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CHAPTER V.

MEASUREMENT AND ESTIMATION OF THE FLOW OF WATER.

Weight of Water—Units of Volume and. Time—Discharge—Action of Gravity—Theoretical Velocity—Path traversed by a jet of Water
issuing with a known Velocity—Orifices in thin Platcs, or thin-edged Orifices—Coetficient of Velocity—True mean Velocity under

small Charges—Contraction of the Fluid Vein—Coeflicicnt of Discharge—Circular Orifices—Rectangular Orifices—Trne mean
Velocity—Experiments by Poncelet and Lesbros—Notches and Weirs—Rectangular and Triangular Notches—Right-angled

Triangular Notches—Experiments by Messrs. Blackwell and Simpson, and Boilcau—Suppressed Contraction—Velocity of

Approach—Separating Weirs—Submerged Orificcs and Weirs—Adjutages: Cylindrical, Conically Converging, and Conically

Diverging—Shoots—Discharge under a. variable Head—Time of Emptying Prismatic and other Reservoirs—Diseharge from one

Vessel into another—Flow of Water through uniform Channels—Mean Velocity determined by Maximum Surface Velocity——

Accelerating and Retarding Forces—Mean Velocity of Flow in Rivers and open Channels, and through long and short Pipes—

Friction caused by Bends and sudden En1argements—Total Loss of Head, and final Velocity—Determination of the Section when

the Discharge and Head are given.

N the following passages, water will be regarded as an inelastic fluid, it having been found (p. 18) that

excessive pressure is required to effect even a very small diminution in bulk, inappreeiable under ordinary

practical circumstances.

The units which are adopted for the measurement of water are the cubic foot and the gallon. The weight

of a cubic foot of water varies, of course, with the temperature-at its maximum density ( 39'1° Fahr.), it weighs

(32—425 lbs. avoirdupois ; at 62° Fahr. it weighs 62355 lbs. The imperial gallon contains 10 lbs. avoirdupois of water

(62° Fahr. and the barometer at 30 inches), so that a cubic foot of water contains 6‘235 gallons. In practice it is

nsuul to consider the cubic foot of water as weighing 625 lbs. and containing 6‘25 gallons. Of the units of

time, the second is coupled mostly with the cubic foot; the minute is frequently used for the discharge of streams;

while the hour and day are employed with thousands or millions of gallons in speaking of the delivery of large

quantities of water. The units of discharge, compounded from the units of volume and of time, are very

numerous. Perhaps, on the Whole, the cubic foot per second and the gallon per day are the most customary.

Disclaarge.—The discharge of a stream or current of water is the product of the sectional area of the stream,

and the mean velocity with which the several ‘threads ’ of water in that stream are flowing. Thus, if it be found

by careful measurement that the section of a stream at right angles to its flow is 30 sq. feet, and also that its

mean velocity is 2 feet per second, it will be shown that the discharge is 60 cubic feet per second. In the

same way, the mean velocity may be found, if the discharge be divided by the area of the section. These two

elements of the true section and true mean velocity are all that is essential for the calculation; and it is the deter-

mination ofthe values of the same under varying conditions which constitutes, in great part, the science of hydraulics.

The velocity of a current of water is due to the action of a force, mostly the force of gravity, but in any

case 0. force of which gravity may be made a measure.

The T/zeoreiical Velocity, or that due to the force of gravity, is given by the formula—

v=/2yn. . . . . . (l)

v = 644 H . . . .

‘/ — (1 A)
or 0 = 8025 JH . . . .

This is the velocity in feet per second* which a body would acquire upon falling in a vacuum through a

height equal to H, and, but for the retarding efi°eet of friction, to be hercafter mentioned, it would be the velocity

which a stream of water would acquire upon flowing down a channel through a height equal to H; or the

which, for measure in feet, becomes

velocity with which a jet of water would issue from an orifice in the side of a reservoir, the head of water or

‘chargc’ upon that orifice being equal to II. In the letter case, the velocity of issue would be the same as if the

' The value (it—L, er twice the measure of the force of gravity, varies slightly with the latitude. but not to an extent worth recognising

in hydraulic formula.
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total head or charge (H=m+n) consisted partly of the influence of a column of water of the height m, and partly

of that of a londed piston, the pressure upon which is equal to the weight of a column of water of the height n.

On the other hand, if the stream were issuing from a closed vessel, in which a partial vacuum was maintained, the

height of a column of water that would be a measure of the vacuum must be subtracted from the actual head

of water or charge. In the following table are given some values of 1; for corresponding values of II. For measures

in inches, v=27‘8.
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0 0 {; "0104 '819 0 3%,— '2916 4334 0 9%,— '7916 7"140 2 9 27500 13308 9 6 24735 22 0 37641

0 09—5 “0156 1003 0 3% "3020 4410 0 93} "8125 7233 2 10%,— 28749 13607 9 9 25058 22 6 38066

0 0 ?} "0208 1'158 0 3% “3125 4486 0 10 “8333 7325 3 0 30000 13990 10 0 25377 23 0 38487

0 01%;- '0260 1295 0 33 "3229 4560 0 101 "8541 7417 3 12,— 3‘1249 14"186 10 3 25693 23 6 38903

0 0 % "0312 1418 0 4 “3333 4633 0 10% "8749 7506 3 3 32500 14467 10 6 26004 24 0 39315

0 01—71; "0364 1532 0 4„ "3437 4705 0 10% "8958 7595 3 412— 33749 14743 10 9 26312 24 6 39722

0 04 “0416 1638 0 4; “3541 4775 0 11 “9166 7683 3 6 35000 15013 11 0 26616 25 0 40125

0 01-91; "0468 1'737 0 4 » '3645 4845 0 114‘ “9374 7770 3 7%,— 3'6249 15'279 11 3 26917 25 6 40525

0 0 % ‘0520 1831 0 4 “3749 4914 0 11% “9582 7856 3 9 37500 15'540 11 6 27214 26 0 40920

0 OH; "0572 1920 0 4 « “3853 4982 0 11% '9791 7"941 3 10% 38749 15797 11 9 27501 26 6 41312

0 0 %; “0625 2006 0 4 - "3958 5049 1 0 10000 8025 4 0 40000 16050 12 0 27800 27 0 41700

0 OH} '0677 2088 0 417 “4062 5114 1 053 10416 8190 4 2 41666 16381 12 3 28088 27 6 42084

0 0 % "0729 2167 0 5 "4166 5180 1 1 10833 8352 4 4 43333 16"705 12 6 28373 28 0 42465

0 OH} “0781 2243 0 5-— "4270 5244 1 115 1"1249 8'512 4 6 4'5000 17023 12 9 28655 28 6 42842

0 1 "0833 2316 0 5“ “4374 5308 1 2 1"1666 8668 4 8 46666 17336 13 0 28935 29 0 43216

0 1 —,- “0937 2457 0 5 ; "44:78 5371 1 2% 1"2082 8"821 4 10 48333 17"643 13 3 29212 29 6 43587

0 1 »- "1041 2590 0 5- “4582 5433 1 3 12500 8972 5 0 17944 13 6 29486 30 0 43955

0 11, “1145 2716 0 5— “4686 5494 1 3% 12916 9120 5 3 18388 13 9 29758 30 6 44320

0 1 1 “1250 2837 0 5- "4791 5'555 1 4 13333 9266 5 6 18820 14 0 30027 31 0 44682

0 1 „ "1353 2953 0 5—; '4895 5615 1 4%— 1"3749 9410 5 9 19243 14 6 30558 31 6 45041

