

FIGURE 8.15: Notations for the inverse Vening Meinesz problem
concentric spheres $r=R-T_{0}$ and $r=R$. Disregarding this constant, which will be justified later, we may thus replace $(8-168)$ by

$$
\begin{equation*}
A_{C}=-G \Delta \rho \iint_{\sigma} \int_{r=R-T}^{R} \frac{\partial}{\partial R}\left(\frac{1}{l}\right) r^{2} d r d \sigma \tag{8-169}
\end{equation*}
$$

Now, to a very good approximation

$$
\begin{equation*}
\frac{\partial}{\partial R}\left(\frac{1}{l}\right)=-\frac{\partial}{\partial r}\left(\frac{1}{l}\right) \tag{8-170}
\end{equation*}
$$

This can be seen because if the sphere is replaced by a plane, the $x y$-plane, then the distance l between two points (x, y, z) and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ is given by

$$
l=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}
$$

and

$$
\frac{\partial l}{\partial z}=-\frac{\partial l}{\partial z^{\prime}}
$$

is immediately verified by direct computation. In the spherical case, $(8-170)$ holds as

