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their capacity as orthogonal functions on a line interval, -1 S; ß S; 1 or 0 S; ß S; 1, 
respectively. ) 

Finally, (8-150) gives the density contrast ll.p corresponding to isostatic compen­
sation. The plane approximation to the present theory may be found in (Dorman and 
Lewis, 1970). For practical results see, e.g., (Lewis and Dorman, 1970), (Bechtel et 
al., 1987) and (Hein et al., 1989). 

8.3.2 The Inverse Vening Meinesz Problem 

Here the density contrast ll.p is considered constant but the Moho depth T is to be 
determined from the condition (8-113) or, equivalently, from the given attraction Ac 
which the compensating masses exert at sea level, cf. (8-114) . 

Let us thus compute the attraction Ac of the compensating masses, bounded by 
the sphere r = R - To representing the "normal Moho" (corresponding to anormal 
crustal thickness around To = 30 km as mentioned in sec. 8.1.2) and the actual Moho, 
assuming constant density contrast: 

ll.p = const. (8-165) 

The corresponding potential is expressed by 

R-To 1 

Vc(P) = Gll.p // / I r 2drdu (8-166) 
U r=R-T 

again using (8-123), without primes, for the volume element dv. Further, by Fig. 8.15, 
we have 

(8-167) 

The attraction is 

8V. R-To 8 
Ac = - 8; = -Gll.p // / 8R G) r

2
drdu (8-168) 

U r=R-T 

considering (for one moment only!) R in the integrand as variable. The limits of 
integration remain unchanged because, as the point P can be imagined to move in 
conformity with 8/8R, the layer between r = R - T and r = R - To stays in place. 

Changing the upper limit to R only implies the addition of a constant since 

and the last integral is easüy seen to be a global constant over the sphere r = R : it 
represents the attraction of a spherical shell of constant density bounded by the two 
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FIGURE 8.15: Notations for the inverse Vening Meinesz problem 

concentric spheres r = R - Tc and r = R. Disregarding this constant, which will be 
justified later, we may thus replace (8-168) by 

R' 

Ac = -GßP!! ! 8~ G) r
2
drdu (8-169) 

er r=R-T 

Now, to a very good approximation 

(8-170) 

This can be seen because if the sphere is replaced by aplane, the xy-plane, then the 
distance I between two points (x, y, z) and (x', y', z') is given by 

1= J(x - x'F + (y - y'F + (z - z'F 

and 
81 81 
8z 8z' 

is immediately verified by direct computation. In the spherical case, (8- 170) holds as S' 
a "planar approximation" (sec. 8.2.1); to the same approximation we may replace r 2 
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by R 2 , in view of (8-44). Thus (8-169) becomes 

R 8 (1) 
Ac = Gb..pR

2 !! ! 8r 1 drdu , (8-171) 

U r=R-T 

and the integration with respect to r can be performed immediately, giving 

Ac = Gb..pR
2 !! (~ -k) du , (8-172) 

" 
lo and lt being shown in Fig. 8.15; cL also eq. (8-78). 

Now, by (1-53) we have 

(8-173) 

and, formally, since now r = R, 

1 00 R:' 
- = L: - p. (cos'IjJ) 
lo n=O Rn+l n 

(8-174) 

Introducing the auxiliary quantities 

H(n) = Rn_(R-T)n =l_(l_~)n 
Rn R 

(8-175) 

we may thus write (8-172) as 

Ac = Gb..pR !! f H(n)Pn(cos'IjJ)du 
u n=O 

(8-176) 

We expand the function H(n) as aseries of Laplace spherical harmonics: 

H(n)(o, >') = f H~~)(O, >') , (8-177) 
n/=O 

with the degree now denoted by n'. Then the terms with n' i= n in (8-176) are 
removed by orthogonality, and by the integral formula (1-49) we get with the only 
remaining terms for which n' = n: 

A = 47rG6. R ~ H~n)(o, >') 
c P ~ 2n +1 (8-178) 

Since 
T 60km 
R < 6000 km = 0.01 , 
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the binomial series for (1 - T/R)" in (8-175) will eonverge, and H(n) beeomes 

putting 

H(n) = n~ - ( ; ) (~r + ( ; ) (~r -+ ... 

nT - ( ; ) T
2 + ( ; ) T3 

... 