0 1 “1458 3064 0 6 '5000 5674 1 5 14166 9551 6 0 19657 15 0 31“081 32 0 45397

0 1 ; "1562 3172 0 61 “5208 5791 1 5% 14582 9791 6 3 20063 15 6 31595 32 6 45750

0 2 "1666 3276 0 6;— "5416 5'906 1 6 15000 9828 6 6 20460 16 0 32100 33 0 46101

0 2 _‚ “1770 3.377 0 6% "5625 6018 1 7 15833 10098 6 9 20850 16 6 32598 33 6 46449

0 2 — "1874 3475 0 7 '5833 6129 1 8 16666 10360 7 0 21232 17 0 33088 34 0 46794

0 2 f, "1978 3570 0 7%,— '6041 6237 1 9 1“7500 10616 7 3 21‘608 17 6 33571 34 6 47137

0 2 » '2082 3663 0 7%; “6249 6344 1 10 18333 10866 7 6 21“977 18 0 34047 35 0 47447 '

0 2 "2186 3753 0 7% '6458 6449 1 11 19166 11'110 7 9 22341 18 6 34517 36 0 48151

0 2 _, ‘2291 3841 0 8 “6666 6552 2 0 20000 11'349 8 0 22698 19 0 34981 37 0 48815

0 2 ,; '2395 3928 0 8%,— "6874. 6654 2 112— 21249 11698 8 3 23050 19 6 35438 38 0 49470

0 3 "2500 4012 0 8%,— "7082 6754 2 3 22500 12037 8 6 23397 20 0 35889 39 0 50117

0 3 % "2604 4095 0 8% "7291 6852 2 4% 23749 12367 8 9 23738 20 6 36335 40 0 50755

0 3 }; "2708 4176 0 9 "7500 6950 2 6 25000 12688 9 0 24075 21 0 36775

0 3 % "2812 4256 0 91} “7708 7045 2 7% 26249 13002 9 3 24407 21 6 37211       
 

The velocity of a jet of water being known, the path it will follow may be readily traced; for it may be

shown to be a parabola whose parameter is equal to four times the height due to the velocity

of projection. If the body be projected in the direction A Y (tig. 19) with a velocity due to

the height of h, then
-

y2:4hw . ' . . . (2)

from which expression any value may be determined, when the other two are known.

 

DISCHARGE THROUGH Ommcns AND ovnn Norcnas AND WEIRS.

Oriflces in thin Plates, or thin-edged 0rz'fices.—lt is necessary here to define what is meant by a thin«edged

orifice, as mistakes often arise on this point. The thin edge should be formed on the inner

side of the plate, as in fig. 20, so that for allpractical purposes the orifice shall, as far as the

current of water is concerned, be the same as if it were formed in a very thin plate. Let A

(fig. 21) be a reservoir in which the level of the water is maintained constant, and let an

orifice, the area of Which is known, be perforated in the Vertical side of the reservoir at B.

From what has already been said, it might be inferred that, in calculating the discharge from

the orifice 13, the following process only would suffice. Ascertain the velocity due to the head

from the level of still water to the centre of the orifice, regarding it as the mean of the

velocity of the several threads, and multiply this by the area of the orifice. This is sometimes

called, although not with strict accuracy, the theoretical discharge; and it is in excess of the actual discharge

    ‚//r/
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from two causes, which are, first, the friction of the water against the sides of the orifice, and, second, adiminution in the actual section of the current of water, termed the ‘contraction.’
‘

The friction diminishes the velocity of the current, and v’ + v = m,
wherein v' is the actual, and U the theoretical, velocity—is the coeffieient
of velocity—which has to be determined by experiment. It is found

that the velocity is proportional to the square root of the head or charge,
the coefficient remaining practically constant at about m = °97 5.

When the head or charge is greater than about three or four times
the height of the orifice, it is suffieiently accurate to regard the mean

theoretical velocity as that due to the height from the surface of the still water to the centre of gravity of
the orifice. It may be shown* that, for heads less than this, the greatest error cannot exceed four per cent.
in the case of circular orifices, and six per cent. in the case of rectangular ones, in excess of the values given by
formulaa mathematically correct, even when the upper side of the orifice is on the level of Still water, the orifice
thus becoming a ‘notch.’

The contraction of the fluid vein is caused by the convergence of the fluid threads towards the centre of the
orifice, as shown in fig. 22. If the orifice be circular and in the thin vertical side of a reservoir, the maximum

Fre. 22. contractions Will occur at a distance from the orifice equal to half its diameter. If the jet issue
downwards, it will be greater, and if upwards at a less distance than this. With rect-
angular orifices, the section of the vein varies continually. With circular ones, the form of sections
is preserved, but its dimensions are gradually reduced, until at the point of maximum coritraction,
as above, the diameter is only '785 of the original diameter, and, in consequence, the area is dimi-
nished from 1 to '7852, or from 1 to '616. It may be shown that in fig. 22 the radius 0 0 is
equal to 122. The amount of contraetion is influenced by the position of the orifice with

‚ regard to the sides of the reservoir, being least when the orifiee is near the upper surface of the
water, and near a side or bottom of the reservoir, and greatest when most distant from the same. Generally,
the coefi‘icients for friction and contraction are combined into a ‘coetficient of discharge,’ being the ratio of
the actual to the theoretical discharge. This will be theoretically the product of the coeflicients of velocity
and contraction. Numerous experiments, details of which will be found in treatises on Hydraulics, have been
conducted with a view to determine practically the value of this coefficient c in the equation

D = '0 A m. . . . . . (3)
in which 1) is the discharge, and A the area of the orifice. As might be expected, from the irregulari_ties in the
conduct of the experiments, the coeflicients are very variable.

Cz'rcular O7'zyi‚ces.—l\lichelotti determined, from orifices of 1 to 3 inches in diameter, a eoefficient of '614;
while from Bossut’s experiments with smaller orifices, a mean of “62 is obtained. Rennie’s experiments give
even larger eoeflicicnts; here, however, "62 will be considered a fair average; so that

D = '62 x AJm

Fu}. 21.

 

 

 

 

which, for cubic feet per second, becomes

D = 5 AJ?nearly . . . . .
_ (4)

=3'908d2Jn . . . . . _

d being the diameter of the orifice in feet.

Rectangular 07'72fi068 —lt has been seen that the velocity of any horizontal layer of water will vary as JTI:
Fre. 23‚ From this, it may be shown that if the horizontal distances y, 3/ (tig. 23) be draWn,

representing this velocity, due to the several heads, the curve A c thus determined

will be a parabola, With its vertex at A; and the volume of water discharged Will

be the prism A 13 C DE F, whose base is the parabolic segment A B 0, and height the

width A D of the stream of water. From a well-known property of the parabola, the

segment A B C is % the rectangle A G C B; but B C =Jm=JF/z,

so that, calling ! the width of the stream, we have for the volume discharged-

D=%XZXABJ29(AB)

or, to introduce the coefiicicnt of discharge, and adopt the usual form and notation,

D=CX%XZJ—2_gx/LJW . . — (5)

 

* See Neville's Hydraulics.



