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Preface

The 20th Computer Vision Winter Workshop (CVWW) was organized by the Institute for Computer Graphics
and Vision at Graz University of Technology. It took place from 9th to 11th of February 2015 in Seggau,
Austria. The Computer Vision Winter Workshop is the annual meeting of several computer vision research
groups located in Graz, Ljubljana, Prague, and Vienna. The basic goal of this workshop is to communicate
new ideas within the groups and to provide conference experience to PhD students. In this spirit the topics
of the workshop were not explicitly limited to a specific topic but include computer vision, image analysis,
pattern recognition, medical imaging, 3D vision, human computer interaction, vision for robotics, as well as
applications.

We received 25 paper submissions from six countries. Each paper was reviewed by three members of our
international program committee. Among these 25 papers, 23 papers were accepted for presentation at the
workshop (19 oral presentations and 4 poster presentations). 9 authors took the opportunity to withdraw their
paper from the proceedings so that no restrictions on submitting the work to other conferences and journals is
imposed.

Besides papers selected in the review process, one invited talk was included in the program. We would like
to express our thanks to Prof. Dr. Davide Scaramuzza (University of Zurich). We extend our thanks to the
members of the program committee for their time and the their mostly detailed and very helpful feedback to the
authors. We would like to extend our sincere thanks to everyone who helped in making CVWW 2015 possible.
We are indebted to Eva-Maria Christina Fuchs and Karin Maier for their help with all organizational matters.
We also want to thank the sponsors of the workshop for their support: Federal Government of Styria and Vexcel
Imaging - a Microsoft company.

Paul Wohlhart, Vincent Lepetit
CVWW 2015 Workshop Chairs

Graz, Austria, February 2015
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20th Computer Vision Winter Workshop
Paul Wohlhart, Vincent Lepetit (eds.)
Seggau, Austria, February 9-11, 2015

Towards Agile Flight of Vision-controlled Micro Flying Robots:
from Frame-based to Event-based Vision

Davide Scaramuzza
University of Zürich, Switzerland

sdavide@ifi.uzh.ch

Abstract. Autonomous quadrotors will soon play a major role in search-and-rescue and remote-
inspection missions, where a fast response is crucial. Quadrotors have the potential to navigate
quickly through unstructured environments, enter and exit buildings through narrow gaps, and fly
through collapsed buildings. However, their speed and maneuverability are still far from those of
birds. Indeed, agile navigation through unknown, indoor environments poses a number of challenges
for robotics research in terms of perception, state estimation, planning, and control. In this talk, I will
give an overview of my research activities on visual navigation of quadrotors, from slow navigation
(using standard frame-based cameras) to agile flight (using event-based cameras).
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20th Computer Vision Winter Workshop
Paul Wohlhart, Vincent Lepetit (eds.)
Seggau, Austria, February 9-11, 2015

Towards Segmentation of Human Teeth Contours
in Dental Radiographs Using Active Shape Models

Michael Sprinzl, Walter G. Kropatsch
Vienna University of Technology

Institute of Computer Graphics and Algorithms
Pattern Recognition and Image Processing Group

Vienna, Austria
msprinzl@prip.tuwien.ac.at, krw@prip.tuwien.ac.at

Robert Sablatnig
Vienna University of Technology

Institute of Computer Aided Automation
Computer Vision Lab

Vienna, Austria
sab@caa.tuwien.ac.at

Georg Langs
Medical University of Vienna

Department of Biomedical Imaging and Image-guided Therapy,
Computational Imaging Research Lab

Vienna, Austria
georg.langs@meduniwien.ac.at

Abstract. We present a framework for segmentation
of human teeth contours in dental radiographs. As
all humans share the same tooth structure, but show
variation in size and morphology, these variations
can be modelled using statistical methods. Therefore
we propose “Active Shape Models” (ASM) as seg-
mentation approach. ASM are flexible, statistically
based models which iteratively move toward struc-
tures in images similar to those on which they were
trained in advance and consist of a set of correspond-
ing landmarks. Each landmark represents a part
of the tooth’s boundary to be located. The training
phase of our proposed framework incorporates noise
removal, manual segmentation of training images,
solving the correspondence problem, aligning the set
of training images, and capturing its statistics. For
image interpretation, the model of the tooth is placed
into the target image. The model parameters are then
iteratively adjusted to move the landmarks closer to
the contour of the tooth to be segmented. Constraints
are applied so that the overall tooth shape to be seg-
mented cannot deform more than the teeth seen in the
corresponding training set. Our proposed framework
is evaluated using a set of intra-oral dental radio-
graphs containing 60 molars and 70 premolars from
24 patients (22 female, 2 male), taken over a period
of ten years.

1. Introduction

The Department of Oral Surgery of the Bernhard
Gottlieb University Clinic for Dentistry (BGUCD)
at the Medical University Vienna (MUV) performs
more than 25001 oral surgery procedures every year.
Priorities of the surgical timetable are autotransplan-
tations (“auto” from the Greek meaning for “self”),
where the tooth to be transplanted is taken from the
same person. In order to determine within the pre-
grafting state, which tooth suits best as a donor, and
to predict the risk that the grafted tooth will get
lost within the post-grafting state, measurements at
the dental radiographs of the relevant tooth are per-
formed. As up to now no software exists, which is
capable of performing these measurements, they are
done manually (see Fig. 1).

Different approaches for segmenting teeth within
dental radiograms have been presented in scientific
literature so far. In [33], Nomir and Abdel-Mottaleb
make use of integral projection. Barboza et al. adopt
in [2, 3] a semi-automatic algorithm based on Image
Foresting Transform (IFT). The IFT (introduced by
Falcão et al. in [17]) defines a robust minimum-cost
path in a graph given a set of seed pixels which are
the roots of a forest in which the region growth starts.

1The number of oral surgery procedures is taken from the
homepage of the Department of Oral Surgery.

11



(a) maxillary molar (b) mandibular molar

Fig. 1: Examples of performing manual measure-
ments on dental radiographs containing molars in the
upper jaw (“Maxilla”) and lower jaw (“Mandible”).

The method recommended by Lin et al. in [25]
consists of four stages: image enhancement using an
adaptive power law transformation, singularity anal-
ysis using local Hölder exponent, tooth recognition
using Otsu’s threshold, connected component anal-
ysis, and tooth delineation using morphological op-
erations. Morphological operations are also used by
Said, Nassar, and Fahmy in [38].

The teeth segmentation pipeline proposed by Fre-
jlichowski and Wanat in [18] consists of three stages:
it starts with a morphological opening in order to re-
duce the noise and to create larger areas of similar
intensity range. Afterwards, entropy filtering is ap-
plied to detect edges of similar areas. Finally, an iter-
ative watershed region growing constrained by ridge
information (see [6] for more details) is done.

Chen and Jain contribute two approaches: In [5]
they use Gaussian mixture models (GMM), while
in [4] generalized fast marching methods (GFMM)
are used. GFMM are special cases of level sets and
were introduced by Sethian in [40].

By looking at the papers published so far, it can
be concluded that the vast majority uses graph-based
and/or morphology-based methods. A drawback that
all these methods have in common is that due to
noise and artefacts within the image, the segmenta-
tion results may not show any similarities to shapes
of human teeth at all. This motivates our usage
of “Active Shape Models” (ASM) as segmentation
approach. ASM, introduced by Cootes and Taylor
in [9], are flexible, statistically based models, which
iteratively move toward structures in images simi-
lar to those on which they were trained in advance.
Their application to medical images is shown e. g.
in [1, 8, 11, 19, 21, 22, 34, 36, 41, 44].

Overview and contribution. Within this paper we
present our proposed teeth segmentation framework
consisting of noise reduction, building ASM for mo-
lars and premolars using corresponding landmarks
on training images, and searching for teeth in tar-
get images. Our framework can be used either with
MATLAB R© or GNU Octave.

Within Sec. 2, the medical basics concerning hu-
man teeth are presented in a compact manner. Sec. 3
explains our proposed teeth segmentation framework
in detail, while the achieved results are presented and
discussed in Sec. 4. In Sec. 5, we sum up the conclu-
sions we achieved and address future enhancements.

2. Anatomy of human teeth

According to the definition given by Marcovitch
in [27], human teeth are mineralised organs im-
planted in the jaw, where their visible parts emerge
from the bone. The human dentition consists of 20
primary teeth and 32 permanent teeth, which can be
classified in incisors, canines, premolars, and molars.
Each human tooth has a crown and a root portion.
The root portion of the human tooth is implanted
into the alveolar jawbone through the periodontal lig-
ament, also called periodontal membrane, and the
gum (“Gingiva”), as Nelson explains in [31]. The
segmentation is done at this transition between the
tooth and its surrounding gingivial tissue, which has
a size of 2-4 mm, according to Newman et al. in [32].

3. Teeth Segmentation Framework

ASM consists of a sequence of landmarks, each
representing corresponding points between similar
shapes. During training, a model for molars and pre-
molars is built using the statistics of landmark points
within a set of training images. For image interpre-
tation, the model of the tooth to be segmented, is
placed into the target tooth image. The tooth model
parameters are then iteratively adjusted to move the
landmarks closer to the contour of the tooth to be seg-
mented. Constraints are applied so that the overall
tooth shape cannot deform more than the teeth seen
in the corresponding training set.

3.1. Training phase

The training phase of our proposed teeth segmen-
tation framework incorporates five steps: removing
the impulsive noise, manual segmentation of training
images, solving the correspondence problem, align-
ing the training images, and capturing its statistics.

12



Impulsive Noise Reduction. The dental radio-
graphs we use for training our proposed teeth seg-
mentation framework are analogue X-ray films that
were scanned by means of a charge-coupled device
(CCD) based X-ray image scanner. This conversion
introduces impulsive noise, which appears as random
patterns of light and dark pixels (“Salt-and-pepper
noise”). Median filtering is used in digital image
processing, because it preserves edges while remov-
ing impulsive noise. Lin states in [26] that his pro-
posed Adaptive Centre Weighted Median (ACWM)
filter “outperforms eight well-accepted alternative
median-based filters in terms of both noise suppres-
sion and detail preservation. It also provides excel-
lent robustness at various percentages of impulsive
noise.” Therefore we use his proposed ACWM filter
in order to reduce the impulsive noise in our training
images.

Segmentation of Training Images. To speed up
the manual segmentation of the training images, we
utilise an interactive graph-based image segmenta-
tion technique called “Intelligent Scissors”, proposed
by Mortensen and Barrett in [29, 30]. The under-
lying mechanism for Intelligent Scissors is the “Live-
Wire” path selection tool. The Live-Wire tool allows
the user to interactively select the optimal boundary
from a source pixel to a target pixel. To minimise
user interaction, seed points are generated automati-
cally along the current active boundary segment via
“boundary cooling”. Boundary cooling occurs, when
a section of the current portion of the boundary has
not changed recently and consequently “freezes”, de-
positing new seed points, while continuing the opti-
mal boundary expansion.

Solving the Correspondence Problem. After the
manual segmentation of the teeth contours, a prob-
lem arises when a set of sample points has to be cho-
sen that is placed exactly at corresponding locations
within the training set. This problem is known as
“correspondence problem”, and is discussed e. g. by
Kotcheff and Taylor in [24] and Davies et al. in [15].
One way of solving the correspondence problem is
using anatomical landmarks. Kotcheff and Taylor
point out in [24] that this manual process is slow, in-
troduces an operator bias and – especially in medi-
cal applications – requires expert knowledge of the
anatomical structures being dealt with. These prob-
lems motivate our search for a method that is capable
of solving the correspondence problem without any
user intervention.

We use the approach proposed by Davies et al.
in [15, 16], which incorporates the Minimum De-
scription Length (MDL) principle (introduced by
Rissanen in [37]), for finding pseudo-landmarks au-
tomatically within our ns manually segmented train-
ing images.

Aligning a Set of Training Images. In order to be
able to compare training shapes containing an equal
number of pseudo-landmarks, it is important that the
shapes are represented in the same coordinate frame,
as Cootes et al. point out in [12]. Therefore, the
shapes have to be aligned with respect to a set of
axes, in order to remove any kind of variation, which
could be attributable to the allowed global transfor-
mation. We solve this problem by minimising a
sum of squared differences between corresponding
pseudo-landmarks on different shapes, which corre-
sponds to a Generalised Procrustes Analysis (GPA)
as proposed by Gower in [20], and define xi as vector
containing nlm pseudo-landmarks of the i-th tooth in
the training set X such that

xi = (xi1, xi2, . . . ,xik, . . . , xinlm
,

yi1, yi2, . . . ,yik, . . . , yinlm
)T .

(1)

When two shapes xi and xj have to be aligned
(xi, xj ∈ X), GPA determines a linear transforma-
tion of the landmarks in xj to best conform to the
landmarks in xi. More formally, GPA aligns two
shapes by choosing a rotation θ, a scale s, and a trans-
lation t = (tx, ty)

T , mapping xj onto xi, so that the
resulting dissimilarity measure

D =

nlm∑

k=1

(([xik
yik

]
−M(s, θ)[xjk]− t

)

( [xik
yik

]
−M(s, θ)[xjk]− t

)T
) (2)

is minimised, where

M(s, θ)

[
xjk
yjk

]
=

(
xjkax − yjkay
xjkay + yjkax

)
, (3)

ax = s cosθ,

ay = s sinθ.
(4)

Computing the derivatives of D shown in Eq. 2 wrt.
tx, ty, ax, ay leads us to A, a set of four linear equa-
tions, such that

A =




B1 −B2 nlm 0
B2 B1 0 nlm
B3 0 B1 B2

0 B3 −B2 B1







tx
ty
ax
ay


 =




C1

C2

C3

C4


 ,

(5)
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where

B1 =

nlm∑

k=1

xik, B2 =

nlm∑

k=1

yik, B3 =

nlm∑

k=1

(x2ik + y2ik),

C1 =

nlm∑

k=1

xjk, C3 =

nlm∑

k=1

(xikxjk + yikyjk),

C2 =

nlm∑

k=1

yjk, C4 =

nlm∑

k=1

(xikyjk − yikxjk).

(6)

As long as the set of four linear equations shown in
Eq. 2 has a non-singular matrix (det(A) 6= 0), it can
be solved using standard matrix methods resulting in
a single unique solution for tx, ty, ax, ay. We use
an iterative approach for aligning all training shapes
within X . It consists of four steps:

1. ∀x ∈ X: align xi with current x̄.

2. re-calculate x̄ using Eq. 7.

3. align current x̄with initial x̄, set current |x̄| = 1.

4. dx̄ = current x̄ − previous x̄.

Our iterative approach is repeated until dx̄ drops un-
der a predefined threshold or the maximum number
of iterations is reached.

Capturing the Training Images Statistics. After
alignment, all training images are centred and share
a common coordinate frame. But one problem re-
mains: each landmark within the training set forms a
cloud of corresponding points in a 2nlm-dimensional
space. To simplify this problem, we apply Principal
Component Analysis (PCA) on the aligned shapes in
order to reduce their dimensionality. Therefore we
calculate the mean shape vector x̄ such that

x̄ =
1

ns

ns∑

i=1

xi (7)

and determine the covariance matrix S such that

S =
1

ns

ns∑

i=1

(xi − x̄)(xi − x̄)T . (8)

Now PCA can be applied on S, resulting in pk
(k = 1, 2, . . . , 2nlm) eigenvectors of S such that

Spk = λkpk, (9)

where λk is the kth corresponding eigenvalue of S
(sorted so that λk ≥ λk+1).

In order to reduce the dimensionality of the data,
the number of eigenvectors (and their corresponding
eigenvalues) has to be reduced. Using the fact ad-
dressed by Johnson and Wichern in [23] that the vari-
ance explained by each eigenvector is equal to the
corresponding eigenvalue, the total variance σ2 is the
sum of all eigenvalues, λT such that

σ2 =

2nlm∑

k=1

λk. (10)

We choose t, the number of eigenvalues to retain,
such that

t∑

i=1

λi ≥ fvσ2, (11)

where fv defines the proportion of the total vari-
ance of the training shapes that shall be explained
(e. g. 95.45%, which is equivalent to ±2σ standard
deviation of σ2).

When new shapes are created using the statistics
captured above, it is worth noticing that precautions
have to be taken in order to ensure that they are sim-
ilar to the shapes already present within the training
data. Cootes et al. name this in [12] as “creating new
allowable shapes” or “producing plausible shapes”
that lie within the Allowable Shape Domain (ASD)
of the training data. Any shape within the ASD can
be approximated by taking x̄ and adding a linear
combination of the first t eigenvectors multiplied by
a vector of weights such that

xnew ≈ x̄+ Ptbt, (12)

where Pt = (p1; p2; . . . ; pt) is a matrix of the
first t eigenvectors, and bt = (b1, b2, . . . , bt)

T a t-
dimensional vector of weights.

3.2. Image Interpretation

Having generated ASM for molars and premolars,
we can use them to segment examples of teeth within
dental radiographs. This involves - after removing
the impulsive noise from the target image, which
is done using our proposed ACWM filter - finding
shape, scale, and pose parameters which cause the
tooth model to coincide with the structures of inter-
est in the dental radiograph containing the tooth to
be segmented. According to the definition given by
Cootes et al. in [12], an instance of the tooth model
is given by

X = M(s, θ)[x] +Xc, (13)
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Fig. 2: Part of a model boundary created by connect-
ing the model points (landmarks) approximating to
the edge of an image object (Fig. courtesy of [12]).

where M(s, θ)[x] is a scaling by s and a ro-
tation by θ as defined in Eq. 3, and Xc incorpo-
rates the position of the centre of the correspond-
ing tooth model in the image frame such that Xc =
(xc1, xc2, . . . , xcns , yc1, yc2, . . . , ycns)

T . We use an
iterative approach for refining the shape, scale, and
pose parameters in order to give a better match to the
tooth to be segmented. It consists of three steps:

1. Examine a region around each landmark to cal-
culate the displacements in order to move the
landmarks closer to the boundary of the tooth.

2. Use these proposed displacements to calculate
adjustments to the shape, scale, and pose para-
meters of the tooth model.

3. Update the tooth model parameters. By enforc-
ing limits on the shape parameters, global shape
constraints can be applied ensuring that the cur-
rent instance of the tooth model cannot deform
more than the teeth seen in the corresponding
training set.

Our iterative approach is repeated until either the
Sum of Squared Errors (SSE) between the current
and the previous instance of the model drops under
a predefined threshold or the maximum number of
iterations is reached.

Move landmarks closer to the boundary. To start
the segmentation process, the user has to place an es-
timation of the mean shape vector x̄ within the den-
tal radiograph containing the tooth to be segmented,
which leads to an initial situation similar to the one
shown in Fig. 2. As the pseudo-landmarks within an
ASM represent the boundaries of image objects, they
have to be moved towards the contour of the tooth to
be segmented in order to give a better match within

Fig. 3: Suggested movement dX of a model point
along a normal to the boundary proportional to the

edge strength (Fig. courtesy of [12]).

the next iteration. In the examples Cootes et al. men-
tion in [12], they use an adjustment perpendicular
to the model boundary toward the strongest image
edge, with a magnitude proportional to the strength
of the edge, as illustrated in Fig. 3. This approach re-
sults in a vector of adjustments, dX , such that dX =
(dX1, dX2, . . . , dXnlm

, dY1, dY2, . . . , dYnlm
)T .

Calculate adjustments of model parameters. Ad-
justing the scale and pose parameters of the tooth
model means moving the landmarks from their cur-
rent locations X to the suggested better locations
X+dX . If we assume thatX , the current instance of
the tooth model, is centred at Xc with orientation θ
and scale s, a set of residual adjustments dx in the lo-
cal tooth model coordinate frame can be achieved by
finding a translation dXc, a rotation dθ, and a scaling
factor 1 + ds, which best map the landmarks from X
to X + dX using Eq. 2-6 such that

X + dX = M(s(1 + ds), (θ + dθ))[x+ dx]

+ (Xc + dXc).
(14)

Inserting Eq. 13 in Eq. 14, eliminating the term
Xc, and moving the term dXc to the left results in

M(s, θ)[x] + dX − dXc =

M(s(1 + ds), (θ + dθ))[x+ dx],
(15)

and since M−1(s, θ)[. . .] = M(s−1,−θ)[. . .] holds,
we obtain

dx = M((s(1 + ds))−1,−(θ + dθ))[y]− x, (16)

where y = M(s, θ)[x] + dX − dXc. It can be con-
cluded that these adjustments to pose and scale pa-
rameters will never be optimal, leaving residual ad-
justments which can only be satisfied by deforming
the shape parameters.
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However, it has to be ensured that the tooth model
only deforms into shapes consistent with the train-
ing set. In order to apply these shape constraints, we
transform dx into the parameter space of the model
(“tangent space”). This transformation is needed, be-
cause dissimilarities between two shapes are not eu-
clidean within the parameter space and therefore can-
not be isometrically embedded in a euclidean space,
as Wilson et al. point out in [45]. The mapping to
tangent space results in db, the changes in model pa-
rameters required to adjust the landmarks as closely
to dx as allowed. Using Eq. 12, we wish to find db
such that

x+ dx ≈ x̄+ Pt(bt + db). (17)

Substracting Eq. 12 from Eq. 17 gives

dx ≈ Ptdb. (18)

As the columns of Pt are orthonormal, we are able
to calculate P Tt = P−1t using the Moore-Penrose
pseudo-inverse ([28, 35]), and finally achieve

db ≈ P Tt dx. (19)

Update the model parameters. Eq. 16 allows us to
calculate changes and adjustments dXc, dθ, and ds,
to the scale and pose parameters. Applying Eq. 19,
we achieve the updates to the shape parameters db, to
adjust the landmarks as closely to dx as allowed. We
apply these changes and adjustments in an iterative
scheme, such that

Xc = Xc + wtdXc,

θ = θ + wθdθ,

s = s(1 + wsds),

bt = bt +Wbdb,

(20)

where wt, wθ, and ws are scalar weights, whileWb is
a diagonal matrix of weights consisting of one weight
for each mode, where we choose each weight such
that it is proportional to the standard deviation of the
variance of its corresponding shape parameter. This
allows faster adjustments in modes showing larger
shape variations, as Cootes et al. propose in [12].
In order to ensure that the tooth model only deforms
into shapes consistent with its training set, we place
limits on the values of bt such that we consider a new
shape unacceptable, if the Mahalonobis distance Dm

from x̄ is greater than Dmax, such that

Dm =

√√√√
t∑

k=1

(
b2t
λk

)
> Dmax. (21)

In such a case, bt has to be rescaled in order to pro-
duce a plausible shape using

b′t = bt

(
Dmax

Dm

)
. (22)

Finally, after the scale, pose and shape parameters
have been updated, and limits applied where neces-
sary, we move the landmarks from their current loca-
tions to the suggested better locations.

4. Results and Discussion

As the development of the segmentation frame-
work that we propose in Sec. 3 is still ongoing due
to erroneous results we achieve after calculating the
adjustments of the model parameters, we present the
results that we obtained so far. The results are evalu-
ated using a set of intra-oral dental radiographs con-
taining 60 molars and 70 premolars from 24 pa-
tients (22 female, 2 male), taken over a period of
ten years [39], which were scanned using a resolu-
tion of 300 dots per inch (dpi) and stored as JPEG-
compressed images with a bit depth of 8 bits.

(a) (b)

(c) (d)

Fig. 4: Dental radiograph of a premolar. The red
highlighted areas are zoomed in order to show the
amount of impulsive noise present before (a, b) and

after filtering (c, d).

Impulsive Noise Reduction. Fig. 4 shows the re-
sults of applying impulsive noise reduction using
our proposed ACWM filter with five adaptive centre
weights and a median filter incorporating a 5-by-5
neighbourhood on a dental radiograph of a premolar.
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To evaluate the performance of our ACWM filter,
we calculate the mean structural similarity (MSSIM)
between the original and the de-noised dental ra-
diograph. The results we achieve can be found in
Tab. 1. The definition and a detailed explanation of
MSSIM are given by Wang et al. in [43]. We expect
our ACWM filter to perform comparable on molars
and premolars (null hypothesis, H0). Running a two-
tailed Welch t-test with α = 0.05 on our achieved
MSSIM values gives p = 2.287−06. Therefore we
reason that the performance of our proposed ACWM
filter is significantly lower on molars. Whether this is
due to the different anatomical structure or if another
filter parametrisation would have given better results
was not evaluated further.

MSSIM
Min. Median Mean Max.
[1] [1] [1] [1]

Molar 0.5619 0.7247 0.7414 0.9059
Premolar 0.5973 0.8332 0.8181 0.9267

Tab. 1: Comparison of the MSSIM values we achieve
applying our proposed ACWM filtering procedure.

Fig. 5: Screenshot captured during segmentation of a
premolar. The segmentation was started at the tip of
the premolar and moved upwards in counter-clock-
wise direction. The green part of the boundary con-
sists of seed points that are already “frozen”, while
the red part shows the current active boundary seg-

ment proposed by the Live-Wire tool.

Segmentation of Training Images. We use the
implementation of the Live-Wire tool published by
Hamarneh2 et al. in [7] for segmenting the teeth
needed to train our proposed teeth segmentation
framework. Fig. 5 shows a screenshot captured dur-
ing manual segmentation of a premolar.

Solving the Correspondence Problem. We use the
MDL implementation published by Thodberg in [42]
for solving the correspondence problem. We achieve
a sequence of nlm pseudo-landmarks placed at cor-
responding positions within the ns training shapes,
whose arc lengths along the contour are normalised
to run from zero to one and whose centres of origin
are moved to their respective centres of gravity.

nlm, [1] nIter, [1] D, [1]

Molar
64 3 2.265-06

128 3 2.257-06

256 3 2.265-06

Premolar
64 2 2.429-06

128 2 2.545-06

256 2 2.515-06

Tab. 2: Comparison of the alignment iterations and
the dissimilarity measure D we achieve after apply-

ing our proposed shape alignment procedure.

(a) Molars, before alignment (b) Molars, after alignment

(c) Premolars, before alignment (d) Premolars, after alignment

Fig. 6: 60 molar and 70 premolar shapes (with 64
landmarks each) before (left) and after (right) apply-

ing our proposed shape alignment procedure.

2Hamarneh’s Live-Wire implementation for MATLAB R© is
available for download at http://tinyurl.com/osdkr5h/.
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Aligning a Set of Training Images. The alignment
of the images needed for training our proposed teeth
segmentation framework is done using the GPA ap-
proach discussed in Sec. 3. It can be concluded by
looking at the results we achieve in Tab. 2 and Fig. 6
that our approach is not only fast (it does not need
more than three iterations), but also produces accu-
rately aligned shapes (D ≤ 2.75−06).

λk
nlm = 64, nlm = 128, nlm = 256,

[%] [%] [%]
1 57.338 57.375 57.391
2 15.348 15.305 15.281
3 8.666 8.675 8.674
4 6.651 6.677 6.666
5 3.184 3.172 3.174
6 1.727 1.720 1.721
7 1.470 1.469 1.475
8 0.830 0.826 0.825
9 0.683 0.688 0.691∑
λk 95.897 95.907 95.898

(a) Molars

λk
nlm = 64, nlm = 128, nlm = 256,

[%] [%] [%]
1 43.111 43.026 43.082
2 27.793 27.804 27.757
3 8.316 8.373 8.366
4 4.374 4.371 4.363
5 2.978 2.975 2.969
6 2.665 2.674 2.675
7 1.824 1.825 1.830
8 1.683 1.669 1.667
9 1.094 1.090 1.089
10 0.858 0.857 0.858
11 0.626 0.624 0.627
12 0.573 0.578 0.577∑
λk 95.895 95.866 95.861

(b) Premolars

Tab. 3: Percentage of the variance explained by each
λk in order to reach 95.45% of the total variance of
the captured statistics of 60 molar shapes (above) and
70 premolar shapes (below) containing 64, 128, and

256 pseudo-landmarks.

Capturing the Training Images Statistics. In order
to reduce the dimensionality of our training shapes,
we capture the image statistics using PCA, as dis-
cussed in Sec. 3.

It can be concluded by looking at the results in
Tab. 3 that we achieve a huge data compression,
as we just need nine eigenvectors in order to reach
95.45% of the total variance of the captured statis-
tics for molars. For premolars, we need only twelve
eigenvectors (and their corresponding eigenvalues).

5. Conclusion and Future Work

We presented a framework for segmentation of hu-
man teeth contours in dental radiographs using ASM
as segmentation approach. We showed the neces-
sary steps to build an ASM (removing the impul-
sive noise, manual segmentation of training images,
solving the correspondence problem, aligning the set
of training images, and capturing its statistics). Us-
ing our set of dental radiographs containing 60 mo-
lars and 70 premolars, we achieved a MSSIM of
0.7414 for molars and 0.8181 for premolars using
our proposed ACWM filter. We searched for 64, 128,
and 256 corresponding pseudo-landmarks within the
manually segmented training images. Aligning them
using our proposed GPA approach took three itera-
tions at maximum and produced accurately aligned
shapes (D ≤ 2.75−06). Finally, we were able to re-
duce the dimensionality of our training images by ap-
plying PCA, which resulted in nine remaining eigen-
vectors for molars and twelve for premolars, in order
to reach 95.45% of the total variance of the captured
statistics.

For image interpretation, we explained in a the-
oretical manner how to find shape, scale, and pose
parameters, which cause an ASM to coincide with
the structures of interest in the dental radiograph con-
taining the tooth to be segmented, as this part of our
framework is still in development. Finishing this task
has top priority on our list of additions that are fore-
seen in the future. As soon as image interpretation
is working as expected, we plan to incorporate the
statistics of local grey levels in regions around each
pseudo-landmark. More details regarding local grey
levels can be found in [10, 14]. We also consider
to enhance our ASM implementation with a multi-
resolution approach using image pyramids similar to
the one described by Cootes et al. in [13].
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Abstract.
We introduce and evaluate several architectures

for Convolutional Neural Networks to predict the 3D
joint locations of a hand given a depth map. We first
show that a prior on the 3D pose can be easily intro-
duced and significantly improves the accuracy and
reliability of the predictions. We also show how to
use context efficiently to deal with ambiguities be-
tween fingers. These two contributions allow us to
significantly outperform the state-of-the-art on sev-
eral challenging benchmarks, both in terms of accu-
racy and computation times.

1. Introduction

Accurate hand pose estimation is an important re-
quirement for many Human Computer Interaction or
Augmented Reality tasks, and has attracted lots of
attention in the Computer Vision research commu-
nity [10, 11, 14, 15, 17, 22, 23, 29]. Even with 3D
sensors such as structured-light or time-of-flight sen-
sors, it is still very challenging, as the hand has many
degrees of freedom, and exhibits self-similarity and
self-occlusions in images.

Given the current trend in Computer Vision, it
is natural to apply Deep Learning [18] to solve
this task, and a Convolutional Neural Network with
a standard architecture performs remarkably well
when applied to this problem, as a simple experiment
shows. However, the layout of the network has a
strong influence on the accuracy of the output [4, 21]
and in this paper, we aim at identifying the architec-
ture that performs best for this problem.

More specifically, our contribution is two-fold:

• We show that we can learn a prior model of the
hand pose and integrate it seamlessly to the net-
work to improve the accuracy of the predicted

pose. This results in a network with an un-
usual “bottleneck”, i.e. a layer with fewer neu-
rons than the last layer.

• Like previous work [21, 27], we use a refine-
ment stage to improve the location estimates for
each joint independently. Since it is a regres-
sion problem, spatial pooling and subsampling
should be used carefully for this stage. To solve
this problem, we use multiple input regions cen-
tered on the initial estimates of the joints, with
very small pooling regions for the smaller in-
put regions, and larger pooling regions for the
larger input regions. Smaller regions provide
accuracy, larger regions provide contextual in-
formation.

We show that our original contributions allow
us to significantly outperform the state-of-the-art
on several challenging benchmarks [22, 26], both
in terms of accuracy and computation times. Our
method runs at over 5000 fps on a single GPU and
over 500 fps on a CPU, which is one order of magni-
tude faster than the state-of-the-art.

In the remainder of the paper, we first give a short
review of related work in Section 2. We introduce
our contributions in Section 3 and evaluate them in
Section 4.

2. Related Work

Hand pose estimation is an old problem in Com-
puter Vision, with early references from the nineties,
but it is currently very active probably because of the
appearance of depth sensors. A good overview of
earlier work is given in [6]. Here we will discuss
only more recent work, which can be divided into
two main approaches.

The first approach is based on generative, model-
based tracking methods. [15, 17] use a 3D hand
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model and Particle Swarm Optimization to handle
the large number of parameters to estimate. [14]
also considers dynamics simulation of the 3D model.
Several works rely on a tracking-by-synthesis ap-
proach: [5] considers shading and texture, [1] salient
points, and [29] depth images. All these works re-
quire careful initialization in order to guarantee con-
vergence and therefore rely on tracking based on the
last frames’ pose or separate initialization methods—
for example, [17] requires the fingertips to be vis-
ible. Such tracking-based methods have difficulty
handling drastic changes between two frames, which
are common as the hand tends to move fast.

The second type of approach is discriminative, and
aims at directly predicting the locations of the joints
from RGB or RGB-D images. For example, [11] and
[13] rely on multi-layered Random Forests for the
prediction. The former uses invariant depth features,
and the latter uses clustering in hand configuration
space and pixel-wise labelling. However, both do
not predict the actual 3D pose but only classify given
poses based on a dictionary. Motivated by work
for human pose estimation [20], [10] uses Random
Forests to perform a per-pixel classification of depth
images and then a local mode-finding algorithm to
estimate the 2D joint locations. However, this ap-
proach cannot directly infer the locations of hidden
joints, which are much more frequent for hands than
for the human body.

[23] proposed a semi-supervised regression forest,
which first classifies the hands viewpoint, then the
individual joints, to finally predict the 3D joint loca-
tions. However, it relies on a costly pixel-wise classi-
fication, and requires a huge training database due to
viewpoint quantization. The same authors proposed
a regression forest in [22] to directly regress the 3D
locations of the joints, using a hierarchical model of
the hand. However, their hierarchical approach ac-
cumulates errors, causing larger errors for the finger
tips.

Even more recently, [26] uses a Convolutional
Neural Network (CNN) for feature extraction and
generates small “heatmaps” for joint locations from
which they infer the hand pose using inverse kine-
matics. However, their approach predicts only the
2D locations of the joints, and uses a depth map for
the third coordinate, which is problematic for hidden
joints. Furthermore, the accuracy is restricted to the
heatmap resolution, and creating heatmaps is com-
putationally costly as the CNN has to be evaluated at

each pixel location.
The hand pose estimation problem is of course

closely related to the human body pose estimation
problem. To tackle this problem, [20] proposed per-
pixel semantic segmentation and regression forests
to estimate the 3D human body pose from a single
depth image. [9] recently showed it was possible to
do the same from RGB images only, by combined
body part labelling and iterative structured-output re-
gression for 3D joint localization. [27] recently pro-
posed a cascade of CNNs to directly predict and iter-
atively refine the 2D joint locations in RGB images.
Further, [25] used a CNN for part detection and a
simple spatial model, which however, is not effective
for high variations in pose space.

In our work, we build on the success of CNNs and
use them for their demonstrated performance. We
observe, that the structure of the network is very im-
portant. Thus we propose and investigate different
architectures to find the most appropriate one for the
hand pose estimation problem. We propose a net-
work structure that works very well, outperforming
the baselines on two difficult datasets.

3. Hand Pose Estimation with Deep Learning

In this section we present our original contribu-
tions to the hand pose estimation problem. We first
briefly introduce the problem and a simple 2D hand
detector, which we use to get a coarse bounding box
of the hand as input to the CNN-based pose predic-
tors.

Then we describe our general approach which
consists of two stages. For the first stage we con-
sider different architectures that predict the locations
of all joints simultaneously. Optionally, this stage
can predict the pose in a lower-dimensional space,
which is described next. Finally, we detail the sec-
ond stage, which refines the locations of the joints
independently from the predictions made at the first
stage.

3.1. Problem Formulation

We want to estimate the J 3D hand joint locations
J = {ji}Ji=1 with ji = (xi, yi, zi) from a single depth
image. We assume that a training set of depth im-
ages labeled with the 3D joint locations is available.
To simplify the regression task, we first estimate a
coarse 3D bounding box containing the hand using a
simple method similar to [22], by assuming the hand
is the closest object to the camera: We extract from
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the depth map a fixed-size cube centered on the cen-
ter of mass of this object, and resize it to a 128× 128
patch of depth values normalized to [−1, 1]. Points
for which the depth is not available—which may hap-
pen with structured light sensors for example—or are
deeper than the back face of the cube, are assigned a
depth of 1. This normalization is important for the
CNN in order to be invariant to different distances
from the hand to the camera.

3.2. Network Structures for Predicting the Joints’
3D Locations

We first considered two standard CNN architec-
tures. The first one is shown in Fig. 1a, and is a sim-
ple shallow network, which consists of a single con-
volutional layer, a max-pooling layer, and a single
fully-connected hidden layer. The second architec-
ture we consider is shown in Fig. 1b and is a deeper
but still generic network [12, 27], with three convolu-
tional layers followed by max-pooling layers and two
fully-connected hidden layers. All layers use Recti-
fied Linear Unit (ReLU) [12] activation functions.

Additionally, we evaluated a multi-scale ap-
proach, as done for example in [7, 19, 25]. The moti-
vation for this approach is that using multiple scales
may help capturing contextual information. It uses
several downscaled versions of the input image as in-
put to the network, as shown in Fig. 1c.

Our results will show that, unsurprisingly, the
multi-scale approach performs better than the deep
architecture, which performs better than the shallow
one. However, our contributions, described in the
next two sections, bring significantly more improve-
ment.

3.3. Enforcing a Prior on the 3D Pose

So far we only considered predicting the 3D posi-
tions of the joints directly. However, given the phys-
ical constraints over the hand, there are strong cor-
relation between the different 3D joint locations, and
previous work [28] has shown that a low dimensional
embedding is sufficient to parameterize the hand’s
3D pose. Instead of directly predicting the 3D joint
locations, we can therefore predict the parameters
of the pose in a lower dimensional space. As this
enforces constraints of the hand pose, it can be ex-
pected that it improves the reliability of the predic-
tions, which will be confirmed by our experiments.

