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1.1.4 Green's Function for the Sphere 

It is easy to give Green's function G (7-99) if the boundary surface S is a sphere. 
Submit the point P (to which Vp refers) to a Kelvin transformation, or inversion in 

a sphere. Cf. (Kellogg, 1929, pp. 231-223); for a different application see (Heiskanen 
and Moritz, 1967, pp. 143-144). 

Fig. 7.10 shows the geometrie situation. The inversion in the sphere transforms P 
into a point P' on the same radius as P, such that 

(7-111) 

Define a function 11 by 

P' 

R 

s 

FIGURE 7.10 : Kelvin transformation as an inversion in the sphere 

r I 

h = li l . (7- 112) 

Then the auxiliary function H in (7- 99) simply is 

1 F 1 
H = - - + - 11 

2 11 2 
(7-113) 

so that Green 's function (7-99) becomes 

1 12 1 
G = 1- - - - -11 

2 11 2 
(7-114) 

(Marcolongo, 1901). 
With coordinates for P(zp, yp, zp), P'(zp, YP' zp) and Q(z, y, z) we thUB have 

R2 
I 

Zp = ;2zp , 
I 

zp = (7-115) 
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x~ + y~ + z~ , 
(x - Xp)2 + (y _ yp)2 + (z _ zp)2 

(x - X~)2 + (y _ y~)2 + (z _ Z~)2 

It is straightforward though somewhat cumbersome to compute 

(7-116) 

(7-117) 

(7-118) 

(7-119) 

and to find that it is zero and regular even at P, so that His indeed a regular solution 
of the biharmonic equation D.. 2 H = O. 

P ' 

s 

FIGURE 7.11: The point Q lies on the sphere S 

There remains to verify the boundary conditions (7-96) on the sphere S. If Q lies 
on S, then (Fig. 7.11) 

r 2 + R 2 - 2rRcos7jJ , (7-120) 

R 4 R 3 

r '2 + R 2 
- 2r'Rcos7jJ = 2"" + R 2 

- 2- cos'IjJ 
r r 

R
2 

[2 

r 2 
(7-121) 

so that by (7- 112), 

[1 = 2:.. [' = 2:.. !!:. 1 = 1 on S . 
R R r 

(7-122) 

Hence (7- 113) gives 
H = I on S (7-123) 

which is our first boundary condition. 

Or 

for 
ehe 

POt 
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To get the seeond one, we differentiate (7-113): 

8H 8H I 81 1 z2 811 1 811 

8n = 8R = ~ 8R - 2lf 8R + 2 8R 
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(7-124) 

(The differentiation is eonsidered to be earried out in such a way that, for the moment 
only, R varies sinee 8/8n = 8/8R for the sphere, whereas the points P and P' , and 
henee 7' and 7", are unehanged and kept eonstant.) After differentiation, we set again 
/ 1 = 1 on S by (7-122) to get from (7-124): 

n 8H 8H 81 81 S 
8n 8R 8R 8n on (7- 125) 

so that our seeond boundary eondition is satisfied as weil. This proves that (7-114) 
in fact represents Green's function for the sphere. 

7.7.5 Stokes' Constants and the Harmonie Density 

Let F be an arbitrary function whieh is twiee eontinuously differentiable inside a 
surfaee S and eontinuous and differentiable on S. Let furt her U be an arbitrary 
regular harmonie function inside S, that is 

b..U = 0 inside S (7-126) 

and eontinuous and differentiable on S. Then Green's identity (7-75) immediately 
gives 

JJf U b..Fdv = ff (U~~ - F~~) dS 
u s 

(7-127) 

Thus the integral (7-127) doe3 not ezplicitly depend on the value3 0/ U in8ide v but 
only on the boundary values U and 8U/8n on S, as the right-hand side shows. Such 
an integral is ealled a Stokes' constant (cf. Wavre, 1932, p. 43). 

Examples of Stokes' constants are the quantity GM and the other spherieal
harmonie eoeffieients Anm and Bnm in (1-36); in this ease, the functions U are the 
inner zonal harmonies (1-35a), as the expressions (2-38) of (Heiskanen and Moritz, 
1967, p. 59) show; Fis proportional to the inner potential V sinee - 47rGp = b..V. 

Let now F be the potential Vo of a zero-potential density, that is , Vo -I 0 inside S 
but Vo == 0 on and outside S, so that also 8Vo/8n = 0 on S. Then (7-127) reduees to 

(7- 128) 

or 

(7- 129) 

for any zero-potential density Po and any regular harmonie function U. This is a nice 
characterization 0/ zero-potential den3itie3: all their Stokes' constants are zero, in 
partieular all their spherical-harmonie coefficients must vanish (Pizzetti, 1909 , 1910) . 
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