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CHAPTER V.

MEASUREMENT AND ESTIMATION OF THE FLOW OF WATER,.

Weight of Water—Units of Volume and Time—Discharge—Action of Gravity—Theoretical Velocity—Path traversed by a jet of Water
issuing with a known Velocity—Orifices in thin Plates, or thin-edged Orifices—Coefficient of Velocity —True mean Velocity under
small Charges—Contraction of the Fluid Vein—Coefficient of Discharge—Circular Orifices—Rectangular Orifices—True mean
Velocity—Experiments by Poncelet and Lesbros—Notches and Weirs—Rectangular and Triangular Notches—Right-angled
Triangular Notches—Experiments by Messrs. Blackwell and Simpson, and Boileau—Suppressed Contraction—Velocity of
Approach—Separating Weirs—Submerged Orifices and Weirs—Adjutages: Cylindrical, Conically Converging, and Conically
Diverging—Shoots—Discharge under a variable Head—Time of Emptying Prismatic and other Reservoirs—Discharge from one
Vessel into another—Flow of Water through uniform Channels—Mean Velocity determined by Maximum Surface Velocity—
Accelerating and Retarding Forces—Mean Velocity of Flow in Rivers and open Channels, and through long and short Pipes—
Friction caused by Bends and sudden Enlargements—Total Loss of Head, and final Velocity—Determination of the Section when
the Discharge and Head ave given.

N the following passages, water will be regarded as an inelastic fluid, it having been found (p. 18) that
excessive pressure is required to effect even a very small diminution in bulk, inappreciable under ordinary
practical circumstances.

The units which are adopted for the measurement of water are the cubic foot and the gallon. The weight
of a cubic foot of water varies, of course, with the temperature—at its maximum density (39-1° Fahr.), it weighs
62:425 1bs. avoirdupois; at 62° Fahr. it weighs 62355 1bs.  The imperial gallon contains 10 Ibs. avoirdupois of water
(62° Fahr. and the barometer at 30 inches), so that a cubic foot of water contains 6-235 gallons. In practice it is
usual to consider the cubic foot of water as weighing 625 Ibs. and containing 6°25 gallons. Of the units of
time, the second is coupled mostly with the cubic foot; the minute is frequently used for the discharge of streams;
while the hour and day are employed with thousands or millions of gallons in speaking of the delivery of large
quantities of water. The units of discharge, compounded from the units of volume and of time, are very
numerous. Perhaps, on the whole, the cubic foot per second and the gallon per day are the most customary.

Discharge.—The discharge of a stream or current of water is the product of the sectional area of the stream,
and the mean velocity with which the several ‘threads’ of water in that stream are flowing. Thus, if it be found
by careful measurement that the section of a stream at right angles to its flow is 30 sq. feet, and also that its
mean velocity is 2 feet per second, it will be shown that the discharge is 60 cubic feet per second. In the
same way, the mean velocity may be found, if the discharge be divided by the area of the section. These two
clements of the true section and true mean velocity are all that is essential for the calculation ; and it is the deter-
wination of the values of the same under varying conditions which constitutes, in great part, the science of hydraulics.

The velocity of a current of water is due to the action of a force, mostly the force of gravity, but in any
case a force of which gravity may be made a measure.

The Theoretical Velocity, or that due to the force of gravity, is given by the formula—

U= S . 5 - i (1)
vt B s g e } s

orv= 8025 /® . .
This is the velocity in feet per second® which a body would acquire upon falling in a vacuum through a
height equal to m, and, but for the retarding effect of friction, to be hereafter mentioned, it would be the velocity
which a stream of water would acquire upon flowing down a channel through a height equal to m; or the
velocity with which a jet of water would issue from an orifice in the side of a reservoir, the head of water or
‘charge’ upon that orifice being equal to m. In the latter case, the velocity of issue would be the same as if the

which, for measure in feet, becomes

* The value 644, or twice the measure of the force of gravity, varies slightly with the latitude, but not to an extent worth recognising
in hydraulic formule.
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total head or charge (m=m+n) consisted partly of the influence of a column of water of the height m, and partly
of that of a londed piston, the pressure upon which is equal to the weight of a column of water of the height n.
On the other hand, if the stream were issuing from a closed vessel, in which a partial vacuum was maintained, the
height of a column of water that would be a measure of the vacuum must be subtracted from the actual head
of water or charge, In the following table are given some values of v for corresponding values of . For measures
in inches, v=27"8,