As shown in Fig. 1d, we implement the pose prior
into the network structure by introducing a “bottle-
neck” in the last layer. This bottleneck is a layer

with less neurons than necessary for the full pose rep-
resentation, i.e. � 3 · J . It forces the network to
learn a low dimensional representation of the train-
ing data, that implements the physical constraints of
the hand. Similar to [28], we rely on a linear embed-
ding. The embedding is enforced by the bottleneck
layer and the reconstruction from the embedding to
pose space is integrated as a separate hidden layer
added on top of the bottleneck layer. The weights of
the reconstruction layer are set to compute the back-
projection into the 3 ·J-dimensional joint space. The
resulting network therefore directly computes the full
pose. We initialize the reconstruction weights with
the major components from a Principal Component
Analysis (PCA) of the hand pose data and then train
the full network using back-propagation. Using this
approach we train the networks described in the pre-
vious section.

The embedding can be as small as 8 dimensions
for a 42-dimensional pose vector to fully represent
the 3D pose as we show in the experiments.

3.4. Refining the Joint Location Estimates

The previous architectures provide estimates for
the locations of all the joints simultaneously. As done
in [21, 27], these estimates can then be refined inde-
pendently.

Spatial context is important for this refinement
step to avoid confusion between the different fingers.
The best performing architecture we experimented
with is shown in Fig. 2a. We will refer to this archi-
tecture as ORRef, for Refinement with Overlapping
Regions. It uses as input several patches of different
sizes but all centered on the joint location predicted
by the first stage. No pooling is applied to the small-
est patch, and the size of the pooling regions then in-
creases with the size of the patch. The larger patches
provide more spatial context, whereas the absence of
pooling on the small patch enables better accuracy.

We also considered a standard CNN architecture
as a baseline, represented in Fig. 1b, which relies on
a single input patch. We will refer to this baseline as
StdRef, for Refinement with Standard Architecture.

To further improve the accuracy of the location es-
timates, we iterate this refinement step several times,
by centering the network on the location predicted at
the previous iteration.
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(a) (b)

(c) (d)

Figure 1: Different network architectures for the first stage. C denotes a convolutional layer with the number of filters
and the filter size inscribed, FC a fully connected layer with the number of neurons, and P a max-pooling layer with the
pooling size. We evaluated the performance of a shallow network (a) and a deeper network (b), as well as a multi-scale
architecture (c), which was used in [7, 19]. This architecture extracts features after downscaling the input depth map by
several factors. (d) All these networks can be extended to incorporate the constrained pose prior. This causes an unusual
bottleneck with less neurons than the output layer.

(a) (b)

Figure 2: Our architecture for refining the joint locations during the second stage. We use a different network for each
joint, to refine its location estimate as provided by the first stage. (a) The architecture we propose uses overlapping inputs
centered on the joint to refine. Pooling with small regions is applied to the smaller inputs, while the larger inputs are
pooled with larger regions. The smaller inputs allow for higher accuracy, the larger ones provide contextual information.
We experimentally show that this architecture is more accurate than a more standard network architecture. (b) shows a
generic architecture of an iterative refinement, where the output of the previous iteration is used as input for the next. As
for Fig. 1, C denotes a convolutional layer, FC a fully connected layer, and P a max-pooling layer. (Best viewed in color)

4. Evaluation

In this section we evaluate the different archi-
tectures introduced in the previous section on sev-
eral challenging benchmarks. We first introduce
these benchmarks and the parameters of our meth-

ods. Then we describe the evaluation metric, and
finally we present the results, quantitatively as well
as qualitatively. Our results show that our differ-
ent contributions significantly outperform the state-
of-the-art.
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4.1. Benchmarks

We evaluated our methods on the two following
datasets:

NYU Hand Pose Dataset [26]: This dataset con-
tains over 72k training and 8k test frames of RGB-
D data captured using the Primesense Carmine 1.09.
It is a structured light-based sensor and the depth
maps have missing values mostly along the occluding
boundaries as well as noisy outlines. For our exper-
iments we use only the depth data. The dataset has
accurate annotations and exhibits a high variability
of different poses. The training set contains samples
from a single user and the test set samples from two
different users. The ground truth annotations contain
J = 36 joints, however [26] uses only J = 14 joints,
and we did the same for comparison purposes.

ICVL Hand Posture Dataset [22]: This dataset
comprises a training set of over 180k depth images
showing various hand poses. The test set contains
two sequences with each approximately 700 depth
maps. The dataset is recorded using a time-of-flight
Intel Creative Interactive Gesture Camera and has
J = 16 annotated joints. Although the authors pro-
vide different artificially rotated training samples, we
only use the genuine 22k. The depth images have
a high quality with hardly any missing depth val-
ues, and sharp outlines with little noise. However,
the pose variability is limited compared to the NYU
dataset. Also, a relatively large number of samples
both from the training and test sets are incorrectly
annotated: We evaluated the accuracy and about 36%
of the poses from the test set have an annotation error
of at least 10 mm.

4.2. Meta-Parameters and Optimization

The performance of neural networks depends on
several meta-parameters, and we performed a large
number of experiments varying the meta-parameters
for the different architectures we evaluated. We re-
port here only the results of the best performing sets
of meta-parameters for each method. However, in
our experiments, the performance depends more on
the architecture itself than on the values of the meta-
parameters.

We trained the different architectures by minimiz-
ing the distance between the prediction and the ex-
pected output per joint, and a regularization term for

weight decay to prevent over-fitting, where the regu-
larization factor is 0.001. We do not differ between
occluded and non-occluded joints. Because the an-
notations are noisy, we use the robust Huber loss [8]
to evaluate the differences. The networks are trained
with back-propagation using Stochastic Gradient De-
scent [3] with a batch size of 128 for 100 epochs. The
learning rate is set to 0.01 and we use a momentum
of 0.9 [16].

4.3. Evaluation Metrics

We use two different evaluation metrics:

• the average Euclidean distance between the pre-
dicted 3D joint location and the ground truth,
and

• the fraction of test samples that have all pre-
dicted joints below a given maximum Euclidean
distance from the ground truth, as was done
in [24]. This metric is generally regarded very
challenging, as a single dislocated joint deterio-
rates the whole hand pose.

4.4. Importance of the Pose Prior

In Fig. 3a and 3c we compare different embed-
ding dimensions and direct regression in the full
3 · J-dimensional pose space for the NYU and the
ICVL dataset, respectively. The evaluation on both
datasets shows that enforcing a pose prior is bene-
ficial compared to direct regression in the full pose
space. Only 8 dimensions out of the original 42-
or 48-dimensional pose spaces are already enough
to capture the pose and outperform the baseline on
both datasets. However, the 30-dimensional embed-
ding performs best, and thus we use this for all fur-
ther evaluations. The results on the ICVL dataset,
which has noisy annotations, are not as drastic, but
still consistent with the results on the NYU dataset.

The baseline on the NYU dataset of Tompson et
al. [26] only provide the 2D locations of the joints.
For comparison, we follow their protocol and aug-
ment their 2D locations by taking the depth of each
joint directly from the depth maps to derive com-
parable 3D locations. Depth values that do not lie
within the hand cube are truncated to the cube’s back
face to avoid large errors. This protocol, however,
has a certain influence on the error metric, as evident
in Fig. 4a. The augmentation works well for some
joints, as apparent by the average error. However,
it is unlikely that the augmented depth is correct for
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(a) Pose Prior on NYU dataset
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(b) Refinement on NYU dataset
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(c) Pose Prior on ICVL dataset
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(d) Refinement on ICVL dataset

Figure 3: Importance of the pose prior (left) and the refinement stage (right). We evaluate the fraction of frames where
all joints are within a maximum distance for different approaches. A higher area under the curve denotes more accurate
results. Left (a), (c): We show the influence of the dimensionality of the pose embedding. The optimal value is around
30, but using only 8 dimensions performs already very well. The pose prior allows us to significantly outperform the
state-of-the-art, even before the refinement step. Right (b), (d): We show that our architecture with overlapping input
patches, denoted by the ORRef suffix, provides higher accuracy for refining the joint positions compared to a standard
deep CNN, denoted by the StdRef suffix. For the baseline of Tompson et al. [26] we augment their 2D joint locations with
the depth from the depth maps, as done by [26], and depth values that do not lie within the hand cube are truncated to the
cube’s back face to avoid large errors. (Best viewed on screen)

all joints of the hand, e.g. the 2D joint location lies
on the background or is self-occluded, thus causing
higher errors for individual joints. When using the
evaluation metric of [24], where all joints have to be
within a maximum distance, this outlier has a strong
influence, in contrast to the evaluation of the average
error, where an outlier can be insignificant for the
mean. Thus we outperform the baseline more signif-

icantly for the distance threshold than for the average
error.

4.5. Increasing Accuracy with Pose Refinement

The refinement stage can be used to further in-
crease the location accuracy of the predicted joints.
We achieved the highest accuracy by using our CNN
with constrained prior hand model as first stage, and
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then applying the second iterative refinement stage
with our CNN with overlapping input patches, de-
noted ORRef.

The results in Fig. 3b, 3d and 4 show that apply-
ing the refinement improves the location accuracy for
different base CNNs. From rather inaccurate initial
estimates, as provided by the standard deep CNN,
our proposed ORRef performs only slightly better
than refinement with the baseline deep CNN, denoted
by StdRef. This is because for large initial errors only
the larger input patch provides enough context for
reasoning about the offset. The smaller input patch
cannot provide any information if the offset is big-
ger than the patch size. For more accurate initial
estimates, as provided by our deep CNN with pose
prior, the ORRef takes advantage from the small in-
put patch which does not use pooling for higher ac-
curacy. We iterate our refinement two times, since
iterating more often does not provide any further in-
crease in accuracy.

We would like to emphasize that our results on
the ICVL dataset, with an average accuracy below
10 mm, already scratch at the uncertainty of the la-
belled annotations. As already mentioned, the ICVL
dataset suffers from inaccurate annotations, as we
show in some qualitative samples in Fig. 5 first and
fourth column. While this has only a minor effect on
training, the evaluation is more affected. We evalu-
ated the accuracy of the test sequence by revising the
annotations in image space and calculated an average
error of 2.4 mm with a standard deviation of 5.2 mm.

4.6. Running Times

Table 1 provides a comparison of the running
times of the different methods, both on CPU and
GPU. They were measured on a computer equipped
with an Intel Core i7, 16GB of RAM, and an nVidia
GeForce GTX 780 Ti GPU. Our methods are imple-
mented in Python using the Theano library [2], which
offers an option to select between the CPU and the
GPU for evaluating CNNs. Our different models per-
form very fast, up to over 5000 fps on a single GPU.
Training takes about five hours for each CNN. The
deep network with pose prior performs very fast and
outperforms all other methods in terms of accuracy.
However, we can further refine the joint locations at
the cost of higher runtime.

4.7. Qualitative Results

We present qualitative results in Fig. 5. The typi-
cal problems of structured light-based sensors, such

Architecture GPU CPU

Shallow 0.07 ms 1.85 ms
Deep [12] 0.1 ms 2.08 ms
Multi-Scale [7] 0.81 ms 5.36 ms
Deep-Prior 0.09 ms 2.29 ms
Refinement 2.38 ms 62.91 ms
Tompson et al. [26] 5.6 ms -
Tang et al. [22] - 16 ms

Table 1: Comparison of different runtimes. Our CNN with
pose prior (Deep-Prior) is faster by a magnitude com-
pared to the other methods (pose estimation only). We can
further increase the accuracy using the refinement stage,
still at competitive speed. All of the denoted baselines use
state-of-the-art hardware comparable to ours.

as missing depth, can be problematic for accurate lo-
calization. However, only partially missing parts, as
shown in the third and fourth columns for example,
do not significantly deteriorate the result. The loca-
tion of the joint is constrained by the learned hand
model. If the missing regions get too large, as shown
in the fifth column, the accuracy gets worse. How-
ever, because of the use of the pose subspace embed-
ding, the predicted joint locations still preserve the
learned hand topology. The erroneous annotations of
the ICVL dataset deteriorate the results, as our pre-
dicted locations during the first stage are sometimes
more accurate than the ones obtained during the sec-
ond stage: see for example the pinky in the first or
fourth column.

5. Conclusion

We evaluated different network architectures for
hand pose estimation by directly regressing the 3D
joint locations. We introduced a constrained prior
hand model that can significantly improve the joint
localization accuracy. Further, we applied a joint-
specific refinement stage to increase the localization
accuracy. We have shown, that for this refinement a
CNN with overlapping input patches with different
pooling sizes can benefit from both, input resolution
and context. We have compared the architectures on
two datasets and shown that they outperform previ-
ous state-of-the-art both in terms of localization ac-
curacy and speed.
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Figure 4: Average joint errors. For completeness and comparability we show the average joint errors, which are, however,
not as decisive as the evaluation in Fig. 3. Though, the results are consistent. The evaluation of the average error is more
tolerant to larger errors of a single joint, which deteriorate the pose as for Fig. 3, but are insignificant for the mean if
the other joints are accurate. Our proposed architecture Deep-Prior-ORRef, the constrained pose CNN with refinement
stage, provides the highest accuracy. For the ICVL dataset, the simple baseline architectures already outperform the
baseline. However, they cannot capture the higher variations in pose space and noisy images of the NYU dataset, where
they perform much worse. The palm and fingers are indexed as C: palm, T: thumb, I: index, M: middle, R: ring, P: pinky,
W: wrist. (Best viewed on screen)

NYU dataset ICVL dataset

D
ee

p-
Pr

io
r

D
ee

p-
O

R
R

ef

Figure 5: Qualitative results. We show the inferred joint locations on the depth images (in gray-scale), as well as the
3D locations with the point cloud of the hand (blue images) from a different angle. The ground truth is shown in blue,
our results in red. The point cloud is only annotated with our results for clarity. The right columns show some erroneous
results. One can see the difference between the global constrained pose and the local refinement, especially in the presence
of missing depth values as shown in the fifth column. While the global pose constraint still preserves the hand topology,
the local refinement cannot reason about the locations without the missing depth data. (Best viewed on screen)

28



References
[1] L. Ballan, A. Taneja, J. Gall, L. V. Gool, and

M. Pollefeys. Motion Capture of Hands in Action
Using Discriminative Salient Points. In European
Conference on Computer Vision, 2012. 2

[2] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin,
R. Pascanu, G. Desjardins, J. Turian, D. Warde-
Farley, and Y. Bengio. Theano: A CPU and GPU
Math Expression Compiler. In Proc. of SciPy, 2010.
7

[3] L. Bottou. Large-Scale Machine Learning with
Stochastic Gradient Descent. In Proc. of COMP-
STAT, 2010. 5

[4] A. Coates, A. Y. Ng, and H. Lee. An Analysis
of Single-Layer Networks in Unsupervised Feature
Learning. In Proc. of AISTATS, 2011. 1

[5] M. de La Gorce, D. J. Fleet, and N. Paragios. Model-
Based 3D Hand Pose Estimation from Monocular
Video. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(9), 2011. 2

[6] A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and
X. Twombly. Vision-Based Hand Pose Estimation:
A Review. Computer Vision and Image Understand-
ing, 108(1-2), 2007. 1

[7] C. Farabet, C. Couprie, L. Najman, and Y. LeCun.
Learning Hierarchical Features for Scene Labeling.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2013. 3, 4, 7

[8] P. J. Huber. Robust Estimation of a Location Param-
eter. Annals of Statistics, 53, 1964. 5

[9] C. Ionescu, J. Carreira, and C. Sminchisescu. Iter-
ated Second-Order Label Sensitive Pooling for 3D
Human Pose Estimation. In Conference on Com-
puter Vision and Pattern Recognition, 2014. 2
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Abstract. The article recounts various problems that
the authors encountered in biometric face recogni-
tion and biometric image interpretation in their ex-
perience as court appointed expert witnesses. Before
automated face recognition system can be applied
on a typical surveillance video, images must be en-
hanced using various image processing methods or
enriched by using computer vision 3D reconstruc-
tion methods. Authenticity of video material must
also sometimes be verified. If face recognition is not
possible or successful then other soft biometric char-
acteristics can be checked. A legal expert witness for
image biometry must be able to employ a large array
of image processing and computer vision tools and
methods. The expert witness must be able to explain
how the biometric results were obtained, which were
the necessary processing steps and how confident are
the final results.

1. Introduction

The multitude of image and video recording de-
vices ranging from smart phones to the ever more ex-
tensive networks of video surveillance cameras pro-
duces a massive amount of imagery. Video surveil-
lance is becoming ubiquitous in public and even pri-
vate spaces. Therefore, the number of cases inves-
tigated by law enforcement, which have left some
image related traces, is sharply increasing. When
such cases subsequently enter some legal process, the
need for expert witnesses with a working knowledge
of image processing and computer vision is obvious.
Interpreation of various security incidents recorded

on video clips and photographs is beside the inter-
pretation of material traces (fingerprints, bodily flu-
ids etc.) gaining a steadily more central role in the
judicial proceedings.

To correctly and independently interpret that im-
agery, expert witnesses are needed that can indepen-
dently evaluate and interpret images. Often the main
goal of such video interpretation is to identify or con-
firm the identity of a person. Researchers from our
group have served now for several years as court ap-
pointed expert witnesses for interpretation of image
and video material. In this article we would like to
relate some useful experience from our practice. We
discuss in the article only images where persons ap-
pear so that the tasks of the expert witness can there-
fore be consigned to biometry.

The tasks of an image biometry expert witness are
much broader than just running a face recognition
program [7]. Even if towards the end of the interpre-
tation a face recognition system is used, several other
actions on the image data must precede that step.

Since images are often recorded in suboptimal
conditions, image enhancement methods must usu-
ally be applied (exposure adjustment, contrast im-
provement, noise filtering, stabilization of video
etc.). The faces are often not captured frontally but
from the side or from above so that standard frontal
face recognition can not be applied directly. Build-
ing of a 3D face model is then usually attempted if
images of the face from several views are available
[3, 11]. Another problem can be a large age differ-
ence between the face images that we intend to com-
pare and therefore some compensation for age related
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changes must be used. Another practical problem for
comparison can be injury related abrasions or tattoos
on the face of suspects. If face recognition can not
be applied, then some other soft biometric features
could sometimes be recovered. A person’s height,
for example, can be reconstructed even from a sin-
gle image if enough other geometric information is
available in the same image [5].

Sometimes the question of authenticity of the im-
age material can arise. Has somebody tampered with
the imagery to change the content of the material?
There is a whole expertise area of image forgery de-
tection, ranging from analysis of individual image el-
ements, analysis of the image format, analysis of the
input device and finally analysis of the physical and
geometrical properties of the captured scene [6].

There are commercial software solutions that
cover almost the entire range of forensic tasks [1].
However, the whole area of image biometry is mov-
ing so fast that a collection of different software
tools, even open source tools, is often more flexible
and usable. In any case, an image biometric expert
witness must understand when and why certain pro-
cessing steps or methods should be applied. A court
appointed expert witness, in particular, must be able
to understand and explain the whole process how he
obtained and verified the results.

In this article we discuss only problems related to
person identification using different biometric char-
acteristics that we encountered during the past sev-
eral years as court appointed expert witnesses. By
discussing these cases we would like to illustrate the
variety of biometric problems encountered in prac-
tice and the need to apply methods from a large range
of different research results.

2. Face recognition

The most often posed question, that a court ap-
pointed expert witness is confronted with, is whether
the accused person is really on the examined video
clip? This is the problem of person verification. Usu-
ally, the expert witness has at his disposal a three-
part mug shot from the police records and a video
clip from a surveillance camera. Normally, only the
face is used for identification. The courts expect that
any face comparison should include a careful analy-
sis of individual facial features and distances among
them. We will discuss now the most common prob-
lems from practice.

2.1. Problems from practice

2.1.1 Poor image quality

Often the video quality of recordings from surveil-
lance cameras is very poor due to low resolution and
high compression rates. Such setting are usually cho-
sen to save memory space on recording devices and
only rarely due to the initial poor quality of the video
signal itself. To save space, some surveillance sys-
tems are saving just a limited number of images per
second or just images where some movement was
detected. Due to all these circumstances, the qual-
ity of the video material is on numerous instances
so poor that the application of advanced methods for
face recognition that are based on facial features or
on the integral face appearance is not possible [2].

2.1.2 Small scale face regions

A similar problem in digital face forensics, as poor
image quality, is the insufficient size of the face re-
gion. The minimal interocular distance for reliable
face recognition should be at least 32 pixels. Ideally,
the interocular distance should be about 70 pixels.
In practice, we often encounter images with a small
resolution of 320×240 or 640×480 pixels where the
face is furthermore often recorded from a larger dis-
tance. On such images the face region might have a
size of only 15×15 pixels with interocular distance
of mere 8 pixels. Even if the face is well illumi-
nated and in frontal orientation, the success rate of
face recognition systems is in such cases very low.

2.1.3 Non-frontal face orientation

Faces on surveillance video are often recorded from
above and/or from the side so that the recorded face
orientation is not frontal. Persons involved in crim-
inal activity in addition try to evade the surveillance
cameras and they tend to never look into the camera.
All these circumstances add up to the fact that in the
whole video recording of an event there is not even
a single frontal image of a face. The faces of per-
sons on such video footage are often partially con-
cealed by sunglasses, hoods or caps which makes
face recognition based on facial features even more
demanding.

2.2. Possible solutions

Due to all the problems with image quality and
face orientation described above, we try to use in
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such cases facial features that stand out even in im-
ages of poor quality. Such features are the shape
of the head, the shape of the chin, the shape of the
cheeks, the shape of the hairline and the baldness
area, hair color, the shape of ears, nose and the size
of the mouth. For recognition it can be beneficial
also some irregularities or past injuries of the sus-
pected person. Cases such as a nose deformation, a
feature on the front of the adult men’s neck (Adam’s
apple), excessive baldness or a prominent nose, all
facilitate recognition. Facial or other visible tattoos
can be very usable features for recognition even in
images of very poor quality or resolution since they
tend to stand out from the background of the skin
color quite well.

The familiar feature on the front of the neck that
is the forward protrusion of the thyroid cartilage.

2.2.1 Use of a face profile

When we try to analyze facial features on a video
recording, it can turn out that the face profile is the
most useful face orientation, because in the profile,
certain features such as the shape of the nose stand
out. As mentioned above, faces on surveillance video
are captured from different often atypical viewpoints.
This circumstance must be taken into account also in
the case of profile views. If a suspect is available,
the court can demand photos of the suspected person
taken under different viewpoints, similar to those on
the surveillance video.

Figure 1. The silhouette of a person in front of an ATM.

The face profile is often usable in surveillance
video from ATMs (Automated Teller Machines)
where the face is normally backlit, making the face
dark on a bright background. Although changing the
exposure can help sometimes, often individual face
features can not be made visible. Since a person in
front of an ATM, who is performing an illegal ac-
tivity, often looks around, his face profile is usually

captured as a silhouette. Such silhouette can serve as
a reference image for recognition from profile (Fig.
1).

2.2.2 Use of existing face recognition systems

Despite all the above described problems with dif-
ferent views and poor quality of video recordings,
automated face recognition methods for frontal face
recognition and from face sketches can be used. Be-
fore using such a method or a system, the input face
image must be adjusted. Also, the results must be
accordingly interpreted. To use a system for frontal
face recognition, a 3D model of the corresponding
face must be constructed from several viewpoints.
The 3D model of the face is then used to generate
the frontal view of that face which can subsequently
be used as an input image for frontal face recognition
[11].

A face recognition system can be used for compar-
ison also on semi rotated faces, however, such a sys-
tem must also be trained on similarly rotated faces.
Another way of using existing systems is by draw-
ing a face sketch or constructing a facial composite,
based on the recorded video, and feed the resulting
face to a face recognition system which can interpret
also sketches [8].

Often offenders who are caught in the act are also
suspects for other, similar, but unaccounted offenses.
In such cases, the investigation needs to determine
if two suspects are similar to each other. Systems
for automatic face recognition are for such tasks also
very useful.

3. Identification using other biometric fea-
tures

Since face recognition is often not possible or not
reliable enough, other personal features recorded in
the surveillance video should be analyzed to help in
the identification of a person. We will discuss the
physical features of a person and his behavior. The
following bodily features can greatly reduce the cir-
cle of suspects: body height [5], way of walking [9],
way of handling objects and the actual body shape
of a person. Most commonly, one tries to establish
the body height of persons captured on surveillance
video.

3.1. Estimation of body height

To determine the body height of a person on an im-
age the Single View Metrology (SVM) can be used
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[5]. Before applying the SVM method the image
should be enhanced by increasing the contrast, im-
proving the exposure and enhancing the edges. If
several images of the same static scene captured un-
der different illumination conditions are available the
image can be improved by averaging the images sim-
ilar as in high-dynamic-range imaging in order to
sharpen and enhance the edges of the static objects
on the scene. It is easier to derive the inherent ge-
ometric information (i.e. calibrate the space in all
three dimensions (x, y, z)) from such enhanced im-
ages (Fig. 2).

Figure 2. Calibration of a room should be performed after
image distortions are corrected. The figure of the person
in the corresponding video is never seen in its entirety. To
be able to establish the height of the person, comparison
to other calibrated lengths in the image is used.

Before calibration image distortions must be cor-
rected so that objects on the image are correctly dis-
played. For calibration of the depicted space, por-
trayal of several rectangular objects aligned with the
walls of the space is essential. Very useful for the cal-
ibration of the x− y plane are for example quadratic
plates in the floor paving. To determine the heights,
the vertical axis z must be calibrated also. For this
task one can use door and window frames or other
vertical objects standing in the room (Fig. 2). Some-
times, if a room was rearranged in between, it is diffi-
cult to find a suitable reference object. Usually doors
and windows are the most stable features of a room
since they are seldom changed.

Sometimes, the video surveillance system was
also changed in between. To perform a crime recon-
struction or to determine the height of objects, im-
ages from the new system must be registered with

the images from the old system, using objects that
did not change in between. During the actual com-
putation of the calibration one must enter actual mea-
surement of known objects. Therefore a visit to the
scene is necessary where as many objects as possible
which are seen on the images should be measured to
serve for the control of the accuracy of the calibra-
tion.

It is also very important that we use the original
images when we do the calibration to be able to es-
timate the actual accuracy of the measurements. Ac-
curacy depends on the resolution of the image and
on the height of the person on the image. In normal
circumstances, the error in determination of a per-
son’s height is about 5 cm. The SVM method there-
fore enables quite accurate determination of a per-
son’s height in an image. In special cases, when a
person stands in the door frame or if we would like
to estimate the size of an object such as a footprint,
calibration of just two dimension of the space suffice,
sometimes even just one dimension if the concerned
object lies on a calibrated line.

3.1.1 Problems in a person’s height determina-
tion

Determination of a person’s height can be difficult if
the person is not visible on the image in its entirety,
for example, if the feet or the tip of the person’s head
are not visible. This can happen quite often if the
camera is not mounted high enough or if the person
is too close to the camera. In such cases, one can try
to reconstruct the hidden body parts with the help of
a general body model or the model of the observed
person if the missing body part is seen in some other
video frames.

Another often problem in determination of a per-
son’s height is that the person is on the entire video
clip in a hunched posture due to running or brisk
walking. If the person does not stop and straighten
up, one must take this factor into account and deter-
mine at least the smallest possible height. For how
much is the person taller, in addition to the deter-
mined minimal height, can be estimated using differ-
ent phases of gait [10].

3.2. Other soft biometric features

If longer video surveillance clips are available the
behavior of the observed person should be carefully
analyzed. Walking has a certain personal character
and can be used for identification [9]. Handling of
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Figure 3. Wide hips can be used as a soft biometric feature.

objects can indicate the handedness of a person, for
example with which hand one reaches products dur-
ing shopping, with which hand one pays, reaches for
cash on an ATM etc. It is also important how cer-
tain objects are carried, in which hand or over which
shoulder one carries a bag. All those details can help
in a person’s identification. In cases of stealing of
goods, one needs to check if it can be seen, that the
suspect is hiding something under his clothing, or if
his way of walking has changed. Any visible signs
such as various inborn or injury related handicaps
can also be used for identification. Tattoos are are
well visible also on images of poor quality.

When we try to identify a person on a video clip,
one should not concentrate only on the face features
but also on the soft biometric features that can help us
to reduce the number of suspects or to exclude a par-
ticular person from the list of suspects. Therefore, it
is necessary to photograph for police records the en-
tire body of a person where all particularities of that
person can be seen. Fig. 3 (left) shows a person with
disproportionally wide hips for the person’s height.
This size ratio can be verified on other images (Fig.
3, center and right).

If a suspect is apprehended immediately after a
crime was committed, one can consider also features
which can normally change quite rapidly, such as
clothing, the shape and color of hair, existence of a
mustache or a beard etc.

Figure 4. The design of a T-shirt (left) weared by a sus-
pect, apprehended right after the crime took place, was
identified on the surveillance video (right).

Clothing features can be used if the suspect could

not have changed in between. Fig. 4 shows a case
where the design of a T-shirt was used for identifica-
tion. Special clothing features identified on surveil-
lance video should be described in the report so that
later, they can be searched for, for example, during a
house search.

4. Other considerations from practice and ex-
perience

During a video surveillance system installation,
one must mount the cameras so that the camera view
angles cover the entire surveilled space and that the
image quality is acceptable in all lightning condi-
tions. All circumstances that might influence these
two parameters should be considered. Sometimes,
the surveillance system needs an extensive long time
to adapt to sudden changes in illumination. The view
angle of the camera can be obstructed by objects
in the surveilled space. When some body parts of
the surveilled person are occluded, the estimation of
body height, for example, can be much harder. In the
video corresponding to Fig. 2, for example, the figure
of the person is never seen in its entirety, making the
estimation of body height much more complicated.

Fig. 5 illustrates a poor placement of the surveil-
lance camera, since when the door leading into the
surveyed space is open, it occludes a large portion of
the camera view angle, including the area where the
vault was standing.

When the body height of a suspect is measured,
it is very important to note if the person was wear-
ing shoes or not. When analyzing events in front
of ATMs, it is desirable if the clocks of the video
surveillance system and the ATM system are syn-
chronized. If not, then time intervals between ATM
transactions should be used instead. Therefore, it is
important to recover and save for analysis a much
longer segment of the surveillance video where sev-
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Figure 5. Bad placement of the surveillance camera–when
the door is open, it occludes a large portion of the room,
including the vault–the most important object in the room
from a security viewpoint.

eral transactions are recorded. Then, several time
intervals between transactions can be computed and
based on the correspondence with the time intervals
between ATM transactions, the timing in the video
surveillance system can be aligned with the timing in
the ATM system.

In some cases, it turned out, that video record-
ings from other nearby surveillance cameras would
be useful, but it was already too late to obtain them.
Namely, the legal obligation for safekeeping surveil-
lance video is time limited, normally, at most up to
three months, and then the old video data is usually
erased by writing over new video data. Privacy advo-
cates recommend the shortest legally required time
for storing surveillance data and most producers of
video surveillance equipment enable the storage of
data between seven days and three months. Industry
standards recommend that the storage capacity in a
surveillance recording device should have a capacity
to store at least 48 continuous hours of video with the
recording parameters that enable a functional recon-
struction of the events. For analysis of a crime event,
public video surveillance footage can be also help-
ful, to determine, for example the escape direction or
hiding of some material evidence.

Often the poor quality of video footage is a result
of inappropriate copying of video data. The origi-
nal video data can even get lost or stolen. In such
cases, sometimes only images printed on paper re-
main. When original video digital data is not avail-
able and only poor quality printed images remain, ad-
vanced methods of image enhancement must be used
[4].

5. Conclusions

Image material from video surveillance systems,
which is used for face recognition, is often not suit-
able for direct use in automated face recognition sys-

tems. Images must usually be enhanced using a va-
riety of image processing and computer vision meth-
ods. Sometimes even a manual step is necessary in
the chain of recognition if software methods fail at
a certain task. A professional sketch artist, for ex-
ample, can draw a face based on video footage and
the resulting sketch can be used as input into a face
recognition system that is able to recognize also face
sketches. If face recognition fails, then we can at-
tempt to use other soft biometric properties, such as a
person’s height, for identification. An expert witness
for face biometry must therefore have an understand-
ing and a working experience of a very wide range of
image processing and computer vision methods and
tools.
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Abstract. In this paper, we address the problem
of determining optimal hyper-parameters for support
vector machines (SVMs). The standard way for solv-
ing the model selection problem is to use grid search.
Grid search constitutes an exhaustive search over
a pre-defined discretized set of possible parameter
values and evaluating the cross-validation error un-
til the best is found. We developed a bi-level opti-
mization approach to solve the model selection prob-
lem for linear and kernel SVMs, including the ex-
tension to learn several kernel parameters. Using
this method, we can overcome the discretization of
the parameter space using continuous optimization,
and the complexity of the method only increases lin-
early with the number of parameters (instead of ex-
ponentially using grid search). In experiments, we
determine optimal hyper-parameters based on dif-
ferent smooth estimates of the cross-validation error
and find that only very few iterations of bi-level opti-
mization yield good classification rates.

1. Introduction

In the field of machine learning much effort is put
in developing new algorithms trying to beat the cur-
rent record on diverse challenges and benchmarks.
What all those methods have in common is that they
only work as good as they have been fine-tuned
by setting sensible parameters affecting the perfor-
mance of the algorithms. The support vector ma-
chine (SVM) [9, 6, 19] as a particular instance of a
machine learning algorithm is a very popular method
for supervised classification that finds its application
in several disciplines including bioinformatics, text
and image recognition. Also for the SVM, setting
good hyper-parameters strongly influences the clas-
sification performance. The aim of model selection
is to find the hyper-parameters such that the perfor-
mance of the learning algorithm is ”optimal”. Usu-

ally this is done manually, or via some combination
of grid search and manual search.

Few parameters (1-2) can be set quite successfully
based on the evaluation of the cross-validation (CV)
error on a grid of possible parameter values. For
many parameters, however, the problem is hard to
solve because the search space grows exponentially
in the number of parameters. Grid search can easily
be parallelized, but one would still need access to a
massive computational cluster to solve the problem
in reasonable time.

In the past, attempts to reduce the complexity of
machine learning algorithms in terms of the num-
ber of hyper-parameters have been made. E.g., it is
common practice to use linear SVMs e.g. for image
classification on pre-computed explicit feature maps
of the data [22]. Another example is the concept
of multiple kernel SVMs where kernels with differ-
ent fixed bandwidths are combined using weighted
sums of them [1, 21, 11]. Here, the weighting factors
are directly included in the training objective of the
SVM.

More recent literature suggests that especially
in the field of computer vision there is increased
popularity of large hierarchical models [3] such as
Convolutional Neural Networks [14] or Deep Be-
lief Nets [12] which inherently have a large number
hyper-parameters to set.

The idea of using bi-level optimization for deter-
mining hyper-parameters is not entirely new. Kuna-
puli et al. [15] have investigated a similar approach
to ours, but they use different methods to deal with
the optimization problem and only use available stan-
dard solvers which limits them to experiments with a
linear SVM. Another approach to use gradient meth-
ods to solve the parameter selection problem also for
kernel SVMs can be found in [7]. They seek to min-
imize smoothed estimates of the generalization error
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of the SVM w.r.t. the hyper-parameters, however,
their investigations are restricted to use error mea-
sures where the gradient to the hyper-parameters can
directly be computed.

Our contribution is an attempt to solve the model
selection problem for linear and kernel SVMs, with
extension to several kernel parameters using a bi-
level optimization approach. We develop a gen-
eral optimization scheme that allows for continuous
hyper-parameter learning based on estimates of the
cross-validation error.

Outline. This paper is organized as follows: In
Section 2 we discuss typical methods for hyper-
parameter optimization such as grid search methods.
In Section 3 we develop the bi-level solution for the
SVM in general and extend it to optimize several ker-
nel parameters. Furthermore we discuss the choice of
a smoothed higher level loss function to estimate the
classification performance. In Section 4, we evalu-
ate the proposed method and compare the different
performance measures. In Section 5 we conclude the
paper.

2. Grid search and random search

Throughout the machine learning literature, grid
search is the chosen method to determine hyper-
parameters. It is common practice to estimate the
performance of a learning algorithm based on a T -
fold cross-validation error H (e.g. [10]). Here, the
error is determined on the data that has not been used
for training in the respective fold. The hope is that
the performance of the learning algorithm based on
the T validation sets data(val)

t=1,...,T can be successfully
transferred to the test set.

Inspired by the discussion about hyper-parameter
optimization and grid search/random search in [3],
we formalize the problem of hyper-parameter opti-
mization in terms of discrete sets as follows. Let θ
be a set of hyper-parameters with cardinality S and
θk one possible configuration out ofK in the discrete
search space. Let wt(θ) be the separating hyperplane
obtained by the SVM training algorithm on training
set t using the hyper-parameters θ. The minimization
problem addressed by grid search can be written as

arg min
θ∈{θ1,...θk}

T∑

t=1

H(data(val)
t , wt(θ)). (1)

For the SVM a typical set of hyper-parameters is e.g.
θ = (c, γ): The regularization parameter c control-
ling the margin and the bandwidth γ of a Gaussian
kernel. From this formulation, we can easily deduce

that grid search suffers from the curse of dimension-
ality: Each hyper-parameter θ1, ..., θS from the set θ
can take a set of values V1, ..., VS . Then the number
of grid search trials is calculated by counting every
possible combination of values:

#trials =
S∏

s=1

|Vs|. (2)

Often, a grid search procedure is accompanied by
some degree of manual search to identify promising
value sets Vs for each component of θ. Another prac-
tical strategy to alleviate the grid search procedure is
to perform first a coarse search to identify interesting
parameter ranges, and then consequently re-do the
grid search on a finer grid. Given access to a compu-
tational cluster, grid search can be easily parallelized
and run on the distributed system. It is also common
to assign a certain computational budget to perform
grid search (e.g. measured in trials).

There have been some attempts to tackle the prob-
lem of model selection other than grid search e.g.
using Bayesian optimization [20], sequential model
based optimization [13], or a random search ap-
proach by [3]. Using random search [3] better or
equal results in hyper-parameter optimization can be
achieved compared to standard grid search, using a
reduced computational budget. These approaches
are interesting if the cardinality of the set θ exceeds
S = 2, but they cannot be used for arbitrarily high
numbers of parameters (in [3] results are presented
for S ≤ 32; determining hyper-parameters for a
Deep Belief Network).

