

FIGURE 4.10: Polar radius t and mean radius β
is the geometric mean of all three axes (Fig. 4.10). (In a more familiar notation this is $R=\sqrt[3]{a^{2} b}$, the sphere being defined as having the same volume as the ellipsoid.) In view of the smallness of $f,(4-210)$ reduces in the linear approximation to

$$
\begin{align*}
\beta & =t\left(1+\frac{2}{3} f\right) \tag{4-211}\\
t & =\beta\left(1-\frac{2}{3} f\right) \tag{4-212}
\end{align*}
$$

Hence,

$$
\begin{equation*}
W^{\prime}(t)=\frac{d W}{d t}=\frac{d W}{d \beta} \frac{d \beta}{d t}=\frac{d W}{d \beta}\left(1+\frac{2}{3} f+\frac{2}{3} t f^{\prime}\right) \tag{4-213}
\end{equation*}
$$

Using (4-209) with (4-211), this gives

$$
\begin{equation*}
W^{\prime}(t)=-\frac{4 \pi G}{3} D t\left(1+\frac{2}{3} f\right)\left(1+\frac{2}{3} f+\frac{2}{3} t f^{\prime}\right)+\frac{2}{3} \omega^{2} t \tag{4-214}
\end{equation*}
$$

(since $\omega^{2}=O(f)$, we have been able simply to replace β by t in the last term).
Introducing the dimensionless quantity (4-66), in the present units

$$
\begin{equation*}
\mu=\frac{3}{4 \pi G} \frac{\omega^{2}}{D} \tag{4-215}
\end{equation*}
$$

which is $O(f)$, we thus have to $O(f)$

$$
\begin{equation*}
g_{P}=-W^{\prime}(t)=\frac{4 \pi G}{3} D t\left(1+\frac{4}{3} f+\frac{2}{3} t f^{\prime}-\frac{2}{3} \mu\right) \tag{4-216}
\end{equation*}
$$

Now

$$
\begin{equation*}
\frac{4 \pi G \rho-2 \omega^{2}}{\frac{4 \pi}{3} G t D}=\frac{3}{t} \frac{\delta}{D}-\frac{2}{t} \mu \tag{4-217}
\end{equation*}
$$

