and hence

$$
\begin{align*}
\frac{\partial F^{*}}{\partial t} & =\frac{\partial F}{\partial t}+\frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial t} \tag{4-174}\\
\left.\frac{\partial F}{\partial t}\right)_{\Theta=\text { const. }} & \left.=\frac{\partial F}{\partial t}\right)_{\theta=\text { const. }}+F_{\theta} \frac{\partial \theta}{\partial t} \tag{4-175}
\end{align*}
$$

in an obvious notation. Thus, in order to get $\partial F / \partial t$ in Wavre's sense, we have to add to $\partial F / \partial t$ in our present sense a " θ-correction".

The factor $\partial \theta / \partial t$ is the change of θ along the normal to the equisurface passing through the point (t, θ) under consideration. It is easily found as follows (Fig. 4.9). The infinitesimal distance $P F$ can be expressed in two ways:

$$
\begin{equation*}
-r d \theta=\delta d r \tag{4-176}
\end{equation*}
$$

(we have put the minus sign since in Fig. 4.8 we had taken $r=O P_{1}$, whereas now

FIGURE 4.9: The θ-correction
$r=O P$; so to speak, in Fig. 4.8 we went from P^{\prime} to P, whereas in Fig. 4.9 we go from P to P^{\prime}). Thus

$$
\begin{equation*}
\frac{\partial \theta}{\partial r}=-\frac{\delta}{r} \tag{4-177}
\end{equation*}
$$

where the very small angle δ is nothing else than the difference between the geographic latitude ϕ and the geocentric latitude ψ (Fig. 4.9), which is given by (1-76):

$$
\begin{equation*}
\delta=\phi-\psi=2 f \cos \theta \sin \theta \tag{4-178}
\end{equation*}
$$

neglecting higher-order terms. (This is a standard formula from ellipsoidal geometry: to this accuracy, the level surfaces can be considered ellipsoids of revolution.) To the

