Let us now consider $B^{\prime \prime}$, given by ($8-70$). As the integrand is easily seen to decrease very rapidly to zero with increasing distance l, it is sufficient to consider a neighborhood of, say, 50 km around the computation point P. Thus it is admissible to replace the sphere by its tangential plane at P, which is taken as the $x y$-plane; see Fig. 8.12. Then

$$
\begin{gathered}
R^{2} d \sigma=d x d y \\
l=\sqrt{x^{2}+y^{2}+\left(\eta-h_{P}\right)^{2}}
\end{gathered}
$$

and (8-70) becomes

$$
\begin{equation*}
B^{\prime \prime}=-G \rho \iint_{-\infty}^{\infty} \int_{h_{P}}^{h} \frac{\eta-h_{P}}{\left[x^{2}+y^{2}+\left(\eta-h_{P}\right)^{2}\right]^{3 / 2}} d x d y d \eta \tag{8-74}
\end{equation*}
$$

Since the integral is extended over the region that is crosshatched in Fig. 8.12,

FIGURE 8.12: The terrain correction
we recognize (8-74) easily as the mathematical expression of the (negative) terrain correction C; see sec. 8.1.5. Thus we have

$$
\begin{equation*}
B^{\prime \prime}=-C . \tag{8-75}
\end{equation*}
$$

Combining (8-73) and (8-75) we find

$$
\begin{equation*}
B=2 \pi G \rho h_{P}-C . \tag{8-76}
\end{equation*}
$$

The conventional Bouguer reduction is based on (8-38), which is formally identical with the right-hand side of ($8-76$); this again indicates the fact that the auxiliary quantity B has some connection with Bouguer reduction; see sec. 8.2.5.

The planar approximation of (8-70) is obtained by replacing l by $l_{0}=2 R \sin \frac{\phi}{2}$. Now we can readily integrate with respect to η to get $B^{\prime \prime}$ or C, by (8-75). The result is

$$
\begin{equation*}
C=\frac{1}{2} G \rho R^{2} \iint_{\sigma} \frac{\left(h-h_{P}\right)^{2}}{l_{0}^{3}} d \sigma \tag{8-77}
\end{equation*}
$$

