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7.7.4 Green’s Function for the Sphere

It is easy to give Green’s function G (7-99) if the boundary surface S is a sphere.
Submit the point P (to which Vp refers) to a Kelvin transformation, or inversion in
a sphere. Cf. (Kellogg, 1929, pp. 231-223); for a different application see (Heiskanen
and Moritz, 1967, pp. 143-144).
Fig. 7.10 shows the geometric situation. The inversion in the sphere transforms P
into a point P’ on the same radius as P, such that

re'=R? . (7-111)

Define a function !; by

FIGURE 7.10: Kelvin transformation as an inversion in the sphere

T
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= x (7-112)
Then the auxiliary function H in (7-99) simply is

11
Hi EH-{-EII 3 (7_113)
50 that Green’s function (7-99) becomes
e 1
G=l=gs~2h (7-114)

(Marcolongo, 1901).
With coordinates for P(zp, yp, zp), P'(zp, ¥p, zp) and Q(z, y, z) we thus have
) R R? . R

e e o y}:=§yp. AP T (7-115)
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v’ = zhtyptap (7-116)
P = (z—2p)+(@y—yp) +(2—2p)* , (7-117)
" = (2—2p) +(y—9p) +(z - 2p)" . (7-118)

It is straightforward though somewhat cumbersome to compute

(Gl 3 B’) (BZH 8*H 8’H)

e Lt En s g

AYH = ( (7-119)

and to find that it is zero and regular even at P, so that H is indeed a regular solution
of the biharmonic equation A*H = 0.

FIGURE 7.11: The point @ lies on the sphere §

There remains to verify the boundary conditions (7-96) on the sphere S. If @ lies
on S, then (Fig. 7.11)

? = v+ R —2rRcosy , (7-120)
R R?
1% = 24+ R* =9r'"Rcosp = 1-_2+R2_27 cos

2
£ R;zl’ k (7-121)
r
so that by (7-112), N
T 7-122)
h=gl=%_l=l on 5 . ( )
Hence (7-113) gives
H—= I on" ¥S (7-123)

which is our first boundary condition.
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To get the second one, we differentiate (7-113):

ag. g ol o litaely 1.8y
SN PN o g, g 7-124
Bn OR LOR 2BORT20R (H24)
(The differentiation is considered to be carried out in such a way that, for the moment
only, R varies since 8/8n = 8/8R for the sphere, whereas the points P and P’, and
hence r and 7', are unchanged and kept constant.) After differentiation, we set again
l; =1 on S by (7-122) to get from (7-124):
oH _oH _o_al
dn ~ 8R  OR  on
so that our second boundary condition is satisfied as well. This proves that (7-114)
in fact represents Green’s function for the sphere.

om S , (7-125)

7.7.5 Stokes’ Constants and the Harmonic Density

Let F' be an arbitrary function which is twice continuously differentiable inside a
surface S and continuous and differentiable on S. Let further U be an arbitrary
regular harmonic function inside S, that is

AU =0 inside'S , (7-126)

and continuous and differentiable on S. Then Green’s identity (7-75) immediately

gives
// UAde_//( e g )dS . (1-127)

Thus the integral (7-127) does not ezplicitly depend on the values of U inside v but
only on the boundary values U and 8U/8n on S, as the right-hand side shows. Such
an integral is called a Stokes’ constant (cf. Wavre, 1932, p. 43).

Examples of Stokes’ constants are the quantity GM and the other spherical-
harmonic coefficients A,,, and B,,, in (1-36); in this case, the functions U are the
inner zonal harmonics (1-35a), as the expressions (2-38) of (Heiskanen and Moritz,
1967, p. 59) show; F is proportional to the inner potential V since —4rGp = AV.

Let now F' be the potential V; of a zero-potential density, that is, V; # 0 inside S
but V5 = 0 on and outside S, so that also 8V,/8n = 0 on S. Then (7-127) reduces to

/f/ UAVody =0 (7-128)
/// oy =0 (7-129)

for any zero-potential density p, and any regular harmonic function U. This is a nice
characterization of zero-potential densities: all their Stokes’ constants are zero, in
particular all their spherical-harmonic coefficients must vanish (Pizzetti, 1909, 1910).
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