

FIGURE 8.10: Topographic and isostatic masses form a dipole
This simplified concept of isostasy as a dipole field goes indirectly back to Helmert (1903) and was directly used by Jung (1956) and others. It is very useful for a deeper qualitative understanding of isostatic anomalies (cf. Turcotte and Schubert, 1982, p. 223). We shall follow (Moritz, 1968c).

8.2.1 Potential of the Topographic Masses

As a preparatory step, we first restrict ourselves to the topographic masses only, disregarding isostatic compensation until sec. 8.2.4. We shall restrict ourselves throughout to the usual spherical approximation, that is, we replace formally the geoid by a mean terrestrial sphere of radius R; see Fig. 8.11. The potential of the topographic masses (the masses outside the geoid) is

$$
\begin{equation*}
V=G \rho \iiint \frac{d v}{l} . \tag{8-40}
\end{equation*}
$$

The integral is extended over the exterior of the geoid ($R<r<R+h$); $d v$ is the element of volume, and l is the distance between $d v$ and the point P to which V refers. The density ρ is assumed to be constant (we shall now write ρ instead of ρ_{0}).

We have in (8-40)

$$
\begin{equation*}
d v=r^{2} d \sigma d r, \tag{8-41}
\end{equation*}
$$

where $d \sigma$, as before is the element of solid angle, and

$$
\begin{equation*}
l=\sqrt{r_{P}^{2}+r^{2}-2 r_{P} r \cos \psi}, \tag{8-42}
\end{equation*}
$$

in agreement with Fig. 8.11.

FIGURE 8.11: The spherical approximation

We shall now introduce, in addition, the so-called planar approximation, that is, we neglect a relative error of

$$
\begin{equation*}
\frac{h}{R}<0.14 \% \tag{8-43}
\end{equation*}
$$

(cf. Moritz, 1980, p. 359). Then we may simplify (8-41) as

$$
\begin{equation*}
d v=R^{2} d \sigma d \eta \tag{8-44}
\end{equation*}
$$

so that $(8-40)$ becomes

$$
\begin{equation*}
V=G \rho R^{2} \iint_{\sigma} \int_{\eta=0}^{h} \frac{d \sigma d \eta}{l} \tag{8-45}
\end{equation*}
$$

Here the integral with respect to σ denotes integration over the full solid angle, and

$$
\begin{equation*}
\eta=r-R \tag{8-46}
\end{equation*}
$$

is the elevation of the volume element $d v$ above sea level (represented by the sphere $r=R$).

We may now split up (8-45) as

$$
\begin{equation*}
V=V^{\prime}+V^{\prime \prime} \tag{8-47}
\end{equation*}
$$

with

$$
\begin{equation*}
V^{\prime}=G \rho R^{2} \iint_{\sigma} \int_{\eta=0}^{h_{P}} \frac{d \sigma d \eta}{l} \tag{8-48}
\end{equation*}
$$

and

$$
\begin{equation*}
V^{\prime \prime}=G \rho R^{2} \iint_{\sigma} \int_{\eta=h_{P}}^{h} \frac{d \sigma d \eta}{l} \tag{8-49}
\end{equation*}
$$

Here V^{\prime} represents the potential of the "spherical Bouguer plate", that is, the shell bounded by the two concentric spheres $r=R$ and $r=r_{P}$ (see Fig. 8.11). The potential of a spherical shell is, just as that of a point mass or of a homogeneous sphere, given by

$$
\begin{equation*}
V^{\prime}=\frac{G M}{r_{P}} \tag{8-50}
\end{equation*}
$$

where M is the mass of the shell and r_{P} is the radius vector of P to which V^{\prime} is to refer. The mass of the shell is expressed by

$$
\begin{equation*}
M=4 \pi R r_{P} h_{P} \rho . \tag{8-51}
\end{equation*}
$$

Thus we simply have

$$
\begin{equation*}
V^{\prime}=4 \pi G \rho h_{P} R \tag{8-52}
\end{equation*}
$$