NOTCIIES AND WEIRS.
71

But the discharge from a rectmgular orificc B C (tig. 24) Will be that due to the height A C, minus that

due to the height A 13; or, symbolically, '

D=c x % >< lJW(I;JT- /L1J7g) . (G)

4 in which h is the head to the bottom, and IL] to the top of the orifice. If for the height of the

orifice (li — h,), at be substituted, A for l x d, and the head be measured to the centre of the orifice,

the discharge will become very nearly

012 ——-—
D=c(l—STG—H2)Aw/2gle . . (7)

The formula commonly used, however, is

D = 0 A J 2 g H . . . . . (8)

the coefi'icient «: including an approximate correction for the incomplcteness of the remainder of the expression.

With a view to determine the coefiicients of discharge 0, for rectangular orifices, a valuable series of

experiments was conducted by Poncelet and Lesbr0s, at Metz. The apertures were about 8 inches wide, and of

varying" heights, while the heads or charges vary from less than half an inch to nearly 10 feet. It would appear

from the experiments, that, for smaller and more oblong orifices, the coeflicient increases as the head diminishes,

while the reverse is the case with orifices which are larger and of proportions nearer a square. The following

table is founded upon these experiments.

Fre. 24.

 

 

 

  

 

 

 

               

Head of [ Height of orifice + breadth \ Head of Height of orifice -:— hreadth

water |
, water

+ depth of
l + depth of

orifice 1 0"5 0"25 0"15 0"1 005 orifice ] 0"5 0"25 0"15 0'1 005

-05 _ _- _ — — "709 250 "602 "617 631 "630 "640 "643

-10 __ — — — "660 "698 300 "6035 "616 "630 "629 "6385 "640

-15 —— — -— "638 "660 "691 350 604 616 629 "629 "637 "638

"20 —- — "612 "640 "659 "685 400 "604 "615 "629 "628 "6355 "634

"25 — —— '617 "640 "659 "682 450 "6045 "615 "628 "628 "634 "631

"30 — 590 622 "640 "658 "678 500 "605 "615 "627 "627 "632 "627

"35 —— "595 "624 "639 "658 "674 550 "6045 "614 "626 "626 "630 "625

"40 —— "600 "626 "639 "657 "671 600 604 "614 "624 "624 "6275 "623

"45 —— "602 "627 "638 "656 "669 650 "604 "613 "623 "623 "625 "621

"50 — "605 "628 "638 "655 "667 700 "6035 "613 "622 "622 "623 "620

"55 — "607 "629 "637 "655 "665 750 "603 "612 "621 "621 "621 '618

"60 "572 "609 "630 "637 "654 “664 800 "602 "611 "619 "619 "618 "616

"65 "578 "609 "630 "637 "654 662 850 "602 "610 "618 '617 "6165 "615

"70 "582 "610 "631 "636 653 "661 900 "6015 "609 "616 "616 "6155 "615

"75 "585 "611 "631 "636 "653 "660 950 "6015 "608 "614 "614 "614 "614

"80 "587 "611 "632 "635 "652 "659 ‘ 1000 "601 "607 "613 "613 "613 "613

"85 "589 "611 "632 "635 "652 _"658 1100 "601 "606 "611 "611 "6115 "612

"90 "591 "612 "633 "634 "651 "657 i 1200 "601 "605 "609 "610 "611 "611

"95 "592 "612 "633 "634 "651 "656 1300 "601 "604 "608 "609 "6095 "610

100 "592 "613 "634 "634 "650 "655 1400 “601 "604 "607 "608 "609 "609

1"50 "598 "616 632 "632 "645 "650 1500 "601 "603 "606 "607 "608 "609

200 "600 ‘617 "631 "631 "642 "647

|

 

With hcads of less than from three to five times the height of the oritice, there is a perceptible depression of

the water-line at the plate: the heads given in the table are measured to the level of still water above this depres-

sion. The coefficients include a correction for measuring the head from the centre of the orifice, instead of from

the point where the mean velocity occurs, which is a little above the centre. ‘

Note/ws and Weirs.—The formula; given above Will apply to notches and weirs, if the orifice be regardul as

extending up to the level of the surface. Thus, if in equation (G), 711 = 0, we shall Fre. 25„

have equation (5), Which really gives the discharge over a weir, where h is the

difference of level between the thin horizontal edge of theweir board and the still

water. and l the length of the overfall.
'

But l x h = A

therefore D = c x % x AJ2_g-7L . . (9)
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With a triangular notch, the discharge is

D=c )( Tan/275 . . . . (10)

in which ! is the width of the notch at the level of still water, and h

WAI—w the distance of the apex below the same. In a notch of any given angle _

the proportion of height to base remains constant: for a right-angled

triangular notch (fig. 26)

D=cxf%lfi/Tglz . . . . (11)

The observation of the true amount of head demands the exercise of great care, as the surface of the water
is curved for some distance above the 'overfall. (See fig. 25.) Mr. Neville gives for the difference between the
thickness of the sheet of water passing over the crest, and the head (h) measured to the level of still water,

/L_hw=-14JZ. . . . .(12)

for measures in feet. The difference, except for very small heads, will be found to vary from one-tenth to one-
quartcr of the true head?“

FIG. 26.

   

The coefficients derived from direct experiments with notches and weirs are very variable, perhaps on account
of some of the modifying causes to be hereafter mentioned. In the present instance , we shall class the coefii—
cients for thin-edged weirs as follows :—

When the width of the weir is about one—fourth of that of the canal itself . 0
When the width of the weir is equal to the total width of the canal . . c

'600

'665

’Between the above limits (b = width of the canal, and 1/ that of the weir) . c = '57 + %„

11

For a right—angled triangular notch . . . . . . . . c = “617

The coeflicients for rectangular notches decrease as the depth of water flowing over is greater in proportion to
the length of the notch. The coeflicients for triangular notches very with the form of the triangle; but when the
form of the triangle is constant, it is probable that the coeflicient will remain the same, whatever be the depth
flowng over the notch.

The following table, which is from a valuable series of experiments by Mr. T. E. Blackwell, will show the
effects of substituting for thin edges various broad crests of different inclinations. From the circumstances under
Which the experiments were conducted, it is probable that the coefiicients are somewhat lower for the larger
heads than what should be considered fair averages.

COEFFICIENTS or DISCHARGE FROM WEIRS, FROM EXPERIMENTS BY MR. T. E. BLACKWELL.

 

 

 

               

% % Thin plates,—,‘;. inch Planks 2 inches thick, square on crest
Crests 3 feet wide

%? g
10 “' 1°“g 3 feet 10 feet 3 fp t55 E 3 feet 10 feet 3 feet 6 feet 10 feet 232%;;°1:5 ?ofr‘fet ?£let 1£„feet long, long, m;,ja;? 1... 1... ...a 1.3 ,{;;H„ ,;;;n„ ,;;n„

£ ä.s
“ “° .