Thus (8-178) assurnes the form (there is no term n = 0): 

(8-179) 

(8-180) 

Ac = 47rGfl.pR [f _n_ Tn _ f ~(n - 1)) (T 2 )n + 
n=1 2n + 1 n=1 2 2n + 1 

+ ~ n(n - l)(n - 2) (T3)n ... ] 
~ 6(2n+1) (8-181) 

This will be our basie formula. Its meaning is the following. Take the Moho depth T 
and divide by R to get 

Raise this function to the seeond, third, ete., powers: 

[T(8, >.W = 12(8, >') 
[T(8, >.)]3 = 13(8, >') 

(8-182) 

(8-183) 

(8-184) 

all being functions of 8 and >.. Now T n [= T n (8, >')] is the n-th Laplaee surfaee harmo­
nie, given by (1-49), of the function (8-182), (T2)n is the Laplaee surfaee harmonie of 
the function (8-183), (T3)n of (8-184), and so on. 

Expand also Ac as aseries of Laplaee harmonies of type (1-48): 

(8-185) 

This expression starts with n = 1: there must be no eonstant term for whieh 
n = o. This means that any non-zero global average must be subtracted. This 
proeedure also removes the eonstant introdueed by the transition from (8-168) to 
(8-169), whieh finally justifies this transition. 

Then (8-181) shows that 

a (8 >') - _n_ T. _ n(n - 1) (T2) n(n - l)(n - 2) (T3) 
n, - 2n + 1 n 2(2n + 1) n + 6(2n + 1) n 

(8-186) 

relating the known attraetion Ac(8, >') to the unknown Moho depth T(8, >'). 
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This equation can be solved iteratively, writing it as 

(0 
') _ 2n + 1 n -1 ( 2) _ (n -l)(n - 2) ( 3) 

T n ,A - an + T n T n 
n 2 6 

and 

As a first approximation we disregard T
2

, Tl, ... , obtaining 

oe 2n + 1 
Tapprox = I: -- an . 

n=l n 

259 

(8-187) 

(8-188) 

(8-189) 

This approximate value is applied to compute approximate functions T 2 , T 3 , ••• These 
functions are expanded into series of Laplace harmonies which are then used on the 
right-hand side of (8-188) to compute a better left-hand side T(O, A) . This procedure 
can be repeated as necessary, hoping that it converges . 

An integral formula for the principal term. As the series in (8-188) converge 
slowly, it is preferable to convert them to integral formulas. 

Since by (8-185) 

oe Ac 
I:an(O, A) = G R =a(O, A) , 
n=l 47r ßp 

(8-190) 

we have 

(8-191) 

Now, by (1-49), 

fan 
n=l n er 

!! a({}', A')M(1fJ)du (8-192) 

where 
1 oe 2n + 1 

M(1fJ) = - L --Pn(cos1fJ) 
47r n=l n 

(8-193) 

Putting, according to (Moritz, 1980, p. 182) 

(8-194) 

with q < 1 and 
t=cos1fJ , (8-195) 
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as weil as 
1 00 2n + 1 n 

M(q, 1/J) = - L --q Pn(t) 
411" n=! n 

(8-196) 

we get 

M(q,1/J) 

(8-197) 

or, by (eqs. (23-29) and (23-31), ibid., p. 185), 

1 ( 2 2) M(q, 1/J) = 47T" -2 + L + ln N (8-198) 

with (ibid., eq. (23-32)) 
N = 1 + L - q cos 1/J . (8-199) 

In these formulas we may put q = 1 (q < 1 has served only as an auxiliary "conver­
gen ce factor") to obtain 

2 . 1/J 
Sill 2 ' 

2 ( 
. 21/J . 1/J) 

sm 2 + Sill 2 

so that (8-198) and hence (8-193) become 

M(1/J) = 2.- [_.1 __ 2 -ln (sin2 t + sin t)] 
47T" Sill ~ 2 2 

(8-200) 

(8-201) 

(8-202) 

which shows some similarity to Stokes' function (Heiskanen and Moritz, 1967, 
eq. (2-164)). 

Secondary term8. Consider now the second term on the right-hand side of (8-188) 

(8-203) 

This is equivalent to (the SUffi may start with zero now) 

1 2 1 ~ ( 2) II = -- -r + - L..J n -r n . 

