$$
\begin{align*}
r^{2} & =x_{P}^{2}+y_{P}^{2}+z_{P}^{2} \tag{7-116}\\
l^{2} & =\left(x-x_{P}\right)^{2}+\left(y-y_{P}\right)^{2}+\left(z-z_{P}\right)^{2} \tag{7-117}\\
l^{\prime 2} & =\left(x-x_{P}^{\prime}\right)^{2}+\left(y-y_{P}^{\prime}\right)^{2}+\left(z-z_{P}^{\prime}\right)^{2} \tag{7-118}
\end{align*}
$$

It is straightforward though somewhat cumbersome to compute

$$
\begin{equation*}
\Delta^{2} H=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)\left(\frac{\partial^{2} H}{\partial x^{2}}+\frac{\partial^{2} H}{\partial y^{2}}+\frac{\partial^{2} H}{\partial z^{2}}\right) \tag{7-119}
\end{equation*}
$$

and to find that it is zero and regular even at P, so that H is indeed a regular solution of the biharmonic equation $\Delta^{2} H=0$.

FIGURE 7.11: The point Q lies on the sphere S
There remains to verify the boundary conditions (7-96) on the sphere S. If Q lies on S, then (Fig. 7.11)

$$
\begin{align*}
l^{2} & =r^{2}+R^{2}-2 r R \cos \psi \tag{7-120}\\
l^{\prime 2} & =r^{\prime 2}+R^{2}-2 r^{\prime} R \cos \psi=\frac{R^{4}}{r^{2}}+R^{2}-2 \frac{R^{3}}{r} \cos \psi \\
& =\frac{R^{2}}{r^{2}} l^{2} \tag{7-121}
\end{align*}
$$

so that by (7-112),

$$
\begin{equation*}
l_{1}=\frac{r}{R} l^{\prime}=\frac{r}{R} \frac{R}{r} l=l \quad \text { on } \quad S \tag{7-122}
\end{equation*}
$$

Hence (7-113) gives

$$
\begin{equation*}
H=l \text { on } S \tag{7-123}
\end{equation*}
$$

which is our first boundary condition.