What all those approaches neglect is the fact that
e.g. for SVMs the hyper-parameters are continuous.
Through the discretization, we always lose accuracy
in the possible solution. In our approach to solve the
hyper-parameter optimization problem on the exam-
ple of SVMs we exploit this property.

Moreover, grid search or random search proce-
dures are not adaptive. Only by manual interven-
tion, the course of the experiments can be altered
such that irrelevant parameter values are not further
explored. For the application to SVMs, we propose
a continuous bi-level optimization scheme that is in-
deed adaptive and performs continuous optimization
on the (smoothed) error surface we typically get cal-
culating a full grid search.

We will see another advantage of the bi-level
optimization scheme: The complexity only grows
linearly in the number of hyper-parameters. For
each hyper-parameter we want to determine, we
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have one additional gradient to compute (see
Eq. 12, 16, 19, 23). This makes the method also
applicable to more complex formulations of SVMs
such as kernel SVMs with highly parametrized ker-
nels or for learning hyper-parameters for a multiple
kernel SVM.

3. Proposed method

3.1. Preliminaries

In this paper we use a soft margin formulation of
the support vector machine. Assuming training ex-
amples xi ∈ R1×D with i = 1, ..., N and their labels
yi ∈ {−1, 1}we can write the optimization objective
for the linear SVM as follows:

min
w,b,ξ

c

2
‖w‖22 +

N∑

i=1

ξi

s.t. yi(〈w, xi〉+ b) ≥ 1− ξi
ξi ≥ 0.

(3)

Starting from the primal formulation using the slack
variables ξi we can write the SVM objective function
in its unconstrained form in terms of a loss function
`(.) (like e.g. in [6]):

w∗(θ) ∈ arg min
w,b

{
c

2
‖w‖22 +

N∑

i=1

`(w, b, xi, yi)

}
. (4)

Solving the SVM gives us the optimal soft-margin
hyperplane defined byw∗. It is influenced by the reg-
ularization parameter c which controls the trade-off
between maximizing the margin and minimizing the
misclassification error. The loss function in Eq. 4 is
the exact Hinge loss

`(w, b, xi, yi) = max(0, 1− yi(〈w, xi〉+ b). (5)

It will turn out in Eq. 9 that we require the SVM ob-
jective to be twice continuously differentiable, thus
we introduce a smooth approximation [23] of Eq. 5
parametrized with µ:

`µ(w, b, xi, yi) =
1

µ
log(1 + e−µ(yi(〈w,xi〉+b)−1)) (6)

In [23] it is shown that `µ(.) converges to `(.) as
µ → ∞. The actual choice of µ will be discussed
in Section 4. Solving the SVM we obtain an optimal
soft-margin classifier, but the quality of the solution
depends on how we choose the hyper-parameter c.
We want to set this parameter such that the CV error
on the given data is minimal.

3.2. Bi-level formulation

In the following, we want to formulate the model
selection problem as a bi-level optimization problem.
Bi-level optimization is a mathematical concept in-
volving a higher level optimization problem with an-
other (lower level) optimization problem as its con-
straint [8]. The aim is to find the hyper-parameters
yielding the minimal cross-validation error subject to
the SVM solved using those parameters. The chal-
lenge is to set the error measure in connection to the
hyper-parameters because it is typically not directly
dependent on the hyper-parameters, but only via the
optimal hyperplane defined by w∗ obtained by min-
imizing the SVM’s energy function E. This relation
is depicted in Fig. 1.

∂H
∂θ

=?

w ∗(θ), b∗

Parameters θ = {c, γ , ...}

minH
Higher Level
Problem

SVM

Figure 1. Schema of the bi-level problem.
Formally, we can write:

min
θ

T∑

t=1

H(wt(θ),Ξt, ηt)

s.t. wt(θ) ∈ arg min
wt

E(wt, θ,Xt, yt)

t = 1, ..., T.

(7)

For simplicity, we use matrix notation in the deriva-
tions. Let us define the important symbols. The train-
ing set we are given is divided into a training set to
calculate the SVM classifier and a validation set to
estimate the performance of the trained classifier.

We use an augmented weight vector defined as
w ∈ R1×D with D the number of feature dimensions
of the input data plus one, including bias b in the
end. The training examples xi ∈ R1×D, i = 1, ..., N
are condensed in the matrix X ∈ RN×D, the val-
idation examples ζi ∈ R1×D are condensed in the
matrix Ξ ∈ RL×D. Both X and Ξ contain a col-
umn of ones in the end for handling the bias implic-
itly. N and L are the numbers of examples in the
training and validation set, respectively. The vectors
y ∈ RN×1 and η ∈ RN×1 contain the class labels
yi, ηi ∈ {−1, 1} for the data. θ is the column vector
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of hyper-parameters for the SVM, in the linear case
θ = c. There are t = 1, ..., T sets of training and
validation data for T -fold cross-validation.

To solve the problem in Eq. 7 we need to reformu-
late it. We use a Lagrange multipliers λt to deal with
the lower level constraints:

L(w, θ, λ) =
T∑

t=1

[
H(w(θ)t,Ξt, ηt) +

〈
λt,

∂E

∂wt

〉]
.

(8)
We will use the unconstrained form of the bi-level

problem from Eq. 8 to calculate the desired gradi-
ent ∂L

∂θ via implicit differentiation. This gradient is
used to determine the optimal hyper-parameters for
the SVM.

For θ∗ to be a local minimizer of Eq. 8 the neces-
sary KKT optimality conditions [4] are given by

G(w, θ, λ) =




∂H
∂w1

+ ∂2E
∂w2

1
λ1

...
∂H
∂wT

+ ∂2E
∂w2

T
λT

∑T
t=1

(
∂H(wt,.)

∂θ + ∂2E
∂wt∂θ

λt

)

∂E
∂w1

...
∂E
∂wT




= 0.

(9)
From the structure of Eq. 9 we observe that the
SVM’s energy function has to be twice continuously
differentiable. This fact gives rise to use the smooth
approximation of the Hinge loss in Eq. 6. Likewise,
we also need a smooth approximate of the CV error
as a higher level loss function H(.) (see discussion
in Section 3.6).

The system of equations Eq. 9 can be reduced by
firstly solving the optimality conditions of the SVM
for fixed θ for each fold t up to sufficient accuracy
(the last T lines of Eq. 9 are therefore eliminated).
Hence we get w∗t which is then used in the remain-
der of the equations. From the first T equations we
can calculate the Lagrange multipliers λt using the
inverse Hessian of the SVM’s energy function:

λt = −
(
∂2E

∂w∗2t

)−1
∂H

∂w∗t
. (10)

Consequently we obtain the main result:
∂L
∂θ

=
T∑

t=1

(
∂H(w∗t ,Ξt, ηt)

∂θ
−

− ∂2E

∂w∗t ∂θ

(
∂2E

∂w∗2t

)−1
∂H

∂w∗t

)
.

(11)

This gradient is used for optimizing the hyper-
parameters. Observe that in case of the linear SVM

(Eq. 4) the gradient ∂L∂θ reduces to
∂L
∂c

=
T∑

t=1

− ∂2E

∂w∗t ∂θ

(
∂2E

∂w∗2t

)−1
∂H

∂w∗t
(12)

because the derivative of the higher level loss func-
tion H(.) is zero w.r.t. c. So far, we have developed
the bi-level solution for the linear SVM. In the fol-
lowing, we show that the concept can easily be ex-
tended for kernel SVMs.

3.3. Extension to kernel SVMs

First, we have to formulate the lower level prob-
lem - the energy function of the SVM - in terms of a
kernel function k(x, xi). We use again a primal, un-
constrained formulation of the SVM’s energy (like
in [6]). Instead of the weight vector w, we introduce
a weight vector α ∈ RN×1 with N the number of
training examples.

α∗(θ) = arg min
α




c

2
‖f‖22 +

N∑

j=1

`µ(f(xj), yj)



 (13)

with
f(x) =

N∑

i=1

αik(x, xi) and

‖f‖22 =

N∑

j=1

N∑

i=1

αjαik(xj , xi) = αTKα.

(14)

The kernel matrix K ∈ RN×N is composed of ma-
trix elements k(xj , xi).

Rewriting Eq. 13 in matrix form using kj ∈ R1×N

for describing a row of matrix K, we get

α∗(θ) = arg min
α




c

2
αTKα+

N∑

j=1

`µ(kjα, yj)



 =

arg min
α

E(α, θ,K, y).

(15)

For the non-linear case, the SVM’s energy function
used in the bi-level solution stated in Eq. 9, 10 and 11
is replaced by E(α, θ,K, y). After the change of the
weight vector w to α and of the data matrices X and
Ξ to their corresponding kernels K ∈ RN×N and
K ∈ RL×N , the former results are directly applica-
ble.

In the case of a simple Gaussian kernel with band-
width γ we have θ = (c, γ)T and

∂L
∂θ

=

(
∂L
∂c

∂L
∂γ

)
. (16)

The derivative ∂H(α(θ)t,Kt, ηt)
∂θ

(17)
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from Eq. 11 is non-vanishing any more due to the
dependence of the kernelized data to the kernel pa-
rameters.

3.4. Generalization to many kernel parameters

Assuming a Gaussian kernel having d = 1, ..., D
parameters, one for each feature dimension of input
data, we can write down one element of the kernel
matrix:

k(xj , xi) = exp(−
D∑

d=1

γd(xjd − xid)2). (18)

The gradient ∂L∂γ is extended to
∂L
∂γ

=

(
∂L
∂γ1

,
∂L
∂γ2

, . . . ,
∂L
∂γD

)T
(19)

and the entries of the gradient vector are computed
according to Eq. 11.

3.5. Multiple kernel bi-level SVM

We demonstrate in this section that the bi-level
optimization scheme can directly be applied to de-
termine parameters for a multiple kernel model [1,
21, 11]. There are different application scenarios for
multiple kernel models: They can be used to com-
bine different subsets of heterogeneous features or to
combine different feature representations of the data.

We define the model as follows: Let p =
1, 2, ..., P be the partitions (i.e. equivalent to the
number of kernels used) each of which is of dimen-
sion Dp. A training example can be written as con-
catenation of P feature subsets xi = {x1i , x2i , ..., xPi }
whereas xPi ∈ RDp×1. A kernel element kβ of the
new kernel matrix Kβ ∈ RN×N is

kβ(xj , xi) =
P∑

p=1

βpkp(x
p
j , x

p
i ). (20)

With kβj being a row of the matrix Kβ the SVM’s
energy function becomes

α(θ) = arg min
α




c

2
αTKβα+

N∑

j=1

`µ(kβjα, yj)



 .

(21)
The vector of hyper-parameters θ now contains the
γp for each sub-kernel and the weighting factors βp:

θ = (c, γ1, γ2, ..., γP , β1, ..., βP )T . (22)

Analogous to the previous derivations, we can write
the gradient ∂L∂θ as follows:

∂L
∂θ

=




∂L
∂c

(
∂L
∂γp

)P
p=1(

∂L
∂βp

)P
p=1



. (23)

Our bi-level learning approach makes it possible
to treat the kernel combination weights as hyper-
parameters and also the parameters for the base ker-
nels can be learnt. Next, we discuss the choice of the
higher level loss function H(.).

3.6. Higher level loss function

Due to the nature of our continuous optimiza-
tion, we need a differentiable estimate of the gen-
eralization error. This is ideally a smoothed version
of the actual hard classification rate e.g. described
by the zero-one loss which assigns constant error to
wrongly classified examples and zero error to correct
examples.

In this paper we investigate three different higher
level loss functions and compare them according to
their meaningfulness for estimating the performance
of the SVM. We use a smoothed version of the zero-
one loss:

H(w,Ξ, η) =
1

exp(µ[η ◦ (ΞwT )]) + 1
(24)

with smoothing parameter µ = 12. However, the
zero-one loss is a non-convex function which might
be a disadvantage for the optimization process.

The other functions we reviewed were the
smoothed Hinge loss function

H(w,Ξ, η) =
∑

i=1

`µ(w, b, ζi, ηi) (25)

as well as the mean squared error on the classifica-
tion

H(w,Ξ, η) =
1

2L
‖ΞwT − η‖22. (26)

The MSE calculates the mean squared distance of
the examples to the class labels (or, otherwise put,
to the margins). Intuitively, the smoothed Hinge loss
function should yield a better estimate of the hard
classification error than the MSE because it assigns
no error to correctly classified examples up to the
margin and a linear increasing error for examples in-
side the margin and to wrong examples. Both MSE
and Hinge loss are convex functions, and the MSE is
particularly easy to differentiate.

On toy experiments, we found that the Hinge loss
and the zero-one loss perform better on oddly shaped
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datasets (imbalanced, with outliers) than the MSE
(see Fig. 2). Using the MSE (green area) the bi-
level SVM tends to learn a larger margin than us-
ing the Hinge loss (blue area), and the margins are
pulled towards the barycenter of the data distribu-
tion. There was no difference in the behaviour be-
tween Hinge/zero-one loss in this case. However, in
our experiments using real world data sets also the
MSE performs quite well suggesting a good general-
ization capability.
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−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2. Margins and hyperplanes on an imbalanced toy
data set for Hinge loss (blue) and MSE (green) as a higher
level loss function.

4. Experimental Results

In our implementation we used the LBFGS-B op-
timization algorithm to solve the higher level opti-
mization problem, see [5]. For solving the lower
level problems (the SVM) we used FISTA [2]. For
the experiments, we used several data sets from the
UCI machine learning repository 1 (diabetes, iono-
sphere, heart, seeds, parkinson). The aim of the ex-
periments is to show how the classification results us-
ing the hyper-parameters determined via the bi-level
optimization scheme compare to the results of the
traditional grid search procedure. In particular, we
focus on evaluating the effectiveness of the higher
level loss function approximations. Furthermore, we
show results for two settings using an increased num-
ber of hyper-parameters as well as results for an im-
age classification experiment.

The smoothing parameter µ from Eq. 6 and 25 was
chosen as big as possible as long as the outer level op-
timization does not fail (due to the Hessian becoming
ill-conditioned when it is very sparse). The initial
values θ for the bi-level optimization were set ran-

1http://archive.ics.uci.edu/ml

domly due to the fact that their choice is not critical:
Usually the bi-level program converges to the same
θ∗ for different initial values given sufficient accu-
racy of the solution of w∗.

4.1. Illustrative examples

First, we have a look at how the hard classifica-
tion rates vary in the hyper-parameters and how the
higher level loss functions we mentioned earlier ”fit”
to the achieved classification performance. For this
reason, we show two examples. First, results us-
ing a linear bi-level SVM on the diabetes data set
are shown in Fig. 3. On the y axis the CV error
rate and the test error rate are shown as well as the
higher level loss function values. The MSE is plotted
in dashed blue, the approximated Hinge loss in solid
red and the smooth zero-one loss in solid green. The
errors are plotted over the regularization parameter c
and have been determined via grid search. We point
out that the error values are not directly comparable
hence we rescale them for better comparison.
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Figure 3. Comparing hard classification rates and the cor-
responding higher level loss function values over c using
a linear SVM on the diabetes data set.

We observe that the minima of the CV and test
classification error rates do not coincide exactly but
the magnitudes are consistent. The smoothed Hinge
loss seems to model the actual CV classification rates
quite well, and the zero-one loss approximation fits
even better (as expected). Their minima lie in the
area of lowest classification error rates. The MSE
does not correspond to the error rates, but still has
the minimum in a reasonable area.

The second example shown in Fig. 4 illustrates
the dependency of the kernel parameter γ of a sim-
ple RBF kernel SVM for a fixed c on the same (dia-
betes) data set. Here, the CV and test error rates have
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Figure 4. Comparing hard classification rates and the cor-
responding higher level loss function values with fixed c
over γ using a kernel SVM on the diabetes data set.

again similar minima, and in this case, also all three
flavours of higher level loss functions share approx-
imately the same minima. For the MSE, we observe
and additional local minimum at γ ≈ 5.5 which is an
unwanted property for optimization. At this point, no
clear answer can be given which of the higher level
loss functions is the best.

4.2. Classification rates for different settings

In Tab. 1 we summarize the CV and test error rates
obtained by the linear and kernel bi-level SVM as
well as the respective rates obtained using grid search
on a comparable computational budget measured in
trials. Each trial consists of the evaluation of the
SVM for T folds for one set of hyper-parameters.
The number of folds in our experiments was chosen
with T = 5. Surprisingly, often the MSE yields good
test classification rates, sometimes even best values,
even though the CV error does not usually yield low-
est rates. Here, often Hinge loss and sometimes zero-
one loss lead to better results. In terms of number of
trials used for optimization, the zero-one and Hinge
loss are the best. Given the low computational budget
assigned for grid search, only for one data set better
rates were achieved (seeds), even though it is quite
possible that grid search can outperform the bi-level
approach using more trials in the linear/simple kernel
case because the exact classification rates are taken to
decide which set of hyper-parameters is best. How-
ever, as we will see in the following experiments, the
classification rates can be significantly improved by
using a more complex kernel for which it will be dif-
ficult to achieve a good result using exhaustive grid
search.

Data set Type CV Err. Test Err. Trials
Diabetes Lin01loss 24.13 20.33 10

LinHinge 24.13 20.66 7
LinMSE 25.87 19.67 8
LinGrid 24.34 20.66 15
Ker01loss 22.17 18.03 8
KerHinge 21.30 17.70 26
KerMSE 18.70 20.98 11
KerGrid 25.00 19.02 50

Ionosph. Lin01loss 12.86 8.57 7
LinHinge 11.43 7.86 5
LinMSE 16.19 7.86 8
LinGrid 14.29 8.57 15
Ker01loss 0.95 2.85 17
KerHinge 2.86 3.57 32
KerMSE 3.81 2.86 33
KerGrid 13.81 4.29 50

Heart Lin01loss 15.79 15 8
LinHinge 14.21 13.75 6
LinMSE 17.37 15 8
LinGrid 18.95 13.75 15
Ker01loss 15.26 15 15
KerHinge 14.74 13.75 16
KerMSE 17.89 13.75 34
KerGrid 18.95 15 50

Seeds Lin01loss 6 10 5
LinHinge 6 10 6
LinMSE 7.33 11.67 11
LinGrid 9.33 9.33 15
Ker01loss 2 8.33 14
KerHinge 1.33 8.33 15
KerMSE 7.33 6.67 23
KerGrid 10.67 10 50

Table 1. Summary of classification rates on several
datasets comparing the CV and test errors and the num-
ber of trials used. Results are reported for the linear (’lin’)
and kernel (’ker’) SVM using the MSE, Hinge or zero-one
(’01loss’) higher level loss functions.

4.3. Learning multiple parameters

Learning one parameter γd per feature dimen-
sion. For this experiment, the seeds data set was used
(D = 8). The results are summarized in Tab. 2.

Learning parameters γp and βp for a multiple ker-
nel SVM. For this experiment the parkinson data set
was used [16]. The data contains 21 measurements
of different orders of magnitude. Using the multi-
ple kernel SVM we are able to combine the features
into P groups of similar magnitude, and set the pa-
rameters γp and βp via the bi-level optimization pro-
cedure. The results are summarized in Tab. 3. We
achieve good results using no pre-processing and no
filtering of correlated features compared to the orig-
inal paper [16] where they report a test classification
rate of 8.2% ± 2. We observe an exceptionally low
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number of necessary trials using the zero-one loss for
both experiments, and very good test classification
rates for Hinge and zero-one loss.

Data set Type CV Err. Test Err. Trials
Seeds MSE 0.67 3.33 62

Hinge 0 3.33 119
01loss 2.67 3.33 59

Table 2. Results using a bi-level kernel SVM with γD pa-
rameters.

Data set Type CV Err. Test Err. Trials
Parkinson MSE 0 9.09 53

Hinge 8.75 7.27 80
01loss 2.04 7.27 30

Table 3. Results using a bi-level multiple kernel SVM.

4.4. Image classification

The following image classification experiment
was conducted on the Graz02 data set [18]. For fea-
ture extraction the VLFeat Library 2 was used. The
data was pre-processed according to a bag of visual
words model using PHOW features, a variant of SIFT
features extracted at several scales [17]. Moreover,
for this task we use exponential χ2 kernels because
they show naturally better performance on histogram
data compared to RBF kernels [24].
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Figure 5. Resulting confusion matrix using a bi-level ker-
nel SVM and the Hinge loss as a higher level loss function.
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Figure 6. Resulting confusion matrix using a bi-level ker-
nel SVM and the MSE as a higher level loss function.

In Fig. 5 and Fig. 6 we compare the classification
results for each of the four classes in the Graz02 data

2http://www.vlfeat.org/
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Figure 7. Resulting confusion matrix using a kernel SVM
and grid search using 50 trials.

set, namely bike, cars, person and none (the back-
ground class). For training we used 60 images per
class, and 30 for testing. Overall the accuracy us-
ing the MSE is better, but if we do not regard the
background class the results using the Hinge loss are
superior. By construction, the data for learning 1 vs.
rest classifiers is imbalanced due to the low number
of positive examples. That might explain why MSE
performs worse than Hinge loss in the image classi-
fication example. The results via the kernel bi-level
SVM were obtained using a mean of 9 trials per each
1 vs. rest classifier that was trained using Hinge loss
and 8 trials using the MSE. The results of grid search
and evaluating the CV error rate to determine the best
hyper-parameters using 50 trials are shown in Fig. 7.
We obtain a baseline of classification results on this
data set for the relevant classes bike, cars and person.

5. Conclusion

In this paper, we presented a novel bi-level opti-
mization scheme that is able to perform continuous
hyper-parameter optimization for linear and kernel
SVMs based on different smoothed estimates of the
CV error rate. Very good test classification rates are
obtained using only a tiny fraction of trials that would
be necessary to perform exhaustive grid search which
makes the method very practical. High potential lies
in the optimization of several kernel parameters: The
classification rates are better than using only a simple
kernel and optimizing the parameters is easy using
the bi-level optimization approach. In the case of op-
timizing one or two parameters only, a very fine grid
search might lead to better results than the bi-level
approach because the exact classification errors are
minimized, but at a much higher computational cost.
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Abstract. This paper discusses open problems and
future research regarding the recognition and rep-
resentation of structures in sequences of either 2D
images or 3D data. All presented concepts aim at
improving the recognition of structure in data (espe-
cially by decreasing the influence of noise) and at
extending the representational power of known de-
scriptors (within the scope of this paper graphs and
skeletons). For the recognition of structure critical
points of a shape may be computed. We present an
approach to derive such critical points based on a
combination of skeletons and local features along a
skeleton. We further consider classes of data (for
example a temporal sequence of images of an ob-
ject), instead of a single data sample only. This so
called co-analysis reduces the sensitivity of analysis
to noise in the data. Moreover, a representative for a
whole class can be provided. Temporal sequences
may not only be used as a class of data in a co-
analysis process - focusing on the temporal aspect
and changes of the data over time an analysis of these
changes is needed. For this purpose we explore the
possibility to analyse a shape over time and to derive
a spatio-temporal representation. To extend the rep-
resentational power of skeletons we further present
an extension to skeletons using model fitting.

1. Introduction

A single 2D image is defined in the spatial
domain. By extending data from a single capturing
to a sequence of such data temporal information is
added and the data is defined in the spatio-temporal
domain [8]. Instead of capturing a single 2D image
or 3D data (e.g. a 3D point cloud) the data may

be extended to an image sequence or a sequence
of 3D data. Temporal information as motion or
development over time are thereby added to the
representation. Therefore, this paper focuses on
novel concepts for the identification of structure
from sequences of images or 3D data and on the
representation of this structure.
Applications and spatio-temporal datasets for the
concepts proposed in this paper can, for example,
be found in biology or in medicine. For the latter,
spatio-temporal data may describe recurring se-
quences which may be the motion of an organ or
abnormal changes of an organ caused by an illness.
In biology, temporal image sequences can, amongst
others, be found in plant phenotyping where plants
or their roots are imaged on successive days of
growth [9]. Furthermore, phenotyping of animals
is currently still based on the manual analysis of
experts [4]. An analysis of a sequence of 3D scans of
an animal may be a future alternative as it provides
spatio-temporal data showing the animal as well as
its movements.
For any analysis of the captured object this object
first needs to be detected in the data and processed
to compute a suitable representation. Well known
representations are Reeb graphs (as described in [1]
and skeletons as for example a medial axis or a more
sophisticated 3D Curve Skeleton (as described in
[2]). For the computation of these representations a
binary segmentation of the input data into foreground
regions, representing the object to be analysed, and
background regions, showing the rest of the data
that is not in focus, is needed. However, such a
segmentation may introduce artefacts that falsify the
representation. We encountered this problem in [10],
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where we applied knowledge about the structure
to be represented and post-processing methods
as for example graph pruning in order to reduce
segmentation artefacts kept in the representation.
Werghi et al. applied a similar approach in [20].
They handle noise in the input data by knowledge
about the structure to be represented and in this way
detecting and discarding improper configurations in
the representation.
In this paper we discuss general methods to improve
representations of data based on a potentially flawed
segmentation. In this context we discuss the use
of co-analysis for classes of data as well as the
application of co-analysis and co-representation for
changing, respectively developing shapes. Mitra
[15] provides a detailed survey on co-analysis and
co-segmentation. Promising methods of co-analysis
have for example been presented by Golovinskiy et
al. in [6] and van Kaick et al. in [18].
Additionally to co-analysis we propose two novel
skeleton based representations: A graph representa-
tion using skeletons together with local features and
a model based representation that is derived using
model fitting to an initial skeleton.

The rest of the paper is structured as follows:
Section 2 proposes the use of local features for
the computation of critical points while Section 3
bases this computation on a function according to
time. The analysis of a whole class of data using
so called co-analysis and the representation of such
classes using a co-representation is discussed in
Section 4. Section 5 introduces extensions to known
skeletons that improve their representational power
and Section 6 concludes the paper.

2. Critical Points Based on Local Features

Graph based representations or skeletons rely
on segmented input data. Thus, for the input
data a binary segmentation - a separation between
background (not of interest) and foreground (to be
represented) - needs to be known. However, such a
pre-processing of the data may introduce artefacts.
Representations based on flawed segmented data can
be improved using post-processing steps that detect
and correct spurious parts of the representation.
For graph representations a simple graph pruning
may for example be applied. However, graph
pruning may not remove all spurious branches (false
negatives) or discard true branches (false positives).

(a) center pixel and
neighbourhood

(b) comparison with
neighbourhood

(c) neighbourhood pat-
tern

(d) LBP operator for
center pixel c

Figure 1: Simple LBP computation.

A graph representation based on segmented data can
only provide reliable results for a correct segmenta-
tion.
Instead of applying post-processing techniques to
reduce artefacts introduced by the segmentation we
propose to base the representation on the original
unsegmented data. For a Reeb graph representation
critical points may be computed on the original data
instead of the segmented data. Local Binary Patterns
(LBPs) [17] are considered as one method to derive
such critical points on an unsegmented image.

LBPs were introduced as as a tool of texture
classification and work (in their simplest version) as
shown in Figure 1: The center pixel is compared to
its neighbourhood. The relations of this comparison
are stored as a bit pattern: In case a neighbouring
pixel is larger or equal the center pixel its bit is set
to 1 otherwise to 0. The neighbourhood pattern is
encoded as the position of each neighbourhood pixel
in a binary data item [16].
Critical points on a shape according to a Morse
function build the nodes in a Reeb graph. Such
critical points (in 2D) are minimum, maximum and
saddle points. The configuration of the neighbour-
hood around a pixel encodes the local topology.
The region may be a (local) maximum (the bit
pattern contains only 0s), a (local) minimum (the bit
pattern contains only 1s), a plateau (the bit pattern
contains only 1s, but all pixels of the region have
the same gray value), a slope (the bit pattern of the
region contains one connected component of 1s and
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(a) maximum (b) minimum (c) plateau

(d) slope (e) saddle

Figure 2: Neighbourhood configuration detected by
LBPS. The red circle indicates the neighbourhood
used in the LBP computation for the pixel at the po-
sition of the center of the circle.

one connected component of 0s) or a saddle point
otherwise [7]. Figure 2 shows examples for all these
region configurations that may be encoded by LBPs.

The original LBP operator was defined for the
spatial domain only. Similar to the work of Laptev
who extended the Harris and Förstner interest point
operator to space-time interest points in [12] and
[11] the LBP description of local structures was
extended in time to describe local features in the
spatio-temporal domain [21]. The so called Volume
Local Binary Pattern (VLBP) represents dynamic
textures as volumes of (X,Y, T ), where X and
Y are the spatial coordinates, T , as a temporal
coordinate, represents points in time. A sequence of
dynamic textures over time is therefore represented
by a VLBP.

Reeb graphs are derived on binary segmented
2D or 3D data using an analysis based on a Morse
function as for example a height function. In order
to analyse unsegmented data local descriptors as
for example LBPs may be used as Morse function,
provided that the descriptors satisfy the necessary
conditions, analog to the conditions of Morse
functions [3].
Despite the idea to avoid segmentation as a pre-
processing step, this approach works on a segmented
image as a first input. However, the critical points are
computed on the unsegmented data, the segmented
image is only needed to guide the computation of

the critical points as follows:
On the initial segmentation the medial axis is
computed for the foreground region. The medial
axis is formed by the centers of maximal circles that
cover the shape completely. Therefore, the medial
axis implicitly provides a measure of width, as for
each point along the medial axis the radius of the
inscribed maximal circle (the distance to the bound-
ary) is known [13]. Along this skeleton LBPs are
computed for each skeleton pixel. The LBP kernel
size is thereby determined by the radius associated
with the individual skeleton pixels. Minima, maxima
and saddle points that are encountered in this way
may then be used as critical points (nodes) in a
graph, connections of these nodes can be derived
from the skeleton.
In case the position of the skeleton, respectively
the critical points, can be estimated (for example in
video data based on the position in a previous frame)
the segmentation as well as the initial skeleton do
not need to be recomputed. Rather this known ap-
proximation can be reused to guide the computation
of the critical points (in the next frame).

3. Time as Morse Function

Analysing data over time adds one dimension to
the original data domain. Edelsbrunner et al. intro-
duced time varying Reeb graphs in [5]. They present
an algorithm to maintain Reeb graphs through time
and to store the graph’s evolution.
For 2D images of shapes that change over time we
can augment the spatial information of the pixels
with temporal information by storing as a third coor-
dinate the point in time the according pixel was first

Figure 3: Spatial information of a growing root aug-
mented with temporal information: the image shows
a segmented lupine root, the colors indicate measure-
ment time. Image courtesy of Leitner et al. [14]
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encountered. Shapes that grow are imaged on sev-
eral points of time through this development process.
After an alignment of the acquired data according to
the last acquisition (the most mature one), parts of
the growing shape are labeled according to the time
they were first encountered. This representation aims
specifically at the representation of growth, temporal
deformations are not represented. Figure 3 acquired
by Leitner et al. [14] shows an example for such a
dataset: individual parts of the root are labeled ac-
cording to the time these parts were first observed.
For such a configuration a height function along the
temporal axis (time function) may be used to extract
level sets. These level sets represent the evolution of
the shape over time. Figure 4 illustrates the proposed
approach: Figure 4a shows the augmented spatial in-
formation, Figure 4b shows level sets of this data ac-
cording to time.
A Reeb graph can be built, as the time is used equally
to a height function as Morse function. In order to
build the Reeb graph the individual components are
connected by tracing through the spatial information
from one time step to the next.

4. Co-Analysis and Co-Representation

For the recognition and representation of structure
methods based not only on a single object, but on a
class of similar objects may be used. This so called
co-analysis focuses on a common structure of all
objects in the class and on relations between parts
of the object and thereby reduces influence of noise
in the capturing of a single image. Co-analysis may
further reduce the time needed for a training phase,
as objects of a class are simultaneously analysed in
co-analysis [19].
To perform co-analysis an alignment of the indi-
vidual data samples is needed first. Van Kaick et
al. for example in [18] assume the shapes to be
upright-oriented and partitioned into meaningful
parts. Golovinskiy et al. in [6] base the shape
alignment on the alignment of axis according to
a principal component analysis. We propose to
align 2D or 3D image data samples using standard
representations as for example skeletons or Reeb
graphs. Other than the alignment according to an
axis, skeletons and graphs allow for an alignment of
data samples of articulated or varying objects.
Spatio-temporal data may create classes of images
as for example in biological datasets a growing
organism may be imaged over time. Therefore, the

(a) spatial information augmented with temporal
information

(b) level sets with respect to time

Figure 4: Augmenting the spatial information of a
growing structure with temporal information adds
one dimension. A height function along this dimen-
sion provides a Morse function with respect to time.

data consists of sets of related data samples that
have certain features in common. An analysis of
a collection of data samples is called co-analysis
[15] . The aim of this procedure is to label the
same entities with the same labels although they
may appear in variations. Considering for example
drinking glasses: in co-analysis a collection of
different glasses is used. All glasses have a body that
may hold liquids, some of them may have a stem.
Independent on the actual design of the stem (long
and thin or short and decorated) this part of the glass
should always be detected as stem.
Further knowledge based on co-analysis of a class of
data can be used to verify decisions for a single data
sample.
Considering the mentioned biological applications,
co-analysis of data samples could for example be
beneficial in the area of plant phenotyping. Here
classes of images are formed as images of several
different plants (therefore potentially different
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(a) day 12 (b) day 16 (c) day 20

Figure 5: Application for co-analysis: root develop-
ment. Small branches (indicated by red arrows) may
only represent noise. An image of a later day can ver-
ify a decision - in this case true branches (indicated
by the green tickmark).

phenotypes) exits for the same genotype. Moreover,
the plants are imaged on successive days of growth.
The temporal stack of images of a single plant can
be seen as a class of images. Analysis decisions
are not taken for a single image but considering the
whole class. Artefacts may therefore be detected and
reduced as decisions for a single image are verified
considering the remaining images of the class.

After an initial segmentation and alignment of
the images, representational decisions, for example
whether a branch is a spurious branch or not, can
be verified using an image acquired at a later time.
Figure 5 shows such a temporal sequence of root
images. In Figure 5a and 5b two small branches
that may be identified as noise in a single image
are indicated by red arrows. The later images in
Figure 5b and 5c identify these small branches as
true branches (indicated by the green tickmark). In
this case the small branches would be kept in the
final representations.

Co-analysis may further be used in the devel-
opment of representations of a whole class of data
(co-representation) instead of a single data sample.
The reduction of a class of data to its characteristic
properties provides a general representation of the
whole class of data. Such a co-representation can

for example be given by a graph that represents the
properties valid for the whole class of data. For
shape representation geometric graphs may be used.
Especially when analysing and representing the
content of an image, a node may be assigned to a
pixel, therefore geometry is implicitly represented.
In order to use a graph as a co-representation
of a class of data, we may represent each data
sample using a geometric graph. However, for the
general graph derived as a co-representation the
graphs representing single data samples may be
analysed for common topological structures which
are represented in the final co-representation graph.
Geometric properties are in this case disregarded in
the co-representation.
However, for a developing shape the representation
of the latest acquisition may be taken as the co-
representation for the whole sequence. In this way
geometric properties can be kept in the representa-
tion and further data samples can be mapped to the
co-representation.

5. Extensions to Skeletons

Skeletons (medial axes) given as a thinned version
of a shape with equal distance to the boundary, are
widely used shape descriptors. In order to extend
the definition and representational power of such
a common skeleton, we propose a combination of
skeletons and model fitting.

The contemplated approach works as follows:

1. The medial axis is computed for the shape first.
On the obtained skeleton a constrained distance
transform is performed - the geodesic distance
along the skeleton is computed in this way.

2. To allow for the fitting of simple models, the
axis needs to be straightened first. Therefore,
the medial axis is decomposed into single curve
segments at branching points. For each pixel
along the skeleton the distance to the starting
point of the segment (and further to a starting
point of the whole skeleton) as well as the dis-
tance to the boundary (the radius of the maximal
inscribed circle at this position) are known.

3. Simple models as a parabola, an ellipse, a cylin-
der or similar (higher order e.g. super-quadrics)
models can be fitted to the transformed data.
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Figure 6: Example parabola, together with focus f
and directrix d.

4. Fitted models may further be back-projected to
the original domain.

We describe the process of model fitting in more
detail using a parabola:

A parabola is defined as the locus of points
equidistant from one point (the focus) and one line
(the directrix). Figure 6 shows an example.
The straightened skeleton serves as the axis of
symmetry of the parabola to be found. In order to fit
this parabola to the data points two positions along
the axis of symmetry need to be determined:

a. position f along the axis: position of the focus

b. position d along the axis: position of the direc-
trix

For any point p = (x, y) of the parabola the follow-
ing equation holds:

√
x2 + (f − y)2 = |d− y| (1)

Reformulating equation 1 yields the dependency of x
from y as follows:

x(y)2 = (d− f)(d+ f − 2y) (2)

We determine f and d by minimizing the sum of
squared errors between the actual measured values
x2i (xi corresponds to the radius stored with each
skeleton pixel) and the value x(yi)2 given by a model
parabola as formulated in equation 2, thus determine
the parameters of an optimal fitted parabola.

Skeletons enhanced in this way may amongst
others be used to:

• detect artefacts in an image segmentation;

• segment an object into meaningful parts based
on fitted models;

• represent a particular shape or its properties us-
ing the parameters of the fitted model.

Applications for the above mentioned enhanced
skeletons can for example be found in the analy-
sis of biological data: Roots due to their elongated
shape and narrow root tip can be approximated by a
parabola. The parabola model may be used to im-
prove the segmentation of an image into root region
an background. Such a segmentation tends to intro-
duce artefacts due to for example root hairs that fal-
sify the segmented regions. Figure 7 illustrates an
example of a parabola fitted to a root branch, accord-
ing to the described approach. Additionally, to an
improvement of the segmentation, the parabola pa-
rameters themselves may be used to describe the root
and to model its growth.
Another application for enhanced skeletons is pre-
sented by the segmentation of 3D objects into rigid

Figure 7: Root segment straightened according to a
medial axis and parabola model fitted to the root tip
(illustrative model).
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Figure 8: Representation of rigid parts of a horse us-
ing fitted ellipses (illustrative model).

parts. Instead of basing this segmentation on a sim-
ple medial axis alone, a 3D model of for example a
horse can be segmented into rigid parts, by fitting el-
lipsoids to the individual parts. Elongated shapes as
for example the torso of a horse may be better repre-
sented by ellipsoids than by spheres which are fitted
for the medial axis representation. Moreover, the fo-
cal points of the fitted ellipsoids can be overlapped in
the individual rigid parts, thereby representing con-
nections between parts (in the horse model case these
connections are the joints). Figure 8 illustrates this
example.

