
Chapter 8 

Isostasy 

For a long time, isostasy has played a distinguished role in geodesy: Hayford used 
Pratt's model when, in 1911, he derived an ellipsoid which was adopted in 1924 
as the International Ellipsoid, and Heiskanen applied Airy's model for computing 
the corresponding International Gravity Formula (1930). Isostatic gravity reduction 
always has been considered one of the best gravity reductions for geodetic purposes, 
but its computation was cumbersome before the advent of electronic computers. 

Three effects contributed to the fact that, after 1960, isostatic reduction was so­
mewhat relegated to the background: the theory of Molodensky, restricting itself 
purposely to the earth's surface, the advent of artificial satellites with their spectacu­
lar geodetic achievements, and also the relatively great computational work involved. 

Still, isostasy was never completely forgotten: isostatic reduction was found to be 
compatible with Molodensky's theory, isostatic anomalies proved to be smoother than 
free-air anomalies and much less "systematic" than Bouguer anomalies, which made 
them ideally suited for interpolation and least-squares collocation. This was already 
clearly recognized in the sixties (cf. Heiskanen and Moritz, 1967). 

Recently it was found that isostatic reduction applied to astronomically observed 
defiections of the vertical essentially facilitated the computation of the geoid in Alpine 
areas by least-squares collocation (cf. Sünkel et al., 1987). This and many other facts 
reconfirmed the importance of isostasy to geodesy. 

The principle of isostatic compensation and its importance for a study of the crust 
has also always been recognized by geophysicists, although there was (and is) consi­
derable controversy which isostatic model is applicable and to what extent. From this 
point of view, all isostatic models are only oversimplified approximations to reality. 
At any rate, most books on the physics of the earth, such as (Jeffreys, 1976), (Stacey, 
1977), or (Turcotte and Schubert, 1982) treat isostasy under the heading "geodesy 
and gnivity" . 

This chapter consists of three sections. First, the classical isostatic models of 
Pratt-Hayford, Airy-Heiskanen, and Vening Meinesz are briefiy presented. Then the 
behavior of the free-air gravity anomalies (large but random), Bouguer anomalies 
(large and smooth but systematic) and isostatic anomalies (small, smooth and ran­
dom) is explained on the basis of a simple two-layer dipole model. Finally, the re cent 
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theories of inverse problems for isostasy are treated, whlch nowadays enjoy consid­
erable popularity in the geophysical community since none of the classical models is 
completely satisfactory from the geophysical point of view. 

8.1 Classical Isostatic Models 

Prom geodetic measurements performed around 1850 in India, J.H. Pratt in 1854 
and 1859, and G.B. Airy in 1855 realized that the visible topographlc masses of the 
Himalayan massif must somehow be compensated by mass deficiencies below sea level. 
According to Pratt, the mountains have risen from the underground somewhat like 
a fermenting dough. According to Airy, the mountains are floating on a fluid lava of 
hlgher density, so that the hlgher the mountain, the deeper it sinksj thls behavior is 
rather similar to that of an iceberg floating in the ocean. In the next two subsections, 
we shall be following (Heiskanen and Moritz, 1967), using a plane approximation to 
the earth's surface or rather to the geoid. 

8.1.1 The Model of Pratt-Hayford 

Thls model of compensation was outlined by Pratt and put into a mathematical form 
by J.F. Hayford, who used it systematically for geodetic purposes. 

The principle is illustrated by Fig. 8.1. Underneath the level of compensation 
there is uniform density. Above, the mass of each column of the same cross section 
is equal. Let D be the depth of the level of compensation, reckoned from sea level, 
and let Po be the density of a column of height D. Then the density p of a column of 
height D + h (h representing the height of the topography) satisfies the equation 

(D + h)p = Dpo (8-1) 

whlch expresses the condition of equal mass. It may be assumed that 

Po = 2.67 g/cm
3 (8-2) 

According to (8-1), the actual density p is slightly sinaller than thls normal value Po. 
Consequently, there is a density deficiency whlch, according to (8-1), is given by 

h 
D.p = Po - P = -- Po 

D+h 

In the oceans the condition of equal mass is expressed as 

(D - h')p + h'pw = Dpo 

where 

Pw = 1.027 g/cm3 

(8-3) 

(8-4) 

(8-5) 

in 
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FIGURE 8.1: Isostasy - Pratt-Hayford model 
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is the density and h' the depth of the ocean. Hence there is a density surplus in a 
suboceanic column given by 

h' 
P - Po = D _ h' (Po - Pw) (8-6) 

As a matter of fact, this model of compensation can be only approximately fulfilled 
in nature. Values of the depth of compensation around 

D = lOOkm (8-7) 

are assumed. 
For a spherical earth, the columns will converge slightly towards its center, and 

other refinements may be introduced. We may postulate either equality of mass 
or equality of pressurej each postulate leads to somewhat different spherical refi­
nements. It may be mentioned that for computational reasons Hayford used still 
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another, slightly different model; for instance, he reckoned the depth of compensation 
D from the earth's surface instead from sea level. 

