7.7.4 Green's Function for the Sphere

It is easy to give Green's function $G(7-99)$ if the boundary surface S is a sphere.
Submit the point P (to which V_{P} refers) to a Kelvin transformation, or inversion in a sphere. Cf. (Kellogg, 1929, pp. 231-223); for a different application see (Heiskanen and Moritz, 1967, pp. 143-144).

Fig. 7.10 shows the geometric situation. The inversion in the sphere transforms P into a point P^{\prime} on the same radius as P, such that

$$
\begin{equation*}
r r^{\prime}=R^{2} \tag{7-111}
\end{equation*}
$$

Define a function l_{1} by

FIGURE 7.10: Kelvin transformation as an inversion in the sphere

$$
\begin{equation*}
l_{1}=\frac{r}{R} l^{\prime} \tag{7-112}
\end{equation*}
$$

Then the auxiliary function H in (7-99) simply is

$$
\begin{equation*}
H=\frac{1}{2} \frac{l^{2}}{l_{1}}+\frac{1}{2} l_{1} \tag{7-113}
\end{equation*}
$$

so that Green's function (7-99) becomes

$$
\begin{equation*}
G=l-\frac{1}{2} \frac{l^{2}}{l_{1}}-\frac{1}{2} l_{1} \tag{7-114}
\end{equation*}
$$

(Marcolongo, 1901).
With coordinates for $P\left(x_{P}, y_{P}, z_{P}\right), P^{\prime}\left(x_{P}^{\prime}, y_{P}^{\prime}, z_{P}^{\prime}\right)$ and $Q(x, y, z)$ we thus have

$$
\begin{equation*}
x_{P}^{\prime}=\frac{R^{2}}{r^{2}} x_{P}, \quad y_{P}^{\prime}=\frac{R^{2}}{r^{2}} y_{P}, \quad z_{P}^{\prime}=\frac{R^{2}}{r^{2}} z_{P} \tag{7-115}
\end{equation*}
$$

$$
\begin{align*}
r^{2} & =x_{P}^{2}+y_{P}^{2}+z_{P}^{2} \tag{7-116}\\
l^{2} & =\left(x-x_{P}\right)^{2}+\left(y-y_{P}\right)^{2}+\left(z-z_{P}\right)^{2} \tag{7-117}\\
l^{\prime 2} & =\left(x-x_{P}^{\prime}\right)^{2}+\left(y-y_{P}^{\prime}\right)^{2}+\left(z-z_{P}^{\prime}\right)^{2} \tag{7-118}
\end{align*}
$$

It is straightforward though somewhat cumbersome to compute

$$
\begin{equation*}
\Delta^{2} H=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)\left(\frac{\partial^{2} H}{\partial x^{2}}+\frac{\partial^{2} H}{\partial y^{2}}+\frac{\partial^{2} H}{\partial z^{2}}\right) \tag{7-119}
\end{equation*}
$$

and to find that it is zero and regular even at P, so that H is indeed a regular solution of the biharmonic equation $\Delta^{2} H=0$.

FIGURE 7.11: The point Q lies on the sphere S
There remains to verify the boundary conditions (7-96) on the sphere S. If Q lies on S, then (Fig. 7.11)

$$
\begin{align*}
l^{2} & =r^{2}+R^{2}-2 r R \cos \psi \tag{7-120}\\
l^{\prime 2} & =r^{\prime 2}+R^{2}-2 r^{\prime} R \cos \psi=\frac{R^{4}}{r^{2}}+R^{2}-2 \frac{R^{3}}{r} \cos \psi \\
& =\frac{R^{2}}{r^{2}} l^{2} \tag{7-121}
\end{align*}
$$

so that by (7-112),

$$
\begin{equation*}
l_{1}=\frac{r}{R} l^{\prime}=\frac{r}{R} \frac{R}{r} l=l \quad \text { on } \quad S \tag{7-122}
\end{equation*}
$$

Hence (7-113) gives

$$
\begin{equation*}
H=l \text { on } S \tag{7-123}
\end{equation*}
$$

which is our first boundary condition.

To get the second one, we differentiate (7-113):

$$
\begin{equation*}
\frac{\partial H}{\partial n}=\frac{\partial H}{\partial R}=\frac{l}{l_{1}} \frac{\partial l}{\partial R}-\frac{1}{2} \frac{l^{2}}{l_{1}^{2}} \frac{\partial l_{1}}{\partial R}+\frac{1}{2} \frac{\partial l_{1}}{\partial R} . \tag{7-124}
\end{equation*}
$$

(The differentiation is considered to be carried out in such a way that, for the moment only, R varies since $\partial / \partial n=\partial / \partial R$ for the sphere, whereas the points P and P^{\prime}, and hence r and r^{\prime}, are unchanged and kept constant.) After differentiation, we set again $l_{1}=l$ on S by ($7-122$) to get from ($7-124$):

$$
\begin{equation*}
\frac{\partial H}{\partial n}=\frac{\partial H}{\partial R}=\frac{\partial l}{\partial R}=\frac{\partial l}{\partial n} \text { on } S \text {, } \tag{7-125}
\end{equation*}
$$

so that our second boundary condition is satisfied as well. This proves that (7-114) in fact represents Green's function for the sphere.

7.7.5 Stokes' Constants and the Harmonic Density

Let F be an arbitrary function which is twice continuously differentiable inside a surface S and continuous and differentiable on S. Let further U be an arbitrary regular harmonic function inside S, that is

$$
\begin{equation*}
\Delta U=0 \text { inside } S \tag{7-126}
\end{equation*}
$$

and continuous and differentiable on S. Then Green's identity (7-75) immediately gives

$$
\begin{equation*}
\iiint_{v} U \Delta F d v=\iint_{S}\left(U \frac{\partial F}{\partial n}-F \frac{\partial U}{\partial n}\right) d S . \tag{7-127}
\end{equation*}
$$

Thus the integral (7-127) does not explicitly depend on the values of U inside v but only on the boundary values U and $\partial U / \partial n$ on S, as the right-hand side shows. Such an integral is called a Stokes' constant (cf. Wavre, 1932, p. 43).

Examples of Stokes' constants are the quantity $G M$ and the other sphericalharmonic coefficients $A_{n m}$ and $B_{n m}$ in (1-36); in this case, the functions U are the inner zonal harmonics (1-35a), as the expressions (2-38) of (Heiskanen and Moritz, 1967, p. 59) show; F is proportional to the inner potential V since $-4 \pi G \rho=\Delta V$.

Let now F be the potential V_{0} of a zero-potential density, that is, $V_{0} \neq 0$ inside S but $V_{0} \equiv 0$ on and outside S, so that also $\partial V_{0} / \partial n=0$ on S. Then ($7-127$) reduces to

$$
\begin{equation*}
\iiint_{v} U \Delta V_{0} d v=0 \tag{7-128}
\end{equation*}
$$

or

$$
\begin{equation*}
\iiint_{v} U \rho_{0} d v=0 \tag{7-129}
\end{equation*}
$$

for any zero-potential density ρ_{0} and any regular harmonic function U. This is a nice characterization of zero-potential densities: all their Stokes' constants are zero, in particular all their spherical-harmonic coefficients must vanish (Pizzetti, 1909, 1910).