6. Conclusion

The presented approaches are novel concepts and
extensions to the current state-of-the-art. Common
approaches for the extraction and representation of
structure (for example skeletons and Reeb graphs)
are sensitive to noise and depend on the quality of
the binary segmented input image. The concepts in-
troduced in this paper aim at decreasing this sensitiv-
ity towards noise.
An initial segmentation and an initial skeleton rep-
resentation may be improved by considering local
features along the skeleton or by model fitting using
straight segments of the skeleton as axis of symme-
try of a model. Both approaches in the end provide
compact representations of the input data. A poten-
tially noise flawed segmentation can be used as an
initial input as the contemplated approaches can cope
with a rough segmentation - while a representation is
found, the segmentation may simultaneously be im-
proved.
We further extend the known co-analysis to a more
general approach by aligning several data samples
according to skeletons or graphs instead of an axis.
Therefore, the limitation of the alignment to non-

articulated objects only is revoked. Based on graphs
or skeletons objects in varying poses may then be
used in the co-analysis by aligning their rigid parts.
For well aligned data samples over time we propose
to add the temporal information as an additional di-
mension. A Reeb graph representation may in this
case be built by using a height function along the
time axis and by tracing back the evolution of the
connected components.
These separate ideas may be joined together to im-
prove representations of structures in spatio-temporal
data: Robust skeleton representations may be used
as an alignment of several data samples respectively
their contained structure. Such aligned data sam-
ples in turn build the input for a Reeb graph repre-
sentation over time, representing temporal changes
in the structure. As well as for co-analysis which
may provide a co-representation - a representation
of a whole class of objects. For comparison of data
samples, new samples may then be mapped to the
co-representation and compared with the class. Fur-
thermore, an initial representation may be improved
by fitting a model to it. This model may even be back
projected to the input data thereby also improving the
segmentation.
Future work includes the implementation of these
presented ideas and evaluation on (for example the
mentioned biological roots and horses) data sets. An
investigation of further approaches to overcome the
discussed open problems in the recognition and rep-
resentation of structures in spatio-temporal data are
as well subject to future work.
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Abstract. Document image retrieval is a method
used for searching through unsorted images of doc-
uments to find the ones which are relevant for a
given task. This paper presents an approach towards
document image retrieval using handwritten signa-
tures as queries. For this purpose a matching algo-
rithm is combined with a pre-filtering method that
minimizes the search space. The matching is done
using four distance measures which are computed
from a Thin-Plate Spline (TPS) transformation and
the pre-filtering is based on the shape context dis-
tance. The approach is evaluated on a subset of the
GPDS960signature database where it is shown that
the proposed pre-filtering step results in a significant
speed-up factor of 16, as well as slightly better re-
trieval performance.

1. Introduction

To analyse libraries of unsorted documents it is
helpful to be able to automatically find documents
which meet certain criteria (e.g. only documents with
handwritten text). In this context there is also inter-
est in finding documents which were authored or au-
thorized by a specific person. An effective means
for doing this is the use of signature matching tech-
niques [1, 17].

There is a distinction between offline and online
signature matching, where online means that the sig-
nature is captured using an electronic device that also
captures temporal information about the stroke se-
quence. In offline signature matching, on the other
hand, no electronic device is needed to record the
stroke sequence, however, only static information is
available for matching [1].

Signature matching is used in areas such as ver-
ification [15], identification [13] and retrieval [12].
While signature verification deals with confirming

the authenticity of a signature and signature identi-
fication tries to find the corresponding author [11],
signature retrieval aims to find document images that
contain signatures from a specific individual [12].
The differences between the three categories are il-
lustrated in Figure 1. It shows the respective prob-
lems that have to be solved for signature verification
(left), identification (middle) and retrieval (right).

An early signature retrieval approach by Han and
Sethi [8] uses string representations which encode
the order of occurrences of events such as branch and
crossing points in x and y direction. They compute
the Longest Common Subsequence (LCS) between
the strings which represent the query signature and
the strings of the signature images in the data set in
order to find the best matches.

Srihari et al. [14] use Gradient, Structural and
Concavity (GSC) features to capture the image char-
acteristics at local, intermediate and large scales. The
resulting binary feature vector is used for signature
retrieval by computing distances via a normalized
correlation similarity measure.

Zhu et al. [17] propose a signature detection and
matching system for document image retrieval that
uses analysis of salient structures to locate the sig-
natures in the documents and performs matching us-
ing a combination of four distance measures. It is
evaluated on the Tobacco-800 database [9] where it
achieves a Mean Average Precision (MAP) of 90.5%
and a Mean R-Precision (MRP) of 86.8%.

Belongie et al. [2] propose the shape context de-
scriptor and the related shape context distance to de-
scribe the similarity of shapes and thus help their
matching. Lin and Chang [10] extend this method
with an indexing approach to minimize the search
space which yields a speed-up of factor 5.

The main contribution of this paper is the combi-
nation of a Thin-Plate Spline (TPS) approach [17]
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Figure 1. An illustration of the differences between the three areas of application for signature matching. Figure inspired
by [11].

with a shape-context-based pre-filtering step to re-
duce the runtime. Due to the computational load of
the approach and the fact that the dissimilarity mea-
sures have to be computed for the entire test set for
each new query signature, since they depend on the
transformations between the query signature and the
candidate signatures, the approach becomes infeasi-
ble for large datasets (see runtime estimation in Ta-
ble 1). The runtime reduction achieved by the hybrid
approach proposed in this paper therefore extends the
retrieval system such that it can be used for large sets
of signature images.

A complete document image retrieval system also
requires the localization of the signature in the docu-
ment and its segmentation. This paper, however, only
deals with the matching and retrieval part of such a
system.

The outline of this paper is as follows. Section 2
describes our document image retrieval algorithm,
Section 3 presents the results and their evaluation,
and Section 4 concludes the paper.

2. Methodology

The signature retrieval system proposed in this pa-
per is mainly based on the methods presented by
Zhu et al. [17] but also introduces modifications that
result in reduced computational time and increased
matching performance. The main difference is the
use of a shape-context-based pre-filtering step that
reduces the computational time on a set of 960 sig-
nature images by a factor of 16.

First the data are preprocessed similar to the ap-
proach of Lin and Chang [10]. In this step the sig-

nature images are rotated such that the major axis of
the Best-Fit Ellipse (BFE) is aligned with the hori-
zontal axis. Then the image is trimmed to fit the size
of the signature. Subsequently the image is resized
to normalize the length of the diagonal. The point
set which represents the signature in the remainder of
the algorithm is created by randomly sampling points
on the abstract representation of the signature image
which is obtained through Canny edge detection [6]
or skeletonization (see Section 2.4). An example of
the preprocessing steps is given in Figure 2.

Once the data are normalized, the shape context
descriptor [2] is computed for each point set which
is used to compute the shape context distance to the
remaining signature images in the test set. This dis-
tance is used in the following pre-filtering step to de-
cide whether the image is processed further or not. In
the former case the TPS transformations which best
map the point set to the point sets of the other im-
ages are computed. Each TPS transformation is then
used to compute four distance measures which ac-
cumulate to the overall distance of the signature to
another in the test set through a weighted sum. The
weights that are used to combine the distance mea-
sures are obtained using Linear Discriminant Analy-
sis (LDA). The retrieval is finally performed by rank-
ing the shape context distances of the filtered images
and the combined distance measures of the remain-
ing images. The workflow of the signature retrieval
system is illustrated in Figure 3 where the second row
depicts the steps that are only performed for the sig-
natures that remain after the pre-filtering step.
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(e)(d)(c)

(b)(a)

Figure 2. (a) Original signature image with major (red) and minor (green) axis of the BFE. (b) The same image after
size and orientation normalization. (c) The skeleton of the normalized image. (d) The edges of the normalized image.
(e) Points sampled on the edge image.

image preprocessing & sampling shape context descriptor

transformation

retrieval

.

.

.

1.

2.

3.

distance measures

Figure 3. The workflow of the signature retrieval system. The steps in the second row are only performed for the signatures
which remain after filtering. The results of the steps in both rows are combined in the retrieval step.

2.1. Thin-Plate Spline – Robust Point Matching
Algorithm

The transformation from one signature image to
another is computed using the Thin-Plate Spline –
Robust Point Matching (TPS–RPM) algorithm [7].
A TPS is able to model affine and non-rigid trans-
formations such that they can be separated [4]. It is
commonly used for describing flexible transforma-
tions [2] which is why it is also applied to handwrit-
ten character and signature matching.

The TPS transformation of a point set V in homo-
geneous coordinates is given as

f(V ) = V d+ Φw, (1)

with the TPS parameters d, w and the TPS kernel

matrix Φ. The results of this algorithm are illustrated
in Figure 4 using the point sets of two signatures.

(a) (b)

Figure 4. (a) The results of the TPS–RPM algorithm for
finding a transformation from point set V (green dots) to
X (blue circles). The transformed points f(V ) are shown
as red crosses. (b) The original signatures from which the
point sets are sampled together with the TPS transforma-
tion which is represented by a blue grid.
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2.2. Dissimilarity Measures

Once the transformation between the query signa-
ture and a candidate signature is known, we use it
to compute four distance measures as proposed by
Zhu et al. [17]; namely the bending energy Dbe, the
shape context distance Dsc, the anisotropic scaling
Das and the registration residual error distance Dre.
They are accumulated into the final distance D using
the weighted sum

D = wbeDbe + wscDsc + wasDas + wreDre, (2)

where the weights w are estimated via LDA on a ran-
dom subset of signature images that are not in the test
set [17].

2.2.1 Bending Energy

When a TPS is used as a transformation for two-
dimensional point matching, the amount of energy
that is necessary to deform it such that one point
cloud matches the other can be used as an indica-
tor for the quality of the match. This energy – the
so-called integral bending norm – is a measure pro-
posed by Bookstein [4] which relates to the amount
of non-affine deformation in the transformation. We
use the variant of this norm which was proposed by
Chui and Rangarajan [7] as

Dbe = λ · trace(w · Y >), (3)

where λ is the smoothness constraint, w is the TPS
parameter describing the non-affine part of the trans-
formation (see Equation 1) and Y is the transformed
point set V .

2.2.2 Shape Context

The shape context descriptor [2] is a rich descriptor
of the shape of a point set that describes the appear-
ance of the shape. It is computed for each point and
represented by a log-polar histogram of lengths and
orientations of connecting lines among the points in
the set. This representation effectively describes the
structural relation of one point to the other points in
the set and is therefore used to evaluate the quality of
a match.

This descriptor is used to compute the shape con-
text distance Dsc between a set P from a query sig-
nature with m points and a set Q from a candidate

signature with n points as stated in [2]:

Dsc(P,Q) =
1

m

∑

p∈P
arg min

q∈Q
C(f(p), q)

+
1

n

∑

q∈Q
arg min

p∈P
C(f(p), q), (4)

where f is the TPS transformation given in Equa-
tion 1 and C is the matching cost for two points, de-
fined using the χ2 test statistic:

C(p, q) =
1

2

K∑

k=1

[hp(k)− hq(k)]2

hp(k) + hq(k)
, (5)

where hp and hq are the shape context histograms of
points p and q, and k specifies the bin with a total
number of K bins.

2.2.3 Anisotropic Scaling

The anisotropic scaling is a ratio that measures the
isotropy of the scaling in the transformation. It is
computed directly from the affine transformation ma-
trix d (see Equation 1) and is defined in [17] as

Das = log
max(Sx, Sy)

min(Sx, Sy)
, (6)

where Sx, Sy are obtained by singular value decom-
position of d. Here Sx, Sy are the scaling factors of
the affine part of the TPS transformation. Thus Das

is 0 if there is only isotropic scaling in d (i.e. Sx =
Sy).

2.2.4 Registration Residual Error

The last distance measure proposed by Zhu et al. [17]
is the residual error of the estimated transformation.
It describes the quality of the matching by comput-
ing the sum of Euclidean distances between corre-
sponding points, normalized by the total number of
matches. For a matching assignment Mi it is defined
as

DH
re =

∑min(m,n)
i=1 ||f(pi)− qMi ||

min(m,n)
, (7)

where f is the TPS transformation given in Equa-
tion 1 and m,n are the sizes of point sets P and Q
respectively.

However, since this formula requires one-to-one
correspondences and the TPS–RPM algorithm yields
only soft matches (i.e. continuous values in the cor-
respondence matrix instead of binary ones) we use a
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different implementation that computes the registra-
tion residual error by weighting it with the matching
quality from the correspondence matrix of the TPS–
RPM algorithm. It is defined as

DW
re =

∑m
i=1

∑n
j=1Mij · ||f(pi)− qj ||

min(m,n)
. (8)

where M is the correspondence matrix of the TPS–
RPM algorithm.

2.3. Pre-Filtering

Since the dissimilarity measures are computed
from the transformation that best maps a query sig-
nature to a candidate signature, the time-consuming
TPS–RPM algorithm has to be computed for the en-
tire test set for each new query signature. Therefore
it is suggested in this paper to speed up the retrieval
process by first reducing the search space. This is
done by computing the shape context distance from
a query signature to all other signature images in
the test set similar to Equation 4 but without prior
computation of the transformation (i.e. f(p) = p).
The results are then sorted and the expensive TPS–
RPM algorithm and the dissimilarity measures are
computed for only 3% of the highest ranked signa-
tures. The remaining signatures are ranked according
to their shape context distance.

2.4. Hybrid Approach

Our experiments show that the shape-context-
based pre-filtering step achieves the best results using
skeleton images which can be explained by the fact
that edge images consist of two edges for each stroke
instead of one. Since the shape context descriptor
gives more importance to points in close proximity,
edge images add potential for noise by having points
sampled on both edges of a stroke. The dissimi-
larity measures on the other hand perform best on
Canny edges which matches the observations of Zhu
et al. [17]. Regarding the optimal number of sam-
ple points the best trade-off between retrieval perfor-
mance and runtime is achieved when sampling about
200 points for the dissimilarity measures and about
350 points for the pre-filtering step. Sampling more
points increases the retrieval performance, however,
the runtime increases exponentially. We therefore
suggest to use a hybrid approach which performs the
pre-filtering step on skeleton images and computes
the dissimilarity measures on edge images sampling
about 350 and 200 points respectively.

3. Results

The evaluation is done in Matlab on a subset of the
GPDS960signature database [3]. This database con-
tains binary images of 24 genuine signatures from
960 individuals. Since the computation of the TPS–
RPM algorithm and of the dissimilarity measures
takes about 2.6 seconds for a single comparison with-
out parallelization (i.e. about 16.6 hours for the eval-
uation of one query signature on the entire dataset
of 960 signers and 24 signatures) an evaluation on
the entire set is not feasible (see Table 1). The tests
in this section are therefore conducted on a subset
of 960 signature images. This set is assembled by
simply taking the first 8 signatures of the first 120
individuals in the GPDS960signature database. The
evaluation is parallelized on six cores to further re-
duce the runtime.

Method Test set Full set
without pre-filtering 17 days 11 years
with pre-filtering 1 day 2 years

Table 1. Comparison of estimated runtimes for a complete
evaluation on different sets using parallelization for speed-
up.

The performance of the document image retrieval
system is evaluated using the same measures as
in [17], namely Average Precision (AP) and R-
Precision (RP). The precision of a retrieval system
is computed as

precision =
# of relevant documents retrieved

# of documents retrieved
.

(9)
AP is the mean of the precisions at each rank that
adds another relevant document, with a precision of
zero for relevant documents that are not retrieved [5].
This means that the AP of a retrieval of a total of
3 relevant documents, where only 2 documents are
found at positions 1 and 5, is given as AP = (1/1 +
2/5 + 0)/3 = 46.7%. RP is the precision for retriev-
ing R documents where R is the number of relevant
documents for the given query. Thus the RP for the
example given above is RP = 1/3 = 33.3%. AP
rewards higher rankings of relevant documents and
penalizes that of irrelevant ones while RP ignores the
exact ranking of the results and is more useful when
a large amount of relevant documents is present in
the dataset [17].

All test runs are conducted using each signature
in the test set as query and removing it from the
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set for this run. The average of the results for each
query signature is then presented as the Mean Av-
erage Precision (MAP) and the Mean R-Precision
(MRP). Some of the results are also illustrated by
plotting the average recall at each rank. The recall
of a retrieval system is defined as

recall =
# of relevant documents retrieved

# of relevant documents
. (10)

3.1. Comparison with Zhu et al.

Since Zhu et al. [17] evaluate the dissimilarity
measures on a different dataset, namely the Tobacco-
800 [9] set which consists of real world documents
from US tobacco companies, their results cannot di-
rectly be compared to the results in this paper. For
this reason both the dissimilarity measures on their
own and the hybrid approach using the dissimilar-
ity measures with the pre-filtering step are evalu-
ated on the test set to see how they perform in com-
parison. Regarding the size of the dataset used by
Zhu et al. they state that Tobacco-800 contains 66
classes with 6-11 signatures each, which results in
396-726 signatures in total. Since 20% are used as
training data this leaves 317-581 signatures that are
left as test data. The test set used in their evalua-
tion is therefore smaller than our test set. The rea-
son why we evaluate our signature retrieval system
on a different set is that we do not have access to the
Tobacco-800 dataset.

The results in terms of MRP and MAP are visu-
alized in Figure 5 (a) and a comparison of the recall
of both methods at each rank is given in Figure 5 (b).
The exact values including the total runtime of the
experiments are shown in Table 2

Method MRP MAP Runtime
DMs 62.4% 66.9% 16.71 days
Hybrid (3%) 64.0% 67.8% 0.99 days
Hybrid (5%) 64.3% 68.2% 1.27 days

Table 2. Retrieval performances and runtime of the Dis-
similarity Measures (DMs) and the hybrid approach with
a reduced set size of 3% and 5%.

The results show that the hybrid approach with a
reduced set of 3% provides a speed-up of factor 16
on the test set and even achieves slightly better re-
trieval results in terms of MRP and MAP than the
dissimilarity measures on their own. It can be seen
in Figure 5 (b), however, that the hybrid approach
has a lower recall rate when about 20-80 signatures

are retrieved which means that the dissimilarity mea-
sures are more likely to rank relevant signatures at
these positions than the hybrid approach. This effect
occurs due to the reduced set which contains only
29 signatures in this case and can be reduced by in-
creasing its size. Using the hybrid approach with a
reduced set of 5% still provides a speed-up of fac-
tor 13 and achieves a 1.9 percentage points higher
MRP and a 1.3 percentage points higher MAP com-
pared to the dissimilarity measures.

3.2. Training Data

As mentioned in Section 2.2 the dissimilarity mea-
sures are combined using pre-computed weights,
however, they can also be combined without using
training data by normalizing each distance measure
with its standard deviation:

D =
Dbe

σbe
+
Dsc

σsc
+
Das

σas
+
Dre

σre
. (11)

This section evaluates the impact of using training
data on the retrieval performance. For this purpose
the hybrid approach with a reduced set of 3% and
the dissimilarity measures are both evaluated on the
test set with and without weights. The weights are
obtained using 25% of training data which are ran-
domly selected from the signatures that are not in the
test set. The actual trained weights that are used for
the comparison are shown in Table 3. The results of
this test in terms of MRP and MAP are shown in Fig-
ure 6 and Table 4.

wbe wsc was wre

52.99 0.1104 2.159 1,057

Table 3. Weights that are used to combine the dissimilarity
measures

Rates
with weights without weights

Hybrid DMs Hybrid DMs
MRP 64.0% 62.4% 63.7% 62.6%
MAP 67.8% 66.9% 67.7% 66.9%

Table 4. Retrieval performances with and without weights
for the hybrid approach with a reduced set of 3% and the
Dissimilarity Measures (DMs).

It can be seen that the hybrid approach achieves
better results with weights than without weights. The
results also show that it is possible to obtain only
slightly lower performance rates without using any

62



0 50 100 150 200 250 300 350
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of signatures retrieved

Re
ca

ll
 

 
Hybrid
DMs

DMs
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Hybrid

Re
tr

ie
va

l p
er

fo
rm

an
ce

 

 
MRP
MAP

(a) (b)

Figure 5. The results (a) in terms of MRP and MAP and (b) the average recall of the hybrid approach with a reduced set
size of 3% (red) and the dissimilarity measures (blue).
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Figure 6. The retrieval performances in terms of MRP and
MAP (a) with weights and (b) without weights for the hy-
brid approach with a reduced set of 3% and the dissimi-
larity measures.

training data than with 25% training data. To be pre-
cise, the MRP and MAP of the hybrid approach with
weights are only 0.3 and 0.1 percentage points higher
than without weights.

The results of the dissimilarity measures show
even better performance without using weights than
the hybrid approach. They achieve a 0.2 percentage
points higher MRP and the same MAP without train-
ing data as with 25% training data. These results sug-
gest that it is not mandatory for the dissimilarity mea-
sures and the hybrid approach to use training data
since it reduces the size of the test set. However, the
GPDS960signature database is several times larger
than our test set which means that enough training

data is available. The results in this paper are there-
fore computed using weights.

3.3. Single Distances

In this section we give an overview of the perfor-
mance of single distances similar to Zhu et al. [17].
The results for the dissimilarity measures and the hy-
brid approach using single distances on their own are
presented in Figure 7 and Table 5.

Distance
DMs Hybrid (3%)

MRP MAP MRP MAP
Dbe 23.9% 25.9% 56.7% 60.5%
Dsc 45.3% 48.8% 55.0% 59.5%
Das 11.0% 13.1% 36.9% 40.5%
Dre 33.0% 34.8% 59.9% 63.8%

Table 5. Retrieval performances of single distances for the
Dissimilarity Measures (DMs) and the hybrid approach
with a reduced set of 3%.

Firstly it can be seen that the order in terms of
retrieval performance is different for the two ap-
proaches. While for the dissimilarity measures the
shape context distance (Dsc) performs best, followed
by the registration residual error (Dre), the bending
energy (Dbe) and the anisotropic scaling (Das), it is
Dre which performs best for the hybrid approach fol-
lowed by Dbe, Dsc and Das. The only similarity
here is that Das performs worst for both approaches.
Comparing the results of the dissimilarity measures
to those of Zhu et al., it is also worth noting that
Dre and Das swapped their position due to the per-
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Figure 7. The retrieval performance of single distances in terms of MRP and MAP for (a) the dissimilarity measures and
(b) the hybrid approach with a reduced set of 3%.

formance gain from using the weighted registration
residual error implementation (DW

re ).
Secondly the results show that the retrieval per-

formance for single distances is significantly higher
(i.e. up to 34.6 percentage points for Dbe) for the
hybrid approach than for the dissimilarity measures.
This can be explained by the fact that each distance
profits from the pre-filtering step used in the hybrid
approach, thus resulting in a better retrieval perfor-
mance for each distance on its own.

4. Conclusion

In this paper a hybrid approach is proposed that
combines a state-of-the-art document image retrieval
method with a pre-filtering step. The proposed
method first reduces the search space by filtering
the test set based on the shape context distance. It
then estimates the transformation from a query sig-
nature to a candidate using the TPS–RPM algorithm
and uses this transformation to compute four dissim-
ilarity measures which are combined to a final dis-
tance. The weights for combining the dissimilarity
measures are estimated via LDA.

We show that the pre-filtering brings a significant
speed-up while providing slightly better retrieval re-
sults than the dissimilarity measures on their own.
The reason why the shape context distance is used
to estimate correspondences is that after the normal-
ization of the images in the preprocessing step simi-
lar signatures have a low shape context distance even

without knowing the transformation between them.
Additional evaluations demonstrated that the use

of training data has only a small effect on the retrieval
performance which means that it is not mandatory to
train the weights of the signature retrieval system. Fi-
nally, the comparison of the performance of single
distance measures showed that each distance mea-
sure benefits from the pre-filtering step in the hybrid
approach, thus achieving significantly better results
than without the pre-filtering step.

Future work includes signature detection and pre-
processing elements such as printed text removal and
filtering of noise. If the system is extended to docu-
ment image retrieval by adding a signature localiza-
tion it is also recommendable to improve the TPS–
RPM algorithm to support outlier handling in both
point sets as proposed by [16] since real world doc-
uments contain more noise than the binarized signa-
ture images within the GPDS960signature database.
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Abstract. Symbol segmentation is a critical part of
handwriting recognition. Any mistake done in this
step is propagating further through the recognition
pipeline. It forces researchers to consider methods
generating multiple hypotheses for symbol segmenta-
tion – over-segmentation. Simple approaches which
takes all reasonable combinations of strokes are ap-
plied very often, because they allow to achieve high
recall rates very easily. However, they generate too
much hypotheses. It makes a recognizer considerably
slow. This paper presents our experimentation with
an alternative method based on a single linkage ag-
glomerative clustering of strokes with trainable dis-
tance metric. We embed the method into the state-
of-the-art recognizer for on-line sketched diagrams.
We show that it results in a decrease in the number of
generated hypotheses while still reaching high recall
rates. A problem emerges, since the number of bad
hypotheses is still significantly higher than the num-
ber of symbols and it leads to unbalanced training
datasets. To deal with it, we propose to train sym-
bol classifiers with synthesized artificial samples. We
show that the combination of these two improvements
make the recognizer significantly faster and very pre-
cise.

1. Introduction

Free hand writing and especially drawing are very
natural ways how people express their thoughts. De-
vices allowing users to write and draw with a stylus
directly on the surface of a displaying unit became
very common. This functionality is in tablets, tablet
PCs, or smart white boards. There is a great interest
in systems capable to recognize this so called ink in-
put. It is also called an on-line input and it is consid-

ered to be a sequence of handwritten strokes, where
a stroke is a sequence of points captured by a device.
Every point is always defined by its coordinates in
the plane (drawing canvas). Additional data like a
time stamp and a pressure value is usually provided
as well. An output of a recognizer is a formal de-
scription of the input.

The research in handwritten document analysis
and processing has moved from recognition of plain
text to recognition of more structured inputs such
as mathematical formulas, chemical formulas, mu-
sic scores, or diagrams. Several recognizers of e.g.
mathematical formulas with a good precision were
presented in recent years [1, 9, 14]. Moreover, there
is a contest in recognition of mathematical expres-
sions [12]. In contrast, availability of diagram rec-
ognizers is still limited. The reason might be that
there exists a vast of different diagrammatic domains,
some of them not being well specified as mathemat-
ical formulas. However, there has been an effort to
develop recognizers for electric circuits [8], chemi-
cal drawings [13], or flowcharts [5].

Although we showed that there exist numerous
recognition systems specialized on various domains,
they all face a common problem of symbols identi-
fication. Symbol segmentation is a crucial part of
handwriting recognition where symbols are located
in the input so they can be classified later. Ideally,
the segmentation output would be disjoint subsets
of strokes covering all the strokes. However, the
segmentation can be barely done properly without
knowledge of the whole structure. In practice, it is
not wise to make hard decisions in this early step
of the pipeline. A better approach is to perform so
called over-segmentation. It supplies a larger num-
ber of subsets which typically share some strokes.
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The final decision, which subsets fits the structure
of the input diagram best, is left to the later phases
performed by a structural analyzer.

It is important to achieve a high recall rate by
the segmentation, which means that there are sub-
sets of strokes representing ideally all of the sym-
bols. Usually, simple over-segmentation methods
based on intuitive assumptions that symbols com-
prise of strokes which are spatially and temporarily
close are used. It considers all possible sequences of
strokes up to some size. The segments are created
iteratively and their number is limited by a maximal
number of strokes and also by thresholds saying what
is the maximal allowed distance or time difference
between strokes in a segment. Variants of described
approach are used in all the systems we introduced.
Although it can achieve a high recall rate, it usually
induces a very poor precision, because it simply gen-
erate too many bad hypotheses. Their consideration
followed by rejection makes the whole recognition
process time consuming.

We designed a diagram recognition system which
uses exactly this approach to achieve the over-
segmentation [4]. In this paper, we investigate differ-
ent options which would allow to achieve still high
recall rates and generate significantly less segmenta-
tion hypotheses and thus to increase the precision.
Delaye and Lee [7] showed that objects of inter-
est may be found using Single-Linkage Agglomer-
ative Clustering (SLAC). It is a hierarchical bottom-
up clustering where two closest clusters are merged
together in each step until there is only one cluster
remaining. Singleton clusters consisting of a single
stroke are created first and bigger clusters are created
iteratively. A link is created at each merging step and
it contains information about two clusters it links and
a distance between them. The resulting tree structure
is called dendrogram and we can get the desired clus-
ters by defining a suitable threshold to cut the tree.
For illustration see Figure 1. In case of single-linkage
the distance between two clusters is given by the dis-
tance between their two closest elements. The tricky
part is to find a suitable measure defining a distance
between two strokes. The authors use a set of simple
features which basically express differences in geo-
metric, spatial, and temporal characteristics of two
strokes. The distance between two strokes is given
by a weighted sum of these features. Obviously, each
feature has different importance and thus it is neces-
sary to find a suitable weights. They proposed an

algorithm which is able to train the weights auto-
matically from annotated data. The algorithm finds
the best threshold to cut the dendrogram as well.
They tested the whole approach on several domains
and showed that this approach can find well defined
symbols in flowcharts (FC), finite automata (FA), or
mathematical expressions as well as loosely defined
text blocks and figures in free hand sketches.

Figure 1: Illustrative example of a dendrogram and
its cutting.

Delaye [6] later tried to classify the segmented
clusters into corresponding symbol classes. He up-
graded the proposed segmentation tool into a dia-
gram recognizer. It is based on Conditional Ran-
dom Fields (CRF), where the created clusters rep-
resent nodes of the graph. The author creates hi-
erarchical model by applying several values of the
threshold. The created graphs have a tree structure
and thus the problem can be solved efficiently by the
Belief Propagation algorithm. It makes the system
extremely fast. However, it is a purely statistical ap-
proach which gives no further information about the
diagram structure and it may produce inconsistent la-
belings.

There exist benchmark databases for FC [2] and
FA [4] domains. We embed the SLAC method pro-
posed by Delaye and Lee into our recognition sys-
tem and compare the new results with our previous
version of the system. We compare it with other two
systems – the statistical recognizer by Delaye [6] and
the grammar base recognizer by Carton e al. [5]. Ex-
amples of diagrams from the two mentioned database
are shown in Figure 2.

The rest of the paper is organized as follows. We
briefly describe our diagram recognizer in Section 2.
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(a) (b)

Figure 2: Examples of diagrams from the two domains – (a) finite automata (FA) and (b) flowcharts (FC).

The proposed improvements are presented in Sec-
tion 3. Experiments with the improved recognizer
follow in Section 4. Finally, we make a conclusion
in Section 5.

2. Diagram Recognition System

We have developed a recognition system for on-
line sketched diagrams [4]. It is a general system
so far adopted for domains of flowcharts and finite
automata. The system consists of several steps of
the recognition pipeline, which is depicted in Fig-
ure 3. The first one is the input normalization where
the points are resampled to remove those points that
are too close to each other. Text strokes are removed
from the input by the text separator, which is based
on the algorithm for mode detection by Phan and
Nakagawa [16]. The removed text strokes are go-
ing to be put back later when the diagram structure is
recognized to form text blocks attached to symbols.
Next step is the symbols candidates detection. It is
done by over-segmentation and classification of the
created groups of strokes. Symbols are divided into
two types: uniform symbols with relatively stable ap-
pearance and non-uniform arrows with significantly
varying appearance. The recognition is done in two
steps. Uniform symbols are found first and arrows
are detected afterwards as connectors linking pairs
of uniform symbols. Uniform symbols are classified
by an SVM classifier based on the trajectory based
normalization and direction features proposed by Liu
and Zhou [10]. We detect arrows with recently pro-
posed arrow detector based on LSTM RNN classi-
fier [3]. The core of the recognition pipeline is the
structural analysis phase. Individual symbol candi-
dates have a score assigned saying how good the hy-

pothesis is without considering any context. Some of
the symbol candidates are in relations. Binary pred-
icates are defined to indicate if two symbol candi-
dates can coexist in the solution together or if one
symbol candidate can be a part of the solution with-
out the other one, etc. The selection of the best sub-
set of symbol candidates is cast as an optimization
problem where the goal is to maximize the sum of
scores of selected symbol candidates that fulfil all
the constraints given by the predicates. We model
this framework as a pairwise max-sum labeling prob-
lem. Finally, remaining unused text strokes form text
block which can be easily found with the knowledge
of the diagram structure.

3. Proposed System Improvements

We propose two improvements of the recognition
system. First, we replace the naive strokes grouping
by the SLAC. Second, we improve the symbol clas-
sifiers by using synthesized samples.

3.1. Over-segmentation Improvement

The old method works with an important assump-
tion that symbols are formed of strokes which are
spatially and temporarily close. Strokes grouping
is done iteratively. Within the first iteration, every
single stroke forms a subset of size 1. Further, sub-
sets of size k are created by adding a single spatially
and temporarily close stroke to subsets of size k− 1.
Maximal size of a strokes group k must be derived
from knowledge of a domain and it affects a number
of generated groups. Threshold used to determine if
two strokes are spatially and temporarily close must
be derived form data. The advantage of this approach
is its simplicity and possibility to achieve 100 % re-
call using the right parameters. The disadvantage is
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Figure 3: The pipeline of our recognition system.

the fact that the method considers too many combi-
nations of strokes, which are not important, because
they can never form a symbol. This inefficiency led
us into experimentation with other possibilities.

Single-linkage clustering based on weighted com-
bination of several features with trainable parame-
ters proposed by Delaye and Lee [7] reaches very
high precision. Its advantage is that it uses more
features combined together and can express more
complex relations between strokes than just the Eu-
clidean distance. Another advantage is that single-
linkage is a fast clustering algorithm. Time com-
plexity is quadratic in the number of strokes. It is
only needed to compute distance between individ-
ual strokes once and then the distance between two
clusters is given by the distance of their two closest
strokes. We reimplemented the method and trained
the feature weights and the threshold as is described
in the work by Delaye and Lee. We achieved a bit
worse precision (cca. 3 % less) on both, FC and FA,
databases. We believe that it is caused by slight dif-

ferences in the input normalization. However, the
method is powerful and the result is satisfactory for
our purposes.

We perform the clustering with the trained param-
eters and several values of the threshold to perform
an over-segmentation to increase the recall. We ob-
tain various values of the threshold by multiplication
of the original threshold h by a changing coefficient
ci: hi = h · ci. We use various values of ci from
the interval [cmin, cmax] with step 0.01, where the
bounds cmin and cmax must by found in a valida-
tion step. Only uniform symbols are our objects of
interest, because our recognition system deals with
text and arrows separately. We used the validation
dataset of the FA database and train dataset of the
FC database to find the bounds of the coefficient.
We tried all combinations of cmin from the range
[0.1, 1.0] and cmax from the range [1.0, 2.0]. The best
combination of the bounds is that one which gives the
highest recall. In case that more combinations give
the same recall, a combination giving higher preci-
sion is taken. We found out that for both domains the
best values are cmin = 0.5 and cmax = 1.2.

3.2. Improvement of the Symbol Classifier

As we care for the greatest possible universality
of our system, we used the most general approach
and combined trajectory based normalization and di-
rection features proposed by Liu and Zhou [10] as
a descriptor with multiclass classifier implemented
as an instance of a structured output SVM learned
by BMRM algorithm [15]. We trained the classifier
with negative examples to obtain the rejection ability.
Dataset of symbols for training has been obtained by
applying the over-segmentation implemented as the
multi-threshold SLAC. If a group of strokes is an-
notated as a uniform symbol in the database, it is
labeled by that symbol. Otherwise it is labeled as
no match which denotes a negative example. Arrows
as well as incomplete parts of symbols are labeled as
negative examples.

The number of negative examples is much higher
than the number of uniform symbols. Moreover, they
are greatly inhomogeneous. It is thus necessary to
cluster them into several subclasses. We employed
k-means base on the descriptor to create m no match
subclasses, where m is domain dependent (m = 30
for flowcharts, m = 20 for finite automata). A
greater amount of symbol classes in the flowchart
domain results in a greater m. This brings a need

70



Database – Method Retrieved Relevant Matched Recall Precision F-measure
FC – grouping 19 714 921 878 95.33 % 4.45 % 0.085
FC – clustering 5 245 921 876 95.11 % 16.70 % 0.284
FA – grouping 6 095 488 485 99.39 % 7.96 % 0.147
FA – clustering 1 838 488 487 99.78 % 26.50 % 0.419

Table 1: The results of strokes grouping and clustering on the test datasets of the FC and the FA databases.

for a modified loss function which gives zero penalty
when a negative example is classified into a different
no match subclass. Additionally, a greater penalty
is required for misclassification of a uniform symbol
as a negative example than vice versa. The ratio be-
tween these two penalties depends also on the ratio
between the number of uniform symbols and nega-
tive examples. A properly chosen loss function can
overcome the problem with unbalanced database, as
we showed in [4]. However, our current implementa-
tion uses artificially synthesized samples to balance
the database. The samples were synthesized using
the approach proposed by Martı́n-Albo et al. [11]. It
is based on Kinematic Theory and the distortion of
the Sigma-Lognormal parameters in order to gener-
ate human-like synthetic samples. We generated up
to 20 artificial samples from each uniform symbol
taken from the training dataset. From all the synthe-
sized samples of one class we randomly chose a sub-
set to get the desired number of symbols for train-
ing. This approach does not only help to balance
the dataset, it also supplies additional information
on handwriting and makes the classifier more robust.
Therefore, we empirically set the smaller penalty to
1 and the bigger penalty to 2 just to increase recall
in cost of very small decrease of precision. Unfor-
tunately, the FC database does not contain any infor-
mation about time – points forming strokes are de-
fined by coordinates only. Since time information is
crucial for the synthesization, artificial samples could
not be obtained for this database.

4. Experiments

We performed two types of experiments. We re-
port a comparison of the results of the naive strokes
grouping and more sophisticated strokes clustering
first. We show how the clustering method allows
to increase the precision significantly while the re-
call changes minimally. Later we show how this im-
provement affects the overall performance of the sys-
tem. It turns out that time complexity is significantly

lowered.