Although this model is highly idealized, there is a modern interpretation in which 
the "level of compensation" might possibly be identified with the boundary between 
litho3phere (above) and a3theno8phere (below), so that compensation takes place 
throughout the lithosphere. In fact the lithosphere is believed to have a thickness 
of ab out 100 km, although with a higher average density, but wh at counts for com­
pensation are the density differences. 

8.1.2 The Model of Airy-Heiskanen 

Airy proposed this model, and Heiskanen gave it a precise formulation for geodetic 
purposes and applied it extensively. 
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FIGURE 8.2: Isostasy - Airy-Heiskanen model 

Figure 8.2 illustrates the principle. The mountains, of constant density (say) 

Po = 2.67 g/cm
3 (8-8) 
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float on a denser underlayer of constant density (say) 

PI = 3.27 g/cm
3 (8-9) 

The higher they are, the deeper they sink. Thus, root formation$ exist under moun­
tains, and "antiroots" under the oceans. 

We denote the density difference PI - Po by t:..p. With the assumed numerical 
values we have 

t:..p = PI - Po = 0.6 g/cm
3 (8-10) 

If we denote the height of the topography by hand the thickness of the corresponding 
root by t (Fig. 8.2), then the condition of floating equilibrium is 

so that 

tt:..p = hpo 

t = ~h= 4.45h 
t:..p 

For the oceans the corresponding condition is 

t' t:..p = h'(po - Pw) 

(8-11) 

(8-12) 

(8-13) 

where h' and Pw are defined as above and t' is the thickness of the antiroot (Fig. 8.2), 
so that we get 

t ' = Po - Pw h' = 2.74h' 
PI - Po 

for the numerical values assumed. 

(8-14) 

Again spherical corrections must be applied to these formulas for higher accu­
racy, and the formulations in terms of equal mass and equal pressure lead to slightly 
different results . 

The normal thickness of the earth's crust is denoted by To (Fig. 8.2). Values of 
around 

To = 30km (8- 15) 

are assumed. The crustal thickness under mountains is then 

To + h + t (8-16) 

and under the oceans it is 
To - h' - t' (8- 17) 

What we have called above "denser underlayer" is, of course, the mantle separated 
by the crust by the Mohorovicic discontinuity, or briefly, the Moho. The mantle evi­
dently is not liquid, but over very long time spans , even apparently "solid" materials 
behave in a plastic way, not unlike a very viscous fluid. 
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8.1.3 Regional Cornpensation According to Vening Meinesz 
. 

Both systems just diseussed are rughly idealized in that they assume the eompensation 
to be strietly localj that is, they assume that eompensation takes plaee along vertieal 
eolumns. Trus presupposes free vertieal mobility of the masses to a degree that is 
obviously unrealistie in trus strict form. 

For trus reason, Vening Meinesz (1931, 1940, 1941) modified the Airy floating 
theory, introdueing regional instead of loeal eompensation. The prineipal differenee 
between these two kinds of eompensation is illustrated in Fig. 8.3. In Vening Meinesz' 

crust 

Meinesz 

mantle 

Airy 

FIGURE 8.3: Loeal and regional eompensation 

theory, the topography is regarded as a load on an unbroken but yielding elastie erust. 
To understand the situation, eonsider a point load P on an infinite plane elastie 

plate (representing the erust) wrueh floats on a viscous underlayer of rugher density 
(representing the mantle, see above)j see Fig., 8.4. Sinee the topography is eounted 
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FIGURE 8.4: Bending (direet effeet, (a)) and truckening (indirect effect, (b)) of an 
elastic plate 

above sea level, we must fill the upper hollow in Fig. 8.4, (a), by crustal material 
of density Po wruch eauses, as an additional load, a further bending (indirect effect) 

if 
eil 
III 

di 

~ 

(1 

sele 



8.1 CLASSICAL ISOSTATIC MODELS 223 

(Fig. 8.4, (b)). Since the upper boundary is to remain horizontal, the total effect is a 
thickening of the plate. If mp denotes the mass of the point load, then its weight, or 
the force it exerts on the plate, obviously is mpg, 9 being gravity as usual. 

