7.7.4 Green's Function for the Sphere

It is easy to give Green's function $G(7-99)$ if the boundary surface S is a sphere.
Submit the point P (to which V_{P} refers) to a Kelvin transformation, or inversion in a sphere. Cf. (Kellogg, 1929, pp. 231-223); for a different application see (Heiskanen and Moritz, 1967, pp. 143-144).

Fig. 7.10 shows the geometric situation. The inversion in the sphere transforms P into a point P^{\prime} on the same radius as P, such that

$$
\begin{equation*}
r r^{\prime}=R^{2} \tag{7-111}
\end{equation*}
$$

Define a function l_{1} by

FIGURE 7.10: Kelvin transformation as an inversion in the sphere

$$
\begin{equation*}
l_{1}=\frac{r}{R} l^{\prime} \tag{7-112}
\end{equation*}
$$

Then the auxiliary function H in (7-99) simply is

$$
\begin{equation*}
H=\frac{1}{2} \frac{l^{2}}{l_{1}}+\frac{1}{2} l_{1} \tag{7-113}
\end{equation*}
$$

so that Green's function (7-99) becomes

$$
\begin{equation*}
G=l-\frac{1}{2} \frac{l^{2}}{l_{1}}-\frac{1}{2} l_{1} \tag{7-114}
\end{equation*}
$$

(Marcolongo, 1901).
With coordinates for $P\left(x_{P}, y_{P}, z_{P}\right), P^{\prime}\left(x_{P}^{\prime}, y_{P}^{\prime}, z_{P}^{\prime}\right)$ and $Q(x, y, z)$ we thus have

$$
\begin{equation*}
x_{P}^{\prime}=\frac{R^{2}}{r^{2}} x_{P}, \quad y_{P}^{\prime}=\frac{R^{2}}{r^{2}} y_{P}, \quad z_{P}^{\prime}=\frac{R^{2}}{r^{2}} z_{P} \tag{7-115}
\end{equation*}
$$