2 2 n=O 

(8-204) 

Now the integral formula (1-102) of (Heiskanen and Moritz, 1967, p. 39) comes in 
handy. With V = -r 2

, R = 1, and 10 = 2 sin ~ we thus get 

(8-205) 
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where (in the integral only) r~ refers to the point P at which 11 is to be computed, 
and r 2 to the surface element du; ,p is the spherical distance between P and du. Thus 
(8-204) becomes simply 

1 1 J.i r
2 

- r~ 11 = __ r 2 - - --- du 
2 3271" sin3 t 

" 2 

(8-206) 

Finally we consider the last term in (8-188): 

(8-207) 

This term being very small, we may retain the highest power of n only, so that , to a 
sufficient approximation, 

(8- 208) 

Now we perform a particularly insidious trick, which, however, is familiar to some 
people in physical geodesy. Multiplication of the spectrum by n corresponds to the 
(negative) integral operator LI defined by (8-205). Multiplication ofthe spectrum by 
n 2 thus means applying the operator LI twice. Thus, with 

1 2 
L 2 = "2 L l 

(Moritz, 1980, p . 385, eq. (45-37)) we get 

1 3 III=-3 L2(r) , 

(8-209) 

(8-210) 

which, by (ibid., eqs. (45-36), (45-35), and (45-34», becomes with 0 = 90° - 4> and 
R= 1 

(8-211 ) 

(8-212) 

in a local system xy in the tangential plane. The reader will, of course, recognize the 
Laplacian surface operator in the plane (8-212) and on the sphere (8-211) . 

By the way, the simplifications involved in the transition !rom (8-207) to (8-208) 
precisely correspond to the "planar approximation" , as the reader may verify. 

Using (8-191), (8-192), (8-206), and (8-212), eq. (8-188) becomes 

r(O,;\) = 2a(0,;\) + !! aW, A')M(,p)du - ~r2_ 
" 

(8- 213) 
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as our final equation (which may be new) for determining the Moho depth T = T / R 
from the attraction Ac of a regional isostatic compensation reaching with constant 
density contrast ßp to depth T. Eq. (8-213) is dimensionless; the quantity aCe, >') is 
related to the attraction Ac by (8-190), and the function M('ljJ) is given by (8-202). 

Eq. (8-213) lends itself to an iterative solution which can be described as follows. 
Given Ac, we compute aCe, >') by (8-190). A first approximation for T(e, >') is ob­
tained by disregarding in (8-213) the terms T 2 and T 3 • These terms can then be 
approximately computed by raising the approximate function T( e, >') to the second 
and third powers. The functions T

2(e, >') and T
3(e, >') may be used on the right-hand 

side of (8-213) to compute a better approximation to T(e, >.). The iteration may be 
repeated as necessary. 

Since already the last term in (8-213) is very local and, above all, extremely 
sensitive to data noise, a further approximation (to T\ etc.), although possible in 
principle, probably will not make much sense. 

The convergence behavior seems to be similar to that of the Molodensky series 
weIl known in physical geodesy: although the series may not be convergent in a 
mathematical sense, it is probably "practically convergent" in the sense that the first 
few terms give a good approximation provided the data are suitably smoothed. For 
a general discussion of such cases see (Moritz 1980, pp. 413-414). 

Note that neither (8-188) nor (8-193) contain a term n = 0, so that the present 
method defines the Moho depth T only up to an additive global constant or, geometri­
cally speaking, up to a constant vertical shift. This shift can obviously be determined 
from seismic observations. 

Finally we note that the plane approximation of this problem with the geoid or 
terrestrial sphere replaced by aplane, is weIl known, especially in applied geophysics 
(cf. Parker, 1972; Oldenburg, 1974; Granser, 1986, 1987), and has also been applied 
to the determination of the Moho (Granser, 1988). The present approach is spherical, 
corresponding to a global inverse problem. . 

8.3.3 Concluding Remarks 

Some isostatic compensation exists without any doubt whatsoever. This is plausible 
physically and has recently been confirmed on a global scale by Sünkel (1985j 1986b, 
p . 450), who has shown that the "degree variances" (cf. Heiskanen and Moritz, 1967, 
p. 259), which describe the average power of the gravitational spectrum, from degree 
15 or 20 onwards can almost completely be explained by the combined effect of to­
pography and compensationj cf. also (Rummel et al., 1988). The lower harmonics, of 
course, come almost exclusively from the mantlej and harmonics of the very rughest 
frequencies are due to uncompensated local topography. 

Besides trus global result, it is surprising that even the Alps seem to be relati­
vely weIl compensated: isostatic reduction considerably diminishes the size of gravity 
anomalies and deflections of the vertical, cf. (Sünkel, 1987, p. 62); see also (Wagini et 
al., 1988) and (Steinhauser and Pustizek, 1987). 
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