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(for the sake of generality, we keep the notation 9r/80 because later on r will depend
on t as well).

In view of (4-154) we may write (4-152) and (4-153) as
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(4-156)
ds = y/r2+r3do ,
and substitute into (4-151) and then into (4-150). The result is
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Combining (4-148) and (4-157) we thus have for the mean curvature (1-20)
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Consider now Wavre’s function (4-145),
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using Fig. 4.8. Along the straight line O P’ we obviously have 6§ = const., so that
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FIGURE 4.8: The distance between two neighboring equisurfaces

or
dry = rdt = Edt g

which is the change of r because of ¢ only. From the enlarged part of Fig. 4.8 we read

dn = drycos§ = rdtcosé



	BCS2_0121

