6.3 EQUIPOTENTIAL AND EQUIDENSITY SURFACES

A further simplification of W_4 is obtained by subtracting the hydrostatic value

$$W_4^H(\beta) = \frac{GM}{R} \beta^2 \cdot \frac{8}{35} \left[\left(\frac{3}{2} e^2 - 4\kappa_H \right) D - 3eS + \frac{3}{2} P_H + \frac{4}{3} Q_H \right] \equiv 0 \quad , \quad (6-26)$$

noting that D and S are equal in both cases. Thus we get

$$W_4(\beta) = \frac{GM}{R} \beta^2 \cdot \frac{32}{105} \left[-3(\kappa - \kappa_H)D + \frac{9}{8}(P - P_H) + (Q - Q_H) \right] \quad , \qquad (6-27)$$

where, by (4-56),

$$\frac{9}{8}(P-P_H) = \beta^{-7} \int_0^\beta \delta \frac{d}{d\beta} \left[(\kappa - \kappa_H) \beta^7 \right] d\beta \quad , \qquad (6-28)$$

$$Q - Q_H = \beta^2 \int_{\beta}^{1} \delta \frac{d}{d\beta} \left[(\kappa - \kappa_H) \beta^{-2} \right] d\beta \quad . \tag{6-29}$$

6.3 Equipotential Surfaces and Surfaces of Constant Density

Denote a surface of constant density, $\rho = \rho_1$, by S_1 and a corresponding surface of constant potential, $W = W_1$, by S_2 . Let the surface S_1 be characterized by a value β_1 such that

$$\rho(\beta_1) = \rho_1 \quad ; \tag{6-30}$$

then the constant W_1 will be determined by

$$W_0(\beta_1) = W_1 \quad , \tag{6-31}$$

the function $W_0(\beta)$ being expressed by (6-24). Thus a surface S_2 is made to correspond to each surface S_1 (Fig. 6.1).

FIGURE 6.1: A surface of constant density, S_1 , and the corresponding surface of constant potential, S_2