4.1. Strokes Grouping vs. Strokes Clustering

Note that the text separation step precede the
over-segmentation step and thus the most of the text
strokes are removed. The text separator achieves the
precision in shapes/text class of 99.62 %/94.76 % and
100.00 %/93.31 % for FC and FA, respectively. Since
the over-segmentation is used to find uniform sym-
bols only, we do not consider text blocks or arrows
as relevant objects. Therefore there are 921 / 488
relevant objects in the test dataset of the FC / FA
databases. Results of both over-segmentation meth-
ods on both databases are summarized in Table 1.
Notice that the clustering method achieved even
higher recall than the naive grouping in the case of
FA. Obviously, few symbols in the test dataset vio-
lated one of the assumptions we use in the process
of strokes grouping. Specifically, they comprise of
more strokes than is allowed. The advantage of the
clustering approach is that we do not need such as-
sumption at all.

4.2. Overall System Performance

We changed the over-segmentation method in the
recognition pipeline and made experiments with di-
agram recognition. We use two standard metrics for
system quality assessment – correct strokes labeling
and correct symbol segmentation and recognition.
We compare the results with the published results
of our former system [3], with the grammar based
method by Carton et al. [5], and with the purely sta-
tistical method by Delaye [6]. Our system achieved
the highest precision using both metrics on both do-
mains. For details, see Tables 2, 3. The precision
slightly increased in the case of FA and slightly de-
creased the case of FC. However, the main benefit of
the new over-segmentation method is the difference
in the performance in the term of the running time.
Our system is implemented in C# and we ran the ex-
periments on a standard tablet PC Lenovo X230 (In-
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Class
Correct stroke Correct symbol segmentation
labeling [%] and recognition[%]

Carton Delaye WACV 2015 Proposed Carton Delaye WACV 2015 Proposed
Arrow 83.8 – 88.7 87.5 70.2 – 78.1 76.6

Connection 80.3 – 94.1 94.1 82.4 – 95.1 95.1
Data 84.3 – 96.4 95.3 80.5 – 90.6 90.5

Decision 90.9 – 90.9 88.2 80.6 – 75.3 72.9
Process 90.4 – 95.2 96.3 85.2 – 88.1 88.6

Terminator 69.8 – 90.2 90.7 72.4 – 88.9 89.0
Text 97.2 – 99.3 99.2 74.1 – 89.7 89.5
Total 92.4 93.2 96.5 96.3 75.0 75.5 84.4 84.2

Table 2: Recognition results for the FC database. We compared the proposed system with the grammar based
method by Carton et al. [5], with the statistical method by Delaye [6], and with our previous work presented at
WACV 2015 [3].

Class
Correct stroke Correct symbol segmentation
labeling [%] and recognition[%]

Delaye WACV 2015 Proposed Delaye WACV 2015 proposed
Arrow – 94.9 98.0 – 92.8 97.5

Initial arrow – 85.0 98.6 – 84.0 97.3
Final state – 99.2 99.2 – 98.4 99.2

State – 96.9 98.3 – 97.2 98.2
Label – 99.8 99.7 – 99.1 99.2
Total 98.4 97.4 99.0 97.1 96.4 98.5

Table 3: Recognition results for the FA database. We compared the proposed system with the statistical method
by Delaye [6] and with our previous work presented at WACV 2015 [3].

tel Core i5 2.6 GHz, 8GB RAM) with 64-bit Win-
dows 7. Detailed results with performance of all the
systems are in Table 4. We reduced the running time
significantly and made the system useful for a real-
time applications. However, the purely statistical ap-
proach by Delaye is much faster. On the other hand,
the author probably used more optimized implemen-
tation and more powerful machine, because our sys-
tem spent more time on feature extraction solely than
his system did on the whole recognition.

5. Conclusion

Naive over-segmentation approach considering all
combination of spatially and temporarily strokes is
simple and achieves a very high recall. It is possible
to apply several restrictions like maximal number of
strokes in a segment to suppress the number of cre-
ated segmentation hypotheses. However, the number
of generated hypotheses is still too big and the pre-

cision is limited. Even though the symbol classifier
can reject most of the hypotheses in the early stage,
it might be still time consuming.

System FC FA
Carton [5] 1.94 s -
Delaye [7] 80.8 ms 52.0 ms

WACV 2015 [3] 1.06 s 2.03 s
proposed 0.78 s 0.69 s

Table 4: Average running time for diagram recogni-
tion by different systems.

We experimented with over-segmentation method
based on agglomerative clustering of strokes. It cre-
ates hypotheses in a smarter way, avoiding the con-
sideration of all strokes combinations. We combined
clusters obtained by cutting the dendrogram with var-
ious thresholds. It allows to increase the recall at the
cost of decreased precision. However, the achieved

72



precision is still much higher than in the case of naive
strokes grouping and the recall is comparable. This
approach generally does not lead to 100 % recall even
when all possible values of the threshold are tried.
The reason is that all threshold values always pro-
duce nested clusters. Their characteristics is given by
the set of used distance features, sets of their weights,
and the principle of the single-linkage clustering it-
self. Different clustering methods could be probably
combined together to further increase the recall. An
intuitive idea is to combine together other agglom-
erative clustering methods like average or complete
linkage. Unfortunately, this methods have higher
time complexity than single linkage. However we
leave this for a future work.
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Abstract. This paper describes an efficient
algorithm to extract piece-wise smooth surfaces
from depth images. The algorithm is based on
the Mumford-Shah (MS) functional. A solution
is obtained by means of a multi-model and multi-
scale region merging strategy that does not re-
quire to define the number of regions in advance.
Our current formulation allows smooth regions
to be modeled either as planar or B-splines sur-
faces and thus provides a parametric representa-
tion of the scene upon convergence. Additionally,
we propose a final refinement step that corrects
initial region boundaries obtained by means of su-
pervoxel segmentation. This final stage results in
smooth boundaries (due to the boundary length
penalization in the MS) that better separate dif-
ferent regions in the scene. We demonstrate the
performance of the proposed algorithm in indoor
scenes, acquired with RGB-D sensors, showcas-
ing man-made objects and structures.

1. Introduction
Segmentation of images into meaningful struc-

tures is a major research area in the field of
computer vision. Even though segmentation
has been predominantly investigated for inten-
sity and color images, the recent appearance of
RGB-D sensors has sparked a renewed inter-
est among roboticists. Clearly, the availability
of depth data in conjunction with color images
provides additional cues to aid in segmentation.
Segments cannot only be assessed by their sim-
ilarity in color space, but also by their continu-
ity and smoothness in Euclidean space. Nev-
ertheless, while computer vision scientists have
adopted energy minimization techniques (which
in some cases consider the whole extend of the

image as well as interaction among segments) to
address the challenges present in segmentation,
recent approaches making use of depth informa-
tion still rely strongly on local heuristics (in par-
ticular during the initial stages of the segmenta-
tion pipeline) to determine the extend of individ-
ual regions in an image. While these algorithms
perform well in the envisioned situations, their
strong dependence on local properties of the data
results in an undesired lack of robustness to local
perturbations. This results in complex pipelines
that are difficult to adapt to novel situations or
slightly different sensors.

Because of the aforementioned caveats and in-
spired by recent trends in the segmentation of in-
tensity images, this paper formalizes the segmen-
tation of depth images into piece-wise smooth
surfaces within the Mumford-Shah framework
(see Section 3). We propose an algorithm (based
on Koepfler et al. [6]) to obtain an approximated
solution of the functional that upon convergence
results in a parametric surface representation of
the input data (see Section 4). We demonstrate
the performance of the proposed approach in Sec-
tion 5 on two datasets acquired with RGB-D sen-
sors but with different characteristics vouching
for the generalization capabilities of the proposed
framework.

2. Related work
Various approaches to segment images into

larger patches exist. Most of them are based on
simple color and edge features [4, 17, 21, 22, 2,
19], some include depth information [7, 10, 20]
and others rely on the estimation of shape prim-
itives [9, 5] or combine 3d-shape with color infor-
mation [16, 11]. In the following paragraph we
review aspects of these approaches starting with
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algorithms relying on appearance cues.

Many approaches formulate image segmenta-
tion as energy minimization with a MRF [17,
21, 22]. In addition to an appearance model
computed from color and texture Werlberger
et al. [22] introduce a shape prior which is
modeled as a Geodesic Active Contour energy.
In [2] and [19] the objective function is for-
malized with the Mumford-Shah functional [12].
Bernard et al. [2] introduce a continuous para-
metric function using B-splines to model a
contour energy term. Strekalovskiy and Cre-
mers [19] rewrite the proximal operator in a
primal-dual algorithm using Moreau’s identity to
achive real-time performance.

A graph cut is also used in [7, 10]. While
Kootstra et al. [7] include the disparity de-
viation of pixels to the dominant plane and
solve an MRF-formulation using α/β swap [3],
Mishra et al. [10] use fixation points and a short-
est path in a log polar transformed edge im-
age. Ückermann et al. [20] propose a model-free
algorithm which subsequently combines smooth
surface patches, directly computed in depth im-
ages, to form object hypothesis. The approach
by Hager et al. [5] is able to segment objects from
cluttered scenes in point clouds by using a strong
prior 3d model. Hence, it is limited to para-
metric models such as boxes and cylinders. The
problem of fitting higher order surfaces to point
clouds was addressed by Leonardis et al. [9].
They segment range images by estimating piece-
wise linear surfaces, modeled with bivariate poly-
nomials. A Model Selection framework based on
the Minimum Description Length (MDL) prin-
ciple is used to find the best interpretation of
the scene. MDL for Model Selection is also
used in [11]. Instead of piecewise linear surfaces
Mörwald et al. use planes and B-spline surfaces.

Like Mörwald et al. the approach in this pa-
per uses basic surface models, such as planes
and B-splines. Instead of using Model Selection
and MDL where the complexity for each model
needs to be defined with respect to their number
of parameters, we integrate these surface mod-
els into the Mumford-Shah functional [12] and
model complexity is implicitly encoded by the
curvature of the regional surfaces.

3. Piece-wise Smooth Segmentation

This section briefly reviews the Mumford-
Shah framework for image segmentation. Then,
we propose an adaptation of the functional for
the segmentation of depth images into piece-wise
smooth parametric surfaces.

3.1. Mumford-Shah framework

In a nutshell, the celebrated Mumford-Shah
functional [12] is used to establish an optimal-
ity criterion to segment an image into a disjoint
set of sub-regions. The aim of the functional
is to find an approximation I of an input im-
age Io such that (i) I is similar to I0, (ii) I is
smooth within the different sub-regions and (iii)
the boundaries between regions are of minimal
length. In the continuous setting, the functional
is formulated as

E(I, Ci) =
∫

Ω
‖I − I0‖2 dx+ β

∫

Ω\Ci

‖∇I‖2 dx

+ α

∫

Ci

ds,

(1)

where Ω is the image domain and Ci represents
the boundaries of the different sub-regions in the
image. α and β are parameters (≥ 0) penalizing
lack of smoothness within regions and boundary
length, respectively. Of special interest is the
piecewise constant Mumford-Shah model when
β →∞ enforcing the different regions in the im-
age approximation, I, to be constant.

3.2. Multi-model MS for depth images

This section proposes a set of modifications to
the MS framework in order to extract piece-wise
smooth parametric surfaces from a depth image.
Multi-model refers to the availability of different
parametric surface models (with increasing ex-
pressiveness and potentially decreasing smooth-
ness) to approximate piece-wise smooth sub-
regions in the input data. In our current for-
mulation, surfaces can be represented by planar
or B-splines (with 3x3 control points) surfaces.
Please note that these two parametric models of
surfaces are by construction smooth and differ-
entiable. Thus, (1) becomes in our setting:
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E(D,Ci) =
∫

Ω
‖D −D0‖2 dx+ β

∫

Ω\Ci

κ2dx

+ α

∫

Ci

ds.

(2)

where D0 represents the input depth image and
D represents an approximation of the input
depth and is composed by different piecewise
smooth regions parametrically modeled either as
planar or B-spline surfaces. Note that in our spe-
cific setting, the second term of (2) penalizes the
curvature κ of the approximating surface instead
of ‖∇D‖. This formulation allows on one hand to
overcome the problem of favoring fronto-parallel
planar surfaces (with ‖∇D‖ = 0) over equally
planar but slanted surfaces (with ‖∇D‖ > 0)
[15, 8]. On the other hand, it favors regional
models with less expressiveness (e.g. planar sur-
faces) over richer models (e.g. B-splines) pre-
senting higher complexity. Intuitively, we would
prefer segmentations that use simpler parametric
models unless there is a good reason to increase
the model complexity, such as low regional data
fidelity and/or reduction of the boundary length.

4. Implementation
This section revolves around the implementa-

tion of the piecewise smooth surface segmenta-
tion framework proposed in the previous section.
In particular, we address the problem of minimiz-
ing the functional in (2).

4.1. Overview

Provided with a depth image of a scene,
D0, the algorithm starts by computing an over-
segmentation of the scene in terms of supervox-
els. These small regions are the basis to minimize
(2) and provide as well the initial boundaries be-
tween different sub-regions. In particular, a solu-
tion is obtained by incrementally merging pairs
of adjacent regions (i.e., sharing a boundary)
that improve the functional energy. Our multi-
model scheme is introduced here by first trying to
reduce the energy by fitting planes to neighbor-
ing regions. Once the energy cannot be further
reduced, the model expressiveness is increased
and the merging process is restarted by fitting B-
splines surfaces to connected regions. Upon con-
vergence, a refinement stage is performed that

swaps the associated region at pixels located at
the boundary between two regions. This final
stage aims at improving the initial boundaries
provided by the over-segmentation in the scene
in situations where they do not adhere properly
to the actual boundaries of the smooth surfaces
in the scene. The outcome of the proposed algo-
rithm at different stages is depicted in Figure 1.

4.2. Oversegmentation

Over-segmentation of an image into regions of
similar pixels, known as superpixels, is a widely
used preprocessing step in oder to reduce the
amount of data for subsequent computationally
expensive algorithms. We use the method of
Papon et al. [13], which is able to cluster a
set of points using color and the 3D informa-
tion. The main idea is to select spatially uniform
distributed (in Euclidean space instead of im-
age space) seed points and to iteratively cluster
neighboring points enforcing spatial connectivity
and smoothness. In contrast to traditional su-
perpixel algorithms working on image space [1],
this results in supervoxels which do not flow
across boundaries in 3D space and are smooth
by considering surface normals. The implemen-
tation used in this paper is the one provided
by the original authors within the Point Cloud
Library. The supervoxel extraction is governed
in our case by two parameters indicating spa-
tial compactness and smoothness. Please note
that supervoxels provide on one hand an initial
reduction of the number of regions and on the
other hand, pixels get grouped together in larger
regions that allow the extraction of parametric
surface models.

4.3. Multi-scale and multi-model region merging

The previous stage results in an over-
segmentation of the image domain into a disjoint
set of regions Ω = {R1 ∪R2 ∪ ...∪Ri ∪ ...∪Rn}.
Ci ∈ Ri is defined as the boundary between Ri
and adjacent regions. Provided with this initial
set of regions and boundaries, this section de-
scribes the algorithm to minimize the functional
in (2). To this end, we propose an adaption of the
multi-scale algorithm by Koepfler et al. [6] that is
reviewed in the following for completeness. They
minimize the piece-wise constant Mumford-Shah
model for an intensity image I0
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(a) Color image (b) Depth map (c) Over-segmentation

(d) Planes (e) Planes + B-splines (f) Refinement

Figure 1: Overview of the different stages of the method

E(I, Ci) =
∫

Ω
(I − I0)2 dx+ α

∫

Ci

ds, (3)

where the smoothness term has been dropped
by letting β → ∞ in (1). The algorithm in
[6] proceeds by iteratively merging adjacent re-
gions whereby the different regions composing
the piece-wise constant approximation I = {R1∪
...∪Rn} are modeled by the average intensity of
all pixels within each region. In a nutshell, at
each iteration, the algorithm selects the merging
move with minimal α̂k. The α̂k of a certain move
k representing the merging of two regions Ri and
Rj is defined as:

α̂k = −∆Eregion
∆Elength

=
−
(
ERi + ERj − ERi∪Rj

)

|Ci|+ |Cj | − |Cij |
(4)

where Cij represent the boundary length
obtained by merging both regions and
E{Ri,Rj ,Ri∪Rj} represent the regional error
for a piece-wise constant region. The algorithm
terminates when all possible merging moves in
the current state have an α̂k larger than the user

parameter α, indicating the lack of energetically
favorable moves. The multi-scale attribute arises
from the fact that as the algorithm proceeds, the
boundary length penalizer α̂k is incrementally
increased. Therefore, it is possible to obtain
different segmentations at different scales.

In contrast to [6], we propose a modification
that is very similar to the original algorithm but
with two main differences:

1) We minimize the piece-wise smooth MS in-
stead of the piece-wise constant model by
allowing regions to be modeled as paramet-
ric smooth surfaces, and

2) We incrementally increase the model com-
plexity representing piece-wise smooth re-
gions once the energy cannot be further re-
duced by simpler models.

Therefore, (4) becomes:

α̂k = −∆Eregion − β∆Esmooth
∆Elength

, (5)

and due to 2), the proposed algorithm works not
only at multiple scales but also with different
model complexities. In our current implemen-
tation, with two piece-wise smooth models (i.e.
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planar and B-splines surfaces), our algorithm can
be considered a two-pass version of the algorithm
of Koepfler (see Algorithm 1). Using the appro-
priate data structures as well as exploiting incre-
mental computation properties of surface para-
metric models (see Section 4.4), merge moves can
be efficiently implemented.

Algorithm 1 Multi-scale and multi-model re-
gion merging
Input: α, β
Models={PLANE, BSPLINE 3x3}
m ←0
C = {Ri, Rj , α̂k} //sorted merging candidates
converged ← false
while not converged do
c = {Ri, Rj , α̂k} ← pop(C)
if α̂k > α then

if m ≥ length(Models) then
converged ← true

else
//increase model type
m← m+ 1
//merging candidates with current model type
C ← comp candidates(Models[m], C)
continue

end if
end if
//apply merge and update structures
{new cands, affected} ← merge(c)
C ← remove candidates(affected, C)
new cands ← comp candidates(Models[m], new cands)
insert sorted(C, new cands)

end while

4.4. Model fitting

The algorithm proposed in the previous sec-
tion relies on the ability to fit planar and B-
splines models to regions in the scene that build
up the piece-wise smooth approximation (D) of
the input data D0. To this end, this section fo-
cuses on how to incrementally (whenever possi-
ble) and efficiently extract the parametric repre-
sentation of regions as the algorithm iterates.

4.4.1 Planar surfaces

Planar surfaces are a good initial choice to para-
metrically approximate unknown surface data:

1) Locally, planar models can approximate al-
most any structure.

2) Planar surfaces are a recurrent structure in
man-made environments.

3) They can be efficiently estimated by first-
and second-order moments of the underlying
data followed by Eigenvector analysis of the
resulting 3x3 covariance matrix.

In addition, because first- and second-order
moments can be incrementally computed, planar
models become a very efficient model for region
merging strategies. In other words, the planar fit
of two regions that are to be merged can be effi-
ciently computed by reusing the previously com-
puted statistics of the individual regions.

Relation to (2): The regional fit of a region,
Ri, modeled as a planar surface is computed as
the squared depth error of the underlying pixels
to the model. Regarding the smoothness term,
planar surfaces do not present any curvature and
thus, the smoothness term has no effect in the en-
ergy for any region modeled as a planar surface.

4.4.2 B-spline surfaces

Modeling curved surface areas is a well studied
problem and there are many mathematical so-
lutions such as superquadrics, wavelets and bi-
variate polynomials to name a few. We choose
B-splines due to their beneficial properties:

1) They are very flexible w.r.t. the degrees of
freedom we wish to model.

2) Derivatives and curvature may be computed
explicitly at any point of the surface.

3) The mathematical formulation of fitting a
B-spline to a point-cloud or depth map be-
comes solving a linear system of equations.

A B-spline surface is defined as the sum of
weighted basis functions

S(ξ, η) =
m∑

j=1
ϕj,p(ξ, η)bj (6)

where (ξ, η) ∈ R and ϕj(ξ, η) is a bivariate basis
function which can be efficiently evaluated by the
Cox-de-Boor algorithm. They define the influ-
ence of the weights, also called control points bj .
The polynomial order of the basis functions is
denoted by p. A full explanation of B-splines is
available in the book of Piegl et al. [14]. Note
that we embed the B-spline surface into the do-
main of the depth map thus becoming a function
S : R2 → R.

Fitting to a depth image D : R2 → R is the
problem of finding control points such that the
distance between D and S is minimized. Since
we aim for piecewise smooth regions, a least
squares optimization w.r.t. the control points is
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a sufficiently accurate approximation.

min
b

∫

R
‖D(ξ, η)− S(ξ, η,b)‖2 (7)

where b denotes a vector collecting the control
points. This is equivalent to the first term of
Eq. (2). We define the B-spline domain to match
the index space of the depth image. This al-
lows to conveniently query surface points and its
derivatives (up to order p − 1) at any image lo-
cation (ξ, η).

Relation to (2): The attentive reader might
already have noticed that the functional we min-
imize in Eq. (7) is equivalent to the first term
of Eq. (2). By using the Greville abscissae and
re-projecting into R3 we obtain the B-spline con-
trol points and therefore the surface in Euclidean
space (S ∈ R3). We then explicitly evaluate the
mean curvature κ for computing the second term
as

κ =
〈
∂2S
∂2ξ

,n
〉

+
〈
∂2S
∂2η

,n
〉

(8)

with n being the normal surface of the B-spline

n = ∂S
∂ξ
× ∂S
∂η
. (9)

4.5. Refinement stage

So far, we have focused on the minimization of
the functional in (2) by merging neighboring re-
gions as described in sections 4.3 and 4.4. While
being a successful strategy, it suffers from the
inability to change the location of initial region
boundaries resulting from the over-segmentation
stage. Therefore, if supervoxels flow across ob-
ject boundaries, the merging moves will not be
able to correct these artifacts. Aiming at fur-
ther minimizing the energy cost, we propose a
refinement stage that includes another variety
of moves. In particular, the refinement stage
aims at swapping the region association of pixels
at the boundary between regions provided that
this swap minimizes the functional. This simple
strategy results in the removal of wiggly bound-
aries due to a reduction of the overall bound-
ary length as well as a better pixel-wise associ-
ation due to a reduction of the data error term.
By applying this refinement stage after the func-
tional cannot be further minimized by means of
merging moves, the overall cost of this stage is
computationally acceptable (since the number of

boundary pixels has in general been greatly re-
duced prior to this stage by merging operations).

5. Experimental results
This section provides an initial qualitative

evaluation of the proposed method. Figure 2
and 3 show the resulting segmentation for three
scenes from the OSD0.2 [16] and three from the
NYU-depth (v2) [18] dataset respectively. Both
datasets have been acquired indoor using RGB-
D cameras but as it can be seen from the im-
ages they showcase different scenarios. In partic-
ular, OSD focuses on the segmentation of house-
hold objects in table-top scenarios. On the other
hand, the NYU dataset includes thousands of
scenes from domestic environments and its fo-
cus lies on larger objects (e.g., furniture, room
structure, etc). A major distinctive trait among
both datasets is the depth range covered by the
datasets. While most of the objects in OSD are
to be found not farther away than 1.5m from the
sensor, the NYU dataset depth range is much
larger. It is a well known fact that the quality
of RGB-D data degrades rapidly after 2m and
therefore, segmentation of meaningful structures
on the NYU dataset is much more challenging,
specially for algorithms like the one proposed in
this paper relying solely on depth information.

These differential traits have required a differ-
ent parameter setting for both datasets (see cap-
tions of Figure 2 and 3 for specific values). Over-
all, we can see that the scenes get segmented into
meaningful structures vouching for the efficiency
of the proposed method. However, in Figure 3
one can observe how segmentation quality de-
grades due to the noise in the data as the distance
to the camera increases. Figure 4 shows the re-
constructed point cloud from the depth data ob-
tained after minimizing the proposed functional.
As expected, noise in the data gets smoothed
by using smooth parametric surface models. Fi-
nally, Figure 5 shows the effect of the boundary
regularizer on a scene from the OSD dataset. As
boundaries become more costly, larger structures
arise.

6. Conclusions and future work
This paper has presented a formulation based

on the Mumford-Shah functional to segment
depth data into smooth surfaces. Our prelimi-
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Figure 2: Qualitative results for three scenes in the OSD dataset. α = 1.5−4, β = 1.

Figure 3: Qualitative results for three scenes in the NYU dataset. α = 1−2, β = 2. Depth information
beyond 3.5m is ignored.

nary results show that the method is an effective
and elegant alternative for the task at hand. In
the future, we plan to extend our current model
to more complex models being able to represent
simple objects (i.e. by means of superquadrics)
as well as the addition of appearance informa-
tion to improve segmentation in situations where
depth data becomes unreliable. The addition of
shape priors based on the knowledge of recurrent

objects is another interesting research direction.
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Figure 5: Effects of boundary regularizer (α = 5−5, 1−4, 2−4, 3−4)

Figure 4: Resulting point cloud after segmenta-
tion using the proposed method. The depth of
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derlying parametric model surface.
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Abstract. In USAR (Urban Search and Rescue) mis-
sions, robots are often required to operate in an un-
known environment and with imprecise data coming
from their sensors. However, it is highly desired that
the robots only act in a safe manner and do not per-
form actions that could probably make damage to
them. To train some tasks with the robot, we utilize
reinforcement learning (RL). This machine learning
method however requires the robot to perform ac-
tions leading to unknown states, which may be dan-
gerous. We develop a framework for training a safety
function which constrains possible actions to a sub-
set of really safe actions. Our approach utilizes two
basic concepts. First, a “core” of the safety function
is given by a cautious simulator and possibly also
by manually given examples. Second, a classifier
training phase is performed (using Neyman-Pearson
SVMs), which extends the safety function to the states
where the simulator fails to recognize safe states.

1. Introduction

Many robotic tasks are tackled by RL with iter-
ative state-action space exploration (RC helicopter
acrobacy [1], adaptive traversability [17], etc.). RL
essentially needs to exhaustively sample the state-
action space (which is called “exploration”), and the
exploration strategy is represented by a stochastic
policy.

While manually-driven exploration is often pro-
hibitively time consuming, autonomous exploration
is usually only applied to inherently safe systems
(pendulum) or to simulators [16]. We propose a
framework for making autonomous exploration safe
even for general systems, and we test it on the task
of autonomous control of articulated subtracks (flip-
pers) of the USAR mobile robotic platform depicted
in Figure 1.

1.1. Task description

The objective of our algorithm is to train a safety
function that will allow to select only those explo-
ration policies, that do not lead to unsafe states. Find-
ing an efficient way to optimize the RL objective
while using only safe policies is left for an upcom-
ing research (a relevant approach for policy iteration
is shown in [14]).

1.2. Contributions

The contributions of our paper can be summed up
as follows. We introduce a novel term “cautious sim-
ulator” and show it is both simple to construct and
useful in machine learning tasks. Next, we present
a safe exploration algorithm based on NP-SVM that
gradually discovers the safe region without visiting
unsafe states or needing too much prior knowledge.
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2. Limits of other safe exploration methods

2.1. Visiting of unsafe states

Many proposed safe exploration techniques re-
quire that the robot can visit unsafe states in or-
der to get data with “negative” labels. This may
be justifiable only if there is a precise model of the
world where the dangerous steps can be simulated
(e.g. [11, 10]), or if there is an unlimited number of
robots to try with. In our work, the robot is never
required to visit an unsafe state.

2.2. Coupling safety with rewards

Many safe exploration approaches try to utilize the
existing RL methods to achieve safety. This is usu-
ally connected with some consequences unaccept-
able in USAR cases.

Either they claim a state is safe based on the min-
imum achievable reward – if it is high enough, the
state should be safe [12]. This was proved to be
highly non-optimal [8]. Or they just set negative re-
wards to unsafe states and run standard RL (e.g. [5]).
However, no guarantees can be given this way, since
RL only optimizes the expected outcome.

Tying safety with rewards seems to be unnecessar-
ily constraining. Especially in the field of safe explo-
ration, it does not hold that what is safe is also good
from the task point of view (and vice versa, what is
good for the task, is not necessarily safe).

We propose to decouple the terms safety and re-
ward completely, as it is done in [9] (where, how-
ever, the safety and reward functions get combined
together during learning using a weighted sum). In
our work, the safety and reward functions are trained
as independently as possible.

2.3. Too optimistic expectations

Our last remark is on what can be achieved at best
by any safe exploration algorithm. Geibel mentioned
that we can never achieve absolute safety [9]. Not
only that the safety guarantees can be often only pro-
vided as an estimate (which can be erroneous), but
we can also “protect” the robot only against some
specified classes of risk.

This issue is covered in Ertle’s system paper [7],
along with the description of methodology and a gen-
eral view on how the learning algorithms should look
like. One implication of his work is that the safety
implemented in robots should be behavior-based –
e.g. each class of risk should include its own safety
function and its own policy to avoid the danger. In

our experiment, we only concentrate to the “behav-
ior” of climbing down a step.

3. Precise formulation

We optimize a RL task given in the gradient pol-
icy search paradigm presented e.g. in [3]. The robot
“lives” in a state space X and performs actions from
A according to a stochastic policy π : X → P(A),
and is rewarded by a real-number reward function
R : X → R. Every policy can be evaluated by the
expected performance given by

J(π) = Eξ∼Pπ [R(ξ)]

where ξ is a trajectory (sequence of states) created by
following the policy from a common start state, and
R(ξ) is a (possibly discounted) reward for the whole
trajectory.

To simplify the learning, the policy is often as-
sumed to be from a parametrized class of functions,
and the learning is only performed on the parameter
values. Thus we can write the policy as π = π(θ),
and substitute just θ for the policy, yielding

J(θ) = Eξ∼Pθ
[R(ξ)]

Gradient policy search then searches for the policy
parameters θ? which maximize the expected perfor-
mance [2]:

θ? = argmax
θ

J(θ)

And this is where safe exploration comes into
play: during the gradient search, the examined val-
ues of θ are not restricted in any way, so that it can
happen that the robot visits an unsafe state. With just
a small alteration to the previous equation, we can
“plug in” the safety:

θ? = argmax
θ:S(θ)≥smin

J(θ)

where S is the safety function and smin ∈ 〈0, 1〉 is a
user-defined safety threshold. Finally, we define the
state safety function s : X→ 〈0, 1〉, from which S is
“composed” as

S(θ) = min
x∼π(θ)

s(x)

The task is to construct a safety function closest
to the real safety margins, and not to visit any unsafe
states during the training.
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4. Safe exploration system components

The basic background and motivation to our work
has been presented, so now we can describe the main
components of the algorithm.

A cautious simulator is the main component that
differentiates our work from other safe exploration
concepts. We use the simulator to predict safe states
among the set of unvisited states (it may be e.g.
a simple physical simulator). Cautious means that
if the simulator labels a state as safe, it is also safe
in the real world. On the other hand, it is allowed to
wrongly label safe states (in the real world) as unsafe.
Having a cautious simulator is a key to success of our
algorithm, and creating such simulator is (much) eas-
ier than constructing a plausible physical simulator.
Throughout all this work we suppose that running the
simulator is (computationally) expensive, so we try
to minimize the number of its uses, and we prohibit
sampling the whole state space using the simulator.

Next, we need to have an experienced human op-
erator that is capable of executing safe trajectories
on the robot in the real world. We suppose that this
operator has much more (prior or sensory) informa-
tion than the robot has, and thus he or she can assess
the safety of intended actions before executing them.
These safe trajectories will be used to initialize the
safety function. If we discover an area in the state
space that is misclassified by the safety function as
unsafe, the operator can reach these areas manually,
which forces the algorithm to correct the safety esti-
mates for that region.

Combining the simulator and operator results, we
can construct the safety function. Such function takes
the state of the robot (the extracted features), and la-
bels it either safe or unsafe (by returning a number in
the 〈0, 1〉 interval, where values greater than smin are
considered safe). This component is implemented
using Neyman-Pearson SVM classifier.

Finally, we need a safe policy extractor, that takes
the current estimate of safety function and chooses
a policy going only through safe states. Safe policies
are then used to automatically gather new data.

The algorithm that combines all these components
into a safe exploration scheme is shown in Alg. 1 and
described in detail in the next section.

5. USAR safe exploration in detail

In this section we’re going to go through the algo-
rithm step-by-step and show what exactly is done in
each step. In Table 1 we present the basic definitions

Algorithm 1 The safety function training algorithm
1. Xreal = operator-generated initial trajectories
2. Update T, S0 := updateSVM(T)
3. i := 0
4. while learning should continue do
5. Generate an optimal policy πi safe on Si, or

use the operator “as a policy”

6. Drive using πi, record visited states xnew
7. Xreal = Xreal ∪ xnew
8. Update T, S′i := updateSVM(T)
9. Perturb xnew several times, add the perturbed

states to Xsim
safe or Xsim

unsafe depending on the
result of simulation

10. Update T, Si+1 := updateSVM(T)
11. i++
12. end while

Variable Definition
n The dimensionality of feature space
X Rn, the feature (state) space
A X×A→ P(X), the set of actions
Xreal ⊂ X, already visited states
Xsim

safe ⊂ Xsim , states labeled safe by Sim
Xsim

unsafe ⊂ Xsim , states labeled unsafe by Sim
T {Xreal × {safe}} ∪ {Xsim

safe ×
{safe}} ∪ {Xsim

unsafe × {unsafe}},
the training set for SVM

Sim X×A→ {safe, unsafe}, the
simulator

πi X→ P(A), a stochastic safe policy
Si X→ {safe, unsafe}, a safety

function (SVM)

Table 1. Notation used in the algorithm.

used in the algorithm.

5.1. Initialization

On line 1 we first require the operator to gener-
ate some real-world trajectories. It is generally not
necessary for them to be generated by the operator;
they can also be substituted by a first run of the sim-
ulator or by prior knowledge (e.g. if a small part of
safe states can be analytically expressed). It is im-
portant for this initial set to be sufficiently large –
if it were not, the initial estimate of the safety func-
tion would be very poor. All the generated points
are inserted into Xreal which is represented either as
a set of points, or as a spatial search tree (depend-
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ing on the expected number of elements). Then we
update the training set T (according to its definition
given in Table 1), and update the SVM model of the
safety function (S0). Description of the SVM update
is postponed for Section 5.6.

5.2. The stopping criterion

Line 4) represents the stopping criterion. It can be
either a subjective measure (trading off safety func-
tion accuracy for time available for experimenting),
or a qualitative measure (if the algorithm is no longer
able to simulate more unvisited states, or if the safety
function hasn’t changed for some time).

5.3. Generating an optimal safe policy

On line 5 a policy is generated based on Si. There
are several options on how to do that.

If the task is not only to train safety, but also to
optimize a given criterion, it is needed to run a modi-
fied Reinforcement learning algorithm that optimizes
the expected return subject to all the states selected
by the policy are safe. Since computing such opti-
mization problem efficiently is a large problem itself,
we only give here a simple (and probably inefficient)
way to solve the constrained RL problem. The easy
solution is to set rewards for all unsafe states to nega-
tive infinity. This will surely find a policy that is safe,
however we do not say whether it is optimal or not.

The other option is to randomly generate policies
and verify their intersection with the safety function
(e.g. by sampling). This is good if we are not inter-
ested in learning any specific task, and we just want
to explore the state space (“optimal” here means any
safe policy).

It can happen that there is no safe state for a partic-
ular feature value. Then we need to incorporate this
into the policy and allow it to answer that a state is
unreachable.

5.4. Policy execution

The step to be done next is to execute the safe pol-
icy (line 7 and further). This may need some addi-
tional work to be done, such as setting the robot to
an initial position, changing the environment and so
on. After the policy is executed, the newly visited
states are added to Xreal and an update of T and the
SVM is run.

5.5. Simulation

The loop starting on line 9 specifies that we sam-
ple some perturbed states and simulate them in the

simulator. Here is one important point – we assume
that the further a perturbed state is from the current
(real) state of the robot, the less precise the simula-
tion is. Therefore we always try to perturb only in
some small local neighborhood of the current state.
How to perturb depends on the type of the features –
it can be e.g. by Euclidean vector shifting. The mag-
nitude of the shifts is one of the free parameters of
this algorithm.

Once we have the simulations done, we record the
simulated states to Ssimsafe or Ssimunsafe depending on
the results of the simulations (which are either binary
classes or numbers from 〈0, 1〉). Then the training
set and SVM are updated again (which is described
in the next section).

This simulation and perturbation can also be run
just after initialization, before the algorithm enters
the learning loop. This way the initial estimate of S0

will be better.

5.6. Updating the safety function (updateSVM)

Representation and modification of the safety
function are the key points of our algorithm. We need
the safety function to generalize the set Xreal∪Xsim

safe

in continuous space, not containing any point from
Xsim
unsafe.
From our assumptions it follows that it is not nec-

essary that a generalization over this set also denotes
only safe regions (because we defined that safe are
only visited states, and states tagged safe by Sim).
However, if we assume continuousness of the safety
function, it can be approximated very well.

To describe the representation of the safety func-
tion, we first define an auxiliary set Tpruned ⊂ T,
which is basically the set of all visited or simulated
states. To avoid serious problems in computation
of the safety function, we need to prune Tpruned in
such way, that there are no points from Xsim near
to any point from Xreal. This in fact ensures that
visited states have “priority” over states just simu-
lated, which allows us to remedy states misclassified
by Sim as unsafe, although they are safe in reality.
Again, the distance function is a free parameter of
this algorithm.

Now, Tpruned contains states of which no two
cover each other, and are tagged either safe or un-
safe. Finding a representation of Si is now a binary
classification task. To ensure safety of the estimated
safety function, the classification has to be done in
such a way that it never classifies an unsafe state
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as safe. This can be easily achieved by using the
Neyman-Pearson classification [15] with false neg-
ative rate limit set to zero (assuming negative=safe).

