foralli > ig. Hence, we get the estimate

ICOMIz )1 1j2 B rawla+l
[B—rwl|2 [B—rwl|2
which proves with[[6.27) the estimafe(8.23). O

Remark 6.2.4. Kummer’s method relies essentially on the representatidheoresolvent
as given in Theorem3.Z]14. Therefore the whole analysibeatone literally for eigen-
value problems for holomorphic Fredholm operator functan arbitrary dimensional
Hilbert spaces, provided that the corresponding resolsenis not empty.

The costs of Kummer’s method as presented in Algorithm 4nlibetween the costs of
the inverse iteration and the costs of the two-sided Ralyl&igctional iteration. If the
problem is small and a factorization Af A;) is used for the solution of the linear system
in step 3 of Algorithni#, then this factorization can be usgdia for the linear system in
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Algorithm 4 Kummer’'s method

1: Input: Ag,w,z

2: fori=0,1,2,... until convergencedo
3:  solveA(Aj)x = wfor x;

4. solveA(A)"y. = zfory.

5 Aiya=A _(Zv)_(i)Z/(XpA/()‘i))_(i)Z

6: end for

step 4. For large problems an iterative solver is needecktimiélgorithm[4 and the costs
are then significantly higher than for the inverse iteration

For complex symmetric eigenvalue problems the costs of Karfsmmethod can be re-
duced, if input vectorsy andz are chosen such that=w. Then,y. =X is the solution of
the linear equation in step 4 in Algorithh 4, since

AXX =W & AX)'x=w & AX)TX%=W < AQX)KF=w

Hence, for complex symmetric eigenvalue problems only ameal system has to be
solved, if we chooseg =w. The costs for Kummer’s method are then approximately the
same as for the inverse iteration and as for the complex synmiRayleigh functional
iteration.
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7 NUMERICAL EXPERIMENTS

In this chapter we present some numerical results of thedmyrelement approximation
of the Dirichlet Laplacian eigenvalue problel{2.6). In #idd, we compare these results
with the results of a finite element approximation.

As domainQ for the eigenvalue problem we choose the cGbe (0, %)3. The eigenvalues
are given by
Ak = 411 [KE + K5 + K3]

and the associated eigenfunctions are
Uk(X) = (sin2rkyxy)(Sin 2rkoxo) (Sin 27tkaXs).
It turns out that the first eigenvaluky (= ko = k3 = 1)
M= 1217, K1 =/A1=2V3m
is simple, while the second eigenvalle € 2,k = k3 = 1)
Ay = 2412, Ko = /Ay = 2V6m

is multiple.

Let us first consider the boundary element approximatiomefgigenvalue problem. We
use the boundary integral formulatidn{3.19) for the Gatedkscretization with piecewise
constant basis functions as described in Chapter 5. Thedaoyh = dQ is decomposed
into N uniform plane triangular boundary elements with mesh BizZé/e use the inverse
iteration, the complex symmetric Rayleigh functionalatigon, and Kummer’s method to
solve the algebraic nonlinear eigenvalue problem{5.21),

Vh(Kn)w = 0.

Each method locally converges to the desired eigenvalgesdkess of whether the eigen-
value is simple or multiple. Kummer’s method seems not touygesor concerning the
convergence behavior for multiple eigenvalues than theratiethods. The convergence
region of the three methods differs. The largest convergeagion has the Rayleigh func-
tional iteration followed by the inverse iteration.

The numerical results of the boundary element approximatior the eigenvalug; and
Ko are presented in Table 1 and Table 2. A cubic convergence Oxdeé) can be observed,
which confirms the theoretical error estimatelln (5.29).

101
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h N Kin | [K1—Kiy| | eoc
3| 384|10.8768| 5.986e-03 -
4
5

1536| 10.8821| 6.962e-04| 3.1
6144 | 10.8827| 8.619e-05 3.0

AW N

>
o
o

Table 7.1: BEM approximation af; = 2v/3m~ 10.8828, simple eigenvalue.