Head r 2 o Head 3 < g Head 3 2 g Head 3 & g | Hed | = 8 o | Head | ~ E o
588 £.883 $E8 S.H 8 =58 283
Ehe Epi Epa Epa Epd ot
Feet and b _§ -‘E; 5 |Feetand| g o _§ ol TFeet and Feot £8g |Feetand) g o ’2 5 5 |Feet and _Z ‘g 5 |Feet and S35 n
inches Gas = <=2 A | inches o H-3 = | inches H~= & | inches = 52 A | inches | B2 A | inches | B -5 &
2 2 2 2 £ 2
0 01| 0104 819 | 0 3% |-2916 | 4334 |0 9% | '7916| 714012 9 | 2:7500| 13:308] 9 6 | 24-735( 22 O | 37-641
0 04| 10156 | 1003 | 0 33 | '3020 | 4410 | O 9% | -8125| 7-233 2 104 | 28749 | 13:607] 9 9 | 25:058| 22 6 | 88:066
0 0%1-0208 | 1158 | 0 383 | -3125 | 4486 | 0 10 ‘8333 | 7:825]18 0 | 3:0000| 18:990] 10 0 | 25:377| 23 . 0 | 38:487
0 02 0260 | 1-295 | 0 8% | -3229 | 4:560 | 0 104 | 8541 7417|183 1% | 3:1249| 14-186] 10 3 | 25693| 23 6 | 38903
0 02]-0312 | 1418 |0 4 | 3333 | 4633 | 0O 10% ‘8749 | 7:506| 3 3 | 3:2500| 14-467| 10 6 | 26:004] 24 0 | 39-315
0 0| 0364 | 1532 [ 0 4L |-3437 | 4705 | 0 10 | -8958| 7595 3 41| 33749| 14-743] 10 9 | 26:312| 24 6 | 39722
0 01| 0416 | 1638 | O 44 | 3541 | 4775 | 0 11 ‘9166 | 7:683|3 6 | 85000| 15:013] 11 0 | 26:616| 25 O | 40:125
0 0% ‘0468 | 1-737 | 0 43 | -3645 | 4845 | O 11% 9374 7770|374 | 8:6249| 15279| 11 3 | 26:917| 25 6 | 40-525
0 02| 0520 | 1831 |0 44 | -3749 | 4914 | 0 114 | -9582| 7:856 3 9 |387500| 155401 11 6 | 27-214] 26 0 | 40920
0 0Lyl 0572 [ 1920 | 0 4% | -3853 | 4-982 | 0 113 | -9791| 7:941| 3 101 | 8:8749| 15-797| 11 9 | 27:501| 26 6 | 41-312
0 02| 0625 | 2006 | 0 4% |-8958 | 5:049 |1 0 | 1:0000| 8025|4 O | 4:0000| 16:050] 12 0 | 27-800 27 0 | 41700
0 013| <0677 | 2088 | 0 4 | -4062 | 5114 |1 0F | 1:0416| 8190 4 2 | 41666| 16:381| 12 38 | 28-088] 27 6 | 42:084
0 0%| 0729 | 2167 [0 5 | -4166 | 5180 |1 1 | 10833| 8352 4 4 | 4-3333| 16:705| 12 6 | 28:373]| 28 0 | 42-465
0 O0Lg 0781 | 2243 | 0 5% | 4270 | 5244 |1 1} | 1'1249| 8512 4 6 |[45000| 17:023| 12 9 | 28:655]| 28 6 | 42:842
0 1 |-0833 | 2316 |0 5+ |-4374 | 5308 |1 2 |11666| 8668|4 8 | 46666| 17:336| 13 0 | 28:935| 29 0 | 43-216
0 11|-0937 | 2457 |0 52 | 4478 | 5-371 |1 24 | 1-2082| 8821| 4 10 | 4:8333| 17:643| 13 8 | 29-212| 29 6 | 43-587
0 11f-1041 | 2590 |0 51| -4582 | 54383 |1 38 |1-2500| 8972]5 O 17:9441 13 6 | 29:486| 30 0O | 43:955
0 121145 | 2716 |0 52| -4686 | 5494 |1 8% | 12916 9120|5 3 183881 13 9 | 29:758] 30 6 | 44:320
0 11|:1250 | 2:837 |0 53| -4791 | 5555 |1 4 | 1:3333| 9:266| 5 6 18820 14 0 | 80027 | 31 O | 44682
0 15| 1353 | 2953 | 0 5% |-4895 | 5615 | 1 4% | 1:8749| 9410|5 9 19-243| 14 6 | 30-558| 31 6 | 45:041
0 13| 1458 | 3064 [0 6 |-5000 | 5674 |1 5 |14166| 9:551| 6 0O 196571 15 0 | 31:081| 32 O | 45:397
0 1z|1562 |3172 |0 63 [:5208 | 5:791 |'1 &% | 1-4582| 9:791 (55 8 20:063| 15 6 | 31:595| 82 6 | 45750
(EoE 66618276 |0 C% -5416 | 5906 |1 6 | 1:5000| 9:828{16 6 204601 16 0 | 82:100] 83 0 | 46:101
0 211770 | 33877 |0 6% |-35625 | 6:018 |1 7 |1:5833| 10:098|6 9 20:850] 16 6 | 82:598| 33 6 | 46449
0 20 L =187 3475 |0 7 | 5833 [6129 |1 8 | 1:6666| 10386017 0O 21:2321 17 0 | 33:088| 34 0 | 46794
0 223|-1978 [ 3570 | 0 71 |-6041 | 6237 |1 9 | 17500 106167 3 21:608| 17 6 | 33:571| 34 6 | 47°137
0 21|2082 [3663 |0 7L |-6249 | 6:344 |1 10 | 18333| 10:866| 7 6 21:977| 18 0 | 34:047| 35 0O | 47-447 !
0 235|218 | 3758 |0 72| 6458 | 6449 |1 11 | 1:9166| 11-110| 7 9 22:341] 18 6 | 34517 86 0O | 48151
0 23|-2291 | 3841 [0 8 | 6666 | 6552 |2 0 | 2:0000| 11-349|8 0 22:698| 19 0 | 34:981]| 87 0 | 48815
0 27|-2395 | 3928 |0 8% | 6874 | 6:654 |2 1% | 21249 11-698 883 23:050| 19 6 | 35438| 38 0 | 49-470
0 3 |-:2500 | 4012 | O 81| -7082 | 6754 |2 8 | 2:2500| 12:037| 8 6 23-3971 20 0 | 85:889] 39 0 | 50117
0 8381|2604 | 4095 | 0 83 ';291 6:852 | 2 44 | 2:3749 lggg; g 9 32'738 g? 8 ggggg 40 0| 50755
0 3L| 2708 | 4176 |0 9 [ °7500 | 6950 |2 6 | 25000 12 0 075 :
03 % 2812 | 4256 | 0 91 | -7708 | 7:045 | 2 7L | 2:6249| 13:002| 9 3 24:407]1 21 6 | 37211

The velocity of a jet of water being known, the path it will follow may be readily traced; for it may be
ghown to be a parabola whose parameter is equal to four times the height due to the velocity
of projection. If the body be projected in the direction A Y (fig. 19) with a velocity due to
the height of A, then -

JrAngs o : . : (2)
from which expression any value may be determined, when the other two are known.

DiScHARGE THROUGH ORIFICES AND ovER NorTcues AND WEIRS.

Orifices in thin Plates, or thin-edged Orifices.—It is necessary here to define what is meant by a thin-edged
orifice, as mistakes often arise on this point. The thin edge should be formed on the inner
side of the plate, as in fig. 20, so that for all. practical purposes the orifice shall, as far as the
current of water is concerned, be the same as if it were formed in a very thin plate. Let A
(fig. 21) be a reservoir in which the level of the water is maintained constant, and let an
orifice, the area of which is known, be perforated in the vertical side of the reservoir at B.
From what has already been said, it might be inferred that, in calculating the discharge from
the orifice B, the following process only would suffice. Ascertain the velocity due to the head
from the level of still water to the centre of the orifice, regarding it as the mean of the
velocity of the several threads, and multiply this by the area of the orifice. This is sometimes .
called, although not with strict accuracy, the theoretical discharge; and it is in excess of the actual discharge
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from two causes, which are, first, the friction of the water against the sides of the orifice, and, second, a
diminution in the actual section of the current of water, termed the ¢ contraction.’
‘ The friction diminishes the velocity of the current, and o = » — m,
wherein o is the actual, and v the theoretical, velocity—is the coefficient
of velocity—which has to be determined by experiment. It is found
that the velocity is proportional to the square root of the head or charge,
the coefficient remaining practically constant at about m = -97 5.

When the head or charge is greater than about three or four times
the height of the orifice, it is sufficiently accurate to regard the mean
theoretical velocity as that due to the height from the surface of the still water to the centre of gravity of
the orifice. It may be shown* that, for heads less than this, the greatest error cannot exceed four per cent.
in the case of circular orifices, and six per cent. in the case of rectangular ones, in excess of the values given by
formulee mathematically correct, even when the upper side of the orifice is on the level of still water, the orifice

Fie. 21.

thus becoming a ¢ notch.’
The contraction of the fluid vein is caused by the convergence of the fluid threads towards the centre of the
orifice, as shown in fig. 22. If the orifice be circular and in the thin vertical side of a reservoir, the maximum

TFra. 22, contractions will occur at a distance from the orifice equal to half its diameter. If the jet issue
downwards, it will be greater, and if upwards at a less distance than this. With rect-
angular orifices, the section of the vein varies continually. With circalar ones, the form of sections
is preserved, but its dimensions are gradually reduced, until at the point of maximum contraction,
as above, the diameter is only *785 of the original diameter, and, in consequence, the area is dimi-
nished from 1 to *785% or from 1 to ‘616. It may be shown that in fig. 22 the radius o ¢ is
equal to 1:22. The amount of contraction is influenced by the position of the orifice with
: regard to the sides of the reservoir, being least when the orifice is near the upper surface of the
water, and near a side or bottom of the reservoir, and greatest when most distant from the same. Generally,
the coefficients for friction and contraction are combined into a ‘coefficient of discharge,’ being the ratio of
the actual to the theoretical discharge. This will be theoretically the product of the coefficients of velocity
and contraction. Numerous experiments, details of which will be found in treatises on Hydraulics, have been
conducted with a view to determine practically the value of this coefficient ¢ in the equation

Dt /g, ; 3 ; : ()

in which p is the discharge, and A the area of the orifice. As might be expected, from the irregularities in the
conduct of the experiments, the coefficients are very variable.

