(for the sake of generality, we keep the notation $\partial r / \partial \theta$ because later on r will depend on t as well).

In view of (4-154) we may write (4-152) and (4-153) as

$$
\begin{align*}
-d x & =r \sin \theta\left(1-\frac{r_{\theta}}{r} \cot \theta\right) d \theta, \tag{4-156}\\
d s & =\sqrt{r^{2}+r_{\theta}^{2}} d \theta,
\end{align*}
$$

and substitute into $(4-151)$ and then into ($4-150$). The result is

$$
\begin{equation*}
\frac{1}{R_{2}}=\frac{1}{\sqrt{r^{2}+r_{\theta}^{2}}}\left(1-\frac{r_{\theta}}{r} \cot \theta\right) \tag{4-157}
\end{equation*}
$$

Combining ($4-148$) and ($4-157$) we thus have for the mean curvature ($1-20$)

$$
\begin{equation*}
J=\frac{1}{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{1}{2 \sqrt{r^{2}+r_{\theta}^{2}}}\left(2-\frac{r_{\theta}}{r} \cot \theta+\frac{r_{\theta}^{2}-r r_{\theta \theta}}{r^{2}+r_{\theta}^{2}}\right) . \tag{4-158}
\end{equation*}
$$

Consider now Wavre's function (4-145),

$$
N=\frac{d n}{d t}
$$

using Fig. 4.8. Along the straight line $O P^{\prime}$ we obviously have $\theta=$ const., so that

FIGURE 4.8: The distance between two neighboring equisurfaces

$$
d r_{1}=r_{t} d t=\frac{\partial r}{\partial t} d t
$$

which is the change of r because of t only. From the enlarged part of Fig. 4.8 we read

$$
d n=d r_{1} \cos \delta=r_{t} d t \cos \delta,
$$