Fig. 8.5 shows the lower boundary of this plate. This boundary surface is obtained 

A a 0 r B 
r • 

~(r) 
• r 

z 

FIGURE 8.5: The bending curve 

by rotating the bending curve around the z-axisj we obviously presuppose isotropy. 
We further assume the curve to be nonzero only in the region r < a, a = AO = OB, 
and to be tangent to the coordinate axes at the end points A and B. (In modern 
terminology, f(r) is a "function of compact support", cf. sec. 7.5.) 

The equilibrium condition obviously is 

(PI - Po) !! f(r)dS = 1 (8-18) 
s 

if the mass mp of the point load Pis considered 1 (1 kg or 1 ton, say), S being the 
circle of radius a around O. This equation expresses the fact that the point load of 
mass 1 (right-hand side) is balanced by the hydrostatic uplift caused by the density 
difference PI - Po (left-hand side). 

The bending curve is given by Hertz' theory of the bending of an elastic plate, 
as we shall see below. What we need now are only the principal functional values 
(Table 8.1). The constants I (Vening Meinesz' "degree of regionality") and b must be 

TABLE 8.1: The bending curve after Hertz and Vening Meinesz 

r f(r) 
0 b 
I 0.646 b 

2/ 0.258b 
3/ 0.066 b 

3.887/ 0.000 

selected appropriately j obviously 

a = 3.887/ (8-19) 
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To be sure, J(r) is not exactly zero for r > a, but periodic, representing small 
circular waves with constantly decreasing amplitudes. 

Vening Meinesz, however, put J(r) = 0 outside 3.887l (more precisely, already 
outside 2.905l in order to enforce (8-18) for afinite cirde around 0) and approximated 
J(r) piecewise by polynomials (nowadays we would use a spline approximation). At 
any rate, the bending function 

z=J(r) (8-20) 

is now to be considered known. 
So much for a point load. Already in the formulas of secs. 8.1.1 and 8.1.2 it is dear 

that nothing will change if we consider the topography compressed (or "condensed") 
as a surface load of density Poh at sea level. Using the same concept also in Vening 
Meinesz' model, then the mass of the point load due to a vertical column of topography 
of cross section dS becomes 

dm = PohdS 

Since z = J(r) corresponds to a unit mass load, the bending due to the column under 
consideration is 

z dm = PohdS J(r) 

and the total bending Z due to the entire topography will be 

Z(:z:, y) = !! zdm = po!! h(:z:', y')J(r)d:z:'dy' (8-21) 

the integral being formally extended over the whole plane. Note that z has dimension: 
length per unit mass. Since 

r = J(:z: - :z:')2 + (y - y')2 

the above formula represents Z as a linear convolution of the functions h and f. 
Finally we note that 

T=To+Z (8-22) 

will be the depth of the Moho below sea level, To being the "normal thickness of the 
earth's crust" of Airy-Heiskanen, as given, for instance, by (8-15) . 

Physical background. For those readers who have some knowledge of elastostatics 
or are otherwise interested in the physical basis of Vening Meinesz' theory, we shall 
outline the background, which is of considerable mathematical interest, also in view of 
the fact that, in Chapter 7, we have used the bipotential equation in a quite different 
context j cL eq. (7-109). 

It is weil known that a plane elastic plate satisfies the "plate eq).!ation" 

(8-23a) 

Here 
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represents the biharmonic operator in two dimensions (the upper boundary of the 
unbended plate is the :z:y-plane); cf. eq. (7-11) for three dimensions. The quantity 
z expresses the vertical displacement of the plate by bending; for a unit mass load, 
it is identical to (8-20) above. The "plate stiffness" D is a constant depending on 
the elastic properties of the plate and of its thickness, and p represents the load 
force on a unit surface element. A derivation of (8-23a) can be found in any text 
on advanced engineering mechanics or in the volume on elasticity theory (Landau 
and Lifschitz, 1970) of the well-known course on theoretical physics, of which also an 
English translation exists. Abrief but instructive deduction is given in (Courant and 
Hilbert, 1953, pp. 250-251). 