Circular Orifices.—Michelotti determined, from orifices of 1 to 8 inches in diameter, a coefficient of 614;
while from Bossut’s experiments with smaller orifices, a mean of ‘62 is obtained. Rennie’s experiments give
even larger coefficients; here, however, 62 will be considered a fair average; so that

D="62x4 /2gH

which, for cubic feet per second, becomes
D A/Tfnem‘ly 5 5 . : .
= (4)
< SOBALG . L R
d being the diameter of the orifice in feet.
Rectangular Orifices —It has been seen that the velocity of any herizontal layer of water will vary as ~/ H.
Fra. 23, From this, it may be shown that if the horizontal distances ¥ Y (fig. 23) be drawn,
representing this velocity, due to the several heads, the curve a ¢ thus determined
will be a parabola, with its vertex at A; and the volume of water discharged will
be the prism A B ¢ DE F, whose base is the parabolic segment A B ¢, and height the
width A D of the stream of water. From a well-known property of the parabola, the
segment A B C is ¥ the rectangle A 6 ¢ 3; but B¢ =,/ 2 ¢ (4 B) =
so that, calling ! the width of the stream, we have for the volume discharged—
P=%xIxaB,/2g(aB)
or, to introduce the coefficient of discharge, and adopt the usual form and notation,

D=cx%xl~/—2—gx/z~/% 5 . - (%)

* See Neville’s Hydraulics,
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But the discharge from a rectingular orifice B ¢ (fig. 24) will be that due to the height A ¢, minus that
due to the height A B; or, symtolically, '

D=c><-§~><l~/.2—g-<h~/7—h1~/_/z_l). (6)
_in which % is the head to the bottom, and %, to the top of the orifice. If for the height of the
orifice (h — h,), d be substituted, o for [ x d, and the head be measured to the centre of the orifice,
the discharge will become very nearly

d? =
D=c(l—m)A~/2911.. ’ X (7)
The formula commonly used, however, is

L TR S e i ; : (8)

the cocfficient ¢ including an approximate correction for the incompleteness of the remainder of the expression.

Fia. 24.

With a view to determine the coefficients of discharge ¢, for rectangular orifices, a valuable series of
experiments was conducted by Poncelet and Lesbros, at Metz. The apertures were about 8 inches wide, and of
varying heights, while the heads or charges vary from less than half an inch to nearly 10 feet. It would appear
from the experiments, that, for smaller and more oblong orifices, the coeflicient increases as the head diminishes,
while the reverse is the case with orifices which are larger and of proportions nearer a square. The following
table is founded upon these experiments.

Head of ‘l Height of orifice + breadth ‘ Head of Height of orifice + Lreadth
water water
=+ depth of || =+ depth of
orifice i 0'H 0:25 0°15 01 005 orifice 3 05 0:25 015 01 0:05
05 o = = — — 709 2:50 *602 617 631 630 640 643
10 — — — — 660 698 300 6035 616 630 629 6385 640
15 — — — 638 660 (st 3:50 604 .616 1529 629 637 '638
-20 — — 612 ‘640 659 685 4:00 604 615 "629 628 6355 634
25 — = 617 640 659 682 4:50 16045 615 628 628 634 ‘631
*30 — 590 622 640 658 678 5:00 605 615 ‘627 627 632 627
'35 — 595 624 639 658 674 5:50 6045 614 "626 626 630 625
40 — 600 626 639 657 671 6-00 604 614 624 624 6275 623
45 — 602 627 638 656 669 650 604 613 623 623 625 621
*50 — 605 *628 638 655 667 7:00 6035 613 “622 622 623 620
55 — 607 629 637 655 665 7:50 603 ‘612 621 621 621 618
60 572 609 630 637 654 664 800 602 611 619 619 618 616
65 578 609 630 637 654 662 8:50 602 610 618 617 6165 615
70 *582 610 631 636 653 661 9:00 6015 609 616 616 6155 615
75 585 611 631 636 653 660 950 6015 608 614 614 614 614
‘80 *587 611 632 635 652 659 1000 601 607 613 613 613 613
85 *589 611 632 635 652 658 11:00 601 606 611 611 6115 612
90 591 612 633 "634 651 657 || 1200 601 605 *609 610 611 611
‘95 *592 612 633 634 651 656 l 13-00 601 604 608 609 6095 610
1:00 592 613 034 634 650 655 14:00 601 604 607 608 609 609
1-50 598 ‘616 632 632 645 650 15-00 601 603 606 607 608 609
2:00 600 617 631 631 642 647
|

With heads of less than from three to five times the height of the orifice, there is a perceptible depression of
the water-line at the plate: the heads given in the table are measured to the level of still water above this depres-
sion. The coeficients include a correction for measuring the head from the centre of the orifice, instead of from
the point where the mean velocity occurs, which is a little above the centre. :

Notches and Weirs—The formula given above will apply to notches and weirs, if the orifice be regarded as
extending up to the level of the surface. Thus, if in equation (6), &, = 0, we shall Fic. 25.
have equation (5), which really gives the discharge over a weir, where 4 is the
difference of level between the thin horizontal edge of the weir board and the still
water, and [ the length of the overfall.

But e —
therefore D =c¢ x % x A/WL . e Ol
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With a triangular notch, the discharge is
D= ' Ul ok e e
in which / is the width of the notch at the level of still water, and A
==="the distance of the apex below the same. In a notch of any given angle
the proportion of height to base remains constant: for a right-angled
triangular notch (fig. 26)
D=cx-f‘%h?~/_27h : 3 . ()
The observation of the true amount of head demands the exercise of great care, as the surface of the water
is curved for some distance above the overfall, (See fig. 25.) Mr. Neville gives for the difference between the
thickness of the sheet of water passing over the crest, and the head (%) measured to the level of still water,

bl SR L

for measures in feet. The difference, except for very small heads, will be found to vary from one-tenth to one-
quarter of the true head.*

Fra. 26.

The coefficients derived from direct experiments with notches and weirs are very variable, perhaps on account
of some of the modifying causes to be hereafter mentioned., In the present instance, we shall class the coeffi-
cients for thin-edged weirs as follows :—

When the width of the weir is about one-fourth of that of the canal itself 5 ¢ —= 600
When the width of the weir is equal to the total width of the canal ! i cE—1665 :
b

Between the above limits (5 = width of the canal, and ¢ that of the weir) (= 5 A 0%

I

For a right-angled triangular notch . : > . . . : =Gl

The coefficients for rectangular notches decrease as the depth of water flowing over is greater in proportion to
the length of the notch. The coeflicients for triangular notches vary with the form of the triangle; but when the
form of the triangle is constant, it is probable that the coefficient will remain the same, whatever be the depth
flowing over the notch.