1 '677 “808 “4:67 “4:59 “4:35 '754_< '4«52 -— '381 “5445 “467 “467

2 “675 '802 "509 '561 '585 '675 482 —- 479 ”546 "495 '533

3 630 “642 '563 “597 ”569 — “441 “492 -—— “537 — “539

41 '617 '655 “549 “575 '602 “656 ‘419 497 — '431 “515 455

5 601 649 588 '601 “609 ”671 ’4.<79 — “518 “516 —- _

6 ‘592 — '593 '608 ”576 — '501 — “513 -— '5—13 "531

7 —-— —- ‘616 ‘608 '576 —— “488 “497 — ”513 — '527

8 — “581 "606 '590 '548 — “470 —— “468 “491 '507 —

9 — “530 '600 '569 '558 —- "476 '4:80 '486 “492 — '4-08

10 —— — “614 ”539 — — —— “465 "455 -— — —

12 — —— —- '5‘25 — — -— “467 — — — ——

14 — — — “549 —— — — — — —‘ -— -—

Mean 632 667 570 565 562 689 467 483 471 508 505 507  
 

Experiments were conducted by Messrs. Blackwell and Simpson, at Chew Magna, in Somerset, with a 10—feet
weir formed as shown in figs. 27 and 28; the cill was a cast—iron plate, two inches thick, with a square top. ln

* Neville's Hydraulics.
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the plan, fig. 27, A B is the overfall, to which the water was conducted by a channel of equal width. On the

whole, it may be seen that the coefiicients increase as the head is greater ; but this is to be accounted for by the

Fre. 28.

  
fact that with the larger heads the velocz'ty of approach (see p. 74) was considerable, but was nevertheless omitted

from the calculations by which the coefiicients were ascertained.

COEFFICIENTS or DISCHARGE.

Experiments by Messrs. Simpson and Blackwell.

 

 

Head in feet Coefiicients } Head in feet ' Coeflicients Head in feet Coefiicients

"083 to "073 "591 ‘ "3437 "743 "5 749

"083 to "088 "626 ‘ "3594 "760 "5156 748

"182 to "187 "682 "3646 "741 "5156 to "521 "747

"229 "665 "3610 "750 "5781 "772

"2435 "670 "375 "725 "639 "717

"2396 "655 "416 "780 "6666 "802

"2422 "653 "4227 "781 "66 to "734 "737

2448 "654 "4505 "749 "7448 "750

"25 to "253 "725 453 to "456 "751 "75 "781

"3333 "745 "4948 "728 Mean. "723        
The following are the results of some experiments carried on by Boileau, at Metz, in 1854, With a vertical

plank weir extending from side to side of the supplying channel :—

 

 

Head of weir

above bottom of Head Mean coeflicient

channel

Feet Feet

3 "2 to "6 "645

13 "16 to '5 '622

"6 "15 to "25 "625   
 

When the water in the lower channel rose to the level of the weir board, the results were as follow:—

 

 

Head of weir

above bottom of Head Mean coeflicient

channel

Feet Feet '

2 1 to 1'6 "694

18 "6 to 1"8 "690

"6 "36 to 13 "675 
 

With a plank weir 1"5 feet in height, leaning up stream four inches in a foot, the mean value of the coefii-

cient was "620, the heads varying from about 3 to 6 inches. When the weir board was still. inclined, and the

' L
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tail—water rose to the crest, the latter being rounded to a semi-circle, the values of (: were '696 and '843, With

heads of about 3 and 6 inches respectively.*

Suppressed Contraction.-In all the cases treated above, except where otherwise specified, it has been sup-

posed that the water has had the opportunity of flowing towards the orifice or overfall from all directions, the

fluid threads converging freely, and thus bringing about the contraction of the stream. It frequently occurs,

however, as already mentioned, that the contraction is suppressed on one or more sides of the opening, in conse-

quence of the orifice being formed close to the walls or bottom of the reservoir. From experiments on rectangular

orifices, \Veisbach deduced the formula

c’=c(l+'l32-%) . . . (12a)

in which ;) is the perimeter of the orifice, n that part of it where the contraction is suppressed, 0 the coefi'icient of

free contraction, as before, and 0' the coefficient of partial contraction. In a similar equation, M. Bidone gives

'152, instead of "132; so that, adopting a mean value for 0, we may consider approximately

c'=c+-09_P. . . . . 13
.„ ()

Velocity of Approach.—When the discharge through an orifice or over a weir is from a channel in which

there is a sensible velocity of approach, let 0’ be that velocity in feet per second; then the head due to that

velocity is, from (1),

h’ = v’ ” + 644

and the discharge Will be that due to the head (H + /L’ ) Thus, the head being measured from the centre of the

orifice,

 D = CAJ64'4 (H + “? . . .

=CAJG4‘4H+Tfi. . . .

The following, however, is a more correct formula for rectangular orifices, the true mean velocity of discharge

bei1w reflard6d :— _ 3 3

° ° D=%cng,{ (/.+/f)f_(h,+hf)a} . . (15)

in which h and h, are the heads, measured from the bottom and top of the orifice respectively. For a notch or

weir, h, vanishes, and formula (15) becomes

D=aczyfi{<h+h'>%—lvä}. . -<16>

If A be the area of an orifice, and A, the sectional area of the supplying canal, taken at right angles to the

current, A „!

X, = 17

1; and 0’ being the mean velocities in the orifice and canal respectively. The head due to the velocity of approach

(U A + A,) will be

h'=2_19(12)2. . . .(17)
A

But D = 7.7 x A; therefore 1

I D?
h :m2 . o o . (17A)

An approximate value for the velocity of approach having been ascertained, the height h’ due to it is to

be inserted in formula (15) or (16), and an approximate discharge computed. Anew and closer value of Iz’ may

then be obtained from (17) or (17A); and thus by continued substitution of the new values, any required

degree of accuracy may be obtained. For general purposes, a mean velocity of approach, ascertained by one or

other of the usual methods, will suffice for the determination of the discharge.

The foregoing is on the supposition that the whole of the diseharge sufi’ers a contraction whose coeflicient

is 0. If, however, that part of the discharge Which is due to the velocity of approach suffer no contraction, the

head required to produce that velocity in the orifice, with contraction, will be

h’=_—02.Ai . . . .(18)
2 g . 02 A,“'

or, from equation (17A),

, _ _L 18A

h“2gcA12° . . . ..( )

" P. Boileau, Traité de la Mesure des Eaux Courantes, etc. Paris, 1854.
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Separatz'ng Weirs.-It has been seen (p. 69) that a jet of water issuing with a certain velocity describes

a parabola whose parameter is four times the height to which that velocity is due. In a stream of considerable

depth passing over a weir the various fluid threads will have velocities depending upon their depths below the

surface. It will be sufiiciently accurate for all practical purposes, however, to suppose that the stream will

advance in a curved sheet A B C D (tig. 29), parallel on its upper and lower surfaces with the curve due to the

mean velocity. The fluid layer having the mean velocity is that, a b, which is at four-ninths Fm 29

of the depth of the stream, measured from the level of still water, and the mean velocity is ---—„-__

two-thirds of that due to the head, measured from the weir crest to the level of still water.

In fig. 29 are shown two streams; the one in full lines (A B, C D) has such a mean velocity

that it will just fall within the distance r B; and the other in dotted lines (A’ 13/ , e E), being

due to a much greater head, is carried beyond the distance F E. The utility of the

arrangement consists in separating the clear water of streams in their normal condition

from the turbid water which rushes down in the times of floods; and in order that the

weir may be properly adjusted, it is necessary to gauge the stream at such times as it

eommences to be turbid, that the flow of water may be known. The head above the weir due to such discharge

will be given by the value of h in equation (9), and the corresponding parabolas may then be determined.