One of the possible implementations of this clas-
sification scheme is using 2ν−SVM presented in [6]
utilizing LIBSVM [4]. There is a set of kernel func-
tions that can be used with SVMs, and which one
to choose again depends on the expected structure
of the safety function. Preferring SVMs has one
good reason against other binary classification tools
– SVMs minimize structural risk (error on test data)
rather than minimizing the error on training data.
This should provide us with a robustly estimated
safety function.

5.7. Remarks

The goal of this algorithm is to find a safety func-
tion closest to the real safety margins of the robot.
The approximation of the real safety with the safety
function should get better as the number of visited
states increases, which can be confirmed taking into
account how the training set for SVMs is built and
how SVMs operate (assuming the kernel function is
rich enough to represent the safety function).

Also we can conclude that the number of simu-
lator runs is less than if we sampled the state space
regularly, which could be another method of estimat-
ing the safety function. Furthermore, our approach
has the advantage that it is always sufficient to sim-
ulate in local neighborhood of the state the robot is
in, allowing for better simulations than if we ran the
simulator in distant states.

6. Experiments

6.1. Platform description

To prove this concept of safe exploration we have
set up an experiment on a real robot. In the experi-
ment we train a safety function for the task of climb-
ing down steps with various heights. The robot is
in front of a terrain step and it receives the “go for-
ward” command. The task is to find the safe flipper
angles using which the robot climbs down safely (if
it is possible at all).

The robot we used is the Absolem platform from
EU FP7 projects NIFTi and TRADR (see Fig. 1).
This is an actively articulated tracked platform with
size about 60 cm×30 cm×30 cm and weight 25 kg.
The four articulated subtracks (two on each main
track) are called flippers. The robot can actively

control the rotation of each of the flippers (indepen-
dently).

From the point of view of this experiment, the
robot has two important sensors - an IMU (measuring
rotation and acceleration), and a laser range finder
with broad field of view (270◦ both horizontally and
vertically). There is also a 3D map incrementally
built from the laser data, so the robot knows the ter-
rain under itself (which is occluded for the laser).

6.2. Experiment setup

For the experiment we have chosen the task of
controlling front flippers when driving down a step
(both flippers the same angle). This action is inter-
esting because for different step heights there are dif-
ferent safe flipper configurations, and from a partic-
ular height up, there is no safe flipper configuration.
The potentially unsafe states cover robot body break-
age due to flipping over, gaining too high speed, or
touching the terrain with one of its fragile parts (e.g.
the laser scanner or camera).

So the state space consists of all possible step
heights (also drop heights; measured at the point
where the flipper is attached to the main track). The
robot generates multiple data when driving down
a step – first for height 0, then for the maximum
height, and then for all the heights until it finishes
climbing down the step (however, we assume only
limited sampling capabilities, and this is why the data
in Fig. 3 are that sparse). The action space then cov-
ers all possible flipper angles the robot can set when
climbing down the step. For simplicity, we assume
the robot can switch quickly between two different
flipper configurations.

The policies are from the deterministic linear pol-
icy class of the form π(x) = θ0+θ1x. The reinforce-
ment learning objective we minimize is J(θ) = θ21
(to prefer policies with less flipper motion, e.g. to
save power). We seek for a safety function that would
discriminate which flipper configurations are safe for
which step heights. The safety function is repre-
sented by a 2C-SVM (equivalent to 2ν-SVM) with
Radial Basis Function kernel.

For executing the simulations, we created a simple
model of the robot for use with the Gazebo simula-
tor. Gazebo is a physical simulation library, however
our model contains only the basic physical proper-
ties. Namely, we have created plausible collision
links for the real robot links (simple enough to al-
low for fast collision checking, though they are still
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triangle meshes and not primitive objects). For each
of the links we have estimated the weight, center of
mass position and inertial properties. Specifically,
we have not estimated or set any properties regard-
ing the motors, friction, slippage or other dynamic
properties.

Similarly, we put in the simulator a rough terrain
representation that is created directly by triangulating
the point cloud (either from the laser scanner or from
the point map). Such map is in no means smooth,
rigid or regular. It contains triangles with wrongly
estimated normals or even corner positions and it is
non-continuous. Creating a more sophisticated map
is an option for improving the estimated safety func-
tion, but it is difficult and we want to show that this
algorithm works well even with the cluttered map
and simplistic robot model. Thus, the task environ-
ment can be considered unstructured.

The simulation is then done in the following man-
ner: first we get the triangulated map and place the
robot to the position corresponding to the real world.
Then we shift it forward 30 cm, set the desired flipper
angle and let the robot “fall” on the ground, adjusting
the flipper angle according to the given policy. If the
flipper policy is safe, then the robot only falls a few
millimeters and remains in a stable state, and we can
mark all passed state-action pairs as safe. The pol-
icy is considered unsafe if the robot touches the ter-
rain with its fragile parts, if it turns over or if it ends
up too far from the desired [x, y] coordinate – then
the simulator tags all the state-action pairs as unsafe.
For a reference on how the robot looks visualized by
Gazebo, refer to Figure 1.

Fortunately, physical simulations in this setting
proved to satisfy the requirement on cautiousness of
the simulator. To even more ensure cautiousness, we
perturb each simulated state several times and return
the ratio of safe simulations to all simulations as the
final result (thus our simulator returns values from
〈0, 1〉). Here the great advantage of our algorithm
showed up – the simple physical model, as well as
the triangulated map, are matters of hours to create.
If we should create a precise physical model (of both
the robot and the terrain), it would still have cases
where it fails, and it would have needed much more
effort to be done. Moreover, there are properties of
the terrain that cannot be modeled in advance, and
our perturbation approach could overcome some of
them.

It is important to notice that the simulations are

Figure 1. Robot simulation in the Gazebo simulator. Four
articulated subtracks (flippers) can be seen in the image –
the front ones on the right, and the rear ones on the left.
All flippers are in a configuration corresponding to flipper
angle 0 rad, and the white arrows symbolize some basic
flipper configurations. So lifting up the flippers decreases
the flipper angle. In the image there is also shown the
triangulated terrain. The red and green segments denote
detected robot-terrain collisions.

performed in a space much larger than the feature
space (which is 1-dimensional). The simulations are
performed with full 3D models (triangle meshes) in-
corporating physical influences of forces. So what
we do is simulate the problem in its full description,
and then map the result of the simulation to the prob-
lem projected to a 2D subspace consisting of features
and actions. If the projection is chosen wise, there
should be no problem with this dimension shrinking.

6.3. Realization of the experiment

To verify the safe exploration algorithm in prac-
tice, we drove the robot on several steps of different
heights, running the algorithm after each trial. After
each teleoperated trial there was an autonomous test
of the generated policy. We always chose the policy
that intersects the largest area of safe states.

6.4. Evaluation of the experiment

During the realization phase, the robot never tried
to enter an unsafe state (both from the estimated un-
safe set, and from the real unsafe states). It always
managed to add new points to the safety function rep-
resentation and enlarge the area of state space cov-
ered with the safe region. The safe and optimal pol-
icy did not change during the experiment, it was al-
ways a constant policy π = 1.1 + 0x.

The progress of the safety function, as well as
its support vectors is shown in Fig. 3, note how the
safety function’s safe area growed gradually with
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Figure 2. Poses of the robot to better illustrate the meaning of data points in Figure 3. The robot icons are placed
approximately with their center on the data point (the left column represents drop height 0). The “ghost” flippers for angle
1 rad denote that the robot pushes to get to that angle, but the applied power is not sufficient (the flippers are compliant).
The red bars illustrate the place where the drop height was measured.

each iteration.
After the final iteration, we compared the learned

safety function to the limits that an experienced op-
erator would allow for the robot. Actually, in more
complex instances of safe exploration, getting such
limits is impractical. The comparison is shown in
Fig. 3, and Fig. 2 provides a graphical understanding
for the data points. It is evident from the figure that
we have succeeded keeping the false negative (FN)
rate at 0 (here FN denotes unsafe states classified as
safe).

Using the classifier terminology, we can specify
true negatives (TN) as the number of safe states clas-
sified safe, false positives (FP) the number of safe
states classified unsafe, and true positives (TP) the
number of unsafe states classified unsafe. Then we
may define accuracy as (TP + TN)/(TP + TN +
FP +FN) and precision as TP/(TP +FP ). With
this terms defined, we may say that the objective of
the safe exploration algorithm is to achieve precision
as close to 1 as possible, which means to minimize
the difference between the estimated and real safety
functions, while preserving FN = 0.

During the three model updates, the values of ac-
curacy in the individual steps were [0.70, 0.82, 0.81],
and precision was [0.42, 0.66, 0.69]- Another inter-
esting metric can be seen when we superimpose
the last (best) SVM model S2 over the set of vis-
ited points in previous model updates. This shows
how the model gets gradually better – accuracy
[0.77, 0.82, 0.81], precision [0.48, 0.66, 0.69]. We
note that compared to the first model S0, the last
model S2 classifies several previously unsafe points
as safe, increasing both accuracy and precision. On
the second model S1 there is no change if superim-
posed with S2.

7. Conclusion and further work

In our work, we have presented a novel frame-
work for achieving safe exploration in unstructured
environments. Compared to other approaches, our
method does not need to visit unsafe states, as well
as it can guarantee that the robot doesn’t visit un-
safe states by accident (this holds only for the unsafe
states we provide simulators for). It also allows to
train the safety function(s) independently from the
robot’s other tasks, and such safety functions can be
easily composed. The trained safety functions are
then used to restrict reinforcement learning and other
algorithms to only choose safe actions during explo-
ration.

There are two main prerequisites for our safe ex-
ploration approach: having a cautious simulator and
knowing how to represent the safety function. For
the former, we have shown that creating such sim-
ple simulator can be easy at least for some problems.
The latter can be circumvented by either analysis and
modeling of prior knowledge, or by trial-and-error.

This algorithm can be advanced in several ways.
Adjusting parameters of the simulator seems to be an
interesting way of increasing performance. However,
it is not clear how to do some kind of gradient descent
with the whole simulator.

If we could safely visit critical states (those near
the decision border), that could also help. This can be
for example achieved by implementing a cautious ex-
ploration strategy (human operators also slow down
in dangerous or unknown situations).

Further improvements can be done in the area of
selecting which policy to execute. For example, if
we could select a policy that would maximize the in-
crease of the safe area, the exploration could be done
faster.
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Figure 3. The progress of learning the SVMs for safety model (iterations 1, 2 and 3 from the top). The pink area is
considered safe by the SVM (the blue solid line is its boundary). The dashed black line denotes the safety boundary
estimated by an experienced operator (just for evaluation purposes). Data points from Xreal are represented as brown
dots, Xsim

safe as plus signs and Xsim
unsafe as crosses. Safety of Xsim data points is coded by color using the shown color

scale (we used safety threshold smin = 0.7). Encircled points are the Support Vectors. The thin red, green and blue lines
represent the manually driven trajectories, and the magenta line at the bottom is the trajectory executed using πi. To better
understand the visualization of the trajectories, please refer to the robot poses depicted above the first iteration connected
by green dotted lines to the corresponding data points (first, the drop height is 0, then it “jumps” to the maximum drop
height, and as the robot climbs down, the drop height gets lower and lower). Note that manually visiting the green and
azure points in the last step would greatly improve the safety function estimate.

A similar idea is to have an algorithm that would
tell the operator which states classified as unsafe by
simulator would be worth visiting in the real, if the
operator considers them safe. Such approach could
both minimize the number of needed human inter-
ventions and speed up the exploration process.
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Abstract. In this work we propose a novel approach
towards the detection of all traffic sign boards. We
propose to employ state-of-the-art region proposals
as the first step to reduce the initial search space
and provide a way to use a strong classifier for a
fine-grade classification. We evaluate multiple region
proposals on the domain of traffic sign detection and
further propose various domain-specific adaptations
to improve their performance. We show that edge-
boxes with domain-specific learning and re-scoring
based on trained shape information are able to sig-
nificantly outperform remaining methods on German
Traffic Sign Database. Furthermore, we show they
achieve higher rate of recall with high-quality re-
gions at the lower number of regions than the remain-
ing methods.

1. Introduction

The problem of detection and recognition of traffic
signs has been extensively researched within the field
of computer vision [18, 24, 10, 9, 17], with many pro-
posed solutions already being deployed in real-world
applications. Such applications are designed mostly
for automotive safety and autonomous vehicles, and
the main requirements is an excellent detection of
only approximately 30 to 50 important traffic sign
categories. Out of more than 400 categories, current
approaches focus mostly on speed limit signs, stop
and yield signs, pedestrian crossing signs and various
prohibitory and mandatory signs, while information
signs and direction signs are ignored.

Detection of all signs may not be crucial for au-
tomotive applications, however, they are important
in road maintenance services [21], where an impor-
tant task is verification of presence or absence of all
road-based traffic signs, including verification of var-
ious information signs, special road marking signs
and various direction signs (see, Figure 2). Extend-
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Figure 1: Overview of proposed domain-specific
adaptations of edge-boxes using trained structured
edges and re-scoring with shape information.

ing the detection to the remaining signs is desired, as
it would eliminate the tedious work of manual veri-
fication. Additionally, remaining signs may also be
used in current applications of autonomous vehicles
to augment the navigation in case of poor GPS sig-
nal. Our work is focused on providing a way towards
the detection of all traffic signs by utilizing a fast and
general regions proposal algorithms. However, due
to the lack of a comprehensive database with such
traffic signs, we currently focus only on 40 basic cat-
egories contained in the existing datasets.

Specific combination of colors and mathemati-
cally well-defined shapes makes traffic signs stand
out from the background. Several approaches uti-
lize this information by manually hand-crafting de-
tectors to special colors and shapes [10], and fine
tuned the algorithms to them. Hand-crafted features
rely on simple techniques, such as color threshold-
ing [19, 15], Hough transform [18] and template
matching [15, 14], making them fairly efficient. A
downside of hand-crafted approaches are difficulty
to scale to potentially very large number of cate-
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Figure 2: Examples of traffic signs required for the
process of road maintenance.

gories and lack of robustness to real-world changes,
where traffic signs are frequently occluded by shad-
ows, trees, vehicles, people or other road signs.

Recent methods improved robustness by relying
on machine learning. Liang et al. [14] use SVM to
focus on important colors for three main classes from
GTSDB [9] dataset and then apply template match-
ing to find the specific shapes. They further use HOG
features and SVM with RBF kernel to classify ob-
jects. However, they still rely on hand-crafted tem-
plates to find interesting regions. This makes exten-
sion to the remaining traffic signs difficult as they are
of various shapes, sizes and colors. Other state-of-
the-art methods avoid hand-crafted features and uti-
lize HOG features to achieve best results [9]. Math-
ias et al. [17] use integral channel features by Dol-
lar et al. [5] for quick detection and further analyses
different discriminative learning approaches of HOG
features to refine the object classification. Similarly,
Wang et al. [23] find coarse locations in the first stage
with LDA classifier and improves accuracy in the
second stage using SVM. HOG feature are used in
both stages, however, low-resolution features are ap-
plied in the first stage and high-resolution in the sec-
ond. While all approaches with HOG features pro-
duce state-of-the-art results [9] they cannot be easily
extended to large number of traffic sign categories
without creating separate models for each category.

One approach to detect the remaining traffic signs
would be to focus on the distinctive color distribution
separating all road traffic signs of various shapes and
colors from the remaining background object. Fol-
lowing the inspiration of bottom-up visual attention
inspired by biological systems various methods used
salient region detection to reduce the initial search
space to interesting regions [24, 12, 15]. Different
approaches were employed to focus on the specific
color distribution of traffic signs, ranging from sim-
ple thresholding of color values in color-opponent
channels [15], to computing saliency map by cluster-
ing the color space with Gaussian Mixture Model and
calculating per-pixel value distances [12], or to utiliz-

ing Phase Spectrum of Quaternion Fourier Transform
(PQFT) with additional motion features [13].

Recently, in the field of object detection an in-
creasing interest has been shown in development of
new methods that find regions with fully enclosed vi-
sual objects [8, 2, 22, 25, 4]. Powerful, but slow, ob-
ject classification algorithms, such as convolutional
neural networks [11], cannot be used in exhaustive
search using sliding windows. Instead, they employ
pre-processing step to find region proposals, i.e., a
small set of regions that may contain objects, and per-
form classification only on them. Novel approaches
where developed with some still relying on sliding
windows but using quick computation of objectness
measure using single [25, 4] or multiple cues [1],
while others utilized hierarchical clustering of seg-
mented regions [22] to generate windows. Their de-
sign makes them interesting for limiting the search
space in traffic sign detection. As they are class-
agnostic they should be able to detect road traffic
signs of various sizes, shapes and colors included in
various traffic signs. Moreover, they are designed for
efficiency and can be employed only once for all cat-
egories, therefore, amortizing the computational cost
over all categories.

1.1. Our approach and contributions

In this paper we propose to use the region pro-
posal methods to move towards the detection of all
road-based traffic signs, including information and
various direction signs. We propose a multi-stage
approach with region proposals in the first level of
cascade to significantly reduce the search space and
allow a more powerful but slower classifier to be later
used for the fine classification. This paper represents
a preliminary work towards that goal and focuses on
region proposal part of the cascade. We analyze var-
ious region proposal and evaluate how successfully
they can be applied to the specific domain of traffic
sign detection. Multiple state-of-the-art region pro-
posals are evaluated: Objecness measure [1], a selec-
tive search [22], BING [4] and edge-boxes [25].

Furthermore, since none of the evaluated region
proposals is able to produce results good enough to
enable the whole pipeline to compete with the state-
of-the-art traffic sign detectors, we present domain-
specific adaptations as our main contribution of this
work. Out of multiple domain-specific adaptations
evaluated, we propose to use a cascade with domain-
specific learning of edge-boxes and additional re-
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scoring based on learning of shape information with
linear SVM (see, Figure 1). We show that domain-
specific adaptation improves both the accuracy and
the quality of region proposals for traffic signs. Al-
though this method is applied to traffic sign detec-
tion, it does not use hand-crafted features that limit
the method to this specific domain and may be easily
applied to various other domains.

The paper is structured as follows: in Section 2
state-of-the-art region proposal algorithms are de-
scribed, followed by proposed domain-specific adap-
tations in Section 3 . In Section 4 both state-of-the-
art region proposals and domain-specific adaptations
are evaluated. Conclusions are drawn in Section 5.

2. Region proposal algorithms

This section provides an overview of various state-
of-the-art region proposals. For a comprehensive
overview of region proposals see Houben et al. [9].

2.1. Window objectness

This early region proposal algorithm was pro-
posed by Alexe et al. [2]. The algorithm is based
on a fast evaluation of sliding windows to quickly re-
duce the search space of potential objects. Windows
are evaluated using an objectness measure that inte-
grates multiple weak cues. It utilizes saliency cue
computed from the residual spectra of the FFT, addi-
tionally modified to bias larger windows and applied
to multiple scales. The second cue, color contrast,
measures the dissimilarity of the window compared
to its immediate surrounding. The measure utilizes
color histogram of LAB channels and computes Chi-
squared distance between the window and its sur-
rounding. The third cue captures edge density and
computes the share of the edges found at the borders
compared to ones at the window’s center. Canny de-
tector is used to detect the edges. The last cue mea-
sures closed boundary characteristics of the object by
using superpixel straddling. Since superpixels will
over-segment the object there will be a small prob-
ability that window containing the object will break
the superpixel. All four measures are complemen-
tary to each other and are best integrated using Naive
Bayes model.

2.2. Selective search

The approach proposed by Uijlings et al. [22] clus-
ters individual pixels into object hypotheses using
hierarchical grouping. Bottom-up approach enables

objects to group from smaller regions up to bigger
regions as they are being grouped together higher in
the layers. This captures objects at different scales
without sliding windows. Due to hierarchical seg-
mentation, the approach favors objects with homo-
geneous regions. This may be well suited for traffic
signs where homogeneous regions with one or two
main colors are normally present in the center.

Hierarchical clustering uses segmentation by
Felzenszwalb and Huttenlocher [7] to obtain initial
regions and merging of two regions is performed
when they are the most similar. Similarity between
them is computed from four complementary mea-
sures. First measure is defined as a sum of dif-
ferences between their normalized color histograms,
where color histogram is created from three quan-
tized channels. The second measure utilizes texture
information by histogramming quantized edge ori-
entations for each channel individually. The third
measure computes similarity based on region sizes
to encourage the merging of small regions as early in
the hierarchy as possible. The last measure checks
how well the two regions fit each other in order to
avoid regions with holes and irregular shapes. All
four measures can be efficiently propagated through
the hierarchy to enable fast computation.

In [22] different strategies of combining all four
measures are considered. Out of eight different color
channels considered (HSV, LAB, RGB, normalized
RGB, intensity and individual color channels) HSV
channels performed the best. Out of different pos-
sible ways to combine similarity measure, combin-
ing all four also performed the best. We consider
only HSV and all four similarity measures combined
in our evaluation. Authors also evaluated combin-
ing multiple strategies together, using different color
channels, combination of similarities and parame-
ters for segmentation. However, combining multi-
ple strategies can take more than 10-times longer as
each strategy has to be run individually, thus taking
significantly longer to compute. In our evaluation we
consider only one strategy as our database already
contains high-resolution images that take more time
to process.

2.3. BING

Authors of BING [4] propose to capture object-
ness using the 64D norm (i.e. magnitudes) of the
gradients feature. The method is based on the find-
ing that stand-alone objects with well-defined bor-
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ders and centers have a clear correlation in normed
gradient space, particularly when objects are resized
to small fixed sizes. The method proposes to normal-
ize the size of object to multiple quantized sizes and
collect a feature vector containing 8x8 norm of the
gradients. Linear SVM is further used to find the set
of weights that capture windows with fully enclosed
object. In the second stage of learning, a linear SVM
is used to calibrate the scores from different window
sizes and to suppress the sizes that have low proba-
bility of containing an object.

The method is applied to densely sampled win-
dows using sliding window approach and handle
hundreds of thousands of windows with an effi-
cient computation of feature vector using binarized
normed gradients.

2.4. Edge boxes

Region proposals by Zitnick et al. [25] are based
on a realization that a window with one fully en-
closed object does not have many strong edges at
the borders. In particular, strong edges rarely inter-
sect with the borders as this would be an indication
that window breaks the main outline of the object.
The method computes a score based on this premise
by first grouping edges into small segments, ensur-
ing that group’s sum of orientation differences does
not exceed π/2. The score of the window is then
computed as a weighted sum of magnitudes of seg-
ments that intersect with the borders of the window.
The magnitudes are weighted based on how much of
a segment lies outside of the window. Additionally,
magnitudes within the window center are ignored as
only border edges have been shown to be important.
The authors propose an efficient way to compute this
score using integral images.

The edges used by this method are extracted using
structured edges by Dollar et al. [6]. This can reduce
the presence of noisy edges as structured edges can
be learned from the object borders.

3. Domain-specific adaptations

The domain to which we are applying the region
proposals is very specific. The colors of traffic signs
are designed to be very distinctive and the signs con-
tain many homogeneous regions that are designed to
pop out from the background. While the shape of
traffic signs can vary, they are still designed around
a small set of shapes, such as triangles, squares or
circles, that fairly well separate traffic signs from the

background objects. In this section we detail several
proposed adaptations of region proposals that can ex-
ploit the specific characteristics of our target domain.

3.1. Saliency-based region proposals

We evaluate two region proposals generated from
salient regions. Salient regions can be often present
in traffic signs, particularly in the center of the sign,
where homogeneous regions with single color are
prominent. We consider region proposals generated
by two salient region detectors: MSER [16] and
WaDe key-point detector [20].

3.2. Selective search with SEED superpixels

In the selective search [22], the size of the smallest
region detected is determined by the size of the ini-
tial segmentation segments. Since many traffic signs
are only 20-30 pixels wide, the size of initial seg-
ments is even more important for this domain than
for generic objects. We consider replacing the seg-
mentation with the SEED superpixels [3] to obtain
finer initial regions.

3.3. Domain-specific learning of BING

Many region proposals rely on a learning stage
that is normally performed on a generic set of classes.
We propose to utilize region proposal learning proce-
dure to capture the visual characteristic of our target
domain.

In BING [4] learning is performed on gradient fea-
tures that are resized to specific sizes and aspect ra-
tios. Particularly, window normalization is important
in our domain as it will normalize traffic signs of dif-
ferent sizes, such as different information and direc-
tions board, to a specific size. Moreover, learning
will capture rectangular, circular or triangular shape
structures predominantly present in all traffic signs.

3.4. Domain-specific learning of edge-boxes

We propose two improvements to the traffic sign
proposals for edge-boxes [25]. First, we can imple-
ment an adaptation of edge-boxes in a similar fash-
ion as with BING [4] and use its own learning proce-
dure to capture domain specific characteristics. Sec-
ondly, we propose to run region proposal algorithm
in a cascade, with edge-boxes providing a bigger set
of regions in the first stage, and using re-scoring with
the shape information to further reduce the set of in-
teresting regions. In the first stage of the cascade
edge-boxes is set to return 10 - 20% of best region
proposal. Results show (see, Figure 3) that at this
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Figure 3: Performance improvements on edge-boxes
when increasing the number of regions to 100.000.

range the positive samples are covered with fairly
good windows. Note that due to high resolution im-
ages in our dataset and a small size of target objects,
sliding window generates 250k to 500k regions, thus
first stage with edge-boxes reduces a set of interest-
ing regions to 50k - 100k regions.

3.4.1 Learning

Although edge-boxes do not perform any explicit
learning, they rely on structured edges by Dollar et
al. [6] that are normally trained on generic object
boundaries. We train structured edges on traffic signs
boundaries and allow the method to focus on borders
around specific color distributions. A similar infor-
mation is usually captured in various hand-crafted
traffic sign detectors, however, those methods have
edge detectors tuned to specific color-opponent chan-
nels [15, 13]. Instead of tuning to specific color-
opponents we allow structured edges to learn which
color channels are the most appropriate to find the
borders of traffic signs. We trained structured edges
on first 100 images from GTSDB and have manually
segmented their boundaries to provide groundtruth
for structured edges.

3.4.2 Re-scoring with shape information

We propose to use shape information for the re-
scoring. By default, trained structured edges cap-
ture shape information fairly well. However, this in-
formation is not fully utilized in edge-boxes as the
method focuses only on edges around the borders

that lead out of the window, while ignoring the cen-
tral edges that carry shape information.

We also perform normalization of window to spe-
cific size as windows with uniform size are invari-
ant to changes in sizes, aspect ratios and also small
degrees of rotation. Invariance to the aspect ratio
is important in our domain with various rectangular
boards, such as directions signs, city limits signs or
information signs, which appear in multiple sizes and
aspect ratios. We use simplified norming of windows
by simply resizing them to specific size.

We propose the following procedure to capture
shape information. Region proposals are resized to
a smaller size, specifically we use 40x40 pixels that
can capture enough shape information. Next, we ob-
tain edges for each region and create feature vector
from them. We can reuse domain-specific structured
edges from edge-boxes and avoid additional compu-
tational cost. Feature vector is created directly from
structured edges using both edge magnitudes and ori-
entations, thus producing 3200 dimensional vector.
Finally, linear SVM is trained to separate between
traffic sign and non-traffic sign regions. Due to linear
implementation of SVM, classification can be imple-
mented as a dot-product between feature vector and
a vector of weights.

4. Evaluation

We evaluate region proposal methods on German
Traffic Sign Database [9], which contains 600 testing
and 300 training images taken from vehicle mounted
camera in city and countryside settings. All images
have 1360x800 pixels and depict 43 different anno-
tated traffic signs. All algorithms were tested on
the testing set, while the training set was used only
by the methods that require domain-specific adap-
tations. Baseline methods that require learning are
trained on a generic dataset.

The standard evaluation of region proposals fo-
cuses on several metrics: recall, which represent the
ratio of positive samples detected, the number of all
regions returned by the method and the intersection-
over-union (IoU) of the detected regions. The last
measure is important since it captures the quality of
the region proposals. Regions that cover object with
only low IoU will introduce an error that propagates
onwards. To capture both performance and quality
of the region proposals we measure (a) recall versus
IoU and (b) recall versus the number of regions pro-
posed.
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Figure 4: Results of evaluating baseline region proposals on GTSDB [9] dataset with recall over various
Intersection-over-Union overlaps in (a) and recall over various number of regions in (b) for 0.5 IoU and in
(c) for 0.8 IoU overlap. Note, values next to legend names in (a) are the number of regions used.

We compute the recall versus IoU measure by
sorting the detection based on best IoU and thresh-
olding IoU at various points. To ensure valid com-
parison between different methods the number of re-
gions have to be fixed. For some algorithms this may
not be easily achievable, however, where this is pos-
sible we set the parameters accordingly. In practice,
the selective search variants produced at most ap-
proximately 3000 to 4000 regions. We adjusted the
parameters of remaining methods to closely match
this number. Note that standard region proposal eval-
uations consider only 1000 regions, however, they
typically evaluate 4-times smaller images. Image
samples in other evaluations also contain larger ob-
jects that are mostly present in the foreground, while
GTSDB contains many small objects that are often
barely visible. We account for this discrepancy by
taking more than 3000 regions.

We compute recall versus the number of proposed
regions by sorting the region proposals based on their
score and limiting the number of regions. Note that
this measure is not fully appropriate for MSER and
WaDe detectors as they do not return any score. We
measure recall versus the number of regions at two
IoU values. One at 0.5 based on PASCAL overlap
criteria and another at 0.8 to capture high-quality re-
gions.

4.1. Baseline region proposals

Results of four baseline state-of-the-art region
proposals and two salient region detectors are shown
in Figure 4. Three methods, namely selective
search [22], edge-boxes [25] and MSER [16], per-
formed similarly. MSER covers most positive sam-
ples at low and high quality regions, while selec-

tive search is competitive at mid-quality regions and
edge-boxes are competitive at high-quality regions.
The selective search appears to perform best only at
IoU of approximately 0.5 where it outperforms both
MSER and edge-boxes. On the other hand, MSER
performs the best at higher-quality regions, which are
more important for successful classification.

More than half of the traffic signs are still not
covered by any of the high-quality region propos-
als. This makes region proposals difficult to com-
pete with the state-of-the-art traffic sign detectors
that achieve 98 to 100% detection rate on this
database [17, 23]. Both MSER and selective search
have a difficulty at competing as they achieve 99%
coverage at only 0.2 IoU. However, edge-boxes can
achieve better coverage when enough regions are
generated as 98 - 100% of samples can be covered
with high-quality regions when 100k regions are gen-
erated (see, Figure 3). With MSER and selective
search this is not possible as they both generate a
fixed number of windows depending either on salient
regions found or depending on the number and qual-
ity of initial segmentation segments.

Note that in our evaluation the objectness mea-
sure performed the worst, mainly due to a poor set
of initial windows. The method constructs a dense
set of initial windows, however, the implementa-
tion [1] has difficulties generating smaller windows
that cover smaller traffic signs, therefore, we ex-
cluded this method from further evaluation.

4.1.1 Finer resolution

We additionally evaluate proposals at finer resolution
by doubling the size of each input image. Finer reso-
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Figure 5: Comparing baseline region proposals at
double the resolution. Note, values next to legend
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lution is better suited for our domain due to relatively
small size of traffic signs. The results are shown
in Figure 5, where improvements in almost all pro-
posals can be observed. High resolution images im-
prove edge-boxes the most, while the performance
of MSER actually worsens. This happens due to a
higher number of salient regions being returned, but
as only the first 4000 of regions are selected to fairly
evaluate all algorithms, some correct regions are dis-
carded.

Result at the finer resolution also need to be nor-
malized with the additional computational cost. Se-
lective search is already slow at normal resolution,
therefore, using finer resolution makes it even less
useful. Higher resolution has little computational
cost for BING, however, this method has the worst
recall. The highest benefit is observed in edge-boxes,
where multi-scale edge detection can be replaced
with a single finer scale at little computational cost
and a significant improvement in the performance.

4.2. SEED superpixels in selective search

We further evaluate replacing segmentation in se-
lective search with SEED [3] superpixels to gener-
ate a higher number of regions. The results can
be seen in Figure 6. A finer control over the size
of initial segmentation when using SEED super-
pixels generates windows that capture smaller re-
gions and improves overall performance. The perfor-
mance is improved even further with finer resolution,
matching the performance of edge-boxes. However,
this improvement comes at a higher computational
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Figure 7: Results of evaluating domain-specific
adaptation of BING [4] with gradient features trained
on traffic signs. Note, values next to legend names
are the number of regions used.

cost compared to edge-boxes, thus making selective
search less attractive.

4.3. BING adaptation

Next, we evaluate the effect of domain-specific
adaptation of BING with the results reported in Fig-
ure 7. The graph shows improved performance when
training BING features on traffic signs over all IoU,
with the highest improvement observed at the low
quality regions. Despite improving the overall per-
formance, the results are still significantly worse than
in selective search or edge-boxes. The reason for
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Figure 8: Results of evaluating domain-specific adaptation of edge-boxes [25] using domain-specific learning
and re-scoring with shape information. Recall versus Intersection-over-Union overlaps is in (a) and recall
versus number of regions in (b) for 0.5 IoU and in (c) for 0.8 IoU overlap. Note, values next to legend names
in (a) are the number of regions used.

poor performance is a low resolution gradient feature
that cannot sufficiently capture enough details in our
domain.

4.4. Edge-boxes adaptation

With the final experiment we evaluate the ef-
fects of domain specific-adaptation applied to edge-
boxes [25] as proposed in Section 3.4. The results
can be observed in Figure 8. Both our proposed
adaptations have proven to significantly boost the
performance of region proposals, achieving recall of
0.99 at 0.5 IoU overlap and 0.90 at 0.8 IoU overlap.
Learning structured edges alone is already able to
capture 30% more traffic signs compared to generic
structured edges. Moreover, all 90% of traffic signs
are covered with high-quality regions with IoU over
0.8. Adding re-scoring with shape information fur-
ther improves the region proposal, as almost 100%
of traffic signs can be covered with 0.5 IoU overlap.

Additionally, an excellent performance can be
achieved at a small number of windows, as can be
observed in Figure 8. At both 0.5 and 0.8 IoU over-
lap the recall quickly converges to 0.9, requiring only
between 1000 and 2000 region proposals to achieve
this score.

5. Conclusion

In this paper we explored multiple region propos-
als in the context of traffic sign detection. We pro-
posed to use region proposals as a first step in de-
tection of all traffic signs to reduce the initial search
space to a promising set of regions. Multiple state-
of-the-art region proposals were evaluated: Objec-
ness measure [1], selective search [22], BING [4]

and edge-boxes [25]. To further increase the per-
formance we proposed additional improvements in a
form of domain-specific adaptation. Multiple adap-
tations where evaluated: two salient region detec-
tors, MSER [16] and WaDe [20], replacing seg-
mentation in selective search [22] with SEED su-
perpixels [3], learning BING [4] feature on traf-
fic signs and proposing domain-specific learning of
edge-boxes [25] with re-scoring. The latter proved
to be the most effective. We performed learning of
edge-boxes by training structured edges on traffic
signs, while for re-scoring we captured shape infor-
mation with the magnitudes and orientations of struc-
tured edges and used linear SVM to learn the spe-
cific shape information. We showed that proposed
method captures 99% of traffic signs on GTSDB [9],
with 90% of objects covered with a high-quality re-
gions. Furthermore, our proposed approach does not
use hand-crafted features and is general enough to be
applied to other domains as well.

In future, we will further extend the cascade using
re-scoring based on trained color information. We
will also evaluate the whole pipeline and explore the
effects of region quality on various classifiers. We
are also planing on assembling a new dataset contain-
ing traffic signs with additional categories, including
direction signs, information signs and various road
marking signs.
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Abstract.
Motivated by the increased demand for comput-

erized analysis of documents within the Digital Hu-
manities we are developing algorithms for cuneiform
tablets, which contain the oldest handwritten script
used for more than three millennia. These tablets are
typically found in the Middle East and contain a to-
tal amount of written words comparable to all docu-
ments in Latin or ancient Greek. In previous work we
have shown how to extract vector drawings from 3D-
models similar to those manually drawn over digi-
tal photographs. Both types of drawings share the
Scalable Vector Graphic (SVG) format representing
the cuneiform characters as splines. These splines
are transformed into a graph representation and ex-
tend these by triangulation. Based on graph kernel
methods we show a similarity metric for cuneiform
characters, which have higher degrees of freedom
than handwriting with ink on paper. An evaluation
of the precision and recall of our proposed approach
is shown and compared to well-known methods for
processing handwriting. Finally a summary and an
outlook are given.

1. Introduction

Cuneiform tablets are one of oldest textual arti-
facts comparable in extent to texts written in Latin
or ancient Greek. Since those tablets were used
in all of the ancient Near East for over three thou-
sand years [22], many interesting research questions
can be answered regarding the development of reli-
gion, politics, science, trade, and climate change [9].
These tablets were formed from clay and written

(a) (b)

Figure 1. Cuneiform tablet No. TCH92, G127 [8]: (a)
Photograph and (b) its drawing. Six instances of the same
two character tuple have been highlighted in yellow. A
method for cuneiform character recognition would ideally
classify those wedge configurations as highly similar.

on by impressing a rectangular stylus [2]. The re-
sult is a wedge shaped impression in the clay tablet.
The word cuneiform derives from the Latin word
“cuneus” wedge and “forma” shaped.

There is an increasing demand in the Digital Hu-
manities domain for handwriting recognition focus-
ing on historic documents [20]. Even the recognition
of ancient characters sharing shapes with their mod-
ern counterparts e.g. ancient Chinese Sutra [14] is a
challenging task. For digitally processing cuneiform
script there exist only a few recent related approaches
like proposed in [6] using geometric features of
cuneiform tablets acquired with a 3D-scanner [16].

However, with the aim of building a search tool for
cuneiform tablets we have to consider the complexity
of cuneiform characters in their de facto standardized
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(a)

(b)

Figure 2. The cuneiform character for the syllable “zum”
and its drawing.

2D-representation. Figure 1 shows a photograph of
a cuneiform tablet and its drawing. Properties like
the lack of fixed word length together with a wide
variety of infixes, suffixes and prefixes prevents the
application of existing machine learning methods on
pictographs.