The following table, which is from a valuable series of experiments by Mr, T. E. Blackwell, will show the
effects of substituting for thin edges various broad crests of different inclinations. From the circumstances under

which the experiments were conducted, it is probable that the coefficients are somewhat lower for the larger
heads than what should be considered fair averages.

CoErrICIENTS OF DISCHARGE TROM WEirs, rrom Expermvexts BY MR. T. E. BLACKWELL,

é ig Thin plates, {; inch Planks 2 inches thick, square on crest Crests 3 feet wide
E g «2» 10 ft. long 3 feet | 10 feet | 3 feet
g 8 g 3 feet, 10 feet 3 feet 6 feet 10 feet ‘C‘rlg%ehr(;:f ?off;t ?Of:;f llglf;?t long, long, long,
"g g % Lo i et Loe i3 atan ané;lz level level level 1 if;;HIB 1 ?111“18 1 ﬁ“m
=& of 64 3
1l 677 ‘808 467 *459 *435 754 452 — *381 *545 467 467
2 675 *802 509 *561 *585 ‘675 *482 — 479 *546 495 *533
3 ‘630 642 563 597 *569 — 441 *492 — *537 = 539
4 617 655 549 575 602 656 419 497 — 431 515 455
5 601 649 *588 601 *609 671 479 — *518 516 —- —_
6 *592 —_ 593 608 576 — 501 — 513 —_— 543 531
7 — —_ 616 608 576 — ‘488 497 — 513 == *527
8 — *581 606 *590 *548 — 470 — 468 491 507 —
9 — *530 600 569 558 — 476 480 *486 +492 — 498
10 — — 614 *539 — — —_ 465 455 —_ — —
12 — — — 525 — — —_— 467 — — — —
14 — — —_ *549 —_ — — —_ — — —_ —
Mean 632 667 570 565 502 689 467 483 471 508 505 507

Experiments were conducted by Messrs. Blackwell and Simpson, at Chew Magna, in Somerset, witha 10-feet
weir formed as shown in figs. 27 and 28 the cill was a cast-iron plate, two inches thick, with a square top. In

* Neville's Hydraulics,
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the plan, fig. 27, A B is the overfall, to which the water was conducted by a channel of equal width. On the
whole, it may be seen that the coefficients increase as the head is greater; but this is to be accounted for by the

Fic. 28.

fact that with the larger heads the velocity of approach (see p.74) was considerable, but was nevertheless omitted
from the calculations by which the coeflicients were ascertained.

COEFFICIENTS OF DISCHARGE.

Ezperiments by Messrs. Simpson and Blackwell.

Head in feet, Coefficients || Head_ in feet | Coefficients Head in feet Coefficients
*083 to ‘073 591 ; *3437 743 5 749
-083 to *088 626 ‘ 8594 760 *5156 748
*182 to 187 *682 *8646 741 5156 to 521 747
229 665 *3610 750 5781 772
2435 670 375 725 *639 Sl
-2396 655 416 *780 ‘6666 ‘802
*2422 653 4227 781 *66 to 734 737
*2448 654 4505 749 *7448 750
25 to '253 725 *453 to 456 751 75 781
-3333 745 *4948 728 Mean. 723

The following are the results of some experiments carried on by Boileau, at Metz, in 1854, with a vertical
plank weir extending from side to side of the supplying channel :—

Head of weir
above bottom of Head Mean coefficient
channel
Feet Feet
3 2 to 6 645
13 *16 to 5 622
6 15 to 25 625

When the water in the lower channel rose to the level of the weir board, the results were as follow :—

Head of weir
above bottom of Head Mean coefficient
channel
Feet Feet -
2 8106 694
1-8 ‘6 to 18 690
6 36 to 1'3 675

With a plank weir 15 feet in height, leaning up stream four inches in a foot, the mean value of the coeffi-
cient was *620, the heads varying from about 3 to 6 inches. When the weir board was still inclined, and the
L
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tail-water rose to the crest, the latter being rounded to a semi-circle, the values of ¢ were *696 and ‘843, with
heads of about 8 and. 6 inches respectively.*

Suppressed Contraction.—In all the cases treated above, except where otherwise specified, it has been sup-
posed that the water has had the opportunity of flowing towards the orifice or overfall from all directions, the
fluid threads converging freely, and thus bringing about the contraction of the stream. It frequently occurs,
however, as already mentioned, that the contraction is suppressed on one or more sides of the opening, in conse-
quence of the orifice being formed close to the walls or bottom of the reservoir. From experiments on rectangular
orifices, Weisbach deduced the formula

c’=c(1+'132—%) S (124)

in which p is the perimeter of the orifice, n that part of it where the contraction is suppressed, ¢ the coefficient of
free contraction, as before, and ¢’ the coefficient of partial contraction. In a similar equation, M. Bidone gives
"152, instead of *132; so that, adopting a mean value for ¢, we may consider approximately

d=c+ 092 RO A 13
= (13)

Velocity of Approach.—When the discharge through an orifice or over a weir is from a channel in which
there is a sensible velocity of approach, let v" be that velocity in feet per second; then the head due to that
velocity is, from (1),

h' = o'% + 644
and the discharge will be that due to the head (1 + %’). Thus, the head being measured from the centre of the

orifice,

64:4 i
:CA/G4‘4H+U2. 1 5 3

The following, however, is a more correct formula for rectangular orifices, the true mean velocity of discharge
e i 3 3
=30l /77 { (b + #)% (/L1+h')?} R

in which % and %, are the heads, measured from the bottom and top of the orifice respectively. For a notch or
weir, &, vanishes, and formula (15) becomes

3 3
D=%cl/ﬂ{(lt+/b’)2_la'f}. . (e

If A be the area of an orifice, and 4; the sectional area of the supplying canal, taken at right angles to the
current, A v
s T
v and v’ being the mean velocities in the orifice and canal respectively. The head due to the velocity of approach
(v A= 4) wil be

D=CA/64'4 (H+ i , .
Tl

being regarded :—

k’:%(ﬂr. AR

A

But D = v x A; therefore y

’ p’
W = m2 . . . . (17A)

An approximate value for the velocity of approach having been ascertained, the height A’ due to it is to
be inserted in formula (15) or (16), and an approximate discharge computed. A new and closer value of 4’ may
then be obtained from (17) or (17a); and thus by continued substitution of the new values, any required
degree of accuracy may be obtained. For general purposes, a mean velocity of approach, ascertained by one or
other of the usual methods, will suffice for the determination of the discharge.

