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Nor is it diffieult to integrate (8-70) with respeet to 1/ if 1 is expressed by (8-54). 

The result ia 

B = 27rGphp + GpR2 JJ (~ -,) du (8-78) 

" 
where Zo and 11 are given by (8-55) and (8-54) with 1/ = h. This was already found 
by Pellinen (1962). 

Now it is easy to obtain the attraetion A. Combining (8-65) , with rp == R, and 

(8-76) we have 
1 

A = 27rGphp - C + 2R V (8-79) 

We finally note that B has to A the same relation as the gravity anomaly ßg 
to the gravity disturbanee 6g: eompare (8-65) with eq. (2-151e) of (Heiskanen and 
Moritz, 1967). 

8.2.3 Condensation on Sea Level 

The linear approximation (8-61) admits of a simple interpretation. We eonsider a 
layer of surfaee density 

K, = ph (8-80) 

on the mean terrestrial sphere r = R whieh represents the sea level. The potential of 
this surfaee layer at a point Po of the surfaee is given by 

Vs = G JJ ~R2du = GpR
2 11 ~dU (8-81) 

" " 
This ean be transformed as 

2 Ir( du 2 Irr h - hp 
Vs = GpR hp J Ta" + GpR J -1

0
- du 

" " 
(8-82) 

The first term on the right-hand side is the potential of a homogeneous spherieal 
surfaee layer, whieh is given by the same formula (8-50) as the potential of a homo­
geneous sphere or of a spherieal shell. Sinee even (8- 51) holds for our surfaee layer 
(now rp = R exactly), the first term of (8-82) is given by (8-52), and we have 

(( h - hp 
Vs = 47rGphp R + GpR2 JJ -z-- du 

" 0 

(8-83) 

This formula, whieh is rigorously valid for a spherieal surfaee layer of density 
(8-80), is seen to agree with the linear approximation (8-61) to the potential of the 
topographie masses. 

This immediately suggests a relation to the well-known eondensation reduction 
of Helmert (Heiskanen and Moritz , 1967, p . 145), in whieh the topographie masses 
are eompressed into a surfaee layer of density (8-80) on the geoid. We thus see that 
the ehange of potential beeause of the eondensation, V - Vs , is a small quantity of 
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seeond order, beeause as a linear approximation V agrees with Vs . Here we have 
assumed that the point P, originally situated on the earth's surfaee, goes over into 
the eorresponding point Po at sea level after eondensation. 

Thus, if we limit ourselves to the linear approximation whieh is often suffieient, 
we may regard the potential V as being generated by a spherieal surfaee layer, the 
points P or Po being assumed to lie in both eases on the boundary of the attracting 
masses. 

We shall now further investigate this surfaee layer. Let us first eonsider the at­
traetion A and the auxiliary quantity B introdueed in see. 8.2.2. The point P is 
situated on the spherieal surfaee, but at the outer boundary of the attraeting masses. 
Thus A s , the attraction of the surfaee layer at P, is given by the negative ezternal 
derivative of Vs , e.g., expressed by equation (1-17a) of (Heiskanen and Moritz, 1967, 
p. 6). Thus we have 

(8-84) 

To get the integrand, we must put r = R = rp in (8-64). We then obtain 

A s = 27rG~ + ~GR!! ~du 
tr 

and, with (8-80) and (8-81), 

1 
A s = 27rGphp + 2R Vs (8-85) 

We now eonsider the auxiliary quantity B s defined in analogy to (8-65) as 

We see that simply 

1 
Bs =As - ~Vs 

2R 

B s = 27rGphp 

(8-86) 

(8-87) 

whieh is formally identieal with the attraetion of a "plane Bouguer plate". Equation 
(8-84) indieates, however, that the quantity B is in reality related to the diseontinuity 
27rG~ of the normal derivative of the surfaee potential on an arbitrary surfaee rather 
than to the attraction of a plane plate. 

Let us now eompare the quantities B for the actual topography and B s for the 
surfaee layer. Prom (8-76) and (8-87) we obtain immediately 

B = B s - C (8-88) 

This means that these two quantities differ by the terrain eorreetion C . 
This has a eonsequenee whieh will be of basie signifieanee. As a linear approxi­

mation, also the attractions A and A s differ by C) 

A = As - C (8- 89) 
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This follows at onee from the fact that A and B differ only by V /2R and that 80S 80 

linear approximation V = Vs . Thus 80S 80 linear approximation, the potentiala 01 the 
original and 01 the condenaed topography are equal, but the attractiona differ by the 
terrain correction. 

8.2.4 Effect of Compensation 

We shall now eonsider 80 erustal density model by whieh the linear eorrelation of the 
free-air gra.vity anomalies with elevation ean be explained and whieh at the same time 
is simple. Obviously, isostatie eompensa.tion must in some way be taken into aeeount. 

If we look at the Airy-Heiskanen isostatie model, we see that the eompensation is 
given by the mountain roots whieh are some 30 km below sea level. The effect of this 
type of eompensation on the earth's surfaee is thus quite similar 80S that of 80 surfaee 
layer of density (-ph) on the sphere of radius R - T, where T may be identified with 
the normal thiekness of the earth's erust of ab out 30 km, formerly denoted by To; see 
Fig. 8.13 and Fig. 8.10 above. The idea of regarding, for mathematieal simplicity, 

p 

earlh's surface 

sea level 

compensating layer 

center of earlh 

FIGURE 8.13: Spherical equivalent oI Fig. 8.10; note again the dipole character 

the isostatic compensation as a surface layer on a sphere concentric to the terrestrial 
sphere, was also used by Jung (1956, p. 590); we are following (Moritz, 1968c). 

Let us now consider potential Vc and attraction Ac of this compensation layer. 
Since h < < T, these quantities are almost the same whether referred to P or to Po 
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