N Kgf?”h |K2—K§_‘iMh eoc
384 15.373851] 1.7e-02| -
1536| 15.3887048 1.9e-03| 3.1
6144 | 15.3903716(Q 2.3e-04| 3.1
N Koo | [K2— K30 | eoc
384 15.37364 1.7e-02| -
1536| 15.388706(Q 1.9e-03| 3.1
6144 | 15.39037171 2.3e-04| 3.1
N Kg_‘g”h |K2—K5§:Vr'] eoc
384 15.373876 1.7e-02| -
1536| 15.3887071 1.9e-03| 3.1
6144 | 15.3903718(Q 2.3e-04| 3.1

NN

N

N
a b WIS 0 WIS O WIS

A OWONCIPA WONCN)S WN T
NN DN

N

Table 7.2: BEM approximation af, = 21/611~ 15.3906, multiple eigenvalue.

The number of iterations which have to be performed to readheaance for the residual
norm of 10710 are presented in Table 3. Note that for the Rayleigh funetidgaration in
every iteration step the Rayleigh functional has to be datezd, which we have approxi-
mated by using three Newton steps.

K1 | K2, | K2, | K24
Inverse iteration 10| 11| 12| 10

Rayleigh functional iteration 3| 4| 4| 3
Kummer's method 11| 11| 12| 11

Table 7.3: Number of iterations for BEM approximations, 1843

For the finite element approximation we have used lineaaltetral elements with respect
to an uniform discretization of2 with mesh sizeh. The FEM matrices are generated
by Netgen/NGSolve [19]. As eigenvalue solver we use LOBPE#] ith a two-level
preconditioner. The numerical results of the finite elent@stretization to approximate



103

the first and second eigenvalue are listed in Tables 4 and &teidh is the number of

interior nodes which is equal to the number of degrees oflfsee

L| h M Kim | [K1— KW

324 3431 11.3693 4.9e-01
4|25 3375| 11.0038 1.2e-01
5|2%| 29791| 10.9132 3.0e-02
6| 27| 250047| 10.8903 7.6e-03

Table 7.4: FEM approximation &f; = 21/31m~ 10.8828, simple eigenvalue.

L| b M || Koo | (K2 =Kol | Koot | (K2 =Kol | Kogim | (K2 — K5l
3|27%| 343 16.27| 8.8e-01]16.28] 8.9e-01| 17.59 2.2
4|275| 3375|1560 2.1e-01| 15.60|  2.4e-01| 16.12|  7.3e-01
5|26 29791|| 15.44|  5.1e-02|| 15.44|  53e-02|| 15.63|  2.4e-01
6|27 250047 15.40|  1.3e-02|| 15.40|  1.4e-02|| 15.47|  8.0e-02

Table 7.5: FEM approximation af, = 21/67~ 15.3906, multiple eigenvalue.

The numerical results reflect the different convergenassrat both methods for the Dirich-

let Laplacian eigenvalue problem. The convergence ordefirfite element approxima-

tions with linear elements is quadratic, see (R.26). Fombdauy element approximations
with piecewise constant elements at the best a cubic coeneegorder can be achieved.
Note that the BEM approximations of the coarsest mesh on leve2 with matrix size

N = 384 are approximately the same as the FEM approximationigeofinest mesh on

level L = 6 with matrix sizeN = 250047.

The disadvantage of the boundary element approach compatiedhe finite element
approach is that in one run of the presented nonlinear egzh@e\algorithms only one
eigenpair is approximated and that sufficiently good ihitedues are needed for the con-
vergence to a desired eigenpair. In particular, there isuamaptee that all eigenvalues in
a specified domain are found. This is in general a crucialtpafimonlinear eigenvalue
algorithms and a main topic of the research in this field[[8069].

The described boundary element discretization leads ipgopulated matrices, therefore
it is restricted to rather small problem size. Moreover,¢bsts of the computation of the
matrix entries are considerably high. Hence, there is a faesb—called fast boundary
element methods in order to reduce the memory requiremedt$a costs of the computa-
tions. Several concepts are available for this purposesaiggh multipole method [29], the
adaptive cross approximatidn[9] 70], panel clustering, [87hierarchical matrice$[36].
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