Suppose now that the bended plate is not free but floating on aliquid underlayer, 
cf. Fig. 8.4, (a). (As a crude illustration, imagine an ice plate covering a lake, which 
is bent by the weight of a man standing on it.) Then the hydrostatic uplift causes a 
force 

gPIZ 

on a unit surface element, which acts opposite to the load p and must be subtracted 
from it. Thus (8-23a) is to be replaced by 

(8-23b) 

This case was first considered by Hertz (1884) and is given a lengthy elementary 
treatment by Föppl (1922, pp. 103-119), to whom Vening Meinesz refers. Eq. (8-23b) 
is also used, without derivation, in (Jeffreys, 1976, p. 270). 

Eq. (8-23b) represents to the "direct effect", cf. Fig. 8.4, (a). To get a horizontal 
upper surface, we must fill up the upper hollow. This pro duces a force 

gpoz 

per unit area, which acts in the same direction as p and thus must be added to the 
right-hand side of (8-23b), with the result 

(8-23c) 

Thus the "indirect effect" is taken into account by simply replacing PI in (8-23b) by 
the density contrast (8-10)! This case was not considered by Hertz and may have first 
been treated by Vening Meinesz. For a somewhat different physical modelleading to 
the same result (cL Turcotte and Schubert, 1982, pp. 121-122). 

Consider now a point load of mass 1 concentrated at the origin (in modern ter­
minology, we would call it a "delta function load") . Outside the origin, p is zero, so 
that (8-23c) becomes 

except for :z: = y = 0, or 

(8-24a) 
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where 

1- 4/ D 
- V g(Pl - Po) 

has the dimension of a length and is not hing else than Vening Meinesz' "degree of 
regionality" mentioned abovej he considers values of 1 from 10 to 60 km. 

Solution of Hertz' equation. Because of rotational symmetry, it is best to transform 
(8-24a) to polar coordinates. Since 

z = f(r) 

is a function of 
r = JX 2 + y2 

only, we get 
8z dz 8r dz x 
8x = dr 8x = dr :;:-, etc., 

so that we can express the Laplace operator 

82 82 d2 1 d ß=-+-=-+--
8x2 8 y 2 dr2 r dr 

for functions of r only. Thus, with 1-1 = k, eq. (8-24a) becomes 

[(~ + ~~) (~+ ~ ~) + k4
] Z = 0 

dr 2 r dr dr 2 r dr 
(8-24b) 

or, since with i 2 = -1, 

further 

-+--+~k -+---~k z=O ( 
d2 1 d . 2) ( d2 

1 d . 2) 
dr 2 r dr dr 2 r dr 

(8-24c) 

Now 

(8-25a) 

is the well-known Be88el equation (of zero order), whose solutions are, e.g., Bessel's 
function 

and Hankel's functions 

cf., e.g., (Courant and Hilbert , 1953, pp. 467-471) . Solutions of the equation 

d2u 1 du . 2 
-+--±~ku=O 
dx 2 x dx 

(8-25b) 

A 
j\ 

P 
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will consequently be the functions 

Jo(kxJ±i), H~1)(kxJ±i) and H~2)(kxJ±i) (8-26a) 

and these functions will obviously also solve (8-24c). 
The functions, or linear combinations of them, are known as Kelvin function&; 

splitting into areal and an imaginary part we have, e.g., 

beu + i bei x 

kerx + ikei x 
(8-26b) 

This all sounds very complicated, but we simply need a solution which is finite, 
with horizontal tangent, at the origin and vanishes at infinity. Looking at standard 
tables (Janke and Emde, 1945) and (Abramowitz and Stegun, 1965), we find without 
difficulty the required functions: (Janke and Emde, 1945) shows in the graph on 
p. 250 and the table on p. 252 that the real part of Ha1)(x0) does the job, and so 
likewise do (Abramowitz and Stegun, 1965) in the graph on p. 382 and the table on 
p. 431: here kei(x) is the required solution. Both functions are identical, apart from 
a constant factor. If we norm them to have /(0) = 1, we get from both tables the 
values shown in Table 8.2 (multiply the values in Janke-Emde by 2, and the values in 

TABLE 8.2: Enlarged and corrected version of Table 8.1, with I = b = 1 

x / x) 
0 1.0000 
0.5 0.8551 
1.0 0.6302 
1.5 0.4219 
2.0 0.2577 
2.5 0.1409 
3.0 0.0651 
3.5 0.0204 

3.915 0.0000 

Abramowitz-Stegun by -4j-rr). No further knowledge of Bessel functions is required: 
just use the table as if it were a table of sines or eosines! (Cf. also Tureotte, 1979, 
p.66.) 

