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Nor is it difficult to integrate (8-70) with respect to 7 if [ is expressed by (8-54).
The result is

1 il
B = 2xGphp + GoR? | <T = T) do s (8-78)
1 0

where lp and I; are given by (8-55) and (8-54) with n = h. This was already found
by Pellinen (1962).

Now it is easy to obtain the attraction A. Combining (8-65), with rp = R, and
(8-76) we have

1
A—21erhp—C+-2§V : (8-79)

We finally note that B has to A the same relation as the gravity anomaly Ag
to the gravity disturbance §g: compare (8-65) with eq. (2-151e) of (Heiskanen and
Moritz, 1967).

8.2.3 Condensation on Sea Level
The linear approximation (8-61) admits of a simple interpretation. We consider a
layer of surface density

Kk = ph (8-80)

on the mean terrestrial sphere 7 = R which represents the sea level. The potential of
this surface layer at a point P, of the surface is given by

—c [ 5 Rdo=cor? [[ 2 =
VS_G[/IoRda—GpR [/loda . (8-81)
This can be transformed as
d h—h
Vs = GpR*hp // 1_: + GpR? // s Pl . (8-82)

The first term on the right-hand side is the potential of a homogeneous spherical
surface layer, which is given by the same formula (8-50) as the potential of a homo-
geneous sphere or of a spherical shell. Since even (8-51) holds for our surface layer
(now rp = R exactly), the first term of (8-82) is given by (8-52), and we have

. ==
Vs = 4nGphpR + GpR? / / l—’“’ iz . (8-83)
- 0

This formula, which is rigorously valid for a spherical surface layer of density
(8-80), is seen to agree with the linear approximation (8-61) to the potential of the
topographic masses.

This immediately suggests a relation to the well-known condensation reduction
of Helmert (Heiskanen and Moritz, 1967, p. 145), in which the topographic masses
are compressed into a surface layer of density (8-80) on the geoid. We thus see that
the change of potential because of the condensation, V — Vs, is a small quantity of
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second order, because as a linear approximation V agrees with V5. Here we have
assumed that the point P, originally situated on the earth’s surface, goes over into
the corresponding point P, at sea level after condensation.

Thus, if we limit ourselves to the linear approximation which is often sufficient,
we may regard the potential V as being generated by a spherical surface layer, the
points P or P, being assumed to lie in both cases on the boundary of the attracting
masses.

We shall now further investigate this surface layer. Let us first consider the at-
traction A and the auxiliary quantity B introduced in sec. 8.2.2. The point P is
situated on the spherical surface, but at the outer boundary of the attracting masses.
Thus Ag, the attraction of the surface layer at P, is given by the negative ezternal
derivative of Vg, e.g., expressed by equation (1-17a) of (Heiskanen and Moritz, 1967,
p. 6). Thus we have

4 /1
= — e = .de . 8_84
As =27Gk G[/Earp (l) o ( )
To get the integrand, we must put » = R = rp in (8-64). We then obtain
1 K
As = 2mGr + EGRZ/ o do

and, with (8-80) and (8-81),

i
— — X 8-85
As = 2nGphp + S5 Vs (8-85)
We now consider the auxiliary quantity Bs defined in analogy to (8-65) as
f
Bs=As——Vs . 8-86
s S—3R'S ( )
We see that simply

Bs = 2nGphp (8-8T7)

which is formally identical with the attraction of a “plane Bouguer plate”. Equation
(8-84) indicates, however, that the quantity B is in reality related to the discontinuity
27w Gx of the normal derivative of the surface potential on an arbitrary surface rather
than to the attraction of a plane plate.

Let us now compare the quantities B for the actual topography and Bgs for the
surface layer. From (8-76) and (8-87) we obtain immediately

BaBe=C . (8-88)

This means that these two quantities differ by the terrain correction C.
This has a consequence which will be of basic significance. As a linear approxi-
mation, also the attractions A and Ag differ by C,

A=dgs@, (8-89)

e Bt =
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This follows at once from the fact that A and B differ only by V/2R and that as a
linear approximation V = Vs. Thus as a linear approximation, the potentials of the
original and of the condensed topography are equal, but the attractions differ by the
terrain correction.

8.2.4 Effect of Compensation

We shall now consider a crustal density model by which the linear correlation of the
free-air gravity anomalies with elevation can be explained and which at the same time
is simple. Obviously, isostatic compensation must in some way be taken into account.

If we look at the Airy—Heiskanen isostatic model, we see that the compensation is
given by the mountain roots which are some 30 km below sea level. The effect of this
type of compensation on the earth’s surface is thus quite similar as that of a surface
layer of density (—ph) on the sphere of radius R — T', where T' may be identified with
the normal thickness of the earth’s crust of about 30 km, formerly denoted by Tp; see
Fig. 8.13 and Fig. 8.10 above. The idea of regarding, for mathematical simplicity,

earth’s surface

sea level
—k=—ph

compensating layer

center of earth

FIGURE 8.13: Spherical equivalent of Fig. 8.10; note again the dipole character

the isostatic compensation as a surface layer on a sphere concentric to the terrestrial
sphere, was also used by Jung (1956, p. 590); we are following (Moritz, 1968c).

Let us now consider potential Vi and attraction A¢ of this compensation layer.
Since h << T, these quantities are almost the same whether referred to P or to P,
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