Now we shall consider $V^{\prime \prime}$ as given by (8-49). Substituting

$$
u=\eta-h_{P}
$$

we find

$$
\begin{equation*}
V^{\prime \prime}=G \rho R^{2} \iint_{\sigma} \int_{u=0}^{h-h_{P}} \frac{d \sigma d u}{l} \tag{8-53}
\end{equation*}
$$

As a planar approximation (Moritz, 1980, p. 359) we may put

$$
\begin{equation*}
l^{2}=l_{0}^{2}+\left(\eta-h_{P}\right)^{2}=l_{0}^{2}+u^{2} \tag{8-54}
\end{equation*}
$$

with l_{0} given by

$$
\begin{equation*}
l_{0}=2 R \sin \frac{\psi}{2} \tag{8-55}
\end{equation*}
$$

(Fig. 8.11). We write

$$
\begin{equation*}
\frac{1}{l}=\frac{1}{l_{0}}\left(1+\frac{u^{2}}{l_{0}^{2}}\right)^{-1 / 2} \tag{8-56}
\end{equation*}
$$

and expand the expressions between parentheses as a binomial series, obtaining

$$
\begin{equation*}
\frac{1}{l}=\frac{1}{l_{0}}-\frac{u^{2}}{2 l_{0}^{3}}+\frac{3}{8} \frac{u^{4}}{l_{0}^{5}}-+\cdots \tag{8-57}
\end{equation*}
$$

This is permissible since u / l_{0} in $V^{\prime \prime}$ is never greater than the terrain inclination, which is considered small. By substituting the series (8-57) into (8-53) and integrating with respect to u we find

$$
\begin{equation*}
V^{\prime \prime}=V_{1}+V_{2}+V_{3}+\cdots \tag{8-58}
\end{equation*}
$$

with

$$
\begin{align*}
& V_{1}=G \rho R^{2} \iint_{\sigma} \frac{h-h_{P}}{l_{0}} d \sigma \\
& V_{2}=-\frac{1}{6} G \rho R^{2} \iint_{\sigma} \frac{\left(h-h_{P}\right)^{3}}{l_{0}^{3}} d \sigma \tag{8-59}
\end{align*}
$$

This method of expanding into a series of powers of $\left(h-h_{P}\right) / l_{0}$ was used by Molodensky in a different context (cf. Moritz, 1980, p. 360).

Thus we have from (8-47) and (8-52)

$$
\begin{equation*}
V=4 \pi G \rho h_{P} R+V_{1}+V_{2}+\cdots \tag{8-60}
\end{equation*}
$$

Neglecting terms of higher order, we have as a linear approximation:

$$
\begin{equation*}
V=4 \pi G \rho h_{P} R+G \rho R^{2} \iint_{\sigma} \frac{h-h_{P}}{l_{0}} d \sigma \tag{8-61}
\end{equation*}
$$

This expression will be needed later.

8.2.2 Attraction of Topography

The vertical attraction A of the topographic masses is the negative vertical derivative of the potential:

$$
\begin{equation*}
A=-\frac{\partial V}{\partial r_{P}}=-G \rho \iiint \frac{\partial}{\partial r_{P}}\left(\frac{1}{l}\right) d v \tag{8-62}
\end{equation*}
$$

in agreement with (8-40) and comparable to (8-31a). By differentiating (8-42) we find

$$
\begin{equation*}
\frac{\partial}{\partial r_{P}}\left(\frac{1}{l}\right)=-\frac{r_{P}-r \cos \psi}{l^{3}} \tag{8-63}
\end{equation*}
$$

This can be written as

$$
\begin{equation*}
\frac{\partial}{\partial r_{P}}\left(\frac{1}{l}\right)=\frac{r^{2}-r_{P}^{2}}{2 r_{P} l^{3}}-\frac{1}{2 r_{P} l} \tag{8-64}
\end{equation*}
$$

This transformation, simple as it is, will be fundamental for what follows.
By substituting (8-64) into (8-62) we find

$$
\begin{equation*}
A=B+\frac{1}{2 r_{P}} V \tag{8-65}
\end{equation*}
$$