The foregoing is on the supposition that the whole of the discharge suffers a contraction whose coefficient
ig ¢. If, however, that part of the discharge which is due to the velocity of approach suffer no contraction, the
head required to produce that velocity in the orifice, with contraction, will be

ST

2g e A
or, from equation (174),
e 184
¥ = 2 e vt AR R (5

* P. Boilean, Traité de la Mesure des Eaux Courantes, etc. Paris, 1854,
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Separating Weirs.—It has been seen (p. 69) that a jet of water issuing with a certain velocity describes
a parabola whose parameter is four times the height to which that velocity is due. In a stream of considerable
depth passing over a weir the various fluid threads will have velocities depending upon their depths below the
surface. It will be sufficiently accurate for all practical purposes, however, to suppose that the stream will
advance in a curved sheet A B ¢ D (fig. 29), parallel on its upper and lower surfaces with the curve due to the

mean velocity. The fluid layer having the mean velocity is that, a b, which is at four-ninths Fre. 29

of the depth of the stream, measured from the level of still water, and the mean velocity is g

two-thirds of that due to the head, measured from the weir crest to the level of still water.
In fig. 29 are shown two streams; the one in full lines (A B, ¢ D) has such a mean velocity
that it will just fall within the distance F B; and the other in dotted lines (4’ #/, ¢ E), being
due to a much greater head, is carried beyond the distance ¥ E. The utility of the
arrangement consists in separating the clear water of streams in their normal condition
from the turbid water which rushes down in the times of floods; and in order that the
weir may be properly adjusted, it is necessary to gauge the stream at such times as it
commences to be turbid, that the flow of water may be known. The head above the weir due to such discharge
will be given by the value of % in equation (9), and the corresponding parabolas may then be determined.

From (2) we have

but the mean velocity of the sheet of water being two-thirds the velocity due to the head % above the weir, the
horizontal distance 7 to which the cascade will leap in the height 2 will be

y:%J/T?Z’ . . . . (19)

in which 7 is the height from the weir crest to the level of still water.

Submerged Orifices and Weirs.—The case represented by fig. 30 is known as a
submerged or drowned orifice ; and it is evident that from all parts of the orifice the
stream will issue with a velocity due to the head caused by the difference between the
levels of still water in the upper and lower reservoir; thus

D=cA/29h . : - (20)
The coefficient of discharge ¢ in equation (20) has been found to have a value of about 5.
When the orifice is only partially submerged (fig. 81) it may be considered divided into two parts—d,

that below the level of the water in the lower reservoir, as a submerged orifice, and Fic. 31.
the remaining or upper part, d, as a free orifice; the total discharge will then be

e l/Q—:q{cdl/ﬁ:+ %c(ho/E—li}Tl)} (21)
If the water in the reservoir has a determined velocity of approach, the head 7/, due to that velocity, must be
added to %, and %, above, and the new values substituted.
The case of a drowned weir (fig. 32) may be regarded as consisting of an ordinary free notch, with a head
equal to /,, and a submerged orifice whose height is d,, the head being also A,; so that

p=1/2g(%ch,_/h, +cd Jh, (89
g Vi

which, simplified, becomes

=1/29h (ch +cd) . (224)

Where there is a velocity of approach due to a head /, then %, becomes (%, + %'); and, from (21), we have

p=1/77 |:c d /T T + 3 { o h'%}] (23)

The coefficient of discharge for the submerged sections of drowned weirs and partially submerged orifices
may be taken as about the same as that already given for a completely submerged orifice, namely, *5.  Series of
careful experiments with drowned weirs and partially submerged orifices are much required.

Adjutages.—In the experiments hitherto referred to it has been supposed, except where otherwise stated,
that the orifices and notches were formed either in thin plates or with a thin edge on the up-stream side. If
the orifice be placed in the side of a vessel of a thickness large in proportion to the dimensions of the orifice, the
coefficient is considerably influenced, whilst similar effect is produced by adjutages or mouth-pieces consisting of
short tubes, which may be of various forms and dimensions.

L2
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Experiments by Bossut on eylindrical tubes 1 inch in diameter and 2 inches long gave coefficients varying
from -818 to '803, with heads of from 1 to 15 feet, Michelotti derived a mean coefficient of ‘814 with tubes of
from 1} to 8 diameters in length, and heads of from 8 to 20 feet. Having
regard also to other experiments, ‘815 may be taken as a fair average.

If the tube project within the side of the reservoir (fig. 34), the coefficient
will be reduced to -715.

If the inner end of the adjutage be rounded to the form of the contracted
vein (figs. 22 and 35), the coefficient will be increased. Weisbach’s experiments
give *958, *969, ‘975 for heads of 1, 5, and 10 feet respectively, the tube being
9 inches in diameter and 1'5 inches long. A variation in the form of adjutage
from that of the contracted vein will of course result in a reduction of the
coefficient.

Conical convergent adjutages present some curious features. The velocity
of the jets of water and the discharge vary with the angle of convergence of
the sides, as will be seen from the following table, founded by Mr. Neville upon
experiments by D’Aubuisson and Castel. ¥

Fra. 33. Fra. 34.

CovnicaL CoNVERGENT TUBES.

e R el il i e R e G e e B
10 858 858 & 931 933 20° 922 971
20 873 873 10° 937 950 290 917 973
3° 908 908 120 942 955 26° 004 975
4 910 909 140 943 964 | 80° 895 976
5 920 916 16° 987 970 40° 869 980
o 925 2 | 1w 931 971 50° 844 985

The experiments were made with tubes of *61 inches in diameter at the smaller end, and 157 inches long.
It will be seen that the coefficient of discharge starts at 829, the tube being then cylindrical, and gradually
increases until it attains the maximum, at an angle of about 134° or 14°; it then diminishes, the angle still
increasing, until the latter attains its maximum, or 180°, when the orifice would be virtually in a plane plate.
The coefficients of velocity increase with the angle. It must be understood that the smaller diameter is used in
determining the coefficient, and not the larger or inner one. It is found with conical convergent adjutages, as
with cylindrical ones, that the most favourable results are obtained when the length is about 2% times the
diameter.

The discharge from conical divergent tubes (fig. 37), when running full, is greater than that from con-

Fre. 37, vergent tubes. It was found by Venturi, from his experiments, that a discharge 1:46 times the
theoretic discharge from the smaller diameter @ b, fig. 38, might be obtained with a tube of 9 times
the smaller diameter in length, diverging at an angle of 5° 6’. If the mouth-piece be curved, as in
fig. 38, the inner end being of the form of the contracted vein (fig. 22), ac being 9 times ab, and
€D 18 times ab, the coefficient will rise to 1'57; so that the discharge will be 1:57 = ‘62 = 253 times that

Fia. 38. through a thin-edged orifice of the diameter of ab. If A B and @ b be correctly
S SR § proportioned, the discharge through adjutages thus formed will be about equal
5.5 ,  to the theoretic discharge from an orifice of the diameter A B.

Experiments were conducted by Mr. Bateman, at Manchester, with rectangular orifices, sections of which
are given on plate 26, figs. 20, 21, and 22. The coefficients derived from the experiments were 697, ‘872, and
"947 respectively, with heads of from 1 to 4 feet above the centre of the openings.

Shoots.—When channels, open at the top, are attached to orifices, there is a diminution in the discharge,
which is less as the discharge is greater ; and when the charges are from 2 to 2% times greater than the height
of the orifice itself, the effect of the addition of the shoot is inconsiderable ; with very small heads, however, the
discharge is diminished a fourth or more. Similar effects are produced when channels are attached to weirs or

* Neville’s Hydraulics.
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overfalls, as the following table will show. The experiments were by Poncelet and Lesbros; the channel was 9-84
feet long, *656 feet wide—the same width as the overfall—and adjusted so as to be horizontal.

