To get the second one, we differentiate (7-113):

$$
\begin{equation*}
\frac{\partial H}{\partial n}=\frac{\partial H}{\partial R}=\frac{l}{l_{1}} \frac{\partial l}{\partial R}-\frac{1}{2} \frac{l^{2}}{l_{1}^{2}} \frac{\partial l_{1}}{\partial R}+\frac{1}{2} \frac{\partial l_{1}}{\partial R} . \tag{7-124}
\end{equation*}
$$

(The differentiation is considered to be carried out in such a way that, for the moment only, R varies since $\partial / \partial n=\partial / \partial R$ for the sphere, whereas the points P and P^{\prime}, and hence r and r^{\prime}, are unchanged and kept constant.) After differentiation, we set again $l_{1}=l$ on S by ($7-122$) to get from ($7-124$):

$$
\begin{equation*}
\frac{\partial H}{\partial n}=\frac{\partial H}{\partial R}=\frac{\partial l}{\partial R}=\frac{\partial l}{\partial n} \text { on } S \text {, } \tag{7-125}
\end{equation*}
$$

so that our second boundary condition is satisfied as well. This proves that (7-114) in fact represents Green's function for the sphere.

7.7.5 Stokes' Constants and the Harmonic Density

Let F be an arbitrary function which is twice continuously differentiable inside a surface S and continuous and differentiable on S. Let further U be an arbitrary regular harmonic function inside S, that is

$$
\begin{equation*}
\Delta U=0 \text { inside } S \tag{7-126}
\end{equation*}
$$

and continuous and differentiable on S. Then Green's identity (7-75) immediately gives

$$
\begin{equation*}
\iiint_{v} U \Delta F d v=\iint_{S}\left(U \frac{\partial F}{\partial n}-F \frac{\partial U}{\partial n}\right) d S . \tag{7-127}
\end{equation*}
$$

Thus the integral (7-127) does not explicitly depend on the values of U inside v but only on the boundary values U and $\partial U / \partial n$ on S, as the right-hand side shows. Such an integral is called a Stokes' constant (cf. Wavre, 1932, p. 43).

Examples of Stokes' constants are the quantity $G M$ and the other sphericalharmonic coefficients $A_{n m}$ and $B_{n m}$ in (1-36); in this case, the functions U are the inner zonal harmonics (1-35a), as the expressions (2-38) of (Heiskanen and Moritz, 1967, p. 59) show; F is proportional to the inner potential V since $-4 \pi G \rho=\Delta V$.

Let now F be the potential V_{0} of a zero-potential density, that is, $V_{0} \neq 0$ inside S but $V_{0} \equiv 0$ on and outside S, so that also $\partial V_{0} / \partial n=0$ on S. Then ($7-127$) reduces to

$$
\begin{equation*}
\iiint_{v} U \Delta V_{0} d v=0 \tag{7-128}
\end{equation*}
$$

or

$$
\begin{equation*}
\iiint_{v} U \rho_{0} d v=0 \tag{7-129}
\end{equation*}
$$

for any zero-potential density ρ_{0} and any regular harmonic function U. This is a nice characterization of zero-potential densities: all their Stokes' constants are zero, in particular all their spherical-harmonic coefficients must vanish (Pizzetti, 1909, 1910).

As we have seen in sec. 7.4 , any density ρ may be written

$$
\begin{equation*}
\rho=\rho_{H}+\rho_{0} \tag{7-130}
\end{equation*}
$$

as the sum of a harmonic density ρ_{H} and a zero-potential density ρ_{0}. Consider now

$$
\begin{equation*}
\iiint_{v} \rho^{2} d v=\iiint_{v}\left(\rho_{H}+\rho_{0}\right)^{2} d v \tag{7-131}
\end{equation*}
$$

which equals

$$
\begin{equation*}
\iiint_{v} \rho_{H}^{2} d v+2 \iiint_{v} \rho_{H} \rho_{0} d v+\iiint_{v} \rho_{0}^{2} d v \tag{7-132}
\end{equation*}
$$

Regarding (7-131) as the definition of a norm || || for the function ρ :

$$
\begin{equation*}
\|\rho\|^{2}=\iiint_{v} \rho^{2} d v \tag{7-133}
\end{equation*}
$$

we may write $(7-132)$ in the form

$$
\begin{equation*}
\|\rho\|^{2}=\left\|\rho_{H}\right\|^{2}+2\left(\rho_{H}, \rho_{0}\right)+\left\|\rho_{0}^{2}\right\| \tag{7-134}
\end{equation*}
$$

with an obvious definition and notation for the inner product of the functions ρ_{H} and ρ_{0}. Now (7-129), with $U=\rho_{H}$ (which is harmonic!), immediately shows that

$$
\begin{equation*}
\left(\rho_{H}, \rho_{0}\right)=0 \tag{7-135}
\end{equation*}
$$

that is, the densities ρ_{H} and ρ_{0} are mutually "orthogonal".
Thus (7-134) reduces to

$$
\begin{equation*}
\|\rho\|^{2}=\left\|\rho_{H}\right\|^{2}+\left\|\rho_{0}\right\|^{2} \geq\left\|\rho_{H}\right\|^{2} \tag{7-136}
\end{equation*}
$$

proving the minimum norm property of the harmonic density mentioned in sec. 7.3 (Marussi, 1980; Sansò, 1980).

