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truncated at n = 2. This also shows that M is the total mass enclosed by the ellipsoid, 
which thus is seen to be equal to the mass of the auxiliary mean sphere of radius R. 

This is quite normal since any ellipsoid E and its associated mean sphere S (of 
radius q) enclose the same volume by the very definition (2-82), in view of (2-53) for 
n = 2: the mean deviation between E and S is zero. This holds for any ellipsoid of 
constant density, q < R, as weil as for the boundary ellipsoid q = R, which we are 
considering in (2-92). 

Internal potential. We shall use a similar artifice (Fig. 2.5) as for the sphere 

FIGURE 2.5: lliustrating the potential at an interior point P 

(Fig. 2.2), considering the ellipsoid (= ellipsoidal surface) of constant density Ep 

passing through the interior point P at which the potential V = Vi is to be computed. 
The ellipsoid E p is characterized by its value q (the radius of the corresponding mean 
sphere); along E p , the value of q is, of course, constant as we have already remarked. 
The equation of E p is (2- 82); rand () are shown in Fig. 2.5. 

Again we shall build up the potential by sumrning (integrating) the contributi
ons of the infinitesimal sheils bounded by ellipsoids of constant density as shown in 
Fig. 2.4. These contributions are gjven by (2-86) and (2-87). Since q has been res er
ved for E p (Fig. 2.5), we shall denote the integration variable by q', similarly as we 
did for the sphere, cf. (2-47). For the interior of E p , i.e. for q' < q, we take (2-86); 
for the shell between Ep and E, i.e. for q < q' < R, we take (2-87): Pis external for 
the region inside E p (being just on its extern al boundary Ep ) and internal for the 
shell. Thus we get 
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