From (2) we have

but the mean velocity of the sheet of water being two-thirds the velocity due to the head ]_L above the weir, the

horizontal distance y to which the cascade will leap in the height x will be

y=%Jm. . . .(19)

in which It is the height from the weir crest to the level of still water.

 

Submergcd Orz_'ficcs amd Weirs.-The case represented by fig. 30 is known as a

submerged or drowned orifice; and it is evident that from all parts of the orifice the

stream will issue with a velocity due to the head caused by the difference between the

levels of still water in the upper and. lower reservoir; thus

D = o AJ2 9 /z„ .

The coefiicient of diseharge c in equation (20) has been found to have a value of about '5.

When the orifice is only partially submerged (fig. 31) it may be considered divided into two parts—cih,

that below the level of the Water in the lower reservoir, as a submerged orifice, and Fre. 31_

the remaining or upper part, 01, as a free orifice; the total discharge will then be

1): 1/53{clefi;+ %c(h„JE—ÄJE)} (21)

If the water in the reservoir has a determined velocity of approach, the head h', due to that velocity, must be

added to it„ and hl above, and the new values substituted

The case of a drowned weir (tig. 32) may be regarded as consisting of an ordinary free notch, with a head

equal to h„ and. a submerged orifice whose height is dl, the head being also h„ ; so that

D=l/2ä(%ch„J/T„+cd,J7ß) . (22)

 

  

  

which, simplified, becomes—

 

 
:! —2/z„ %ch„+cafl . 22a9

Where there is a velocity of approach due to a head lz’ , then li, becomes (h„ + ]L’ ); and, from (21), we have

D = l/5'5 [c all/77,+ // + % {(h, + hf)% _ /fi}] (23)

The coefficient of discharge for the submerged sections of drowned weirs and partially submerged orifices

may be taken as about the same as that already given for a completely submerged orifice, namely, '5. Series of

careful experiments With drowned weirs and partially submerged orifices are much required.

Adjutages.——In the experiments hitherto referred to it has been supposed, except where otherwise stated,

that the orifices and notches were formed either in thin plates or with a thin edge on the up-stream side. If

the orifice be placed in the side of a vessel of a thickness large in proportion to the dimensions of the orifice, the

coeflicient is considerably influenced, whilst similar efi"ect is produced by adjutages or month-pieces consisting of

short tubes, which may be of various forms and dimensions

L2
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Experiments by Bossut on cylindrical tubes 1 inch in diameter and 2 inches long gave coetficients varying

from "818 to 8015, with heads of from 1 to 15 feet. Michelotti derived a mean coeflicient of '814 with tubes of

from 1}% to 3 diameters in length, and heads of from 3 to 20 feet. Having

regard also to other experiments, "815 may be taken as a fair average.

If the tube project within the side of the reservoir (fig. 34), the coefiicient

Will be reduced to '715.

If the inner end of the adjutage be rounded to the form of the contracted

vein (figs. 22 and 35), the coeflicient will be increased. Weisbach’s experiments

give '958, "969, '975 for heads of 1, 5, and 10 feet respectively, the tube being

9 inches in diameter and 15 inches long. A variation in the form of adjutage

from that of the contracted vein will of course result in a reduction of the

coeflicient.

Conical convergent adjutages present some curious features. The velocity

of the jets of water and the discharge vary with the angle of convergence of

the sides, as will be seen from the following table, founded by Mr. Neville upon

experiments by D’Aubuisson and Castel."‘=

Fre. 33. Fre. 34.

 

CONICAL CONVERGENT Tußns.

 

 

 

     

C°'iffiäi"'°' Ciifffiliéf C°iäfiäl;“ C°Äfiäi'?"g °???35fi3‘223 C°irfilfiflty°f C‘ii'Ääifing CBi;fih$r?e0f Cifäiifciietx}t°f
‚

1° '858 353 8° 031 033 20° 022 071

2° 073 073 10° 037 050 220 017 073

3° 003 003 12° 042 055 26° 004 075

4° 010 009 14° 043 064 . 30° 095 076

5° 020 016 16° 037 070 40° 369 030

6° 025 023 , 13° 031 071 50° 344 035    
 

The experiments were made with tubes of ‘61 inches in diameter at the smaller end, and 1'57 inches long.

It will be seen that the coefficient of discharge starts at '829, the tube being then cylindrical, and gradually

increases until it attains the maximum, at an angle of about 13%° or 14°; it then diminishes, the angle still

increasing, until the latter attains its maximum, or 180°, when the orifice would be virtually in a plane plate.

The coeflicients of velocity increase With the angle. It must be understood that the smaller diameter is used in

determining the coeflicient, and not the larger or inner one. It is found with conical convergent adjutages, as

with cylindrical ones, that the most favourable results are obtained when the length is about 2% times the

diameter.

The discharge from conical divergent tubes (tlg. 37), when running full, is greater than that from con-

F,G,37_ vergent tubes. It was found by Venturi, from his experiments, that a discharge 146 times the

theoretic discharge from the smaller diameter a b, fig. 38, might be obtained with a tube of 9 times

the smaller diameter in length, diverging at an angle of 5° 6’ . If the mouth-piece be curved, as in

fig. 38, the inner end being of the form of the contracted vein (fig. 22), aa being 9 times ab, and

CD 18 times a I), the coeflicient Will rise to 157; so that the discharge will be 1'57 + "62 = 253 times that

 

F10.38. c through a thin-edged orifice of the diameter of ab. If A 13 and a I) be correctly

"“ ‚ ‚„ ’ proportioned, the discharge through adjutages thus formed will be about equal

 

e'vb ' ' ' ' ' „ to the theoretic discharge from an oritice of the diameter A B.

Experiments were conducted by Mr. Bateman, at Manchester, with rectangular orifices, sections of which

are given on plate 26, figs. 20, 21, and 22. The coefl‘icients derived from the experiments were '697, "872, and

“947 respectively, with heads of from 1 to 4 feet above the centre of the openings.

Slmots.——\Vhen channels, open at the top, are attached to orifices, there is a diminution in the discharge,

Which is less as the discharge is greater ; and when the charges are from 2 to 2% times greater than the height

of the oritice itself, the effect of the addition of the shoot is inconsiderable; with very small heads, however, the

discharge is diminished a fourth or more. Similar effects are produced When channels are attached to weirs or

‘ Neville’s Hydraulics.
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overfalls, as the following table will show. The experiments were by Poncelet and Lesbros ; the channel was 9'84

feet long, '656 feet wide-the same width as the overfall-and adjusted so as to be horizontal.

 

 

Coefficient

Head _—————— Loss per

Without With “““-

channel channel

Feet

0675 0582 0479 18

0475 0590 0471 20

0337 0591 0457 23

0'196 0599 0425 29

O'147 0609 0407 33

0091 0'622 0'340 45      
 

Castel experimented on overfalls 8 inches wide and 8 inches long, inclined 4° 18’, or 1 in 13‘3: the reservoir

itself was 2' feet 3 inches wide. With heads varying from '36 foot to '16 foot, the coefficient was found to vary

only from '526 to '530.