Coefficient
Taic sl Loss per
Without With cenl
channel channel
Feet:
0675 0-582 0-479 18
0475 0590 0-471 20
0-337 0591 0457 23
0196 0599 0425 29
0147 0609 0407 33
0091 0-622 0-340 45

Castel experimented on overfalls 8 inches wide and 8 inches long, inclined 4° 18', or 1 in 13-3: the reservoir
itself was 2 feet 3 inches wide. With heads varying from 36 foot to *16 foot, the coefficient was found to vary
only from 526 to *530.

Discharge under a Variable Head.—It may be shown from the fundamental laws of mechanics, that the time
occupied by the complete discharge from a prismatic vessel is twice that in which the same volume would flow out
under a constant head equal to that at the commencement of the flow. If A = the area of the vessel on plan, a
the area of the orifice, and m the head at the commencement of the discharge, the above theorem may be
expressed by the equation

S B SR R
cav'2yg
¢ being the coeflicient of discharge, as before.
The time which will be occupied in discharging from a prismatic vessel a given quantity whose depth is £

(fig. 39) will obviously be the difference between the times occupied in discharging from the heights i and 7.
Whence

Fic. 39.

2 A = —
T=;l\/—2_g(\/H—\/h) . . . (25)

The discharge (D) for a given time is

D=Tca\/§'§(\/§ _’%‘7) FEL T 6]

The following formula gives the time of discharge when a constant stream is flowing into the reservoir, at
the rate of ¢ cubic feet per second :— ;

L= —”“—_
(cay/2 7)?
Hyp. log. = common log. x 2-30258.
If the time (T) be given, the value of % will give the level to which the water in the reservoir will have
descended at the end of the time, under the same circumstances.

If the water in the reservoir be discharged over a weir, there being no influx into the basin, the time occupied
in lowering the water from a head u to a head 4 will be

e cavign—gq
cay/2g (\/H—\//z)+ghyp.1og.ca‘/m_g (27)

S il 1 Fic. 40.
8 _(—_— __,) F o e
clvIg\vi Vm
For wedged-shaped reservoirs (abdcjk, fig. 40), the time of complete discharge
will be 1} that of the same volume discharged under the initial head; while for
pyramidal reservoirs (a b d ¢k, fig. 41), the time of complete discharge is to that of the

same volume under the initial head as 1% to 1.
The time required to discharge a reservoir with sloping sides and vertical ends (as a decefhg, fig. 40),or a
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reservoir with all its sides sloping equally (as abd cefh ¢, fig. 41), may be found by an obviously simple process

Fre. 41, of subtraction. Many reservoirs of comparatively irregular form will be capable of sub-
division into frustra of wedges and pyramids, so that the principles given above will
o
apply.

Vessels or reservoirs which cannot be subdivided thus it is necessary to regard as
divided into a series of horizontal layers whose areas are known; these may be considered
approximately as prismatic, and the discharge from them can be ascertained by the

formulee already given. ‘

Let it now be supposed that a prismatic vessel is to be supplied by an orifice at its base from a reservoir whose
surface remains at a constant level (fig. 42). If the level of the water in the lower reservoir or vessel also remain -
constant, and the orifice be submerged, the discharge will be simply that due to a head
equal to the difference of level of the water-surfaces in the two reservoirs. If the
water in the vessel rise as the flow proceeds, the discharge will be due to a head con-
tinually diminishing, so that the time occcupied in raising the water a given height will
be twice that which would be occupied in discharging the same volume through a free

orifice, or
= &QA = T
TR T Akl

as in equation (25), in which A is the section on plan of the receiving vessel, and a the area of the orifice. If
the lower vessel be filled to the level of the water in the upper vessel, then the formula will become

as in equation (24).
Next let it be supposed that the upper or supplying reservoir is prismatic and of known capacity (fig. 43),
and that the discharge takes place from the one vessel to the other, the total quantity of water in the two vessels
Fro, 43, remaining constant. Let m and 4 be the heads of water, above the orifice or other
communication, in the upper and lower vessels respectively, before the flow commences ;
x the height above the orifice of the water-surface in the upper reservoir after the flow

has been proceeding during the time #; A and B the sections (on plan) of the upper

and lower reservoirs respectively ; a the section of the passage of communication ; and ¢
the coeflicient of discharge through the same ; then

24 /3
t=W{/B(u—h)—/(A+B)x—A/L—B/L} - ()
The time which would be occupied in bringing the two surfaces to the same level is given by the formula
2AB J o—5
ca / 27(a & B)

o

Frow or WATER THROUGH UNIFORM CHANNELS.

Mean Velocity.—In open channels the mean velocity (v) may be ascertained from the maximum or mean
surface velocities. The following is an adaptation of Prony’s formula to measures in English feet, v being the
mazimum surface velocity :—

7783 + v) 31
= e . . . .
(10'345 + Vv Bk
This formula was derived from experiments in small channels. For large channels,
v="835vVv . . . . . . . (32)

Accelerating and retarding forces.—Water in flowing down a uniform channel is acted on by the force of
gravity, which gives rise to the motion, and by certain resistances, commonly known as friction, tending to
counteract or retard that motion. The velocity of the stream is at first gradually accelerated, but soon the
maximum velocity is attained, and the channel is said to be ‘in train,” the retarding forces being then
equal to the accelerating forces, and the velocity becoming in consequence uniform.

We have seen that the velocity is proportionate to the square root of the height. The laws of the friction
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of water may be stated as follows : (1) It is independent of the pressure. (2) It is proportionate to the surface
in contact with the flowing water. (3) It is inversely proportionate to the area of the cross-section of the stream.
(4) Tt is proportionate to the square of the velocity nearly. Experiment has shown that the resistance does
not increase quite so vapidly as the square of the velocity, but that it would be more nearly given as
proportionate to
(@it by
in which @ and b are constants.
Equating the accelerating and retarding forces, we have

2gh=(av+bo?)xlx: . . ‘
gh=( Poolx = o (33)
in which s is the section of the stream, and p the wetted perimeter or border. The value s + P = r is known as

the mean radius or hydraulic mean depth. Omitting 2 ¢, as its value is constant and may therefore be
embodied with the coefficient, we have

Rllﬁ—(av+bv2). ey e
from which, :
r h a? a
v =/\/ % S T =5 ﬂ : “ . (35)

Different experimenters have assigned different values to the coefficients @ and b, and the following are

some of the resulting equations.
From Eytelwein's experiments with rivers, we have the general formula

v= /89754 n % 4 011886 — 109 .

= 94'5,\/R]7L — 11 nearly . (25

From experiments on canals in which the velocities did not exceed three feet per second, Prony derived
coefficients which give :

e LT SR l

l
= 37
= 10\/3 ll" — 24 nearly . . . j B0

An allowance should be made in the value of ® when aquatic plants, reeds, &c. interfere with the progress
of the water. This is sometimes provided for by multiplying the wetted perimeter (or dividing ®, which is the
same thing) by 17. No definite value, however, can be given when the conditions are liable to such extreme
variations. Allowance must be made according to the judgment of experience, as, for instance, in the case of
small water-courses pitched with materials of which the irregularities are comparatively large in proportion to
the hydraulic mean depth.

