

FIGURE 7.6: The powers $r^{n}(0 \leq r \leq 1)$

7.6.4 Zero-Potential Densities

The solution (7-38) gives $x_{k}=0$ if the right-hand side of $(7-37), b=V_{n m}$, is zero. This is the case of the homogeneous equation corresponding to (7-36),

$$
\begin{equation*}
\sum_{k=0}^{N} a_{n m k} x_{n m k}=0 \tag{7-48}
\end{equation*}
$$

or briefly, corresponding to (7-37),

$$
\begin{equation*}
\sum_{k=0}^{N} a_{k} x_{k}=0 \tag{7-49}
\end{equation*}
$$

which represents the case of a mass distribution that produces zero external potential.
These are the "zero-potential densities" (sec. 7.2), forming the kernel of the Newtonian operator, for the present case. It is very easy to find non-zero solutions of ($7-48$) or (7-49): eq. (7-49) means simply that the vector x is normal to the given vector a (in the usual Euclidean metric)! Thus any vector x in the plane normal to a is admissible.

Finally we mention that the set of solutions of (7-49), forming the vector $x^{(2)}$ in $(7-52)$ is "orthogonal" to the vector $(7-38)$, denoted in $(7-52)$ by $x^{(1)}$, if we again take P as metric tensor. This is geometrically evident and is also immediately verified by direct computation: using (7-38) in matrix notation, we have

$$
\begin{equation*}
x^{(1) T} P x^{(2)}=\frac{b}{a^{T} C a} a^{T} C P x^{(2)}=0 \tag{7-50}
\end{equation*}
$$

since $C P=I$ (unit matrix) and $a^{T} x^{(2)}=0$ by (7-49).