Discharge under a Variable Head.-It may be shown from the fundamental laws of mechanics, that the time

occupied by the complete discharge from a prismatic vessel is twice that in which the same volume would flow out

under a constant head equal to that at the commencement of the flow. If A = the area of the vessel on plan, a

the area of the orifice, and H the head at the commencement of the discharge, the above theorem may be

expressed by the equation

T=2x_3ß/;_I_ . . . . (24)

0 a \/ 2 g

c being the coeflicient of discharge, as before.

The time which will be occupied in discharging from a prismatic vessel a given quantity whose depth is Ic

(fig. 39) will obviously be the difference between the times occupied in discharging from the heights H and h.

Whence

Fre. 39.
2A _ _

T=;lz_'é(\/H—\/h) . . . (25)

The discharge (D) for a given time is

D=T0a/@(Jfi_%) . . (26)

 

The following formula gives the time of discharge when a constant stream is flowing into the reservoir, at

the rate of (1 cubic feet per second :——- ‘

2A __ _ - ”ai/WH"?
T=————— __ 0' _—_——_.‘—(caJü)2{ca\/29 (\/11 \/h) + qhyp.log. CdV2gH—g}<27)

Hyp. log. = common log. x 2'30258.

If the time (T) be given, the value of IL will give the level to which the water in the reservoir will have

descended at the end of the time, under the same circumstances.

If the water in the reservoir be discharged over a weir, there being no influx into the basin, the time occupied

in lowering the water from a head H to a head h Will be

FK}. 40.

T = 3 A_(L_— _1_‚) . . (28) -
c Na 9 t/fi MH

For wedged-shaped reservoirs (ab d cj Ic, fig. 40), the time of complete discharge

will be 1% that of the same volume discharged under the initial head; while for

pyramidal reservoirs (a b d c k, fig. 41), the time of complete discharge is to that of the

same volume under the initial head as 1% to 1.

The time required to discharge a reservoir with sloping sides and vertical ends (as a b d c ef h g, tig. 40), or &
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reservoir With all its sides sloping equally (as a b d c ef h g, fig. 41), may be found by an obviously simple process
Fre. 41_ of subtraction. Many reservoirs of comparatively irregular form will be capablebf sub-

division into frustra of wedges and pyramids, so that the principles given above will
cl

apply.

Vessels or reservoirs which cannot be subdivided thus it is necessary to regard as

divided into a series of horizontal layers whose areas are known; these may be considered
approximately as prismatic, and the discharge from them can be ascertained by the

formulae already given. ,

Let it now be supposed that a prismatic vessel is to be supplied by an orifice at its base from a reservoir whose
surface remains at a constant level (fig. 42). If the level of the water in the lower reservoir or vessel also remain

constant, and the orifice be submerged, the discharge will be simply that due to a head

equal to the difference of level of the water-surfaces in the two reservoirs. If the

water in the vessel rise as the flow proceeds, the discharge will be due to a head con-

tinually diminishing, so. that the time occcupied in raising the water a given height Will

be twice that which would be occupied in discharging the same volume through a free

 

orifice, or

T= %2A _ T

«sa/27 (JH “ J ‘)

as in equation (25), in which A is the section on plan of the receiving vessel, and a the area of the lorifice. If

the lower vessel be filled to the level of the water in the upper vessel, then the formula will become

2AJTI

C 11 J 2 9

as in equation ( 24). ‘

Next let it be supposed that the upper or supplying reservoir is prismatic and of known capacity (fig. 43),

and that the discharge takes place from the one vessel to the other, the total quantity of water in the two vessels

Fre 43 remaining constant. Let H and 11 be the heads of water, above the orifice or other

communication, in the upper and lower vessels respectively, before the flow commences;

03 the height above the orifice of the water-surface in the upper reservoir after the flow

has been proceeding during the time t; A and B the sections (on plan) of the upper

and lower reservoirs respectively ; a the section of the passage of communication ; and 0

the coefficient of discharge through the same ; then

2 A J?

t=—_\ —/— A B —A/—Bl} - 29

°“J29(A+B)i«/“H ” «/< +” L ‘ ()

The time which would be occupied in bringing the two surfaces to the same level is given by the formula

2 A B J 11 — ]L

='ca‘/i2filq(A+n)ü

T= 

 

 

.....(30) 

FLOW or WATER THROUGH UNIFORM CHANNELS.

fl[ean Velocity—In open channels the mean velocity (v) may be ascertained from the maximum or mean

surface velocities. The following is an adaptation of Prony’s formula to measures in English feet, V being the

maximum su;y"ace velocity :—

_ 7783 + v
v_(mlmv)v . . . . .(31)

This formula was derived from experiments in small channels. For large channels,

U = '835 V . . . . . . . (32)

Acceleratz'ng and retardz'ng forces.-lVater in flowing down a uniform channel is acted 011 by the force of

gravity, Which gives rise to the motion, and by certain resistances, commonly known as friction, tending to

counteract or retard that motion. The velocity of the stream is at first gradually accelerated, but soon the

maximum velocity is attained, and the channel is said to be ‘in train,’ the retarding forces being then

equal to the accelerating forces, and the velocity becoming in consequence uniform.

We have seen that the velocity is proportionate to the square root of the height. The laws of the friction
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of. water may be stated as follows : (1) It is independent of the pressure. (2) It is proportionate to the surface

in contact with the flowing water. (3) It is inversely proportionate to the area ofthe cross-section of the stream.

(4) It is proportionate to the square of the velocity nearly. Experiment has shown that the resistance does

not increase quite so rapidly as the square of the velocity, but that it would be more ncarly given as

proportionate to

(a v + I) U?)

in which a and b are constants.

Equating the accelerating and retarding forces, we have

2gh=(av+lnfi)xlx£, . . (33)

in which s is the section of the stream, and }) the wetted perimeter or border. The value s + P = R is known as

the mean radius or hydraulic mean depth. Omitting 2 9, as its value is constant and may therefore be

embodied with the coefiicient, we have

h 2
RZ=(av+bv). . . . (34)

from which .

r h la,2 (2

U = ’\/ 27) + m _ fl ' ‘ ' (35)

Different experimenters have assigned different values to the coefficients a and 6, and the following are

some of the resulting equations.

From Eytelwein’s experiments with rivers, we have the general formula

 

v = ‚\/8975'4 ul.; + -011886 _ -109 .

_
96

= 94'5/\/R% —- '11 nearly . . . (o )

From experiments on canals in which the velocities did. not exceed three feet per second, Prony derived

coefficients which give
—

 

„ = “10607 R—h + -0556 _ -236 . . 1
l

—-
37)

h .
(

= 10 ‚ — 24 nearl . . . J
/\/R l Y

An allowance should be made in the value of R when aquatic plants, reeds, &c. interfere with the progress

of the water. This is sometimes provided for by multiplying the wetted perimeter (or dividing R, which is the

same thing) hy 1-7. No definite value, however, can be given when the conditions are liable to such extreme

variations. Allowance must be made according to the judgment of experience, as, for instance, in the case of

small water-courses pitched with materials of which the irregularities are comparatively large in pmportion to

the hydraulic mean depth.