For the coefficients a and b in (35), Mr. Neville gives for clear straight rivers

g = 0000035 b = -000115

from which

B, f 88956 R»»/ZL 0T L
T (38)

=93\/R%—'02. Lk

Du Buat’s well-known formula for rivers, pipes, and channels, was determined after a most careful study of

the results of numerous experiments. For measures in feet, it is as follows :—
88'5(, /= — ‘03

v= =
/\/']Zz— Typ. log. /\/(/Z;+1'6>

Mr. Neville gives the following general formula for pipes and channels:—

= eEl( /=00 <)

=140 vRs — 11 ¥ &8 R

in which s = A = L.
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For pipes, Prony’s cocflicients, deduced from experiments by Du Buat, Bossut, and Couplet, give

u.=n/ 9410°7 B ’li +:00665—-0816

—_ - . . (41)
=97 ~/R ? — 08 nearly.

The pipes he experimented upon were from 1 to 5 inches in diameter, 30 to 7,000 feet long, and one 19-inch
pipe 4,000 feet long.
Eytelwein’s coefficients, derived from the same experiments, give
v=+/11704n7 +01698 - 13
Enak ’ < A (42)

=108//» % — 13 nearly

If in (33) we substitute (¢, v?) for (av+bv?), and solve for v, we shall have

= 29R h
. «/‘W—. s S e e

¢,being the coefficient of friction, to which Weishach has assigned the value

c,=(-0036+%@) o i

thus recognising the principle that the friction diminishes somewhat as the velocity increases, and giving results
for high velocities much nearer the truth.

In using (43) with Weisbach’s coefficient (44), it is necessary first to obtain an approximate value for v, and
for this either (41) or (42) may be used. An approximate value for ¢, being then obtained from (44), it should be
introduced into (43), from which the mean velocity, near enough for all practical purposes, may then be derived.
Greater accuracy will, if required, be given by continued approximations, the new value for v being introduced
into (44), and the process repeated.

Mr. Neville gives the following formula for pipes, recognising the principle above mentioned, and at the same
time allowing the velocity to be computed at one operation :—

v=140_/®s — LS o (45)

in which s = 2 =+ [, as before. It may be remarked that this formula fails when » §='000000235 ; but: this does not
affect its practical value.

M. Darcy, from a series of nearly two hundred experiments on pipes varying from half an inch to twenty
inches in diameter, and with velocities of from about 1 inch to nearly 20 feet per second, derived a coefficient,
which, reduced to English measures, is

dia. in inches

c,=-005{1+~1\}. gl

It has been found from observations on long pipe conduits of large diameter, that the formule in most
general use—such as Du Buat’s (39), Weisbach’s (43 and 44), and others—give velocities considerably below
those found to obtain in the cases referred to, and it has become the practice to make an addition—on an average,
about 25 per cent.—to the velocities and discharges which these formulse give. Darcy’s expression for the
coeflicient (46) will, under certain conditions of velocity, give results nearer the truth; thus, with a 48-inch cast-
iron pipe in the Loch Katrine Works, having an inclination of 1 in 1056, or 5 feet per mile, the actual velocity
was found to be 3-46 feet per second, and Darcy’s formula gives practically the same result, against about 8 feet
for the common formule. Darcy’s formula, however, inasmuch as it makes the coefficient depend only upon
the hydraulic mean depth, does not accord with the received opinions on this subject.

Mr. Hawksley gives for pipes a formula which, reduced to measures in feet, gives

= du - : 47
v_48\/l+54d- b (47)

This formula includes an allowance for the resistance at the orifice of entry, and is therefore applicable approxi-
- mately, without modification, to short pipes. In all the formulz for pipes and channels before given, 7 is the loss
of head due to the friction in the pipe; and in long straight pipes this is the only loss of head that need be
regarded. But in short pipes the loss of head from other causes is too large a percentage of the whole to be
disregarded ; so that before applying equations (39 to 46) to short pipes, we must deduct from % the several
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other losses of head. Thus there is the head due to the velocity in the pipe—

'02
h e
and then there is the head due to the resistance at the orifice of entry—

h=c, i

j o 2 g
¢, being the ratio which this head has to that due to the velocity in the pipe. These together, or

' 2
h=(1+c,.)§v§ bt sedhimn ol e ORI IG)

may be shown to be the same as

1 v? ‘
= —Q_ié X 2_9' . . . . . . (49)
in which ¢, may be either of the coefficients given for the cases represented in figs. 33, 34, and 35. The loss of
head due to bends and other resistances, if any, should also be deducted from h in the several formule given
for the velocity before applying them to. cases of short pipes, and indeed when applying them to long pipes if
these resistances are such as together to demand a large proportionate loss of head.

From (43) we shall have, for short straight pipes—

2q9h
i I S e B TR )
6.7 i

in which 1 =+ ¢, may be taken as *664, 511, and 95 for orifices of entry corresponding to figs. 33, 34, and 35
respectively.
For the resistance due to bends and curves, the following are Weisbach’s formule for the coefficients for

h

circular tubes:— Fic 44,
w0 : ; BN =z
6 =153 X {131 + 1847 (ﬂ)z} Tnast el
and for rectangular tubes S el /’lc
Bl - a A Salcd
& =To5 X { 124 + 3104 (27)5} s A -

in which 7 is the radius of curvature of the pipe at the bend ; 6, the angle B A ¢ (fig. 44), through which it is
bent, and d the diameter, all in feet.

For angular bends or elbows in pipes, the coefficient of friction is given as i

o = ais sin.Z% + 2:05 sin.‘*g

in which 6 is the angle B A ¢ (fig. 45) made by the two parts of the pipe.
For the friction of diaphragms, and at sudden contractions and enlargements, let A, and A, (fig. 46) be the

sectional areas of the channel in the two parts respectively, between which there is a diaphragm reducing the
area to a.

Professor Rankine gives the following formula :—

G = (= LF ; 5 2 : (54) Tic. 46.
in which

— A2 . o (l2
0—7/2618—1618-;12 T
Tn the above cases the loss of head due to the co-efficient ¢,, ¢, or ¢;, will be B, = ¢, V' + 2g; h, = ¢, V' = 2 g;
and 1, = ¢; V* - 2g. We have therefore for the total loss of head from all causes,

1 / v?
h = (C—d+ Cfi‘f‘ Cy + C, + C/c) '2“9 . c $ (56)

29 m
V= 1 ) s . (57)
(,‘—2+ Ok, ar G ap Cpyap (0
d

in which ¢, is the co-efficient for the orifice of entry (figs. 33, 34, 85), ¢, that of the friction in the pipe, and c,,
¢, and c,, the co-efficients for bends, enlargements, &c. as first given. In most cases of practice all the co-
efficients, except ¢, may be disregarded, as their values will generally be comparatively inconsiderable.

The formule that have been given are mostly for finding the mean velocity, when the loss of head, or
virtual fall, is known ; and the discharge may be computed by multiplying the mean velocity into the sectional
area of the stream.

and therefore

M
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For pipes, Prony’s coefficients, deduced from experiments by Du Buat, Bossut, and Couplet, give

o=/ G410 B ’li +-00665—-0816
Ak M e ik e

=u7 /R lé — 08 nearly.