The extraction of the wedge shaped impressions of
a cuneiform character is currently being approached
by manually tracing a photograph of a cuneiform
tablet using tools like Inkscape or by automatically
extracting the boundary of a wedge configuration on
basis of a 3D-model of the cuneiform tablet [15].
In either case, the result of an extraction is a docu-
ment in the Scalable Vector Graphic (SVG) format.
Figure 2 shows the cuneiform character for syllable
“zum” and its drawing. The extraction of the wedges,
looking like Ys, is challenging because these wedges
are described with splines to retain all the damage
and complexity of being written by hand. A clean ex-
traction of the wedges is not sufficient to easily com-
pare cuneiform characters. The configuration (posi-
tion, orientation, grouping and overlap) and the shape
of the wedges varies among different instances of the
same character to a degree that requires a sophisti-
cated character model to properly classify such char-
acters.

2. Character recognition in raster images

Virtually all related research uses raster data as in-
put. Word spotting is performed either on segmented
lines [4, 24, 10] or on whole documents [18, 17].
The usage of Hidden Markov Models (HMMs) in
these approaches circumvents the problem of learn-
ing fixed-length features for words or characters by
decomposing the document or its lines into smaller

features. The observations of the HMM are thin
slices of a word, less than a character in width but
with the same height as a line. A word is the repre-
sented as a succession of hidden states, each emitting
a set of word slices. The advantage of this represen-
tation is that each slice is a fixed-length feature.

Wshah and colleagues [24] use direction gradients
and a set of four intensities as features for a sliding
window approach over already segmented lines. The
query word is modeled to match a complete line by
beginning and ending with filler characters modeling
non-keywords to reduce the false positive rate.

To reduce the amount of required training on
words lexicon-free handwritten word spotting ap-
proach using character HMMs [4] is applied. Then,
the training of the HMM classifier only requires a
small number of character classes. Just like in the
work of Wshah and colleagues [24] filler models are
employed, now consisting of a space character and
all other character classes, to improve the retrieval
precision.

Instead of directly using features extracted from
the bitmap data, Rothaker and colleagues [17] use
a Bag-of-Features representation with densely sam-
pled Scale Invariant Feature Transform (SIFT) de-
scriptors. These descriptors are then clustered into a
dictionary with a limited set of words and quantized
onto a regular grid overlapping the top of the docu-
ment. No preprocessing of the document is necessary
because the SIFT descriptors work directly on gray-
scale data. A HMM classifier determines the most
probable positions for the query word for all possible
positions on the aforementioned grid. A segmenta-
tion of the document is therefore not necessary.

The work presented by Fischer and colleagues
in [5] uses graphs as features to describe charac-
ters and measure similarity. Their approach requires
an document already segmented into words. Im-
ages are first transformed into a color-binary repre-
sentation and then thinned to one pixel medial axis
curves. Graph vertices are created at endpoints, inter-
sections and corner points of the medial axis curves.
A HMM classifier is trained on thin slices of these
word graphs.

The nature of writing cuneiform script poses a
problem for HMM based classifiers. Cuneiform
character traces have significantly more foreground-
background transitions in the vertical axis than a
word written in Latin. Classification with a HMM
based approach would necessitate a larger feature
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space of thin slices and therefore more training data
for robust classification. Training data in the form of
traced clay tablets is not readily available.

Furthermore, these approaches assume that word
slices are always rigidly in the same order. Wedge
shaped impressions, on the other hand, can locally
interchange position, both in the vertical direction as
well as in the horizontal direction, and yet still de-
scribe the same word. Graph based methods are more
robust against such changes in topology.

A method for segmentation free word spotting is
presented by Almazan and colleagues in [1] that uses
exemplary SVMs to train one positive sample ver-
sus many negative samples. The document and the
query are represented by grid of Histogram of ori-
ented Gradient (HoG) descriptor cells. Training the
SVM is done by using slightly translated windows of
the query as positive examples. Negative examples
are randomly selected windows of the document.

Although this approach does neither require any
labeled samples nor a segmented document, the re-
sulting SVMs only work very well on typeset or
script written without much variation. Cuneiform
text is highly variable in the expression of the wedges
due to various factors such as the age of the clay
tablet or the nature of the tool being used to im-
press wedges. An approach is necessary that offers
more flexibility with respect to the deformation of
the query word.

Howe presents a one-shot word spotting approach
in [7] that does not require any training data. Words
are binarized and represented as a tree of points con-
nected by spring-like potentials. The document itself
is then transformed using the structure of the tree of
the query word. Locations where the transformation
leads to a local energy maximum are those where the
query word can be found.

Leydier and colleagues [12] use basic visual fea-
tures found in written text to spot words in a docu-
ment. The first order oriented image gradient is com-
pared in specific image patches of the query word
and document, so called zones of interest, to asses
the similarity of words. The zones of interest them-
selves allow for an initial rough matching. The query
word zones of interest are aligned to those locations
of the document that share the same shape.

Both approaches do not assume a specific writ-
ing direction nor do they require segmented docu-
ments, but they do not allow for enough variation
in character shape. The approach presented by Ley-
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Figure 3. A cuneiform character in spline representation.
(a) Closed spline paths forming strokes (gray) are pair-
wise intersected (black). (b) The vertices (marked X) of a
stroke are first ordered from bottom right to top left. (c)
Edges of the final graph are created by connecting the ver-
tices. The sequence is indicated by the numbers.

dier and colleagues in [12] allows changes in posi-
tioning of the structuring elements using elastic co-
hesive matching, but does not allow for sufficient
variability in the structuring elements themselves.
Cuneiform wedges can be slightly rotated or elon-
gated for aesthetic purposes and deform the zones of
interest enough to preclude a successful match. Con-
versely, Howe [7] allows local variability but does
not account for swapped characters.

3. From splines to graphs

Before any graph matching methods can be ap-
plied, the cuneiform characters first need to be trans-
formed into well-formed graphs. Further, we seg-
ment cuneiform characters manually since cuneiform
script has no visual word boundaries that would al-
low for automatic segmentation. The recognition of
a word in the Assyrian language requires the knowl-
edge of its grammatical case and context in which it
is used. The clusters of wedges that have been man-
ually segmented do not necessarily represent distinct
characters in the original text. Nevertheless, they will
be referred to as character in the following. A char-
acter consists of a set of strokes. Each stroke is a ge-
ometric shape bounded by a closed path of splines.
These strokes are drawn in an vector graphic editor
by assyriologitsts tracing a cuneiform tablet.

All strokes are pairwise intersected to create a set
of key points. Most strokes are drawn in a way that
there is only one closed unambiguous area of inter-
section. A vertex is placed at the center of such an
area. Since more than two strokes can intersect in
the same vicinity, the set of key points is pruned so
that no two points are closer than some threshold ε.
Figure 3 and Figure 4 illustrate this process. We set
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Figure 4. This figure shows the steps from Figure 3 ap-
plied to a complex set of strokes representing a character.
In the majority of cases a small intersection of the arms is
not semantically relevant.

ε = 1. The threshold ε is expressed in tenths of a mil-
limeter. The typical line height of cuneiform script is
5 millimeters. The choice of ε did not matter in our
experiments as long as it was two orders of magni-
tude smaller than a character. We add the two end-
points of each stroke to the set of key points. End-
points are calculated by finding the two most distant
points on the spline enclosing a stroke.

The extracted points are not yet connected by
edges. There is no inherent order of key points on a
stroke between its endpoints. All points belonging to
a stroke, that is its endpoints and points created with
intersections with other strokes, are order geometri-
cally and connected in sequence. In rare cases this
may create incorrectly connected points if the stroke
is slightly curved and the geometric ordering does
not correctly represent the curvature of the stroke.
Only few instances have been observed where this
is the case.

4. Graph Similarity

After transforming the cuneiform characters from
a collection of strokes into a graph representation,
the characters can now be compared in similarity us-
ing common graph matching methods. Since small
differences in position and orientation in wedge im-
pressions do not change the meaning of a character,
we assume that the graph topology is sufficiently de-
scriptive to measure the similarity of cuneiform char-
acters. We present three graph matching methods
and extend each to work on the Delaunay triangu-
lation of the cuneiform character graph. The Delau-
nay triangulation is used to catch big structural differ-
ences, significant translation or rotation of wedges,
or wedge impressions in distinct graph components
that do not modify the topology of the cuneiform
character graph.

4.1. Weisfeiler-Lehman graph kernel

The graph kernel presented by the authors in [19]
is an extension of the graph isomorphism test intro-
duced by Weisfeiler and Lehman [23]. The kernel
works by by counting how many subtrees the two
graphs being compared share.

Each vertex of a cuneiform character graph is as-
signed a unique label. (Using the same label for each
vertex results in significantly worse results.) On ev-
ery iteration of the algorithm each vertex label is ex-
panded with the labels of adjacent vertices. To in-
crease computational performance all vertex labels
can be converted into a shorter representation using
hashing. Adjacent vertex labels have been, in turn,
extended in an earlier iteration by their adjacent ver-
tex labels. The label of each vertex is therefore an
enumeration of a subtree rooted at this specific ver-
tex.

The label, and therefore the subtree, contains mul-
tiple repetitions of itself since the root vertex is adja-
cent to each of its adjacent vertices. This behavior is
called tottering [19] and degrades the quality of the
labels and the quality of the similarity metric.

The similarity of two graphsGA andGB and their
label sets Nk

A and Nk
B is the count of matching labels

at iteration k. We denote the labels of Nk
A and Nk

B

with e and f .The graphs are considered to be highly
similar if most of the subtrees extracted from either
graph are present in both graphs. δ(e, f) is the Kro-
necker delta, that is, δ(e, f) = 1 if e = f , and 0 oth-
erwise. We perform four relabeling iterations n = 4.
More relabeling iterations (n = 10) did not result in
better classification performance.

K =
n∑

k

∑

e∈Nk
A

∑

f∈Nk
B

δ(e, f) (1)

4.2. Spectral decomposition

The spectral decomposition [3] of a graph has a
variety of applications in the field of graph match-
ing [13]. A graph is decomposed by computing the
eigenvectors and eigenvalues of its adjacency ma-
trix that has been at first converted into a normalized
Laplacian matrix.

The resulting multi-set of eigenvalues and eigen-
vectors have many interesting properties [3] and
are often used for clustering where the multi-set of
eigenvectors can be used to find a nearly minimal cut.
Additionally, the spectral decomposition of a graph
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is used as an approximation for the random walk ker-
nel on a graph [21]. We make use of the property of
the spectral decomposition that two identical graphs
have the same multi-set of eigenvalues. Such graphs
are called to be isospectral. Small changes to those
graphs result in only small changes to the multi-set
of eigenvalues.

We compute the normalized Laplacian matrix L
with components luv from the adjacency matrix A
of a graph G with vertices u, v and vertex degrees
du, dv. L has the eigenvectors φi and the multi-set of
eigenvalues λi.

L =[luv]

luv =





1, if u = v and du 6= 0

− 1√
dudv

, if u 6= v and auv = 1

0, otherwise

(2)

φTi Lφi =λi

λ1 ≤ · · · ≤ λi ≤ · · · ≤ λn
(3)

The multi-set of eigenvalues is usually used as
an embedding into a feature space where graphs are
compared using Euclidean distance. We have found
that using the cosine similarity to measure the angle
between the eigenvalues of both decomposed graphs
yields better classification performance.

The similarity of two graphs GA and GB can
therefore be computed by measuring the angle be-
tween the features vectors λA and λB (the multi-sets
of eigenvalues of the respective graphs A and B).

K =
〈λA, λB〉
|λA||λB| (4)

4.3. Random walk graph kernel

The random walk kernel is based on the idea that
two similar graphs share many identical walks [21]
and their similarity can be measured by counting the
number of identical walks.

A naive and computationally very expensive ap-
proach would be to generate walks for two graphs
randomly, and to compare all pairs of walks. A faster
approach makes use of the properties of the product
graph of the two graphs being compared. The prod-
uct graph is constructed by computing the Kronecker
product of the two graph adjacency matrices. The
product graph has an edge only if the corresponding
nodes in both of the original graphs are adjacent.

Exponentiating an adjacency matrix of graph is
used to count the number of walks in a matrix. Ex-
ponentiating the adjacency matrix of a product graph
therefore leads to the number of shared walks in both
original graphs. The computation of such a random
walk kernel is a deterministic process that converges
towards the stochastic solution with each iteration of
the exponentiation. The count of iterations is also
the maximal walk length to be found and is denoted
by n. We set n = 10. We found that higher values
(n = 20) did not improve classification performance.
AA and AB are the adjacency matrix of the graphs
GA and GB being compared. The operator ⊗ is the
Kronecker product of two matrices. K is the result-
ing kernel computing the similarity of two graphs.

R = AA ⊗AB

K =
n∑

k

Rk (5)

4.4. Delaunay triangulation

Transforming cuneiform characters in spline rep-
resentation to a representation as graphs can result
in a graph with multiple disconnected components.
Topology based graph kernels as described in the pre-
vious sections do not pick up differences in graphs if
one of these components is geometrically translated
or rotated.

We extend all three presented methods by tri-
angulating the extracted points using the Delaunay
triangulation and additionally measuring the simi-
larity between the Delaunay triangulated characters
graphs.

The Delaunay triangulation should also consider
geometrical translations and rotations where the spa-
tial relationship (a wedge is below/above/right of/left
of another wedge) significantly changes between the
wedges. Small changes in position or shape do not
matter for the classification of a character.

The graph kernel methods are extended by com-
puting a new adjacency matrix (therefore new edges)
from the key point set without considering the strokes
the key points originate from. Edges are created in-
stead by the Delaunay algorithm. Let DA be a ad-
jacency matrix of a Delaunay triangulated character
graph GA and AA be the original adjacency of char-
acter graph GA and K a graph kernel from one of
the presented methods. K ′ is then a graph kernel
that computes the similarity between two character
graphs GA and GB .
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Figure 5. The top 9 results for the task to retrieve the
Query Character (the prototype) are displayed. The Input
Character is represented as a set of strokes. This set is then
transformed into the graph representation of the Query
Character. The kernel used for similarity is the spectrum
kernel extended with Delaunay triangulation. The results
are ordered from best (top left) to worst (bottom right).
Characters with a green background have been correctly
classified, characters with a red background have been in-
correctly classified.

K ′ = max{K(AA, BA),K(DA, DB)} (6)

We also tried the min operator but the classifica-
tion performance was worse for all kernels except for
the random walk kernel where the improvement in
performance was negligible.

5. Experimental Evaluation

The data set used are a subset of several hundred
3D-scanned cuneiform tablets and tablets provided
and manually transcribed into a vectorized file for-
mat by assyriologists. Only a subset of the words
has been segmented manually since the tablets were
partly damaged. There are 23 distinct word classes
and 73 word instances used in the data set.

The task to test the classification performance
of the presented methods was performed by hiding
a prototype instance of the segmented words and
comparing the remaining word instances against the
prototype instance. The retrieved candidates were
ranked by similarity from most similar to least simi-
lar.

The classification performance of the presented

Figure 6. The precision recall graph for all the presented
methods. A high precision implies that most of the re-
trieved character have the correct label, the false positive
rate is low. If we increase the recall (the count of true pos-
itives and false positives, therefore ask for more results)
the false positive rate climbs and the precision falls.

methods was then compared using a precision recall
graph.

5.1. Precision and Recall

Figure 6 shows the classification performance of
the various methods. The three basic methods are:
the Weisfeiler-Lehman Graph Kernel (WFLM), the
spectral decomposition (Spectral) and the random
walk graph kernel (RndWalk). Then, the meth-
ods extended with the delaunay triangulation are
WFLM DGM, SP DGM (for the spectral decompo-
sition) and RW DGM (for the random walk kernel),
respectively.

The Delaunay transformation reduces precision
greatly for the Weisfeiler-Lehman graph kernel. This
kernel counts the number identical subtrees in both
graphs. Since many vertices in a Delaunay triangu-
lated graph have the same degree, two geometrically
dissimilar triangulated graphs will share a high num-
ber of subtrees rendering them indistinguishable for
the Weisfeiler-Lehman graph kernel.

The decrease in performance for the random walk
kernel can be attributed to the same problem. Dis-
similar triangulated graphs share a lot of random
walks since most vertices are reachable by a high
number of different walks.

The spectral decomposition, on the other hand,
has better precision when extended with delaunay
transformed graphs. The spectral decomposition can
be seen as a series of minimal cuts [3] of a graph
where the edge density is lowest. Translation and ro-
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tation of wedges are therefore detectable by changes
in connectivity of the graph partition leading to a
better classification performance than just using the
graph topology.

The random walk method and the Weisfeiler-
Lehman graph kernel achieve better classification
performance when the untransformed cuneiform
graphs are used. Much more variating node degree
and unique walks in the untransformed graphs enable
those methods to differentiate cuneiform characters
graphs better.

6. Conclusions and Outlook

Common handwriting recognition methods are not
applicable to cuneiform characters. The Assyrian
language has no means of separating words, thus
making word segmentation very difficult. Cuneiform
characters are very variable with respect to the posi-
tioning and rotation of their wedges and also exhibit
a lot of complexity in the vertical direction without
having a fixed shape that can be used by fixed-length
feature vector classification methods.

We transform cuneiform characters into graphs
and find that such a representation does not lose any
structural elements of cuneiform and is very suitable
for further analysis of the characters.

We applied graph kernels to classify cuneiform
characters with the result that the random walk ker-
nel performs best. The spectral decomposition, on
the other hand, performs best when extended with
the Delaunay triangulation and achieves the highest
classification precision of all the presented methods.

We are currently working on using the wedge
shaped impressions as a basic structural feature of
cuneiform characters. A template shaped like an
ideal wedge is used to match and extract wedges
in a cuneiform character. The characters, decom-
posed into wedge shaped templates, are compared
based on the similarity of their wedge shapes and
the quality of the matching of the wedge configura-
tion (position, orientation, overlap). To support our
claim that conventional OCR methods are not suit-
able for cuneiform script we are currently investigat-
ing the classification performance of standard HMM
and DTW methods on rasterized cuneiform script.

Additionally, we are investigating a method that
represents the cuneiform characters as point clouds.
Query word and candidate alignment and subse-
quent matching is performed with Iterated Closest
Points [11].
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Abstract. We present a novel semi-automatic ap-
proach to classification of biologically meaningful
cell populations in imaging cytometry. Of each
cell in a set of multispectral microscopic fluores-
cence image (where each image contains several
hundred cells) we obtain morhological, gray level
histogram and textural feature measurements. The
user provides initial class labels by roughly mark-
ing populations with polygons in scatter-plots of
two-dimensional feature space projections, a process
called ”gating”. The scatter-plots are enhanced by
the multispectral images of each cell, providing the
user with visual information about cell morphology
to support gating. Typically, gating produces many
false assigments which are automatically corrected
by a strategy akin to bagging and consensus vote. To
prove for validity, we compared our results to anno-
tated samples and to state-of-the-art flowcytometric
analysis results.

1. Introduction

Cytomics deals with the analysis of biological
samples consisting of a large number of cells with
the goal to classify, and thus, to quantify populations
in the sample, i.e. groups of cells of the same cell
(sub-)type [10]. The quantitative analysis of samples
is important for the understanding of cellular mecha-
nisms including the quantification of protein subcel-
lular appearance or DNA elements [14], [7].
In cytomics, each cell of a sample is described by

several descriptive feature measurements. To enable
the feature extraction, several parts of the cells have
to be visualized, including the cell membrane, the
nucleus and the antibody expression. To do so, flu-
orescent labeled antibodies are used in combination
with e.g. DNA binding dyes [19]. Basically, antibod-
ies are proteins attaching to specific cellular targets
called antigens representing nuclear or cellular struc-
tures or proteins and genes. Antibodies are labeled
with a fluorescent protein emitting light of a specific
wavelength when illuminated. Using different fluo-
rescence labeled antibodies allows for the visualiza-
tion of different targets.
There are two basic methods for acquiring mea-
surements on a single cell level: Flow Cytometry
Measurement (FCM) and Fluorescence Microscopy
(FM). FCM devices measure light intensity of single
cells floating in a fluidic stream, whereas FM meth-
ods capture multispectral images of cells attached to
glass slides. In contrast to FCM, FM methods require
image analysis techniques to extract signal intensi-
ties of single cells from the resulting multispectral
images. Both techniques result in feature vectors ex-
tracted on a single cell level. The features have to be
processed subsequently to obtain a meaningful inter-
pretation of the underlying data, which is subject of
the current article.

When comparing FM and FCM features, the dis-
criminative power of FCM features is higher in gen-
eral. This is due to the detection method, since the
dynamic range of detectors used in FCM devices is
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a multiple times higher when compared to sensors
used in CCD grayscale cameras or even compared to
detectors used in laser scanning microscopes. Nev-
ertheless, image analysis enables the researcher to
perform analysis strategies including morphological
features [12] as the basis for a subsequent classifica-
tion of cellular populations. Although a new gener-
ation of Imaging Flow Cytometers arose enabling a
simultaneous measurement of signal intensities and
acquiring images, FM image analysis bears the ad-
vantage to relocate cells on the slide, which is not
possible when using FCM technologies. Relocation
on the slide enables the operator to use high magni-
fying lenses to investigate a cell in detail, which can
be an advantage if antibody expression pattern of the
cell is difficult to analyze. Furthermore, grown cells
as well as tissue sections can only be analyzed using
FM technologies. Ecker et al. proposed the term tis-
sue cytometry for tissue analysis on a single cell level
[5]. A comparison outlining the strength of the dif-
ferent methods is presented by Barteneva et. al [1].

In this work, we introduce a novel method for the
classification of cellular populations in FM images:
we adopt the gating strategies derived from FCM do-
main to label observations in scatter plots [13] and
combine it with the cropped images stored during the
process of image analysis. This leads to a power-
ful visualization we call Image Scatter-Plots (ISP),
which is embedded in an analysis workflow used to
classify cellular populations sequentially. Since the
human brain is able to analyze and classify patterns
fast, we use this skill to guide the quantification pro-
cess in the analysis. In contrast to FCM gating, single
observations or also groups of observations gated in
the ISP can be relocated in the multispectral images
or even directly on the slide. Thus, results of the gat-
ing strategies can be verified easily and intuitively
increase the researchers confidence in the analyzed
data.
Typically, the relevant populations can not be se-
lected by simple polygonal regions. They do not
form well-separated clusters in the ISP, and even if
multiple gates drawn in different ISP are combined,
there are a substantial number of false assignments.
This is also due to the use of ”weak” image features.
To correct for the false assignments, we use random
forests or principal component analysis (PCA) for
feature selection and compare automated clustering
with majority vote of an ensemble of classifiers.
The proposed methodology for classification of cel-

lular populations is embedded in a workflow as pre-
sented in Figure 1. While the preprocessing con-
sisting of image segmentation and feature extraction
is a widely explored field, we introduce the gating
strategies applied on ISPs as a novel method for cel-
lular population classification and thus, quantifica-
tion. Combining manual input with machine learning
strategies to correct for overlapping cellular popula-
tions enables a reliable quantification for the samples
used in this work.

2. Cellular population classification using
ISPs and manual gating

The idea of ISPs was inspired by the work of
Hamilton et al. [9], who created representative plots
by sorting cellular images according to the distance
between their vectors of threshold adjacency statis-
tics [8]. In contrast to the work of Hamilton, we alter
the method by enabling the operator to choose which
features to use for the two dimensional projection.
Furthermore, it is possible to load multispectral im-
ages, so the user, further called the operator, can dis-
play the opacity for every channel, emphasizing the
channel of interest. The underlying aim is to set gates
as explained in section 2.5 to outline the population
of interest. In contrast to an FCM analysis, the oper-
ator is supported by the visualization of the antibody
expression pattern and nucleus morphology. Thus,
different populations can be classified intuitively and
efficiently even if the different populations strongly
overlap in the 2-dimensional projection.

2.1. Image Segmentation

A prerequisite for antibody quantification and for
a subsequent cellular classification is a robust image
segmentation algorithm. Segmentation is the process
of outlining distinct objects, resulting in a new im-
age of the same size as the analyzed image, called
segmentation mask. In this work, two types of im-
ages are segmented, depending on the location of the
antibodies of interest: the nuclear image and the cy-
toplasm image, see Figure 1 B for an example.
We use the Gradient Energy Tensor for nuclear image
segmentation as described in [11]. To obtain a cy-
toplasmic segmentation, we use the image channels
visualizing cellular surface markers. These markers
are membrane bound, but represent the cytoplasm
due to out-of-focus fluorescence signals. The images
are simply added and the resulting image is trans-
formed into a binary image using the Otsu threshold
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Figure 1. Proposed workflow for cellular population quantification illustrated on a neuroblastoma dataset. Preprocessing
(A-D) and contribution of this work (E-G); (A) Channels of the multispectral image each outlining a different cellular
target, (B) Segmented nuclear image (left) based on Channel 1 and cytoplasm image (right) based on Channels 2 and
3, (C) Images of observations 1 to 3 cropped in all channels of the multispectral image and in the segmented images, as
marked in images in A and B, (D) Extract of the resulting feature matrix, rows corresponding to observations and columns
corresponding to feature vectors; features vectors of observations 1 to 3 highlighted, (E) Image Scatter-Plot created using
two features selected by the operator; pseudocolors are used to overlay the cropped images of A, (F) Observations were
labeled manually (red) by setting a gate (blue) to outline a cellular population, (G) Results of automated label correction
to compensate for overlapping populations (violet, left image) and groundtruth (green, right image).
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[16]. We use the nuclear segmentation mask as the
reference points for a distance transformation subse-
quently. Finally, the watershed algorithm is used to
split touching cells based on the distance transformed
image.

2.2. Image cropping

To enable a generation of an ISP after feature mea-
surement, the input images being subject to the anal-
ysis have to be cropped. Thus, a minimal bounding
box containing the segmented object is cropped for
each channel of the multispectral image, for each ob-
ject separately. Usually, antibodies are located either
in the nucleus or in the cytoplasm, depending on the
targeted antibody. Thus, we crop a region containing
either the nucleus or the cytoplasm region. In Figure
1 C, images of the nuclear as well as of the antibody
channels are cropped.

2.3. Feature measurement

We use three types of features, morphological fea-
tures, features of the gray level histogram and textu-
ral features. Morphological features include round-
ness, perimeter, object size (nuclear and cytoplasm)
and solidity. Features of the gray level histogram in-
clude mean intensity, median intensity and mean of
the 30 percent of brightest pixels. In our experiments,
this turned out to be a robust measure of antibody
expression which is insensitive to cell size. Each of
these features is measured using the nuclear and the
cytoplasm mask, respectively, applied to the raw im-
ages by simple multiplication. Texture features are
features extracted from the gray level histogram of
filtered images. We apply local binary patterns (LBP)
[15] using a radius of 1, 2 and 3 and either 8, 16 or
32 neighbours to the cropped images. Moreover, we
apply Gabor wavelets [4] using three scales and 8 ori-
entations to the cropped images as well.
To compensate for instable texture representations
close to the border of the nucleus or the cytoplasm,
we only use pixels having a distance of more than
2 pixels to the border of the nucleus or the cyto-
plasm, indicated by the respective mask, to calculate
the gray level histogram. Each of the texture fea-
tures is measured in all channels of the multispec-
tral image, where the number of channels depends
on the number of targeted antibodies. For the sam-
ples analyzed in this work we used 3 channels. Cur-
rently, a maximum of 6 channels is possible due to
the characteristic of overlapping fluorescence spec-
tra [19]. However, there is an ongoing development

in this field to increase the number of well discrimi-
nating fluorescence dyes.
Thus, we extract 18 LBP features and 48 Gabor fea-
tures for each channel available. The number of mor-
phological features we extract is between 4 and 5,
depending on the location of the antibody, since size
of the cytoplasm can only be calculated if a channel
representing cytoplasm is available. The number of
features we extract from the gray level histogram of
the cropped raw images is between 4 and 8, depend-
ing on the antibody expression pattern as well as on
the availability of a cytoplasm channel. For texture
feature extraction, we use the mean and variance of
the gray level histogram resulting from image filter-
ing. All of the features are normalized according to
mean and standard deviation.

2.4. ISP generation

To generate an ISP, the feature space is projected
on two dimensions selected by the operator. Then,
the observations are plotted in a scatter plot. In con-
trast to commonly used scatter plots, we plot the
cropped images, see Figure 1 E. To enable the op-
erator to gate cellular populations, the features be-
ing most discriminative for the characterisation of the
different populations are chosen and assigned to the
axes of the ISP. We only provide morphological fea-
tures and features of the gray level histogram to be
selected in the ISPs, since they are meaningful for
the expert operator. To obtain the most discrimina-
tive features, the operator selects different features
for both of the ISP axes repeatedly until obtaining
a projection where populations are well separated.
In addition to the aforementioned features the first
two principal components of the feature vector can be
chosen as axis for the ISP. The operator can choose
the opacity as well as the pseudocolor for each chan-
nel of the multispectral image in order to highlight
the antibody channel of interest.

2.5. Setting gates to label cellular populations ini-
tially

Once the two suitable axes are chosen, the gate
can be drawn in the ISP. Setting a gate is equal to
declaring a region containing a population of interest.
While setting the gate, the observations being inside
the gate are assigned to one class, while all of the
other observations are assigned to another class, see
Figure 1 F for an example.
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3. Automated class label correction

In FCM technology, generally fewer features (up
to 20) are used which have high dynamic range and
discriminiative power. In contrast, in FM imaging
technology a large number of relatively weak FM
features is used (populations tend to overlap in the
ISP projections). Because polygonal gates are a
coarse selection method they will produce a large
number of false assignments. The grade of overlap
depends on the antibody used, the cells and the qual-
ity of the staining. The misclassified observations
can be regarded as outliers and have to be removed
from the particular populations. Thus, we have to use
strategies to detect outliers and reassign them to the
correct classes to improve accuracy. We do not as-
sume simple parametric form of the class-conditional
distributions, and thus, we choose a non-parametric
approach including a consensus vote of an ensemble
of classifiers.
The number of features used ranges from 50 to 220
features, depending on the the number of channels
used and the features selected by the operator. Sam-
ple size used for this type of analysis is between
400 and 5000 observations. Nevertheless, due to the
curse of dimensionality the feature space has to be
reduced to allow for a reliable classifier training.

3.1. Feature reduction

To reduce the number of features, we compared
two methods: PCA and random forest (RDF).
When applying PCA to the sample, we used the first
15 eigenvectors for projection, covering more than
95 percent of the variance, for both samples ana-
lyzed. A better way would be to perform a linear
discriminant analysis as proposed by Fisher, incorpo-
rating the class labels set by manual gating. LDA is
searching for a one-dimensional projection maximiz-
ing intra-class variance while minimizing inter-class
variance. Due to numerical instabilities when apply-
ing LDA, we investigated a feature selection method
to remove features irrelevant for classification.
We decided to use (RDF) for the task of feature se-
lection, and thus, for feature reduction, as is recom-
mended for use in biological applications with weak
discriminative features by Saeys et al. [18]. RDF
trees are grown on bootstrap samples randomly cre-
ated on a training dataset, the method is called Bag-
ging (bootstrap aggregation) [2]. We used the class
labels obtained from manual labeling by gating to
create the training data. To obtain a measure indi-

cating the importance of the distinct features, obser-
vations not being part of the bootstrap sample (out-
of-bag observations) used to create a specific tree are
predicted. The increase in prediction error when per-
muting the out-of-bag observations for prediction is
the measure of importance, averaged over the ensem-
ble of trees and normalized according to the standard
deviation over the ensemble.

We set the parameters of the RDF according to a
minimal leaf size of 10 and an ensemble of 40 trees.
Since we are only interested in calculating the fea-
ture importance, we do not take into account gener-
alization performance of the ensemble of trees. Due
to instabilities in the feature importance measure for
repeated RDF constructions, we performed the RDF
growing 10 times and only kept features for which
the overall mean of the importance was above zero.
We assume that those features have a positive impor-
tance and thus are useful for discriminating the cel-
lular populations. The instabilities most likely occur
due to the low number of observations related to the
number of features used.

3.2. Automated clustering versus classifier ensem-
ble

The samples we use have groundtruth generated
by biologists. They contain two types of cells, the
aim is to separate the two cellular populations. As-
suming no other cellular populations are present in
the sample, we performed a k-means clustering on
the RDF or PCA reduced feature space using k=2.
We tested the accuracy of k-means within 15 runs
using random initialization on one dataset, resulting
in an accuracy below 80 percent in 14 cases. In only
one attempt we achieved an accuracy of about 98 per-
cent indicating the convergence in a global minima.
When choosing the class means of the manual la-
beled classes for centroid initialization, the k-means
was guided to converge into this global minima.
In order to incorporate more information retrieved
from the classes labeled by manual gating, we in-
vestigated a method proposed by Brodley [3] and
compared it to k-means clustering. Class labels of
single observations are rated by using n-fold cross-
validation on an ensemble of classifiers and major-
ity vote for decision finding. We used an ensemble
of eight classifiers including a support vector ma-
chine (SVM) with a linear kernel and seven k-nearest
neighbor classificators with k=3, 5, 7, 9, 11, 13 and
15. We decided to keep the class label of a single
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Feature accuracy (in %)
reduction manual k-means majority vote

-
97.45

98.82 98.43
PCA 98.82 98.62
RDF 98.23 97.45

Table 1. Comparison of accuracies for the different strate-
gies on dataset 1.

observation based on the classification results of the
ensemble of classifiers trained on all other observa-
tions. If more than 50 percent of the classifiers vote
for the observation to be part of the assigned class,
the class label is kept (majority vote). Otherwise, the
observation will be assigned to to the other class. In
comparison to the RANSAC algorithm [6], we don’t
have to know the exact model to use, this is implicitly
given by the data analyzed.

4. Results

To validate the proposed method, the biologists in
the Tumor Biology Lab at the Children’s Cancer Re-
search Institute created the groundtruth for 2 sam-
ples consisting of 17 images, labeling a total of 977
observations. Furthermore, we could compare the
results of cellular population quantification for one
more sample to the results of a state-of-the art flow-
cytometric analysis. The manual gates in the ISPs
were set by a biologist expert and the author.

4.1. Comparison to annotated groundtruth

The first sample (dataset 1, number of observa-
tions n=509) contains 10 images of a co-culture
of N cells (neuroblastoma cells) and F cells (flat
cells). The cells were marked using GD2, a tumor
marker expressed in nearly all neuroblastoma cells,
and CD44, a cellular surface molecule associated
with certain activities of cancer cells. After apply-
ing the RDF for feature reduction, the feature space
was reduced from 220 to 17 features. The results are
presented in Table 1.

The second sample (dataset 2, n=468) contains 7
images of Schwann cells (cells of the peripheral ner-
vous system) and F cells. The cells were marked us-
ing Vimentin, outlining the cytoskeleton and present
in all of the cells, and S100, a Schwanncell marker
preferentially expressed in Schwann cells. After ap-
plying the RDF for feature reduction, the feature
space was reduced from 205 to 34 features. The re-
sults are presented in Table 2.

Feature accuracy (in %)
reduction manual k-means majority vote

-
94.02

89.96 93.80
PCA 89.96 94.66
RDF 80.98 96.15

Table 2. Comparison of accuracies for the different strate-
gies on dataset 2.

As is obvious, the manual labeling already achieves
high accuracy of 97.45% and 94.02%, respectively.
Since the gating procedure is supported by the
cropped images in the ISP, the biologist is enabled
to include morphology information and antibody ap-
pearance in the process of gating. The two methods,
k-means and majority vote, represent unsupervised
clustering and outlier removal. The k-means cluster-
ing is not unsupervised in general, since it is initial-
ized using the means of the manually labeled classes,
and thus, operator interaction is incorporated. Based
on the used two datasets, majority vote is more ro-
bust than clustering. When using appropriate feature
selection, the results are excellent for dataset 2.

4.2. Comparison to a state-of-the-art quantifica-
tion method (FCM)

To compare the proposed method to a state-of-
the-art cytometry analysis method, we performed an
analysis on a neuroblastoma sample (dataset 3, n=
1142) and compared it to FCM results. We used
CD44 and GD2 for antibody staining, as in dataset
1. In contrast to the analysis of dataset 1 and 2, the
aim was to determine the number of cells positive
for a certain antibody. A cell is positive for an an-
tibody if the antibody expression pattern is signifi-
cantly expressed, in the subjective impression of the
operator. Thus, four populations have to be classi-
fied (GD2 positive, GD2 negative, CD44 positive and
CD44 negative cells) preventing the use of k-means
with k=2. Due to the results for dataset 1 and 2, we
decided to use the majority vote for automated class
label correction.
To label CD44 positive cells, the first and the second
principal component were set on the ISP axes and the
gating was performed subsequently. A cell was de-
clared to be positive for CD44 (and thus, included in
the gate) if the mean intensity of the antibody passed
a certain threshold, declared by the operator. In con-
trast, GD2 was more difficult to analyze. GD2 pos-
itive cells appear with a granular surface staining,
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Antibody positivity: ratio of population (in %)
stained inital gate majority vote FCM ref.
GD2 79.25 82.31 85.8
CD44 18.04 16.81 15.3

Table 3. Results of antibody quantification for GD2 and
CD44 on dataset 3.

especially in the region of the cell membrane since
GD2 is a cellular surface marker. Hence, cells can be
negative for GD2 even if the mean intensity is rather
high. To label GD2 positive cells (and thus, GD2
negative cells were outside the gate), we chose the
mean of the 30 percent of brightest pixels in the nu-
cleus versus the mean of the 30 percent of brightest
pixels on the cell membrane for the ISP axes.
Finally, we used majority vote on the PCA reduced
feature space to correct for overlapping populations
for both antibodies analyzed. The analysis procedure
is presented in Figure 2, the results are displayed in
Table 3.

Figure 2. Classification of neuroblastoma cells. (a) Man-
ually labeled CD44 positive cells (red rectangles); only
the channel including CD44 is visualized (b) Result of the
majority vote to correct the class labels (green rectangles
indicate CD44 positive cells) (c) Manually labeled GD2
positive cells (red rectangles); GD2 and nucleus channel
are overlaid (d) Result of the majority vote to correct the
class labels (green rectangles indicate GD2 positive cells).

As underlined by the results, the analysis proce-
dure is comparable to state-of-the-art FCM analysis
with the advantage of directly visualizing the cellular
features. Furthermore, the results underline the ben-
efit of incorporating manual input and using majority
vote to correct for overlapping cellular populations.