The differenee between the values of Tables 8.1 and 8.2 is not surprising if we note 
that Hertz (1884), for functions which are not easy to calculate after all, had only 
limited computational facilities, and that Vening Meinesz simply took Hertz' values. 

To return to our physical model, we finally remark that Hertz (1884, p. 452) gives, 
in our notations, mp denoting the mass of the point load: 

b = /(0) = mp 
8Pl[2 
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If we consider a unit point mass load (mp = 1) and replace PI by the density contrast 
PI - Po as we have seen above, we get 

b= 1 
8(PI - Po)12 

Trus represents a relation between Z, the density contrast, and the maximum depth 
of bending under a unit point load; it is identical to Vening Meinesz' (1940) eq. (lB). 
Trus value obviously must be in agreement with (8-18). 

A 8implified ca8e. As we have seen, the two-dimensional equation (8-24a), in 
the case of rotational symmetry, can only be solved by somewhat unusual functions. 
Suppressing the y-coordinate, however, we get an extremely simple solution wruch 
gives an excellent qualitative (though not quantitative) picture of the problem and 
thus will facilitate our understanding (Turcotte and Schubert, 1982, pp. 125- 126). 

Disregarding the dependence on y, we have J:\4 Z = d4 z/dx\ so that (8-24a) re duces 
to 

d4 z 
dx4 + Z-4 Z = 0 

This is a linear ordinary differential equation with constant coefficients, for wruch the 
general solution is readily found by standard methods. It is 

z = e
z

/
a (CICOS~+C2sin~) + 

+e-z
/

a (C3 cos ~ + C4 sin~) 

the constants Ci are to be determined by the boundary conditions and Ci = 1.;2. 
The requirement that the deformation z vanishes at infinity (x ---+ 00) immediately 

eliminates, for positive x, the terms multiplied by ez
/

a
, so that Cl = C2 = O. Further­

more, the condition of a horizontal tangent at the origin x = 0 gives C3 = C4, so that 
our final solution simply is 

z = be-
z

/
a (cos ~ + sin~) (x ::::: 0) (8-27) 

as the equation of our "one-dimensional bending curve"; we have put C3 = C4 = b in 
agreement with our former notations. 

In fact, for small x we may expand trus function into a Taylor series: 

wruch is immediately seen to give dz/dx = 0 for x 0; the term linear in x is 
missing only if C3 = C4! To have symmetry with respect to x = 0 (corresponding 
to the origin r = 0 in Fig. 8.5), we must replace x by lxi, wruch pro duces a step 
discontinuity in d3 z/dxs and hence the required delta-like singularity in d4z/dx4 at 
x = 0, corresponding to a point load; cf. sec. 3.3.2. 

1 
i.nd 
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To repeat, this extremely simple solution is not the equation of the actual ben­
ding curve (8-20) but gives an excel1ent qualitative picture. This can be seen by 
drawing the graph of (8-27), with x replaced by -x for negative values of x: a central 
depression surrounded by very small waves of decreasing amplitude. 

8.1.4 Attraction of the Compensating Masses 

As apreparatory step for computing isostatic reductions, to be discussed in sec. 8.1.5, 
we need the attraction of the compensating masses. For simplicity we consider the 
problem in the usuallocal plane approximation, replacing the geoid by its tangential 
plane. The spherical approximation will be used later (sec. 8.2). 

We shall assume a basic definition concerning our three-dimensionallocal Carte­
sian co ordinate system (Fig. 8.6): The xy-plane represents sea level, the z-axis points 

h 

p 

o 
--~--------~L---~~----,---------~xy 

z 

dv 

z 

FIGURE 8.6: The basic co ordinate systems xyz and xyh 

vertically downwardJ, whereas the h-axis points vertically upward3, so that, for an 
arbitrary point, 

z =-h (8- 28) 

Keeping this definition in mind, the distance I between the computation point P 
and the volume element dv becomes 

(8-29) 
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The potential Ve of the compensating masses thus is 

(8-30) 

and their attraction (positive downward) 

8Ve lhJ hp +z Ac = --- = G --l::.pdv 
8hp 13 

(8-31a) 

with 8l- 1 /8hp by (8-29). For a point at sea level (hp = 0) this reduces to 

Ac = G !!! ~ l::.pdv (8-31b) 