The pipes be experimented upon were from 1 to 5 inches in diameter, 30 to 7,000 feet long, and one 19-inch
pipe 4,000 feet long.
Eytelwein’s coefficients, derived from the same experiments, give

v=4/11704 R? +01698 — 13

~z wHeigte el (42)
=108/R i *13 nearly
Ifin (33) we substitute (¢, v2) for (a v+5 v2), and solve for v, we shall have

“L 29R A
/ '\/;‘r. s i Sk

¢,being the coefficient of friction, to which Weisbach has assigned the value

0043
i

¢ = (0036 + (44)

thus recognising the principle that the friction diminishes somewhat as the velocity increases, and giving results
for high velocities much nearer the truth.

In using (43) with Weisbach’s coefficient (44), it is necessary first to obtain an approximate value for v, and
for this either (41) or (42) may be used. An approximate value for ¢ being then obtained from (44), it should be
introduced into (43), from which the mean velocity, near enough for all practical purposes, may then be derived.
Greater accuracy will, if required, be given by continued approximations, the new value for v being introduced
into (44), and the process repeated.

Mr. Neville gives the following formula for pipes, recognising the principle above mentioned, and at the same
time allowing the velocity to be computed at one operation :—

=140 _/Rs — ENd TRl e

in which s = % = [, as before. It may be remarked that this formula fails when R s="000000235 ; but this does not
affect its practical value.

M. Darcy, from a series of nearly two hundred experiments on pipes varying from half an inch to twenty
inches in diameter, and with velocities of from about 1 inch to nearly 20 feet per second, derived a coefficient,
which, reduced to English measures, is

s 1
fr==hl0p {1 T inches} & 5 T

It has been found from observations on long pipe conduits of large diameter, that the formulw in most
general use—such as Du Buat’s (39), Weisbach’s (43 and 44), and others—give velocities considerably below
those found to obtain in the cases referred to, and it has become the practice to make an addition—on an average,
about 25 per cent.—to the velocities and discharges which these formula give. Darcy’s expression for the
coefficient (46) will, under certain conditions of velocity, give results nearer the truth; thus, with a 48-inch cast-
iron pipe in the Loch Katrine Works, having an inclination of 1 in 1056, or 5 feet per mile, the actual velocity
was found to be 3-46 feet per second, and Darcy’s formula gives practically the same result, against about 3 feet
for the common formulee. Darcy’s formula, however, inasmuch as it makes the coefficient depend only upon
the hydraulic mean depth, does not accord with the received opinions on this subject.

Mr. Hawksley gives for pipes a formula which, reduced to measures in feet, gives

S AR

V= 48«/1\*_ iR » s ﬁ 2 (47)
This formula includes an allowance for the resistance at the orifice of entry, and is therefore applicable approxi-
+ mately, without modification, to short pipes. In all the formulw for pipes and channels before given, % is the loss
of head due to the friction in the pipe; and in long straight pipes this is the only loss of head that need be
regarded. But in short pipes the loss of head from other causes is too large a percentage of the whole to be
disregarded; so that before applying equations (39 to 46) to short pipes, we must deduct from % the several
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other losses of head. Thus there is the head due to the velocity in the pipe—

h —2—9
and then there is the head due to the resistance at the orifice of entry—
gt
==Cx 249
¢, being the ratio which this head has to that due to the velocity in the pipe. These together, or
: o2
e )
may be shown to be the same as .
1 o
h = 0-.12 X *2—.9 . . . . . . (49)

in which ¢, may be either of the coefficients given for the cases represented in figs. 33, 34, and 35. The loss of
head due to bends and other resistances, if any, should also be deducted from % in the several formule given
for the velocity before applying them to. cases of short pipes, and indeed when applying them to long pipes if
these resistances are such as together to demand a large proportionate loss of head.

From (43) we shall have, for short straight pipes—

29h
“{/—1 5 it e R S )
C—? A Cf—R'
in which 1 + ¢,2 may be taken as *664, -511, and ‘95 for orifices of entry corresponding to figs. 33, 34, and 35
respectively.

For the resistance due to bends and curves, the following are Weisbach’s formule for the coefficients for
circular tubes :—

e : : e
C,,—lgoox{131+1847 (Z)j} e e

and for rectangular tubes

Sime . : s s
& =Tg X {124+3104 (ﬂ)z} i i o))

in which » is the radius of curvature of the pipe at the bend ; 6, the angle B A ¢ (fig. 44), through which it is
bent, and d the diameter, all in feet.

For angular bends or elbows in pipes, the coefficient of friction is given as

Fic. 45.
¢, = 946 sin.“’% =2:05 sin.‘*% ¢ 2 . g
in which 6 is the angle B A ¢ (fig. 45) made by the two parts of the pipe.

For the friction of diaphragms, and at sudden contractions and enlargements, let A, and A, (fig. 46) be the
sectional areas of the channel in the two parts respectively, between which there is a diaphragm reducing the
area to a.

Professor Rankine gives the following formula :—

= (r— 1)2 3 1 3 p (54) Fic. 46.

in which

=
=K 4

e T s e ()
a 78

Tn the above cases the loss of head due to the co-efficient ¢, ¢, or ¢;, will be B, = ¢, V* = 2¢; h,=¢, V' =+ 2 g;

and 1, = ¢; V* — 2¢g. We have therefore for the total loss of head from all causes,
2

1 l v
k—(a-i+ G c,,+ca+ck)§-§ S (56)

2gm
vV =
01—2+ Cri+ Cp+ Cq + Cp 2 g (e
da

in which ¢, is the co-efficient for the orifice of entry (figs. 83, 34, 85), ¢, that of the friction in the pipe, and ¢,
Cyy and C;, the co-efficients for bends, enlargements, &c. as first given. In most cases of practice all the co-
efficients, except ¢, may be disregarded, as their values will generally be comparatively inconsiderable.

The formule that have been given are mostly for finding the mean velocity, when the loss of head, or
virtual fall, is known ; and the discharge may be computed by multiplying the mean velocity into the sectional
area of the stream.

and therefore

M
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The loss of head due to several causes is given by 56, or by transposition and reduction from any of the formula:
for notches, weirs, pipes, or channels in which it is involved. A well-known and very useful table of the loss of
head due to friction in pipes running full has been calculated by Messrs. Thomson and Fuller of Belfast, and will
be found in the ¢ Engineer’s, Architect’s,and Contractor’s Pocket-Book."*

When the discharge and fall are given, to ascertain therefrom the dimensions of a required channel, it is
necessary first to assume the dimensions of a channel of exactly similar form, and compute the discharge from it.
We have seen the mean velocity to vary nearly as /R s; in channels of similar sections r will vary with the
linear dimensions 2, so that when s is constant the mean velocity will vary as (/2. The discharge will depend
on the mean velocity and the section of the channel ; in similar channels the sections will be as the squares
of the linear dimensions (%), so that the discharge will vary as a? v/ & =/ 7% Therefore the square root of the
fifth power of the linear dimensions of the required channel is to that of the linear dimensions of the assumed
channel as the required discharge is to that from the assumed channel or

VUV APL I s (oBY
With the assistance of Neville’s table (in Appendix), the required dimensions of the new channel may be readily
ascertained.



