8.1 CLASSICAL ISOSTATIC MODELS

8.1.5 Remarks on Gravity Reduction

Gravity reduction may be summarized as follows (for more details cf. (Heiskanen and Moritz, 1967, pp. 130–151)):

1. Removal of topography. Gravity g_P is measured at a surface point P (Fig. 8.8). The attraction A_T of the topographic masses above sea level is computed by a similar

formula as (8-31a), with ρ instead of $\Delta \rho$ and z = -h, and subtracted from g_P . The result is

$$g_P - A_T$$
 . (8-33)

However, $g_P - A_T$ continues to refer to P, therefore the next step is

2. Free-air reduction to sea level. This is done by adding the "free-air reduction"

$$F = -rac{\partial \gamma}{\partial h} h_P \doteq 0.3086 h_P \, \mathrm{mgal} \quad , \qquad (8-34)$$

with h_P in meters. (The milligal, abbreviated mgal, is the conventional unit for gravity differences: $1 \text{mgal} = 10^{-5} \text{ m s}^{-2}$.) The replacement of actual gravity g by normal gravity γ is only an approximation, and the numerical value given in (8-34) is conventional. The result is *Bouguer gravity*

$$g_B = g_P - A_T + F \quad . \tag{8-35}$$

Subtracting normal gravity γ we get the Bouguer anomaly

$$\Delta g_B = g_B - \gamma = g_P - A_T + F - \gamma \quad . \tag{8-36}$$