P sea level 
~""--:c~rus"7"7"t7"""7""T'""7"""7"7""7""?~"?""7""-r7~'""7"""/7""""--' xy 

mantle Moho 

FIGURE 8.7: lliustrating the attraction of the compensating masses 

The integral is extended over all compensating masses, and l::.p is their density 
contrast. For Pratt's model, T =? D (constant depth of lithosphere rather than 
variable depth of Moho, cf. Fig. 8.1), but the density contrast l::.p is variable, being 
given by (8-3). Thus (8-31b) becomes 

D 

A~ratt = G! ! ! ~ l::.pdv (8-32a) 
%=-00 y=-oo .&=0 

with constant limits of integration (the integration from -00 to 00 for x and y is, of Il 
course, purely formal) . For Airy's and Vening Meinesz' models, the density contrast 
l::.p = PI - Po is constant (0.6 g/cm3

, say), but the Moho depth T is variable (Fig. 8.7), 
so that for these models, 

00 T 

Ae=Gl::.p!! ! (8-32b) 
-00 ~=To 

The integrals are to be evaluated by numerical integration, using standard methods 
(cf. Heiskanen and Moritz, 1967, pp. 117-118; Forsberg, 1984). 

11 

Very similar integrals hold, of course, for the attraction of the topography, as we Su 
shall see in what follows. 
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8.1.5 Remarks on Gravity Reduction 

Gravity reduction may be summanzed as follows (for more details cf. (Heiskanen and 
Moritz, 1967, pp. 130-151)): 

1. Removal 0/ topography. Gravity gp is measured at a surfaee point P (Fig. 8.8). 
The attraetion AT of the topographie masses above sea level is eomputed by a similar 

compensation 

flp 

T 

sea level 

FIGURE 8.8: Topographie and eompensating masses eontribute to gravity redue­
tion 

formula as (8-31a), with p instead of Äp and z = -h, and subtracted from gp . The 
result is 

(8-33) 

However, gp - AT eontinues to refer to P, therefore the next step is 
2. Free-air reduction to Jea level. This is done by adding the "free-air reduction" 

F = - ~ hp == 0.3086 hpmgal , (8-34) 

with h p in meters. (The milligal, abbreviated mgal, is the eonventional unit for 
gravity differences: 1mgal = 10-6 m S-2.) The replacement of actual gravity 9 by 
normal gravity , is only an approximation, and the numerical value given in (8-34) 
is conventional. The result is Bouguer gravity 

gB = gp - AT + F . (8-35) 

Subtracting normal gravity , we get the Bouguer anomaly 

ÄgB = gB - , = gp - AT + F -, (8-36) 
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3. Effect 0/ isostatie eompensation. This effect Ac as expressed by (8-31b) is to 
be added to (8-36) to give the isostatie anomaly 

(8-37) 

Bouguer plate and topographie eorrection. The attraction AT is eonventionally 
eomputed as 

AT = AB - C 

as the differenee of the attraction of a "Bouguer plate" (Fig. 8.9): 

Bouguer 
plate 

sea level 

(8-38) 

(8-39) 

FIGURE 8.9: Bouguer plate and terrain eorrectionj note that the effect of both the 
"positive" and the "negative" masses on C is always positive 

and a "topographie eorrection", or "terrain eorrection", C whieh is usually quite small 
but always positive. For more details cf. (Heiskanen and Moritz, 1967, pp. 130-133); 
see also sec. 8.2.2 below. Isostatie and othet redueed gravity anomalies may also be 
defined so as to refer to the topographie earth surfaee rat her than to sea level. This is 
the modern eoneeption related to Molodensky's theory, whieh is outside the seope of 
the present book (cf. Heiskanen and Moritz, 1967, sees. 8-2 and 8-11j Moritz, 1980, 
Part D). 

8.2 Isostasy as a Dipole Field 

In the ease of loeal eompensation, the isostatieally eompensating mass inside a ver­
tieal eolumn is exaetly equal to the topographie mass eontained in the same eolumn. 
This holds for both the Pratt and the Airy eoneept, by the very prineiple of loeal el 
eompensation. Fig. 8.10 illustrates the situation for the Airy-Heiskanen model. Ap­
proximately, the topography may be "eondensed" as a surfaee layer on sea level So, 
whereas the eompensation, with appropriate opposite sign, is thought to be eoneentra­
ted as a surfaee layer on the surfaee ST parallel to So at eonstant depth T (T is our 
former Ta). Both surfaee elements dm for topography and -dm for eompensation 
thus form a dipole. This fact is also expressed by the differenee Ac - AT in (8-37). 
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