

FIGURE 2.2: Computation point P inside the sphere
where

$$
\begin{equation*}
M_{P}=\frac{4 \pi}{3} r^{3} \rho \tag{2-38}
\end{equation*}
$$

denotes the mass of the part enclosed by $S_{P} ; \rho$ is the constant density. ("Core" is meant in a figurative sense and has, of course, nothing to do with the actual earth's core!)

Thus

$$
\begin{equation*}
g_{P}=g_{1}+g_{2}=g_{2}=\frac{4 \pi G}{3} r \rho \tag{2-39}
\end{equation*}
$$

by $(2-36),(2-37)$, and (2-38).
In order to find the potential V, we integrate $(2-33)$ in our case,

$$
\begin{equation*}
\frac{d V}{d r}=-g=-\frac{4 \pi G}{3} \rho r \tag{2-40}
\end{equation*}
$$

which gives

$$
\begin{equation*}
V=-\frac{2 \pi G}{3} \rho r^{2}+C_{1} \tag{2-41}
\end{equation*}
$$

The integration constant C_{1} is determined such that, at the outer surface $r=R$, (2-41) must yield the same result as (2-31):

$$
\begin{equation*}
V(R)=-\frac{2 \pi G}{3} \rho R^{2}+C_{1}=\frac{G M}{R}=\frac{4 \pi G}{3} R^{3} \rho \frac{1}{R} \tag{2-42}
\end{equation*}
$$

whence $C_{1}=2 \pi G \rho R^{2}$, and

$$
\begin{equation*}
V_{i}=V(r)=2 \pi G \rho\left(R^{2}-\frac{1}{3} r^{2}\right) \tag{2-43}
\end{equation*}
$$