5. Discussion

The ISP method provides the operator with a valu-
able tool for cellular population quantification by
incorporating morphology and antibody expression
patterns in the process of analysis. The use of ISPs
compensate for the lower discriminative power of
FM features when compared to FCM features. Fur-
thermore, using the ability of calculating morpholog-
ical, gray level histogram and textural features sup-
ports in splitting overlapping populations. The com-
parison of the results of majority vote to those of
automated clustering indicates the effectiveness of
incorporating operator input for cellular population
quantification.

5.1. Number of samples

Comparing k-means and majority vote for class
automated class label correction, the use of majority
vote seems to be favorable based on the current sam-
ples. Nevertheless, we have to incorporate more sam-
ples to validate the results on a sound basis, which in-
deed is a challenge as the generation of groundtruth
is a time-consuming task and has to be performed
by the biologist experts. Especially, samples includ-
ing highly overlapping populations, due to a low dis-
criminative power of features, will provide valuable
feedback for refining the current approach.

5.2. Texture features used

Aside from the features used in this work, there
are other features proposed in the literature that could
support the current analysis method but remain un-
considered. Mainly, features based on frequency in-
formation, such as fast Fourier transform features,
could be used to further improve the accuracy of
the automated class label correction. However, due
to the curse of dimensionality we are limited in the
number of features used. Moreover, the current re-
sults based on the investigated features are promising
for an application to a similar type of samples.

5.3. Methodological improvements

To perform the automated class label correction,
we used a majority vote to decide the final class
membership for a single observation. When inter-
preting the ratio between the number of the votes for
a certain class to the number of the members of the
ensemble as probabilities for each single observation,
one could distinguish three cases: high probability
indicating the observation will be part of the partic-
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ular class with high certainty, middle probability in-
dicating the observation will be located somewhere
close to the decision region in the feature space and
low probability indicating the observation will un-
likely be part of the particular class. A strategy to
further increase the accuracy of automated class label
correction would be to determine between the three
cases based on training sets and machine learning.
For all observations analyzed not passing a lower
threshold the class label would be kept. If passing an
upper threshold the observations would be assigned
to the other class. For all observations having a prob-
ability between the lower and the upper threshold,
those observations could be subject to an automatic
clustering and active learning [17]. By presenting
members of each resulting cluster to the operator it
could be decided if the observation and thus, the clus-
ter, should be assigned to one or to the other class.
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CTU CMP in Prague, Czech Republic

Abstract. Object detection is a classic task in com-
puter vision. WaldBoost algorithm is a state-of-the-
art method for object detection due its high detec-
tion accuracy and real-time speed. However, since
the traditional scanning window procedure does not
make use of information shared among overlapping
windows, there is still a possibility of a significant
speed-up by exploiting this property. Zemčı́k et al.
recently proposed to use a second classifier to sup-
press the neighboring positions with a negligible
computational overhead. In this paper we improve
upon the work of Zemčı́k et al. and show that with an
improved scanning strategy and predictor selection
we outperform it in both geometric accuracy as well
as detection rate on the FDDB dataset for face detec-
tion, while achieving the same or a higher speed-up.

1. Introduction

Object detection is a computer vision problem
with many applications. Commonly, the applications
require not only high accuracy in terms of low false
negative and false positive rates but also high pro-
cessing speed.

The scanning window technique combined with a
rejection cascade of classifiers introduced by Viola
and Jones [8] represents the state of the art and has
been the dominant approach for object detection in
recent years. Since its introduction, a large number
of follow-up work has appeared in the literature.

In this paper, we focus on the problem of increas-
ing the speed of Viola-Jones type of methods. The
WaldBoost [6] algorithm offers a competitive speed-
precision trade-off using Wald’s quasi-optimal se-
quential probability test and it achieves high detec-
tion rates for various object classes while keeping
the ability to process tens of images per second. Re-
cent advances in deep neural networks [3] have in-
fluenced state-of-the-art in object recognition signif-

icantly, however, fast object detection is still beyond
its capabilities.

Recently, Zemčı́k et al. [9] proposed a method
that exploits the fact that information is shared be-
tween overlapping scanning windows. The method
introduces an auxiliary classifier for suppressing the
evaluation at neighboring positions. While a window
is being classified with the standard WaldBoost clas-
sifier, the response of the suppressing classifier is be-
ing computed virtually for free on the same features
using only a different look-up table. If the confidence
of the suppressing classifier reaches a threshold level,
the neighboring position is discarded. However, if
the confidence is low, the response of the suppress-
ing classifier is ignored, even though it might contain
a valuable information about the neighbor.

Similarly, Dollár et al. [1] use the correlation
of pedestrian detector responses in nearby positions
to build a sophisticated ”crosstalk” cascade which
enables neighboring detectors to communicate and
achieve major computational gains. The problem
we focus on, face detection, differs from pedestrian
detection in the average number of evaluated weak
classifiers per window – about 3 for face detection,
approximately 30 for pedestrian detection – which
makes the scheme impractical.

Another feature-centric approach was proposed by
Schneidermann [5]. He proposed to pre-compute a
set of feature values on a regular grid. The fea-
tures are available for all the corresponding windows.
This resulted in a significant speed-up of the algo-
rithm. However, the reported speed for face detec-
tion was about 2 frames per second on 1.8GHz pro-
cessor, which is not competitive even when the hard-
ware speed-up since the publication of the paper is
considered.

In this work we evaluate and improve upon the
work of Zemčı́k et al. [9]. In particular, we:

• propose and test a number of different scan-
ning patterns and predicted neighborhood sets,
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as shown in Fig. 3.

• explore the possibility of having a single pre-
dictor for multiple positions and thus achieving
a significant speed-up.

• propose and evaluate the use of ”suppression
classifier” as a predictor, i.e. as a weak classifier
biasing the original detector.

Evaluating the method on the state-of-the-art
FDDB dataset [2], we show experimentally that
some of the proposed scanning and neighborhood
patterns outperform the original method of Hradiš.
The results demonstrate that the method is capable
of a 40-50% speed-up without any loss in geomet-
ric accuracy and a minimal loss of detection (below
0.5%).

The rest of this paper is structured as follows. The
method proposed by Zemčı́k et al. [9] is reviewed in
Section 2. The proposed modifications are described
in Section 3. Performance of the method is evaluated
in Section 4.

2. Exploiting neighbors for faster scanning
window detection in images [9]

Zemčı́k et al. proposed to learn a classifier for sup-
pression of the evaluation of the detection classifier
in the neighborhood of the currently examined win-
dow. The detection classifier is a sequential decision
strategy based on a majority vote of weak classifier
functions ht : χ→ R:

HT (x) =

T∑

t=1

ht(x). (1)

The weak classifier usually decides on the basis of a
single image feature. Let us denote the features as f :
χ → N. The weak hypotheses are a combination of
such features and a look-up table operation l : N →
R

ht(x) = lt(ft(x)). (2)

The decision strategy S of a soft cascade is a se-
quence of decision functions S = S1, S2, . . . , ST ,
where St : R → ],−1. The ] symbol denotes ”un-
decided”. The decision functions St are evaluated
sequentially and the strategy is terminated with neg-
ative result when the decision functions outputs -1.
The positive result +1 is output if the end of the cas-
cade is reached. Each of functions St bases its de-
cision on the comparison of the running sum of the

Figure 1: Scanning an image in ordinary line-by-line
fashion while using neighborhood suppression [9]

weak hypotheses with a threshold θt :

St(x) =

{
] if Ht(x) > θt

−1 if Ht(x) ≤ θt
(3)

The task of learning the suppressing classifier can
be formalized as learning a new soft cascade with
a decision strategy S′ and hypotheses h′t, where the
weak hypotheses reuse the features ft from the orig-
inal classifier, only new lookup-table functions l′t are
learned. The suppression process is visualized in Fig.
1.

2.1. Learning Suppression with WaldBoost

The WaldBoost [6] algorithm was chosen to train
the soft cascades. It is relatively simple to imple-
ment, it guarantees the classifier in each stage to be
quasi-optimal on the training data and the produced
classifier is very fast.

Given a weak learner algorithm, training data
{(x1, y1), . . . , (xm, ym)},x ∈ χ, y ∈ −1,+1 and a
target miss rate α, the WaldBoost finds such decision
strategy that its miss rate αS is lower than α and the
average evaluation time T̄S = E(arg mini(Si 6= ]))
is minimal: S∗ = arg minS T̄S , s.t.αS < α.

To create such strategy, WaldBoost combines Ad-
aBoost [4] and Wald’s sequential probability ratio
test. First, AdaBoost selects the most discriminative
weak hypothesis ht. The threshold θt is then chosen
such that as many negative training samples are re-
jected as possible while asserting that the likelihood
ration estimated on training data

R̂t =
p(Ht(x)|y = −1)

p(Ht(x)|y = +1)
(4)

satisfies R̂t ≥ 1
α . In the formulation the early termi-

nation is not considered for the positive class. Only a
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Figure 2: Extended set of LBPs [7]: (a) conven-
tional LBP thresholded by center pixel value; (b) 8-
bit coded modified LBP (mLBP) thresholded by pix-
els mean value; (c) transition coded LBP (tLBP); (d)
direction coded LBP

tiny fraction of the tested windows belong to the pos-
itive class and the early termination does not have a
significant impact on the running time.

3. The proposed method

The proposed method generalizes the method of
Hradiš [9]in two ways. First, it breaks away from
the top-to-bottom, left-to-right scanning pattern and
uses a more efficient strategy instead. Second, it
does not use the information for suppression only,
but contributes as a weak classifier. The prediction
for neighboring positions is assessed like zero-length
boosted detector and stops evaluation if the confi-
dence is high enough, otherwise it is reused as the
bias for the detection classifier.

Similarly to [9], the predictor reuses the features
computed with the original classifier. We use Wald-
Boost [6] algorithm with the extended set of Local
Binary Patterns features [7] (see Fig. 2) for the clas-
sification and AdaBoost for prediction. For the LBP
features used, the second look-up for the prediction
at neighboring positions is about 10 times faster than
the feature calculation.

The steps of our method are the following:

3.1. Step 1: 2d partitioning of image

Divide set D of all windows positions in image
into 2 disjoint sets C and N such that the Minkowski

(a) PL (b) PLR (c) P8

Figure 3: Types of predictors: PL (prediction left),
PLR (prediction left & right), P8 (prediction for all
8 surrounding positions). Gray color corresponds to
center windowsC, white to neighboring windowsN .

sum C ⊕ N covers the original domain, i.e. D =
C ⊕ N . C is set of all center positions, that will
be further used for predicting the responses of their
corresponding neighbors. N is a set of all neighbor-
ing positions, that will get the prediction from their
corresponding center positions. See examples of the
neighborhood types in Fig. 3. Each element x ∈ C
has its corresponding set of neighbors x′ ∈ N (x).

3.2. Step 2: Windows classification

1. For each x ∈ C evaluate Hf (x) and Hp(x′).

2. For each x′ ∈ N evaluate

H ′ft (x′) = Hf
t (x′) + min(Hp(x′), 0), (5)

where Hf is the original classifier, Hp is the predic-
tor, t = 0, . . . T and Hf

0 (x′) = 0. The algorithm for
learning the predictor is described in Algorithm 1.

4. Experiments

We evaluated the performance of our method on
FDDB dataset [2]. We trained following predictors:
PL-S2:1, PLR-S2:1, PLR-S3:1, P8-S2:2, P8-S3:3,
where Sx:y is a step size corresponding to the scan-
ning pattern (see Fig. 4) and Pn is type of neigh-
borhood (PL: single predictor for window on the left,
PLR: single predictor for windows on the left and
right, P8: single predictor for all 8 surrounding win-
dows). Only the results of best performing predic-
tors are shown in the figures. For neighbors that have
a prediction from multiple center windows the pre-
dictions value is computed as a mean value of these
responses.

We also included the method [Zemcik] in the eval-
uation, which is a slightly modified version of [9]:
the scanning goes from right to left, predictor PL is
used to predict the response on a single window and
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Algorithm 1 Training predictor Hp

Input:

• original soft cascade HT (x) =
∑T

t=1 ht(x),
its termination thresholds θ(t) and its features
ft

• training set {(x1, y1) . . . , (xm, ym)},x ∈
χ, y ∈ {−1,+1} (+1 stands for at least one
positive sample in the neighborhood of x, -1
for no positive sample in the neighborhood
of x)

Output:

• look-up table functions lpt of the new predic-
tor Hp

Initialize: sample weight distributionD1(i) = 1
m

for t = 1, . . . , T do

1. estimate new lpt such that its

c
(j)
t = −1

2 ln
(
Pi∼D(ft(xi)=j|yj=+1)
Pi∼D(ft(xi)=j|yj=−1)

)

2. add lpt to predictor

Hp
t (x) =

∑t
r=1 l

p
r(fr(x))

3. remove from the training set samples for
which Ht(x) ≤ θ(t)

4. update the sample weight distribution

Dt+1(i) ∝ exp(−yiHp
t (xi))

end for

(a) S1:1 (b) S2:1 (c) S2:2

(d) S3:1 (e) S3:3

Figure 4: Example of scanning patterns. Gray color
corresponds to the center positions C, white to the
neighboring windows N .

only a single threshold θ0 for the final predictor re-

sponse is used. We argue this does not differ signifi-
cantly from the original version.

We evaluated following metrics: recogni-
tion/speed, accuracy/speed. The ”detection only”
curve corresponds to the reference detector, where
the speed-up is achieved by increasing the step size.
S1:1 corresponds to an original step size of 2 pixels,
S1.5:1.5 corresponds to step size of 3 pixels in both
directions.

As one can see in Fig. 5, the best recogni-
tion/speed ratio was achieved by P8-S2:2. With
this predictor the relative speed 0.73 and 0.5 was
achieved with losing 0.2% and 0.5% of recognition
respectively (points P1 and P2 in Fig. 5).

Fig. 6 shows that using the predictor response as
a starting point of classification for the positions that
are not suppressed does not have a dramatic influ-
ence on the result. The best accuracy/speed ratio was
achieved by PLR-S2:1. Values on Y axis are com-
puted as an average of recognition on ROC curve be-
tween 10 and 1000 false positives with logarithmic
scale used for false positive axis.

The best result for accuracy/speed ratio was
achieved by PLR-S2:1 (see Fig. 7). The results of
PLR-S2:1 and [Zemcik] are quite surprising, since
on would expect the accuracy to decrease with a de-
creasing number of evaluated weak classifiers. This
could be caused by the fact, that the object ”lost” with
the decrease in recognition were also the main source
of the geometric inaccuracy.

The experiments with a real algorithm speed
showed that having one more look-up table increases
the processing time to 1.1 of the original value, in-
cluding 5 more look-up tables increases the process-
ing time to 1.2.

5. Conclusion

The scanning strategy and the selection of predic-
tors is a significant factor in quality of the prediction
algorithm.

The final detector using the best performing of the
predictors was twice as fast as the detector without
prediction while losing only 0.5% of the detection
rate. The result outperforms the reference method
[9] in both geometric accuracy as well as detection
performance on the FDDB dataset, while achieving
the same or a higher speed-up.

The topics of future work are: evaluation of the
predictor on different object classes (pedestrians,
cars) and on multi-view (frontal, profile, half-profile)
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Figure 5: Speed vs. recognition - the best two pre-
dictors compared to [Zemcik]. Points were obtained
by increasing the θ0 value from -Inf to 0.
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face detector.
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Abstract. We introduce a linear regression-based
projection for multi-view facial expressions recogni-
tion (MFER) based on sparse features. While facial
expression recognition (FER) approaches have be-
come popular in frontal or near to frontal views, few
papers demonstrate their results on arbitrary views
of facial expressions. Our model relies on a new
method for multi-view facial expression recognition,
where we encode appearance-based facial features
using sparse codes and learn projections from non-
frontal to frontal views using linear regression pro-
jection. We then reconstruct facial features from the
projected sparse codes using a common global dic-
tionary. Finally, the reconstructed features are used
for facial expression recognition. Our regression of
sparse codes approach outperforms the state-of-the-
art results on both protocols of BU3DFE dataset.

1. Introduction

Facial expression recognition (FER) has attracted
significant interest in the computer vision commu-
nity because of its applications in human computer
interaction, education, robotics, games, medicine and
psychology [30]. There are six basic classes in facial
expression recognition : anger (AN), disgust (DI),
fear (FE), Happiness (HA), sadness (SA) and sur-
prise (SU). Most of the existing approaches work on
frontal or near to frontal views [18, 13, 28], whereas
in real-world applications, a frontal view is an un-
realistic assumption and limits the applicability. For
this reason, non-frontal analysis is now one of the
active challenges related to facial expression recog-
nition, which needs not only an effective recogni-
tion approach, but also a method for compensating
missing information (i.e. non-frontal counterpart)
[24]. This is a challenging problem because some

of the facial features which are necessary for recog-
nition are not available or not completely available
due to the face orientation. For example, eyebrows,
which are very important for recognizing facial ex-
pression, may not be visible in a non-frontal face. On
the other hand, we have pairwise sets of non-frontal
and frontal views that provide the ability of learning
transformations between them to benefit from sim-
ilar features. For these reasons, we would like to
estimate invisible facial features of a face from visi-
ble frontal views. To this end, we employ linear re-
gression which can provide an elegant approximate
transformation on learning collections (e.g. non-
frontal to frontal facial expressions). The idea be-
hind using linear regression is inspired from non-
frontal face recognition [16, 3]. In contrast, we apply
sparse features instead raw image data, which shows
to be more efficient and less sensible to viewpoint
changes than raw data. In this work, we aim to ad-
dress the gap of missed facial features of non-frontal
views using linear regression of non-frontal sparse
coded features to frontal codes. The motivation be-
hind employing sparse coded features is the robust-
ness on viewpoint variations. Moreover, it has been
shown that sparse representation is one of the suc-
cessful feature-based representation models for fa-
cial expression recognition [21]. Therefore, we first
create a dictionary using raw training data and then
transform raw features to sparse codes using the dic-
tionary. Second afterward, we estimate linear regres-
sions to project non-frontal sparse features to frontal
ones and finally we use reconstructed features for
expression recognition. In other words, our linear
regression-based transformation can approximate a
frontal view given a non-frontal view using pairwise
collections of frontal and non-frontal training data.
Moreover, to show the efficiency of our approach, an
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extensive investigation is provided on the BU3DFE
dataset. BU3DFE dataset is a popular facial expres-
sion dataset which is introduced in section 4.1. We
show that our approach outperforms the state-of-the-
art results on BU3DFE. Contribution: In this paper
we introduce a novel approach for multi-view facial
expression recognition. We propose to use a sparse
coding representation for facial expression recogni-
tion which is efficient and stable with viewpoint vari-
ation. We introduce also linear regression of such
sparse features to approximate projections in local
feature space.

2. Related works

There are significant works on facial expression
recognition with many interesting applications in hu-
man computer interaction, psychology, games, chil-
dren education, etc. which could be broadly catego-
rized into the three general categories: 1) Geometric-
based models [17, 19, 7, 2], 2) Appearance-based
models [32, 6, 14, 9, 21], and 3) hybrid meth-
ods which use both texture and shape information
[10, 12]. Typically, geometric-based approaches are
methods that employ shape information (e.g. facial
action units) whereas appearance-based approaches
use only texture information. Multi-view facial ex-
pression recognition has been attracting increasing
attention among the face researcher as well as fa-
cial expression recognition. For instance, [17] pro-
posed geometric-based methods that uses 2D facial
points to map from non-frontal to frontal view. [7]
proposed a computation of 2D facial feature dis-
placement. They normalized extracted distances to
zero mean and unit variance to make much discrim-
inative classification. Other approaches rely on the
appearance-based model. For instance, a discrimi-
nant analysis theory (BDA/GMM) proposed by [32]
which optimizes upper bound of the Bayes error de-
rived by Gaussian mixture model. Hesse et al. [6]
evaluated different descriptors such as SIFT, LBP
and DCT extracted around of facial landmarks and
classify then using ensemble SVM. The latter ap-
proach proposed by [15] which is a two-step multi-
view facial expression recognition model that esti-
mate the pose orientation directly from the image
in the first step and then, a pose-dependent expres-
sion classifier recognizes facial expressions. Be-
side of appearance-based multi-view facial expres-
sion recognition models, transmutable approaches
have been also proposed by [9] and [21], where [9]

proposed a multi-view discriminative framework us-
ing multi-set canonical correlation analysis (MCCA)
and the multi-view model theorem for facial expres-
sion recognition with arbitrary views. Their method
respects the intrinsic and discriminant structure of
samples. They obtained discriminative information
from facial expression images based on the discrimi-
native neighbor preserving embedding (DNPE). [21]
improved an existing facial expression recognition
model using generic sparse coding feature. They ap-
plied sparse coding features of dense SIFT on the fa-
cial images in a three level spatial pyramid and then
encode the local features into sparse codes to make
the possibility of multi-view processing.

Sparse coding has been previously used for face
recognition [31], facial expression recognition [21]
and other applications where it has been shown that
sparse coding is a successful encoding technique in
[25]. Zhang [31] explained that why sparsity could
improve discrimination and how regression could be
used to solve a classification problem. [25] proposed
an efficient sparse-based model and showed that re-
gression transformation can improve the time com-
plexity in both global and anchored neighborhood
regression which are much faster than other related
works. An important yet relatively unexplored ap-
proach is to employ pose specific linear regression
which is challenging due to the partial linear re-
gression. A regression-based approach proposed by
([17]) which employed global transformation how-
ever it is not as well as local linear regression of
sparse features (LLRSF in section 3.4) on accuracy.
Similarly, the approach that used sparse coding fea-
ture [21] did not profits the regression transforma-
tion. Therefore, to address the above problems, this
paper proposes to integrate them in a sequence.

3. Multi-view Facial Expression Recognition

In this section, we describe the proposed approach
to multi-view facial expression recognition. Our ap-
proach consists of three modules:

a) Feature extraction: We apply a concatenation
of HOG and LBP features which are popular in face
analysis. HOG [5] is a successful gradient-based de-
scriptor used in different purpose of object detection
and recognition that is stable on illumination varia-
tion. Moreover, it is a fast descriptor in comparison
to the SIFT and LDP (Local Directional Pattern) [11]
due to the simple computation. On the other hand,
LBP is a common texture-based descriptor which de-
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scribes image pixels based on the neighborhood in-
tensities. It has been shown that a concatenation of
HOG and LBP can improve human detection perfor-
mance by [27]. In our experiments, the extracted
features are considered as feature vectors for every
facial image in every viewpoint without any concern
about head pose or expressions. The basic idea to
concatenate these two feature descriptors is synthesis
of vectors where Ii = [Hi;Li] is a feature vector with
size (q×1) concatenated by HOG (Hi) and LBP (Li)
feature vectors, related to the ith face image. The cell
size considered for both HOG and LBP is 25 pixels,
therefore, the overall dimensionality is 5480 in total
where first 2232 dimensions are computed by HOG
and the rest 3248 dimensions via LBP.

b) Projections: Linear regression projection is
performed to estimate projections based on the Eq.
2, with global projection for global model (GLR) or
several projections for local model (LLR). Details are
explained within Section 3.1 and 3.3 respectively. In
addition, all extracted features are transformed into
the sparse representation as described in Section 3.2
and 3.4. The main motivation to use sparse repre-
sentation is its robustness on the viewpoint variation.
In the following, projections of non-frontal to frontal
viewpoints are generated using linear regression on
the sparse codes. We show that sparse coded facial
expression features are much more stable for estimat-
ing projections by linear regression than our raw fea-
tures.

c) Classification: Both testing and training parts
of all non-frontal viewpoints are projected to the
frontal feature space and a global classifier is used for
expression recognition. Linear SVM [4] is applied as
our basic classifier to find best facial expression esti-
mation. A strategy of using nearest neighbors is also
provided to improve our overall result which is de-
scribed in Section 3.5.

3.1. Global Linear Regression

Let X be a set of aligned vectorized facial fea-
tures which have size (q × 1). Xθi is a subset of
facial features in X from viewing angle θi, where
Xθi = [Iθi1 , I

θi
2 , . . . , I

θi
N ] is a matrix of size (q ×N),

and refers to the N vectorized facial features denoted
by Iθik ∈ IR(q×1). Note that I0k and Iθik are vec-
torized features of the kth facial expression image
of the training data from the same person in differ-
ent poses. Based on this, we define pairwise sets
of training data, X0 and Xθi , where the former is a

set of frontal views and latter is correspondence non-
frontal view with angle θi. The number of samples in
both sets ofX0, Xθi , i = 1, 2, . . . ,M is equal. More-
over, Xθ = [X0, Xθ1 , . . . , XθM ] contains M sets of
non-frontal views and one set of frontal view. There-
fore, we need the same number of samples for both
sets of frontal and non-frontal views to train a pro-
jection between them using linear regression. To this
end, we define XM

0 which is the frontal set repeated
M+1 times. So, XM

0 and Xθ have same number of
samples and we can estimate the projection between
them. Mathematically, this can be formulated as:

argmin
P

∥∥XM
0 − PXθ

∥∥ (1)

Where the global linear projection P can be estimated
by Eq. 2, which is the closed form solution for Eq. 1.

P = XM
0 (XT

θ Xθ)
−1XT

θ (2)

X̂θ = PXθ (3)

Therefore, Eq. 3 is the global linear regression which
approximates frontal features X̂θ from non-frontal.
The overall structure of our globally linear regres-
sion of sparse features (GLRSF) is introduced in the
following section.

3.2. Global Linear Regression of Sparse Features
(GLRSF)

Embedding the feature information within a
global code book aims for regularizing the data and
therefore being more robust concerning outliers. We
are interested in finding a reconstructive dictionary
given the training features X by minimizing:

‖X −DS‖22 s.t. ‖si‖0 ≤ Γ (4)

where D ∈ IR(q×s) is the dictionary, each column
representing a code book vector, and S ∈ IR(s×N)

the matrix of encoding coefficients. Γ is the sparsity
constraint factor, defining the maximum number of
non-zero coefficients per sample. We apply K-SVD
[1] as dictionary learning algorithm and orthogonal
matching pursuit (OMP) [26] as an efficient way for
solving the coding of new test samples, given a fixed
dictionary. Similarly, SM0 is frontal sparse coded set
repeated M+1 times and Sθ = [S0, Sθ1 , . . . , SθM ] is a
global collection of one frontal and M sets of sparse
features of non-frontal facial expressions where all
sets have the same number of samples. Eq. 2 and 3
could be rewritten for sparse representation as:

P = SM0 (STθ Sθ)
−1STθ (5)

Ŝθ = PSθ (6)
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Figure 1: The overall structure of Local Linear Regression of Sparse Features (LLRSF). Train: A global dictio-
nary is trained with K-SVD and facial features are encoded. Projections are estimated using local collections of
frontal and non-frontal sparse features, and finally, features are reconstructed using the global dictionary. Test:
Input sample is encoded via OMP and encoded vector projected to frontal using appropriate projection. Pro-
jected vector is then reconstructed using dictionary and finally it is classified for final expression recognition.
Training step benefits from j nearest neighbors to improve our learning model as described in Section 3.5.

Ŝθ defines the projected sparse codes, and the ap-
proximated features of the projected views can be re-
constructed using the global dictionary D with:

X̂θ = DŜθ. (7)

To improve our projections, we introduce the local-
ity idea as a local linear regression approach in the
following section.

3.3. Local Linear Regression

As mentioned before, a huge number of data with
a lot of different properties affect on the mapping
function in the global model due to the different
viewpoints, expressions, gender, age, skin color, etc.
Intuitively, the projection error could be decreased
when we increase the number of projections reason-
ably; this means, splitting data into several meaning-
ful parts and making correspondent projections leads
to reduction of the overall projection error compared
to using one global projection. Therefore, we used a
supervised learning classification to split data using
logistic regression SVM where we learn our model

with training data based on the viewpoints and clas-
sify data into M smaller subsets. Subsequently, linear
regressions between specific non-frontal setsXθi and
the frontal set X0 estimated for all subsets by:

Pi = X0(X
T
θi
Xθi)

−1XT
θi

i = 1, 2, . . . ,M (8)

X̂θi = PiXθi (9)

Where X̂θi refers to approximation of frontal fea-
tures by ith linear regression. Therefore, local linear
regression workflow is summarized as:
Step 1: Classifying facial features to the M subsets.
Step 2: Approximating linear regression from non-
frontal to frontal subset.
Step 3: Estimating projected facial features by ap-
proximated projections: X̂θi = PiXθi

Step 4: Train a global classifier using projected fea-
tures X̂ = [X̂0, X̂θ1 , X̂θ2 , . . . , X̂θM ].
The above workflow is the overall structure for our
local linear regression (LLR). Next, we describe how
sparse coding could be beneficial for our approach.
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3.4. Local Linear Regression of Sparse Features
(LLRSF)

GLRSF is an efficient approach for MFER which
is also almost stable with outliers but as it uses basic
features, it is expensive in terms of memory usage
due to the large feature vectors. Therefore, sparse
representation is a successful alternative that could
help us to improve our solution. We are interested
in finding a reconstructive dictionary given the train-
ing features X similar to the Eq. 4 and again ap-
ply K-SVD [1] and OMP [26] to solve the coding
of new test samples, given a fixed dictionary. Simi-
lar to LLR, we define M local projections which ap-
proximate linear regression for each viewpoint; thus
let S0 be a set of sparse features of frontal facial ex-
pressions and Sθ1 , Sθ2 , . . . , SθM are M sets of sparse
features of non-frontal facial expressions where all
sets have the same number of samples and provided
by OMP. Eq. 8 and 9 could be rewritten for sparse
representation as:

Pi = S0(S
T
θi
Sθi)

−1STθi i = 1, 2, . . . ,M (10)

Ŝθi = PiSθi (11)

where Pi is ith projection which has been estimated
using correspondent sparse features. Ŝθi defines the
projected sparse codes, and the approximated fea-
tures of the projected frontal view can be recon-
structed using the global dictionary D with:

X̂θi = DŜθi . (12)

The overall structure of our local linear regression of
sparse features (LLRSF) is illustrated in Figure 1.

3.5. Soft Learning using Nearest Neighbors

Local linear regression (LLR) or in general, ana-
lyzing with subsets of data is almost an efficient so-
lution if we perform meaningful constraint S regard-
ing to splitting data. Nevertheless, supervised learn-
ing is sensitive to the number of training samples,
therefore, while splitting data into the small collec-
tions is useful for regression approximation, it has
disadvantage on the supervised classification. To this
end, we propose an idea to make a contribution us-
ing each cluster neighborhood. In other words, while
we classify all data into the M subsets (clusters),
there are M cluster centers that they are basically
useful to present as a similarity measurement; which
means we compute and exploit N-nearest neighbors

Figure 2: Multi-view rendered faces of a subject
from BU3DFE-P1 (35 viewpoints)

Figure 3: Multi-view rendered faces of a subject
from BU3DFE-P2 (5 viewpoints)

for each cluster based on the cluster centers similar-
ity. Neighbors are the best candidates for contribut-
ing as training data in our work because while we
assumed that clusters are splitted based on the view-
points, there are only small changes within sequences
of head poses. Therefore, we profit from the neigh-
bors to train each specific subset. The results in the
following show that it can improve our overall rate.

4. Experimental Results

In order to demonstrate the performance of our
model we evaluate on the BU3DFE which is most
the popular dataset for multi-view facial expression
recognition. We follow on the standard evaluation
scheme and apply a 5-fold cross validation over the
highest level of expression intensity. The details are
given in the following.

4.1. BU3DFE dataset

BU3DFE is a publicly available dataset contain-
ing 3D scanned faces of 100 subjects with six ba-
sic expressions. More details can be found in [29].
We rendered multiple views from the 3D faces in
seven pan angles (0◦, ±15◦, ±30◦, ±45◦) and five
tilt angles (0◦, ±15◦, ±30◦) which means 35 view-
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Table 1: Multi-view facial expression recognition
comparison between proposed approaches

Method Dataset Accuracy

SF BU3DFE-P1 68.14
GLRSF BU3DFE-P1 69.87
LLRSF BU3DFE-P1 74.42
Soft-LLRSF BU3DFE-P1 78.64

SF BU3DFE-P2 70.33
GLRSF BU3DFE-P2 75.10
LLRSF BU3DFE-P2 75.07
Soft-LLRSF BU3DFE-P2 76.64

points to compare our results with the related works
[21, 22, 23, 20, 32], shown in Figure 2. In addi-
tion we generated views for 0◦, 30◦, 45◦, 60◦ and
90◦ which means 5 viewpoints as second protocol to
compare our model with papers that applied this pro-
tocol [9, 8], as shown in Figure 3. Therefore, as there
are 6 expressions for 100 subjects over the highest
level of expression intensity in 35 viewpoints, we
have 21000 samples in the first protocol and 3000
samples in the second protocol of BU3DFE.

4.2. Evaluation of proposed approaches

We proposed two regression based methods
namely Global Linear Regression of Sparse Features
(GLRSF) introduced in Section 3.2 and Local Linear
Regression of Sparse Features (LLRSF) proposed in
Section 3.4. Another reasonable comparison is pro-
vided by SF, defining the baseline results of classi-
fying direct on the sparse features, without neither
global nor local projection. This highlights the im-
pact of our original idea to use linear regression for
projecting non-frontal to frontal views. Parameters
like dictionary size and sparsity in K-SVD and num-
ber of nearest neighbors in soft learning are evaluated
where the best result is achieved by dictionary size
of 200 with sparsity 150 and N=4 for nearest neigh-
bors. Moreover, the local linear regression makes
projections much more accurate than global regres-
sion because local distributions are more compact,
smaller and almost easier than global feature space, it
can bee seen in the results where Table 1 shows that
LLRSF has best overall recognition rate among of
SF, GLRSF and LLRSF. It has also found that our lo-
cal regression projection approach using sparse fea-
tures has about 6% improvement compared to non-
projection baseline SF which shows the importance
of proposed idea. Moreover, Soft-LLRSF which is

(a) Protocol1=78.64% (b) Protocol2=76.64%

Figure 4: The confusion matrices of Soft-LLRSF
method for two protocols of BU3DFE (a),(b)

extended form of LLRSF to compensate low number
of training samples using N nearest neighbors suc-
cessfully outperforms all methods in both protocols.

4.3. Results on BU3DFE-P1 (35 viewpoints)

In this section, we propose the performance of our
approach on the first protocol of BU3DFE. The con-
fusion matrics between expressions are presented in
Figure 4 where the largest confusion is occurred be-
tween AN with SA and AN with DI. Our overall ac-
curacy rate is 78.64% when we used 5-fold cross-
validation, averaged across all subjects, expressions,
poses on highest intensity level of expression on
BU3DFE-P1. Performing comparison of our ap-
proaches over the variations in pan and tilt, illustrated
in Figure 5, note that the results in the Figure 5(a)
is averaged across corresponding pan and the Fig-
ure 5(b) is averaged across corresponding tilt angels.
As can be seen, our regression models (LLRSF and
Soft-LLRSF) are obviously better than other meth-
ods. This is our expectation that local linear regres-
sion outperforms global regression because of the
projections accuracy.

4.4. Results on BU3DFE-P2 (5 viewpoints)

Some related works evaluated their results on the
protocol 2; we have also applied our model by this
protocol. First, we show the performance of our
approach based on the viewpoints and expressions
where it is demonstrated in Table 1. As can be
seen, again Soft-LLRSF outperforms other methods
however there is no improvement on LLRSF and
GLRSF due to the small problem space (5 view-
points) whereas it is clearly better than SF (base-
line) which shows again proposed regression model
over sparse features improves overall recognition
rate. Moreover, with attention to the confusion ma-
trix provided by Figure 4 (b) we can find that the
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(a) (b)

Figure 5: Proposed methods (SF, GLRSF, LLRSF and Soft-LLRSF) performance (a) over pan (b) and tilt

Table 2: Comparison of proposed model with the
state-of-the-art

Method Dataset Accuracy

Zheng et al. [32] BU3DFE-P1 68.20
Tang et al. [20] BU3DFE-P1 75.30
Tariq et al. [21] BU3DFE-P1 76.10
Tariq et al. [22] BU3DFE-P1 76.34
Tariq et al. [23] BU3DFE-P1 76.60
Soft-LLRSF BU3DFE-P1 78.64

Huang et al. [9] BU3DFE-P2 72.47
Hu et al. [8] BU3DFE-P2 74.46
Soft-LLRSF BU3DFE-P2 76.64

largest confusion is again between AN and DI which
shows that the similarities of these two expressions
is usually more than other expressions. The overall
facial expression recognition rate in this protocol is
75.07% for LLRSF although using Soft-LLRSF it is
76.64% when we used 5-fold cross-validation, aver-
aged across all subjects, expressions, poses and high-
est intensity level of expression on BU3DFE. In the
following, we compare our approach with the state-
of-the-art.

4.5. Comparison with the state-of-the-art

In this section, we provide a comparison of our
regression-based approach (Soft-LLRSF) with the
state-of-the-art. Table 2 depicts that our proposed ap-
proach outperforms the state-of-the-art in both proto-
cols of BU3DFE. A similar sparse coding approach
proposed by [21] which achieved 76.10% accuracy
on the same dataset whereas our model reasonably
outperforms it with 78.64% due to employing local
regression projection of sparse features.

5. Conclusion

In this paper, we introduced linear regression pro-
jection of sparse features for multi-view facial ex-
pression recognition where all facial features first
encoded to the sparse codes then they projected to
the frontal features and finally facial features recon-
structed from projected sparse features. We proposed
two methods of global linear regression of sparse fea-
tures (GLRSF) and local linear regression of sparse
features (LLRSF) to solve the problem of multi-view
facial expression recognition. Our methods are capa-
ble to compensate the facial features of missing parts
of the faces. In both methods, the features estimation
of non-visible parts of the faces is estimated using
regression projection. We have shown that the pro-
posed local regression based model for multi-view
facial expression recognition outperforms not only
baseline SF but also the stat-of-the-art approaches
on both protocols of BU3DFE. Another advantage
of our approach is that it does not need landmark
detection, therefore, it is more suitable for practical
applications. We start from an extremely low base-
line (SF, GLRSF) compared to related work. There-
fore, examination of alternative facial expression fea-
tures and investigation of non-linear projections for
approximation of frontal-views would be the possi-
ble directions for future works.
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