For the coefficients a and b in (35), Mr. Neville gives for clear straight rivers

a = '0000035 1) = '000115

from which

 

v= ./8695-6 R? +-00023—-0152 . i. .

—- (38)
=93\/R;i_'02 . . ‚ .

Du Buat’s well-known formula for rivers, pipes, and channels, was determined after a most careful study of

the results of numerous experiments. For measures in feet, it is as follows :—

88-5(JE— -03

”: /\/%— hyp.log. /\/(/l;+1'6>

Mr. Neville gives the following general formula for pipes and channels :—

—'084(/11—'03) . (39)

 

v=140MEE—113/755
. . .(40)

in which s = h -e- l.
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For pipes, Prony’s coefficients, deduced from experiments by Du Buat, Bossut, and Couplet, give

@ = /94197 R 5,3 +'00665—'0816

 

—
. . (41)

=97JR % —'08 nearly.

The pipes he experimented upon were from 1 to 5 inches in diameter, 30 to 7,000 feet long, and one 19-inchpipe 4,000 feet long.

Eytelwein’s coefficients, derived from the same experiments, give

v =/117041£ +'01698 .. 13
l

_h . . . (42)

=108JR _, — -13 nearly

If in (33) we substitute (c, 172) for (a v+b 11"), and solve for U, we shall have

: 29R/L

” 4/T—‚7—- . . . .(43)

c,being the coefficient of friction, to which Weisbach has assigned the value

0043)

V1;

  

 

(44)o

c, = (0036 +

thus recognising the principle that the friction diminishes somewhat as the velocity increases, and giving resultsfor high velocities much nearer the truth.

In using (43) with VVeisbach’s coeflicient ( 44), it is necessary first to obtain an approximate value for v, andfor this either (41) or (42) may be used. An approxixnate value for 0, being then obtained from (44), it should beintroduced into (43), from which the mean velocity, near enough for all practical purposes, may then be derived.Greater accuracy Will, if required, be given by continued approximations, the new value for 11 being introducedinto ( 44), and the process repeated.

Mr. Neville gives the following formula for pipes, recognising the principle above mentioned, and at the sametime allowing the velocity to be computed at one operation :—

u=140_/'R?—113/3?3 . . . . (45)

in which & = h + !, as before. It may be remarked that this formula fails when R 8='000000235 ; but this does not
afl'ect its practical value.

M. Darcy, from a series of nearly two hundred experiments on pipes varying from half an inch to twenty
inehes in diameter, and with velocities of from about 1 inch to nearly 20 feet per second, derived a coefficient,
which, reduced to English measures, is

c‚=‘005 {1 + ;} . . . (46)dia. in inches

It has been found from observations on long pipe conduits of large diameter, that the formulae in mostgeneral use—such as Du Buat’s (39), Weisbach’s (43 and 44), and others—give velocities considerably belowthose found to obtain in the cases referred to, and it has become the practice to make an addition—on an average,
about 25 per cent—to the velocities and discharges which these formulee give. Darcy’s expression for the
coefficient ( 46) will, under certain conditions of velocity, give results nearer the truth; thus, with a 48-inch cast-
iron pipe in the Loch Katrine Works, having an inclination of 1 in 1056, or 5 feet per mile, the actual velocity
was found to be 3'46 feet per second, and Darcy’s formula gives practically the same result, against about 3 feet
for the common formulaa. Darcy's formula, however, inasmuch as it makes the coetficient depend only upon
the hydraulic mean depth, does not accord with the received opinions on this subject.

Mr. Hawksley gives for pipes a formula which, reduced to measures in feet, gives

_ dH . . 47
0—48\/l+54d' fi ()

This formula includes an allowance for the resistance at the orifice of entry, and is therefore applicable approxi-—- mately, Without modification, to short pipes. In all the formula for pipes and channels before given, /z is the lossof head due to the friction in the pipe; and in long straight pipes this is the only loss of head that need beregarded. But in short pipes the loss of head from other causes is too large a percentage of the Whole to bedisregarded; so that before applying equations (39 to 46) to short pipes, we must deduct from IL the several
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other losses of head. Thus there is the head due to the velocity in the pipe—

/L -——2——g

and then there is the head due to the resistance at the orifice of entry—

h— ”2__cr %

c being the 1atio which this head has to that due to the velocityin the pipe. These together, or

=(1 + c)”——27, . . . . . (48)

may be shown to be the same as _

‚7 _ _1_ x 12 49L — Cd? 2 g . . . o . . ( )

in which c, may be either of the coeflicients given for the cases represented in figs. 33, 34, and 35. The loss of

head due to bends and other resistances, if any, should also be deducted from 11 in the several formula; given

for the velocity before applying them to cases of short pipes, and indeed when applying them to long pipes if

these resistances are such as together to demand a large proportionate loss of head.

From (43) we shall have, for short straight pipes—-

'2;;'/; '

”= 1_+ L . . . . . (50)

of Cfn

in which 1 + c,2 may be taken as '664, “511, and '95 for orifices of entry corresponding to figs. 33, 34, and 35

respectively.

For the resistance due to bends and curves, the following are \Veisbach’s formulae for the coefficients for

circular tubes :— Fit; 44.

_L . . d ..1
cb—1800x{131+1847(fi)2} . . . (51)

and for rectangular tubes

 

=180. x {124 + 3104 (2fi)% } . . . (52)

in which 7° is the radius of curvature of the pipe at the hend ; 19, the angle B A C (fig. 44), through which it is

bent, and d the diameter, all in feet.

For angular bends or elbows in pipes, the coeflicient of friction is given as

c„ = -946 sin.2% + 2-05 sin.‘*%

in which 0 is the angle 13 A C (fig. 45) made by the two parts of the pipe.

For the friction of diaphragms, and at sudden contractions and enlargements, let A, and A.„) (tig. 46) be the

sectional areas of the channel in the two parts respectively, between which there is a diaphragm reducing the

area to a.

Professor Rankine gives the following formula :—

=(r—l)2 . . . . (54) F1e.46.

Fre. 45.

 

in which

 

_éL .- __ _. (12
—- a /2 618 1 618—A—112 . . . . (55)

In the above cases the loss of head due to the co-etficient C„, C„ or o,„ Will be H, : c„ v2 + 2 g ; „ = C„ v“’ + 2 9;

and H„ = c,. V2 + 2 9. We have therefore for the total loss of head from all causes,

2

h=(c_ld+cfl+ob+c +c,)v . . (56)

29

1911

V= . . (57)

1—2+ofR+cb+ca +o„

in which c, is the co-efficient for the orifice of entry (figs. 33, 34, 35), C} that of the friction in the pipe, and. c„

c„, and c„ the co-etficients for bends, enlargements, &c. as first given. In most cases of practice all the co-

efficients, except C, may be disregarded, as their values Will generally be comparatively inconsiderable.

The formula; that have been given are mostly for finding the mean velocity, when the loss of head, or

virtual fall, is known; and the discharge may be computed by multiplying the mean velocity into the sectional

area of the stream.

and therefore

M
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For pipes, Prony’s coefficients, deduced from experiments by Du Buat, Bossut, and Couplet, give

%+-00665—0816

=97JR ,’3 _-08 nearly.

 

v=J9419-7R

. . . (41)

The pipes he experimented upon were from 1 to 5 inches in diameter, 30 to 7,000 feet long, and one 19-inch
pipe 4,000 feet long.

