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as our final equation (which may be new) for determining the Moho depth T = T / R 
from the attraction Ac of a regional isostatic compensation reaching with constant 
density contrast ßp to depth T. Eq. (8-213) is dimensionless; the quantity aCe, >') is 
related to the attraction Ac by (8-190), and the function M('ljJ) is given by (8-202). 

Eq. (8-213) lends itself to an iterative solution which can be described as follows. 
Given Ac, we compute aCe, >') by (8-190). A first approximation for T(e, >') is ob
tained by disregarding in (8-213) the terms T 2 and T 3 • These terms can then be 
approximately computed by raising the approximate function T( e, >') to the second 
and third powers. The functions T

2(e, >') and T
3(e, >') may be used on the right-hand 

side of (8-213) to compute a better approximation to T(e, >.). The iteration may be 
repeated as necessary. 

Since already the last term in (8-213) is very local and, above all, extremely 
sensitive to data noise, a further approximation (to T\ etc.), although possible in 
principle, probably will not make much sense. 

The convergence behavior seems to be similar to that of the Molodensky series 
weIl known in physical geodesy: although the series may not be convergent in a 
mathematical sense, it is probably "practically convergent" in the sense that the first 
few terms give a good approximation provided the data are suitably smoothed. For 
a general discussion of such cases see (Moritz 1980, pp. 413-414). 

Note that neither (8-188) nor (8-193) contain a term n = 0, so that the present 
method defines the Moho depth T only up to an additive global constant or, geometri
cally speaking, up to a constant vertical shift. This shift can obviously be determined 
from seismic observations. 

Finally we note that the plane approximation of this problem with the geoid or 
terrestrial sphere replaced by aplane, is weIl known, especially in applied geophysics 
(cf. Parker, 1972; Oldenburg, 1974; Granser, 1986, 1987), and has also been applied 
to the determination of the Moho (Granser, 1988). The present approach is spherical, 
corresponding to a global inverse problem. . 

8.3.3 Concluding Remarks 

Some isostatic compensation exists without any doubt whatsoever. This is plausible 
physically and has recently been confirmed on a global scale by Sünkel (1985j 1986b, 
p . 450), who has shown that the "degree variances" (cf. Heiskanen and Moritz, 1967, 
p. 259), which describe the average power of the gravitational spectrum, from degree 
15 or 20 onwards can almost completely be explained by the combined effect of to
pography and compensationj cf. also (Rummel et al., 1988). The lower harmonics, of 
course, come almost exclusively from the mantlej and harmonics of the very rughest 
frequencies are due to uncompensated local topography. 

Besides trus global result, it is surprising that even the Alps seem to be relati
vely weIl compensated: isostatic reduction considerably diminishes the size of gravity 
anomalies and deflections of the vertical, cf. (Sünkel, 1987, p. 62); see also (Wagini et 
al., 1988) and (Steinhauser and Pustizek, 1987). 
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These computations basically use a standard Airy-Heiskanen model. Prom a phys
ical point of view, the Airy model appears more plausible than the Pratt model, 
although the latter may seem to bear some relation to the modern concept of the 
lithosphere (consisting of the crust and of part of the upper mantle). Even more 
plausible is the regional model of Vening Meinesz, although its definitive conceptual 
superiority remains to be tested empirically. Regionality can also be achieved by an 
appropriate smoothing of the compensation of an Airy model; cf. (Sünkel, 1986b, 
sec. 4.1). 

However, all these apriori isostatic assumptions represent models rather than 
reality. This is why isostatic inverse problems become important. The inverse problem 
of Pratt type as proposed by (Dorman and Lewis, 1970) represents a pioneering' work 
although their basic assumptions: strictly local compensation to arbitrary depth, are 
rather questionable. Also their first results (Lewis and Dorman, 1970): maxima and 
minima of D..p increasing periodically to a depth of 400 km, do not seem very realistic. 
Still, their theory rightly has become very infiuential recently; cf. (Bechtel et al., 1987) 
and (Hein et al., 1989), with an extensive bibliography. 

A Vening Meinesz-type inversion seems to be more realistic, although the question 
of the size and the constancy of the density contrast at the Mohorovicic discontinuity 
is still much discussed (cf. Geiss, 1987a). Adetermination of the Moho in the Alps by 
gravimetry was made by Granser (1988) as mentioned above. Geiss (1987a, b, with 
many references) has used a combination of seismic and gravity data to compute the 
Moho in the Mediterranean area. 

Since (8-113) is never fulfilled ezactly, by imposing it we may do undue violence to 
nature, but the results may nevertheless be expected to provide important geophysical 
information. 

It should be kept in mind that the MohoroviCic discontinuity is primarily defined 
seismically. To identify it with a gravimetrically defined supposed density contrast 
surface is natural but not a logical necessity ; cf. (Scheidegger, 1982) for a geophysical 
background. 

The Bouguer anomalies D..gB essentially represent the attraction of compensation 
Ac by (8-114). However, they must be freed from 

(a) lower degree harmonics arising from the mantle, say by using a spherical
harmonie reference model to degree 15 or 20; 

(b) very high frequencies due to imperfect isostatic compensation and, above all, 
to density anomalies in the crust, by determining these density anomalies (cf. 
Walach, 1987) and by cutting off such high frequencies (cf. Granser, 1986, 1988). 

Qnly then, a Vening Meinesz-type of isostatic inversion to get Moho depths, by the 
metho"d of sec. 8.3.2 or by alternative approaches , may give results which are geo
physically really meaningful, in spite af the limitations mentioned above . For related 
geophysical aspects cL (Dahlen, 1982) . 

At any rate we are entitled to say that gravimetrie and isostatic methods represent 
a powerful tool far the study of the lithosphere. The best results can obviously be 
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expeeted from a eombination of gravimetrie and seismie data. 
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