Eytelwein’s coefficients, derived from the same experiments, give

v=/11704 R17' +-01698 _ 13
l

7 . . . (42)

=108/R 7 — -13 nearly

If in (33) we substitute (c, v 2) for (a v+b 112), and solve for 0, we shall have

2_g R h

c,l_ . . . . . (43)

c,being the coefficient of friction, to which Weisbaeh has assigned the value

c, = (-0036+ 32143)

v:

 

. . . ( 44)

thus recognising the principle that the frietion diminishes somewhat as the velocity inereases, and giving results
for high velocities much nearer the truth.

In using (43) with Weisbach’s coeflicient (44), it is necessary first to obtain an approximate value for 11, and
for this either (41) or (42) may be used. An approximate value for 0, being then obtained from (44), it should be
introduced into (43), from which the mean velocity, near enough for all practical purposes, may then be derived.
Greater accuracy will, if required, be given by continued approximations, the new value for 1; being introduced
into (44), and the process repeated.

Mr. Neville gives the following formula for pipes, recognising the principle above mentioned, and at the same
time allowing the velocity to be computed at one operation :—

u=140/R_3‘— 113/fi . . . . (45)

in which s = IL + l, as before. It may be remarked that this formula fails when R s='000000235 ; but this does not
affect its practical value.

M. Darcy, from a series of nearly two hundred experiments on pipes varying from half an inch to twenty
inches in diameter, and with velocities of from about 1 inch to nearly 20 feet per second, derived a coefficient,
which, reduced to English measures, is

1
C‚= ‘005 {1 + diai;thes} . . . (46)

It has been found from observations on long pipe conduits of large diameter, that the formula; in most
general use—such as Du Buat’s (39), )Veisbach’s (43 and 44), and others—give velocities considerably below
those found to obtain in the cases referred to, and it has become the practice to make an addition-on an average,
about 25 per cent—to the velocities and discharges which these formulre give. Darey’s expression for the
coefficient (41?) Will, under certain conditions of velocity, give results nearer the truth; thus, witha 48—inch cast-
iron pipe in the Loch Katrine Works, having an inclination of 1 in 1056, or 5 feet per mile, the actual velocity
was found to be 3'46 feet per second, and Darcy's formula gives practically the same result, against about 3 feet
for the common formula}. Darcy's formula, however, inasmuch as it makes the coeflicient depend only upon
the hydraulic mean depth, does not accord with the received opinions on this subject.

Mr. Hawksley gives for pipes a formula which, reduced to measures in feet, gives

T
v = 48 Z+Td . . fi . (47)

This formula includes an allowance for the resistance at the orifice of entry, and is therefore applicable approxi—
. mately, without modification, to short pipes. In all the formula for pipes and channels before given, 11 is the loss

of head due to the friction in the pipe; and in long straight pipcs this is the only loss of head that need be
rcgardcd. But in short pipes the loss of head from other cnuses is too large a percentage of the whole to be
disregarded; so that before applying equations (39 to 46) to short pipes, we must deduct from IL the several  
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other losses of head. Thus there is the head due to the velocity in the pipe—

?

 

      

_ v
71 ——2—9

and then there is the head due to the resistance at the orifice of entry—

‚U‘l

h=c‚ %

c being the 1atio which this head has to that due to the velocityIn the pipe. These together, or

h — . . . . . (48)

may be shown to be the same as .

C_12 02
h— ><—2—g . . . . . (49)

in which cd may be either of the coefficients given for the cases represented in figs. 33, 34, and 35. The loss of

head due to bends and other resistances, if any, should also be deducted from ]L in the several formulze given

for the velocity before applying them to. cases of short pipes, and indeed when applying them to long pipe31f

these resistances are such as together to demand a large proportionate loss of head.

From (43) we shall have, for short straight pipes—

29/1 .

“= 111 . . . . . (so)

03 ch

in which 1 + cf may be taken as '664, “511, and '95 for orifices of entry corresponding to figs. 33, 34, and 35

respectively.

For the resistance due to bends and curves, the following are Weisbach’s formulae for the coeflicients for

circular tubes :— Fit; 44.

_L . . d 7
05—1800x{131+1847(fi)?} . . . (51)

and for rectangular tubes

 

. . d 1 \
=1so° x {124 + 3 104 (27) z} . . . (52)

in which ?" is the radius of curvature of the pipe at the hend ; 6, the angle B A C (fig. 44), through which it is

bent, and d the diameter, all in feet.

For angular bends or elbows in pipes, the coetficient of friction is given as

= -946 sin?% + 2% sin}; . . . .

in which 0 is the angle B A c (fig. 45) made by the two parts of the pipe.

For the friction of diaphragms, and at sudden contractions and enlargements, let A1 and A2 ( tig. 46) be the

sectional areas of the channel in the two parts respectively, between which there is a diaphragrn reducing the

area to a.

Professor Rankine gives the following formula :—

= (r — 1)2 _ _ „ _ (54) Fre. 46.

 

in which

 

„ = Ai/2-618 — 1-618_"f, . . . . (55)
a A,

In the above cases the loss of head due to the co-eflicient c„ ca, or C‚„ Will be H., : c, V2 + 2 g ; h,z = ca V2 + 2 57;

and H„ = C„ V2 —:- 2 9. We have therefore for the total loss of head from all causes,

1 l 172
h- (6;+ Cfi+ Cb+Ca+clc)'—— ' ' ' (56)

29

2I11

v=

7+c„+c„+o +ck ' ' (57)

in which ce is the co-efficient for the orifice of entry (figs. 33, 34, 35), of that of the friction in the pipe, and c„

oa, and c„, the coefiicients for bends, enlargements, &c. as first given. In most cases of practice all the co-

efficients, except C, may be disregarded, as their values will generally be comparatively inconsiderable.

The formulac that have been given are mostly for finding the mean velocity, when the loss of head, or

virtual fall, is known; and the discharge may be computed by multiplying the mean velocity into the sectional

area of the stream.

and therefore

M
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The loss of head due to several causes is given by 56, or by transposition and reduction from any of the formula

for notches‚ weirs, pipes, or channels in Which it is involved. A well-known and very useful table of the loss of

head due to friction in pipes running full has been calculated by Messrs. Thomson and Fuller of Bclfast, and will

be found in the ‘Engineer's, Architect’s, and Contractor’s Pocket-Book.’*

When the discharge and fall are given, to ascertain therefrom the dimensions of a required channel, it is

necessary first to assume the dimensions of a channel of exactly similar form, and compute the discharge from it.

We have seen the mean velocity to vary nearly as JT9; in channels of similar sections R will vary with the

linear dimensions 7\‚ so that when 3 is constant the mean velocity will vary as \/i. The discharge Will depend

on the mean velocity and the section of the channel ; in similar channels the sections will be as the squares

of the linear dimensions (73), so that the discharge will vary as ?? \/_7T = ‘/_75. Therefore the square root of the

fifth power of the linear dimensions of the required channel is to that of the linear dimensions of the assumed

channel as the required discharge is to that from the assurned channel or

\/_7\5 : \‚/_7\_5‚ :: D ; Du . . (58)

With the assistance of Neville’s table (in Appendix), the required dimensions of the new channel may be readily

ascertained.


